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Classical continuum-based liquid–vapour phase-change models typically assume
continuity of temperature at phase interfaces along with a relation which describes the
rate of evaporation at the interface (Hertz–Knudsen–Schrage, for example). However,
for phase-transition processes at small scales, such as the evaporation of nanodroplets,
the assumption that the temperature is continuous across the liquid–vapour interface
leads to significant inaccuracies (McGaughey et al., J. Appl. Phys., vol. 91, issue 10,
pp. 6406–6415; Rana et al., Phys. Rev. Lett., vol. 123, 154501), as might the adoption
of classical constitutive relations that lead to the Navier–Stokes–Fourier (NSF) equations.
In this paper, to capture the notable effects of rarefaction at small scales, we adopt an
extended continuum-based approach utilising the coupled constitutive relations (CCRs). In
CCR theory, additional terms are invoked in the constitutive relations of the NSF equations
originating from the arguments of irreversible thermodynamics as well as being consistent
with the kinetic theory of gases. The modelling approach allows us to derive new
fundamental solutions for the linearised CCR model, to develop a numerical framework
based upon the method of fundamental solutions (MFS) and enables three-dimensional
multiphase micro-flow simulations to be performed at remarkably low computational cost.
The new framework is benchmarked against classical results and then explored as an
efficient tool for solving three-dimensional phase-change events involving droplets.
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1. Introduction

When a liquid evaporates it loses energy, this is why sweating cools us down. Evaporation
is an effective cooling mechanism widely employed by nature, for example, as a
body-temperature control for mammals (Sherwood 2005), and in engineering applications,
such as spray drying, spray cooling and microelectronics cooling (Dhavaleswarapu,
Murthy & Garimella 2012; Ling et al. 2014; Plawsky et al. 2014). The use of pot-in-pot
coolers by mankind can be tracked back to Bronze Age civilisation (Evans 2000); a device
that relies on the principle of evaporative cooling.

The description of phase-transition processes at microscale and nanoscale is intriguing,
mainly owing to the inability of classical continuum theories to accurately capture the
rarefied vapour-flow characteristic. Specifically, as the representative physical length
scale (�) of the flow becomes comparable to the mean free path (λ) in the vapour, i.e.
the Knudsen number (Kn = λ/�) ≈ 1 (Bird 1994; Cercignani 2000; Struchtrup 2005;
Sone 2007; Torrilhon 2016). The classical continuum description based on the Euler or
Navier–Stokes–Fourier (NSF) equations is valid only in regimes for which Kn � 0.001,
this is referred to as the hydrodynamic regime. There are, of course, computational
atomistic techniques, such as molecular dynamics (MD) simulations, which are capable
of modelling phase transition at nanoscales. However, owing to computational time and
memory limitations, it is impractical to use them for multiscale processes, which span a
wide range of time and length scales.

The behaviour of a dilute vapour phase can readily be described by the Boltzmann
equation, which is an evolution equation for the (velocity) distribution function of vapour
molecules (Bird 1994; Cercignani 2000). The Boltzmann equation offers the complete
mesoscopic description of the vapour for all ranges of Kn, however, the exact analytical
solution of the Boltzmann equation is intractable in a general case, whereas its numerical
solutions are computationally very expensive. Grad, in his seminal work (Grad 1949a,b),
proposed an asymptotic solution procedure for the Boltzmann equation through the
method of moments. A variety of other extended fluid-dynamics equations, aiming to
describe processes under rarefied conditions, have been developed, see e.g. Eu (1992),
Müller & Ruggeri (1998), Kremer (2010), Struchtrup (2005), Chakraborty & Durst (2007),
Dongari, Chakraborty & Durst (2010), Myong (2014) and Torrilhon (2016). These models
close the gap between classical fluid dynamics and kinetic theory; that is, they aim at a
good description in the transition regime (0.001 � Kn � 1).

The classical phase-transition models, found in the literature, assume that the
temperature and the velocity tangential to the interface are continuous across it. However,
it is now well established, both experimentally and theoretically (McGaughey & Ward
2002; Bond & Struchtrup 2004; Rana, Lockerby & Sprittles 2019), that such assumptions
are invalid at a nano-confined liquid–vapour interface. For such small length scales, the
Knudsen number lies in the transition regime (or beyond) and a difference in velocity
and temperature jump are observed across the interface, thus, it is important to employ
models capable of describing strong non-equilibrium effects that occur at high Knudsen
numbers. In Rana et al. (2019), the lifetime of an evaporating nanodroplet was studied.
The study revealed that, when the drop size is large (larger than a micrometre), the square
of its diameter decreases in proportion to time, this is known as the d2-law. However, as
the diameter approaches sub-micrometre and nanoscales, a crossover to a new behaviour
is observed, with the diameter now reducing in proportion to time (following a ‘d-law’).
By taking into account the temperature discontinuity at the liquid–vapour interface, the
drop’s lifetime was predicted correctly.
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Non-classical liquid–vapour phase-transition flows

Notably, a full theory on boundary conditions is still missing for these nonlinear
extended fluid-dynamics equations, for which the notion of solvability and stability is more
intricate. The approach suggested by Grad (1958) and recently explored by researchers (Gu
& Emerson 2007; Torrilhon & Struchtrup 2008; Gu & Emerson 2009; Struchtrup et al.
2017; Rana, Lockerby & Sprittles 2018b), violates Onsager symmetry conditions (Rana &
Struchtrup 2016; Beckmann et al. 2018; Sarna & Torrilhon 2018), leading to instabilities
which influence the convergence of numerical schemes and prevent the convergence of
moments (Torrilhon & Sarna 2017; Zinner & Öttinger 2019).

The second law of thermodynamics (entropy inequality) plays an important role in
finding constitutive relations in the bulk (de Groot & Mazur 1962; Gyarmati 1970; Harten
1983; Lebon, Jou & Casas-Vázquez 2008), in designing numerical schemes (Tadmor &
Zhong 2006; Kumar & Mishra 2012; Chandrashekar 2013), as well as in developing
physically admissible boundary conditions (Bond & Struchtrup 2004; Struchtrup &
Torrilhon 2007; Kjelstrup & Bedeaux 2008; Rana & Struchtrup 2016; Schweizer, Öttinger
& Savin 2016; Rana, Gupta & Struchtrup 2018a; Beckmann et al. 2018; Sarna & Torrilhon
2018). For the latter, one determines the entropy generation at the boundary and finds the
boundary conditions as phenomenological laws that guarantee positivity of the entropy
generation at the boundary. For example, in Struchtrup & Torrilhon (2007), Rana &
Struchtrup (2016), Sarna & Torrilhon (2018) and Beckmann et al. (2018) the linearised
second law (taking a quadratic entropy) was employed to determine boundary conditions
for the linearised version of the moment equations. The resulting phenomenological
boundary conditions were thermodynamically consistent for all processes and complied
with the Onsager reciprocity relations (Onsager 1931).

Over the last few years, an impressive body of research work has been devoted to the
development of constitutive theories whose closed conservation laws guarantee the second
law (Öttinger 2010; Struchtrup & Torrilhon 2010; Torrilhon 2012; Liu et al. 2013; Paolucci
& Paolucci 2018). The Burnett equations, which are obtained perturbatively from the
kinetic theory, are unstable (Bobylev 2006) and owing to the lack of any coherent second
law these equations lead to physically inadmissible solutions (Struchtrup & Nadler 2020).
The Burnett equations are unstable owing to the lack of a proper entropy inequality. On
the other hand, the moment equations (Grad 13-moment equations, regularised 13-moment
equations, etc.) are accompanied by proper entropy inequalities, and are stable, but only
in the linear cases (Struchtrup & Torrilhon 2007; Rana & Struchtrup 2016; Torrilhon
& Sarna 2017). In Rana et al. (2018a), the coupled constitutive relations (CCRs) were
obtained, as an enhancement to the NSF equations, by considering a correction term to
the non-convective entropy flux (in addition to the classic entropy flux, i.e. heat-flux and
thermodynamic temperature). As a result, the CCRs add several second-order terms to the
NSF equations, in the bulk and in the boundary conditions, capturing important rarefaction
effects in moderately rarefied conditions, such as the Knudsen minimum, and non-Fourier
heat transfer, which cannot be described by classical hydrodynamics (Rana et al. 2018a).

Throughout this paper, we are going to utilise the CCR theory, thereby some comments
about these equations are in order. The CCR theory originates from the arguments of
irreversible thermodynamics. In CCR theory, additional terms appear in the constitutive
relations of the NSF equations, where the coupling between constitutive relations for
the heat-flux vector and stress tensor is introduced via a coupling coefficient (α0).
For α0 = 0, the coupling vanishes and one obtains the classical NSF equations. In
addition, for the flow conditions considered in the paper (steady-state and linearised
equations), the CCR system (conservation laws plus CCR) reduces to the linearised Grad
13-moment equations (Grad-13) for α0 = 2/5; a value obtained for Maxwell molecule
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(MM) gases (Struchtrup 2005). Thus, under suitable assumptions, this paper provides a
unified framework for the NSF equations, Grad-13 and the CCR system. More precisely,
we explore the method of fundamental solutions (MFS) for the CCR system (hence, NSF,
Grad-13) that can be useful for constructing solutions over a wide range of free-stream
profiles and complex geometries.

The MFS (Kupradze & Aleksidze 1964) is a mesh-free numerical technique for
solving partial differential equations based on using the fundamental solutions (Green’s
functions). The main advantage that the MFS has over the more classical numerical
methods, such as the finite-difference method and the finite-element method, is that its
solution procedure does not require discretisation of the interior of the computational
domain, thus a significant amount of computational effort and time is saved. Furthermore,
the MFS does not require (the very computationally expensive) three-dimensional mesh
generation. As a result, the MFS is ideally suited for the problems involving moving
interfaces and phase-change processes. The first steps towards utilising MFS for rarefied
gas flows were taken by Lockerby & Collyer (2016), who derived Green’s functions for
the Grad-13 system and utilised them to solve some canonical problems. The present
study further develops the MFS-based framework (MFS–CCR) for phase-transition
boundary-value problems, which, as we show later, involves the derivation of new
Green’s functions, generated by a singular mass source/sink term. In this paper, a set
of temperature-jump and velocity-slip boundary conditions for a liquid–vapour interface
will be derived for the linearised CCR system and implemented within the framework of
MFS. However, it should be noted that the developed MFS methodology in this paper
can also be applied to other type of liquid–vapour interface boundary conditions, such as
the classical Schrage law (Schrage 1953), statistical rate theory (Ward & Fang 1999) and
phenomenological approach based on Hertz–Knudsen–Schrage relation (Liang, Biben &
Keblinski 2017). We do not address these boundary conditions in this paper, instead we
leave this for a future investigation.

The remainder of this paper is organised as follows. In § 2, we introduce the linearised
and dimensionless CCR model. In § 3, the derivation of Green’s functions for the
CCR model is presented, followed by the derivation of thermodynamically consistent
boundary conditions at the phase interface in § 4. A brief summary of the MFS and
implementation is given in § 5. In § 6.1 the numerical scheme is applied to evaporation
from a spherical droplet and low-speed gas flow around a sphere (for which the analytical
solutions exist) in order to validate our numerical scheme. To illustrate the utility of
fundamental solutions for complex geometries, in §§ 6.2, 6.3 and 6.4 we solve the motion
of two spherical non-evaporating droplets with different orientations, evaporation of two
interacting droplets and evaporation of a deformed droplet, respectively. Concluding
remarks are made in § 8.

2. The linearised NSF, Grad-13 and CCR systems

In this paper we only consider flow conditions where the deviations from a constant
equilibrium state, given by a constant reference density ρ̂0, a constant reference
temperature T̂0 and all other fields zero, are small. Thereby, the governing equations can
be linearised with respect to the reference state. The governing equations are put into
dimensionless form by introducing

r = r̂

�̂
, ρ = ρ̂ − ρ̂0

ρ̂0
and T = T̂ − T̂0

T̂0
, (2.1a–c)
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where r is the position vector in Cartesian coordinates, �̂ is the reference length scale
and ρ and T are the dimensionless perturbations in the density and temperature from
their reference values, respectively; hats denote dimensional quantities. The dimensionless
velocity vector v, the stress tensor Π and the heat-flux vector q are

v = v̂√
R̂T̂0

, Π = Π̂

ρ̂0R̂T̂0
and q = q̂

ρ̂0

(
R̂T̂0

)3/2 , (2.2a–c)

where R̂ is the gas constant. The perturbation in pressure p is given by a linearised equation
of state

p = ρ̂R̂T̂

ρ̂0R̂T̂0
− 1 = (1 + ρ) (1 + θ) − 1 ≈ ρ + θ, (2.3)

where the last equation assumes small perturbations ρ and θ , hence ρθ is assumed to be
negligible in comparison to ρ + θ .

Accordingly, dimensionless and steady-state (linearised) conservation laws for mass,
momentum and energy read

∇ · v = 0, ∇p + ∇ · Π = 0 and ∇ · q = 0. (2.4a–c)

It should be noted that conservation laws (2.4a–c) contain the stress tensor and heat-flux
vector as unknowns, hence constitutive equations are required for these quantities. If the
CCR closure is adopted, the (linearised) constitutive relations for Π and q read (Rana et
al. 2018a)

Π = −2Kn〈∇v〉 − 2α0Kn〈∇q〉 and q = −cpKn
Pr

(∇T + α0∇ · Π) , (2.5a,b)

where cp = 5/2 (=ĉp/R̂) is the specific heat for mono-atomic gases, Pr is the Prandtl

number and the Knudsen number Kn = μ̂0/(ρ̂0

√
RT̂0�̂), where μ̂0 is the viscosity of the

gas at the reference state. Furthermore, the chevrons in (2.5a,b) denote the traceless and
symmetrical component of the tensor, i.e.

〈∇v〉 = 1
2

(∇v + ∇vT) − 1
3 (∇ · v) I, (2.6)

where I is the identity matrix.
It is because the constitutive relations (2.5a,b) for the fluxes Π and q are coupled (in

contrast to NSF) that they are given the initialism CCRs. The benefit of the CCR model
compared with extended moment equations (Grad-13 equations, for instance) is that it
retains full thermodynamic structure without any restriction (Rana et al. 2018a).

In the above equations the phenomenological coefficient α0 appears, which is chosen
such that the CCR model agrees with the Burnett coefficients (in the sense of the
Chapman–Enskog expansion of the Boltzmann equation). The NSF equations are obtained
when α0 = 0. The value of α0 for the MM gases is 2/5, for other power potentials it can be
computed from the relation α0 = Pr�3/5, where �3 is the Burnett coefficient (Struchtrup
2005; Rana et al. 2018a).

It is important to note here that, in steady state, the linearised CCR model reduces to the
linearised Grad-13 moment equations for α0 = 2/5 (i.e. for MM gases). Hence, using the
naming convention of Lockerby & Collyer (2016), Claydon et al. (2017), the solution of
the CCR equations (2.4a–c) and (2.5a,b) will still be referred to as the generalised Gradlet.
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3. Green’s functions: the Gradlet, thermal Gradlet and sourcelet

In this section, we write the fundamental solutions (Green’s functions) for the CCR
system (2.4a–c) and (2.5a,b) that will be used further in constructing the new solutions
for complex geometries and phase-change problems.

3.1. The Gradlet and thermal Gradlet
The fundamental solutions sought here correspond to the steady-state response of the
vapour with regard to a point body force f and a heat source of strength g, acting at
the singularity point at the origin (rs = 0), i.e. the Green’s functions associated with the
following equations:

∇ · v = 0, ∇p + ∇ · Π = Kn f δ (r) and ∇ · q = Kngδ (r) , (3.1a–c)

where δ(r) is the three-dimensional Dirac delta function. The solutions to (3.1a–c) along
with (2.5a,b) are obtained via a Fourier transformation. The velocity v(Gr), pressure p(Gr)

and stress tensor Π(Gr), at any point r, are found as

v(Gr)(r) = 1
8π

J (r) · f + 3α2
0cpKn2

4πPr
K(r) · f , (3.2a)

p(Gr)(r) = Kn
4π

f · r
|r|3 , (3.2b)

Π(Gr)(r) = 3Kn
4π

(f · r + 2α0Kng) K(r). (3.2c)

Here, we have introduced the abbreviations

J (r) = rr
|r|3 + I

|r| and K(r) = rr
|r|5 − 1

3
I

|r|3 (3.3a,b)

to denote the Oseen–Burger tensor and the third decaying harmonic tensor (Lamb 1945),
respectively. The temperature T(Gr) and heat flux q(Gr) are obtained as

T(Gr)(r) = Pr
4πcp

g
|r| , (3.4a)

q(Gr)(r) = Kn
4π

g
|r|3 r − 3α0cpKn2

4πPr
K(r) · f . (3.4b)

Here, it is assumed that all the field variables are measured relative to their equilibrium
values at infinity, hence all field variables vanish as |r| → ∞.

One can easily verify that, for α0 = 0, the fundamental solutions (3.2) and (3.4) reduce
to the solution of Stokes (Stokeslet) and the heat equation (thermal Stokeslet), which
is available in the works of Oseen and Burger (Lamb 1945) and the recent work of
Lockerby & Collyer (2016). Moreover, for α0 = 2/5, (3.2)–(3.4) reduce to the Grad-13
moment equations, the Gradlet and the thermal Gradlet, obtained by Lockerby & Collyer
(2016). Thus, one can also think of (3.2)–(3.4) as the solution of 13-moment equations
(steady-state and linearised) with general power potentials in the collision operator for the
Boltzmann equation.
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3.2. The sourcelet
The linearity of (2.4a–c) and (2.5a,b) allows one to obtain a class of singularity solutions
that are readily applicable to various type of boundary-value problems. Note that the
fundamental solutions (Gradlet and thermal Gradlet) obtained in the previous section
create no mass flux. Owing to Gauss’ theorem, one may draw any boundary enclosing the
Stokeslet/Gradlet, and find that there can be no mass flux across it (∇ · v = 0 everywhere).
Therefore, it follows that, to capture phase-change events (and here we are particularly
interested in the liquid–vapour interface) an additional fundamental solution is required,
one that produces a source of mass. Hence, we consider the solution of the following
equations:

∇ · v = hδ(r), ∇p + ∇ · Π = 0, and ∇ · q = 0, (3.5a–c)

where h is the strength of the mass source. Again, the fundamental solutions of (3.5a–c)
and (2.5a,b) are derived via Fourier transform (see Appendix A for detailed derivation),
yielding

v(S)(r) = h
4π

r
|r|3 , (3.6a)

Π(S)(r) = 3Knh
2π

K(r), (3.6b)

p(S)(r) = T(S)(r) = 0 and q(S)(r) = 0. (3.6c)

As such, the pressure, temperature and heat flux vanish for this case.

3.3. Equations collected
Combining the Gradlet, thermal Gradlet (3.2)–(3.4) and sourcelet (3.6), the flow fields
induced by the generalised Gradlet (a point mass source, point force and point heat source)
are

v(r) = 1
8π

J (r) · f + 3α2
0cpKn2

4πPr
K(r) · f + h

4π

r
|r|3 , (3.7a)

p(r) = Kn
4π

f · r
|r|3 , (3.7b)

Π(r) = 3Kn
4π

(f · r + 2α0Kng + 2h) K(r) (3.7c)

and

T(r) = Pr
4πcp

g
|r| , (3.8a)

q(r) = Kn
4π

g
|r|3 r − 3α0cpKn2

4πPr
K(r) · f . (3.8b)

These solutions need to be supplemented with appropriate boundary conditions, which
are formulated in the next section.
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4. Liquid–vapour interface boundary conditions

In this section, we derive the phase-interface boundary conditions for the CCR system
within the framework of irreversible thermodynamics (Kjelstrup & Bedeaux 2008).
In order to establish (thermodynamically consistent) boundary conditions at the phase
interface, one determines the entropy generation at the interface, and finds the boundary
conditions as phenomenological laws that guarantee positivity of the entropy generation
rate. For the linearised CCR equations, the entropy generation rate at the interface is
(Beckmann et al. 2018; Rana et al. 2018a)

Σsurface = −
(
v − vI

)
· n

[
p − psat + (n · Π · n)

] − q · n
[
T − Tl + α0 (n · Π · n)

]

−
2∑

i=1

(
t(i) · Π · n

) [
t(i) ·

(
v − vl

)
+ α0t(i) · q

]
� 0, (4.1)

where n is a unit normal pointing from a boundary point into the gas and {t(i)}i=1,2 are
orthonormal tangent vectors to the boundary. Here, vI denotes the velocity of the interface,
TI denotes the temperature of the liquid at the interface and psat(TI) is the saturation
pressure.

The positivity of entropy generation rate Σsurface is ensured by adopting the following
boundary equations(

v − vI
)

· n = −η11 ( p − psat + n · Π · n) + η12

(
T − TI + α0n · Π · n

)
, (4.2a)

q · n = η12 ( p − psat + n · Π · n) − (η22 + 2τ0)
(

T − TI + α0n · Π · n
)

(4.2b)

and

t(1) · Π · n = −ς
(
v − vI + α0q

)
· t(1), (4.3a)

t(2) · Π · n = −ς
(
v − vI + α0q

)
· t(2). (4.3b)

Through boundary conditions (4.2), the evaporative mass and heat flux are governed
by the difference between pressure and saturation pressure and temperature difference
across the interface. Furthermore, the boundary conditions (4.3a) and (4.3b) relate the
shear stress to the tangential velocity slip and thermal transpiration, a flow induced by a
tangential heat flux, which is a second-order effect (Hadjiconstantinou 2003; Sone 2007;
Cercignani & Lorenzani 2010). The boundary conditions (4.2) and (4.3) are an extension
to the classical Hertz–Knudsen–Schrage law for evaporation (Schrage 1953), taking into
account the temperature jump, velocity slip and some second-order effects.

In boundary conditions (4.2), ηij’s are Onsager resistivity coefficients, which are
obtained from the asymptotic (Kn → 0) kinetic theory (Sone 2007), as (see Appendix
B for details)

η11 = 0.9134

√
2
π

ϑ

2 − ϑ
, η12 = 0.3915

√
2
π

ϑ

2 − ϑ
, and η22 = 0.1678

√
2
π

ϑ

2 − ϑ
.

(4.4a–c)
These coefficients were obtained assuming that the evaporation/condensation coefficient
ϑ is independent of the impact energy of molecules and that all vapour molecules
that are not condensing are thermalised, i.e. the accommodation coefficient, χ = 1.
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The temperature-jump coefficient τ0 = 0.8503
√

2/π and velocity-slip coefficient ς =
0.8798

√
2/π. Throughout this paper, we shall take ϑ = 0 for the canonical boundaries

and ϑ = 1 (a value largely accepted in literature) for the phase-change boundaries.
Although in the development of our MFS approach, we use (4.2) and (4.3) as the

boundary conditions, this methodology is in principle capable of accommodating other
type of phase-interface boundary conditions, such as statistical-rate theory (Ward & Fang
1999) and phenomenological approach based on Hertz–Knudsen–Schrage relation (Liang
et al. 2017). We do not address these boundary conditions in this paper, but should be
worthy of future investigation.

In the following sections, we introduce, and use, the MFS for CCR, i.e. CCR–MFS,
which is computationally economic, and shows that it provides reliable solutions of the
CCR and NSF equations in good agreement to the known closed-form analytical results.

5. MFS for the CCR equations (CCR–MFS)

Let us consider Nc collocation points on the boundary at {rc( j)}Nc
j=1, whereas Ns singularity

points are located outside the computational domain (i.e. inside the solid/liquid body)
with position vectors {rs( j)}Ns

j=1, see figure 1. The flow-field variables are given by a
superposition of the Gradlets, thermal Gradlets and sourcelets, formulated in (3.7) and
(3.8), as

v(i)(Gr) =
Ns∑
j=1

1
8π

J
(

r(ij)
)

· f ( j) + 3α2
0cpKn2

4πPr
K

(
r(ij)

)
· f ( j), (5.1a)

v(i)(S) =
Ns∑
j=1

h( j)

4π

r(ij)

|r(ij)|3 , (5.1b)

v(i) = v(i)(Gr) + v(i)(S), (5.1c)

p(i) =
Ns∑
j=1

Kn
4π

f ( j) · r(ij)

|r(ij)|3 , (5.1d)

Π(i) =
Ns∑
j=1

3Kn
4π

(
f ( j) · r(ij) + 2α0Kng( j) + 2h( j)

)
K

(
r(ij)

)
, (5.1e)

and

T(i) =
Ns∑
j=1

Pr
4πcp

g( j)

|r(ij)| , (5.2a)

q(i) =
Ns∑
j=1

Kn
4π

g( j)r(ij)

|r(ij)|3 − 3α0cpKn2

4πPr
K

(
r(ij)

)
· f ( j) (5.2b)

are fundamental solutions for the CCR equations. Here, r(ij) = rc(i) − rs(j) are the
displacement vectors from the jth singularity site to the ith collocation point.

There are a total of 5 × Ns unknowns in (5.1) and (5.2), five at each singularity site,
which need to be specified via suitable boundary conditions. The four boundary conditions
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x

t(1) (i) t(2) (i)

n(i)

ith collocation point

Vapour

Liquid

Rc

Rs

y

z

r (ij)

jth singularity point

Figure 1. Schematic representation of the collocation and singularity points layout: n(i), t(1)(i) and t(2)(i)

represent the unit normal and both the tangential vectors, respectively, at the ith collocation point.

in (4.2) and (4.3) need to be satisfied at every collocation point. Hence, one additional
boundary condition is required (at each collocation point). We use the following boundary
conditions:

v(i)(S) · n(i) = −η11

(
p(i) − p(i)

sat + n(i) · Π(i) · n(i)
)

+ η12

(
T(i) − T(i)I + α0n(i) · Π(i) · n(i)

)
, (5.3a)

(
v(i)(Gr) − v(i)I

)
· n(i) = 0. (5.3b)

Notably, we have split the boundary condition (4.2a) into two components, (5.3a) and
(5.3b). Clearly, these two boundary conditions are sufficient for condition (4.2a) to hold.
The boundary conditions for the normal heat flux (4.2b) and shear stress (4.3) read

q(i) · n(i) = η12

(
p(i) − p(i)

sat + n(i) · Π(i) · n(i)
)

− (η22 + 2τ0)
(

T(i) − T(i)I + α0n(i) · Π(i) · n(i)
)

, (5.4a)

t(1)(i) · Π(i) · n(i) = −ς
(
v(i) −v(i)I +α0q(i)

)
· t(1)(i), (5.4b)

t(2)(i) · Π(i) · n(i) = −ς
(
v(i) −v(i)I +α0q(i)

)
· t(2)(i). (5.4c)

For convenience, we write the set of equations (5.3) and (5.4) in matrix form

Ns∑
j=1

Liju( j) = b(i), (5.5)

where u(j) is the vector containing the five degrees of freedom at each singularity point,
i.e.

u( j) =
{

g( j),f ( j)
1 ,f ( j)

2 ,f ( j)
3 ,h( j)

}
, (5.6)
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Non-classical liquid–vapour phase-transition flows

where Lij is a 5 × 5 coefficient matrix, and b(i) is a 5 × 1 vector, which can be readily
extracted using symbolic software, we used Mathematica® for this. The inhomogeneous
part {b(i)}Nc

i=1 contains the properties of the interface, namely, T(i)I , p(i)
sat and v(i)I . The

5Nc × 5Ns linear system (5.5) is solved for {u(i)}Ns

i=1 using an iterative quasi-minimal
residual method (Freund & Nachtigal 1991). Moreover, the normal and the tangent
vectors {n( j),t(1)(j),t(1)(j)}Nc

j=1 are obtained using Householder reflection formula for vector
orthogonalisation (Lopes, Silva & Ambrósio 2013).

6. Results and discussion

The CCR–MFS method described in the previous section requires some numerical
parameters to be specified, namely, the number of collocation (Nc) and singularity (Ns)
points to take and the location of singularity points outside the computational domain.
These parameters govern the overall efficiency of the numerical scheme, by striking
a balance between numerical error and computational time. Throughout this study, we
consider an equal number of collocation and singularity points, i.e. Nc = Ns and take
γ ∈ (0, 1) as a geometry-dependent parameter, which governs how far the singularity
points are from the boundary. For instance, for the spherical geometry shown in figure 1,
we choose γ = Rs/Rc.

In order to validate our code and to establish the numerical accuracy of the CCR–MFS
scheme, we validate our results for a case of an evaporating spherical droplet, the analytic
solutions to this problems are readily available in Rana et al. (2018b) for the case of
Grad-13 equations. In addition, in order to establish the accuracy of our models, we
consider a slow flow around a sphere (evaporative and non-evaporative) for various values
of Knudsen number and compare our solutions with results from kinetic theory.

6.1. Validation and verification of CCR–MFS

6.1.1. Validation case: evaporation from a spherical droplet
First, we consider a liquid droplet of fixed radius with a given interface temperature TI

and the corresponding saturation pressure psat, immersed in its own vapour, see figure 2.
The far-field conditions are given by T∞ = 0, p∞ = 0, that is, we consider the far-field
conditions and the droplet radius (R0) for non-dimensionalisation. Throughout this paper
we do not consider dynamics within the droplets, surface tension, etc., see Rana et al.
(2019).

Assuming the spherical symmetry of this problem, the analytic solutions for the radial
velocity vr, heat flux qr, normal stress Πrr and the temperature T are obtained from
(2.4a–c) and (2.5a,b) as (Rana et al. 2018b)

vr = c1

r2 , qr = c2

r2 , Πrr = 4Kn (c1 + α0c2)

r3 , T = Pr
cpKn

c2

r
, and p = 0.

(6.1a–e)
Here, r is the radial direction and c1 and c2 are constants of integration. Solutions (6.1a–e)
can also be derived from the fundamental solutions (3.7a)–(3.7c), which are given in
Appendix C.

The flow is driven by (i) a unit pressure difference while the temperature of the liquid is
equal to the far-field temperature (i.e. psat = 1 and TI = T∞ = 0) or (ii) a unit temperature
difference while the saturation pressure in the liquid is the same as the far-field pressure
(i.e. psat = p∞ = 0 and TI = 1). In both cases, the constants of integration, namely,
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Vapour

Droplet

T I

r

psat

R0

p∞

T∞

Far–field

Figure 2. Schematic representation of a liquid droplet surrounded by its own vapour. The equations are made
dimensionless with respect to the far-field conditions (T∞, p∞). The temperature and the pressure deviations
vanish as r → ∞.

the mass flux (c1) and heat flux (c2), per unit area, are obtained from boundary conditions
(4.2) at r = 1. For Grad-13 (i.e. α0 = 2/5) these are obtained as

cp
1 = 0.220562 + 0.0613424 + 0.0960246Kn

0.138548 + Kn(0.716085 + Kn)
, (6.2a)

cp
2 = cτ

1 = − Kn(0.108868 + 0.551404Kn)

0.138548 + Kn(0.716085 + Kn)
, (6.2b)

cτ
2 = 0.152568Kn + Kn2(0.924355 + 1.37851Kn))

0.0406847 + Kn(0.348827 + Kn(1.00974 + Kn))
. (6.2c)

Here, superscripts ‘p’ and ‘τ ’ denote the pressure-driven case (psat = 1 and Tl = T∞ = 0)
and temperature-driven case (psat = p∞ = 0 and TI = 1), respectively. The results of
these two problems can be combined to evaluate the total evaporative mass and heat
flux from the droplet (Rana et al. 2019). Owing to the microscopic reversibility of the
evaporation and condensation processes the Onsager reciprocity relations hold, which give
(cp

2 = cτ
1) (Chernyak & Margilevskiy 1989; Rana et al. 2018b).

The mass and the heat flux predicted by the CCR–MFS method are obtained by
integrating v(Gr) (5.1a), (5.1b) and q(Gr) (5.2b) over the droplet surface, i.e.

c(MFS)
1 = 1

4π

∫ π

0

∫ 2π

0
v(Gr) · n dϕ dθ = 1

4π

Ns∑
i=1

h(i), (6.3)

c(MFS)
2 = 1

4π

∫ π

0

∫ 2π

0
q(Gr) · n dϕ dθ = Kn

4π

Ns∑
i=1

g(i). (6.4)

Let us first briefly consider the convergence characteristics of the CCR–MFS method.
The configuration for the collocation and singularity points is shown in figure 1. We define
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Non-classical liquid–vapour phase-transition flows
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g 10

|ε(
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|

ε(c2
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ε(c1
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lo
g 10

|ε|

γ = 0.05
γ = 0.10
γ = 0.25

Kn Kn

(b)(a)

Figure 3. Log–log plot of errors against Knudsen number with three different singularity locations
γ = Rs/Rc = 0.05, 0.1, 0.25 and with Nc = Ns = 112: (a) error in cp

1 and cτ
2 and (b) error in cτ

1 .

errors ε between the numerical prediction of cp
1, cT

1 and cT
2 to the analytical values (6.2) as

ε
(
cp

1
) = cp(MFS)

1 − cp
1, ε

(
cτ

2
) = cτ(MFS)

2 − cτ
2 and ε

(
cτ

1
) = cτ(MFS)

1 − cτ
1 .

(6.5a–c)
Figure 3 shows the numerical errors of the MFS (with α0 = 2/5) in cp

1, cτ
2 (a) and cτ

1
(b) for three different singularity site locations (γ = Rs/Rc = 0.05, 0.1, 0.25) and various
values of the Knudsen number. The result indicates very high accuracy with a moderate
number of points (Nc = 112). The best results are obtained when the singularity sites
are farther away from the collocation nodes, i.e. γ is small. However, it leads to poorer
conditioning of the equation system (5.5), which in turn results in larger least-square errors
and computational time.

As Lockerby & Collyer (2016), numerical tests were also conducted by increasing the
number of collocation points, as well as, by shifting the singularities sites (i.e.breaking
the symmetry of the collocation and singularity points), the results were found to be
satisfactory. Henceforth, the numerical simulations are performed with γ = 0.1, unless
otherwise stated.

Figure 4 shows the variations in the mass- and heat-flux coefficients (c1 and c2) for
a range of Knudsen numbers, the numerical parameters are included in the caption. In
order to put the CCR models into perspective, we compare our predictions with different
theories, namely, NSF (α0 = 0), Grad-13 (α0 = 2/5) and (α0 = 3/5), against the results
(symbols) from the linearised Boltzmann equations (LBEs) by Takata et al. (1998).
The solutions of the NSF equations with classical boundary conditions, i.e. assuming
the (linearised) Hertz–Knudsen–Schrage law for evaporation (Schrage 1953) and the
continuity of temperature across the interface, are also included (thin green lines) in
figure 4 for the comparison. These boundary conditions can be obtained from (4.2a) by
taking η12 = 0 and T = TI instead of (4.2a), which are only valid for Kn → 0 (Sone 2007;
Rana et al. 2018b).

For the pressure-driven case (cf. figure 4a) mass flux goes from liquid to vapour
(i.e. cp

1 � 0) and heat flows from vapour to liquid (i.e. cp
2 = cτ

1 � 0) because the
enthalpy of phase change must be supplied to the droplet to keep its temperature
constant. All models agree in the limit of Kn → 0 for the mass flux, the NSF equations
with temperature-jump boundary conditions give better results over classical theories
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0.4

0.5

0.6

0.7
psat = 1, T I = T∞ = 0 psat = p∞, T I = T∞ = 1

HKS + no-jump
α0 = 0 (NSF)

α0 = 2/5 (Grad-13)

α0 = 3/5

LBE

4c2
τ/15Kn

c
1
τ/Kn

(a) (b)

Figure 4. Mass- and heat-flux coefficients as a function of the Knudsen number: (a) mass flux (cp
1)

in pressure-driven case and (b) normalised mass (cτ
1/Kn) and heat flux (4cτ

2/15Kn) coefficients in the
temperature-driven case. The results obtained from MFS with different theories are compared. The symbols
denoting the results from Takata et al. (1998) and (green) thin line representing the analytic results from
classical boundary conditions. The number of collocation nodes used in each case are Nc = Ns = 112 and
γ = 0.1.

as the Knudsen number grows. Interestingly, the NSF equations with jump boundary
conditions predicts a zero mass flux in the free-molecular regime, these results contradict
kinetic-theory predictions. On the other hand, the Grad-13 theory gives a non-zero mass
flux, but still predicts almost half of the mass flux of the LBE result. By performing an
asymptotic expansion and matching the mass flux as Kn → ∞, we find α0 = 3/5 (a value
extensively used in this study), with this model consequently providing the best agreement
with the LBEs.

For the temperature-driven case (cf. figure 4b), Fourier’s law with a no-jump boundary
condition gives heat flux cτ

2 = 15Kn/4, while the cross effects, i.e. the heat flux owing
to pressure difference or the mass flux owing to temperature difference, vanish. We have
used this value to normalise the heat-flux computation in figure 4(b). All models, except
the no-jump boundary conditions (thin green lines), match reasonably well with the LBE
data, with α0 = 3/5 giving a slight improvement over other models. However, the cross
effects (cτ

1) are not well captured by CCR theory, which requires resolution of the Knudsen
layer, these are beyond the capabilities of the models considered in this paper, see Rana et
al. (2018b) for a discussion on this.

6.1.2. Slow flow around a rigid sphere
Let us now consider the case of low-speed rarefied gas flow around a rigid (ϑ = 0)
spherical stationary particle of radius R0. The particle is assumed to be isothermal, that
is, the solid-to-gas conductivity ratio is large, with TI = 0, i.e. the far-field temperature
and the temperature of the particle are same. The net force exerted on the sphere by gas is
defined as

F (Gr) =
∫ π

0

∫ 2π

0

(
p(Gr)I + Π(Gr)

)
· n dϕ dθ = Kn

Ns∑
i=1

f (i). (6.6)
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α0 = 2/5 (Grad-13)
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0

Figure 5. The normalised drag force computed from the CCR–MFS, with α0 = 0 (NSF), α0 = 2/5 (Grad-13)
and α0 = 3/5 against Knudsen number. The experimental data of Millikan (1923) (fitted by Allen & Raabe
(1982)) is plotted (circles) for comparison. The results are normalized with Stokes’ drag (6.7).

The drag force is the projection of the net force (6.6) on to the streamwise direction. The
Stokes formula for drag force (in the direction of flow) exerted by a spherical particle on
the fluid flow has the form Lamb (1945)

FS = −6πKnu∞, (6.7)

where u∞ is the far-field velocity.
The Stokes formula is only valid for Kn → 0, and requires corrections at finite Knudsen

number. Figure 5 shows the normalised (with Stokes’ drag (6.7)) drag coefficient versus
the Knudsen number. As expected, all theories agree in the small Knudsen limit. As the
value of Knudsen number increases, the normalised drag decreases owing to increasing
slip (which is not embedded in the Stokes formula). Notably, the normalised drag force
reaches a finite value from the NSF equations with velocity-slip boundary conditions as
Kn → ∞, whereas the extended theories (CCR) predict a vanishing drag in this limit,
an observation tantamount to experimental results. Nevertheless, between Grad-13 (α0 =
2/5) and the CCR, with phenomenological coefficient α0 = 3/5, the latter gives the best
quantitative agreement for values of the Knudsen number beyond unity (i.e. well beyond
its apparent limits of applicability).

6.1.3. Slow flow around a spherical liquid droplet
In this section, we consider uniform flow (say, along the z-direction) of a saturated vapour
over a spherical liquid droplet with a uniform temperature. The far-field temperature of
the surrounding vapour is same as that of the droplet, i.e. TI = T∞ = 0, psat = p∞ =
0 and v∞ = −vI = {0, 0, u∞}. We further assume that the droplet size remains fixed
(quasi-steady-state assumption) and that deformation of the droplet is negligible, that is,
the capillary number is very small.

Figure 6 shows the normalised drag force on a liquid droplet versus Knudsen number,
while allowing phase-change at the interface. This problem has been considered by Sone
et al. (1994) from the LBE, and is clearly important from an engineering point of view.
Owing to the motion of the vapour phase, evaporation and condensation take place on the
surface of the droplet, thereby slightly reducing the drag on the sphere, cf. figures 5 and 6.
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Figure 6. The normalised drag force on a liquid droplet versus Knudsen number. The results computed from
the CCR–MFS, with α0 = 0 (NSF), α0 = 2/5 (Grad-13) and α0 = 3/5 are compared with LBE data (symbols)
of Sone, Takata & Wakabayashi (1994).

Curiously, all theories, except for that of Stokes, give reasonably accurate results. Note
that, in this case, the net mass and heat flux from the droplet are zero with evaporation on
the front side of the sphere and condensation on the back.

The problems considered in previous sections typically allow for analytic solutions,
which are often not available for various practical problem of interest. In the following
sections, we develop cases of increasing complexity, starting first with the motion over
two particles at a finite distance from each other.

6.2. Motion over two solid spheres
Let us consider a flow over two solid spheres of equal radius with both fixed in shape and
size. The flow is characterised by the following parameters: radii of the spheres (i.e. the
Knudsen number), centre-to-centre distance 2lC and the angle ø between the flow direction
and the centreline; see figure 7.

For an axisymmetric case (ø = 0), the theoretical result for the drag force (which is
equal for both the spheres) calculated by Stimson, Jeffery & Filon (1926) reads

FS = −6πKnu∞β, (6.8)

where β is a correction coefficient which may be written in the form

β = 4
3

sinh α

∞∑
k=1

n (n + 1)

(2n − 1) (2n + 3)

⎛
⎜⎜⎝1 −

4 sinh2
(

n + 1
2

)
α − (2n + 1)2 sinh2 α

2 sinh (2n + 1) α + (2n + 1) sinh 2α

⎞
⎟⎟⎠ ,

(6.9)
with α = cosh lC.

In figure 8(a), the drag force (normalised with Stokes’ drag (6.7) for the single sphere)
for an axisymmetric case (ø = 0) is plotted as a function of centre-to-centre distance for
different values of the Knudsen number. The results from Stimson et al. (1926), which are
only valid in the limiting case Kn → 0, are included for comparison (	), and as expected,
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x
y

2lC

z
u∞

φ

Figure 7. Schematic for the flow around two solid spheres. Here, 2lC is the centre-to-centre distance and ø is
the angle between flow direction and the line joining the centres.
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Figure 8. The drag force on two equal spheres versus centre-to-centre distance: (a) flow direction parallel to
their line of centres and (b) flow direction perpendicular to their line of centres. The results computed from the
CCR–MFS, with α0 = 0 (NSF), α0 = 2/5 (Grad-13) and α0 = 3/5 are compared with the Stokes solution (	)
derived by Stimson et al. (1926). The experimental results (denoted by ×) for a doublet (lC = 1/2) obtained by
Cheng et al. (1988) are included for comparison.

for small values of Knudsen number (Kn = 10−3), our results match with Stimson et al.
(1926). The experimental results for lC = 1/2 obtained by Cheng et al. (1988) (and given
by the empirical formula (6.10)) for Kn = 10−3, 10−1 and 0.5 are also included (×) for
comparison. For small Knudsen numbers (Kn � 10−1), all models (NSF, Grad-13, CCR)
agree, whereas at large Knudsen numbers these are markedly different, with the NSF
model over-predicting the drag compared with Grad-13 and CCR with α0 = 3/5. The
effect of proximity is clearly visible on drag force, which decreases as lC is reduced (i.e.
the spheres gets closer). Furthermore, in the limit lC → ∞ the drag approaches that of
the single sphere case (cf. figure 5). In addition, as with the case of a single sphere (cf.
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Figure 9. The drag force on a doublet: (a) flow parallel to its line of centres (axisymmetric case) and
(b) flow perpendicular to its line of centres (non-axisymmetric case). The experimental data are taken from
the empirical formula (6.10) obtained in Cheng et al. (1988).

figures 5 and 8a), the force monotonically decreases with increases in Knudsen number,
for all models.

For the non-axisymmetric case (ø = π/2), the normalised drag force is plotted in
figure 8(b) as a function of lC, with Kn = 10−3, 10−1 and 0.5. The experimental results
of Cheng et al. (1988) for a doublet (lC = 1/2) are denoted by symbols (×). The overall
drag force in the non-axisymmetric case is higher compared with the axisymmetric case
(cf. figure 8a,b) and as before, the NSF theory over-predicts the drag.

6.2.1. Drag on a doublet
An interesting case arises when one considers lC → 1/2, i.e. when both spheres are in
contact with one another, known as a doublet. Cheng et al. (1988) carried out experiments
to study the effects of orientation (modulated by an electric field) on the measured drag
force.

Figure 9 shows a comparison of the different models, computed using CCR–MFS, over
a wide range of the Knudsen number. Here, the experimental data for the drag force acting
on a doublet are taken from the empirical formula from Cheng et al. (1988), as

F = −4πKnu∞
21/3

φ0

1 + Kn
φ0

[
1.142 + 0.558 exp

(
−0.999

φ0

Kn

)] , (6.10)

where φ0 = 1.21 or φ0 = 1.37 for flow moving in parallel (ø = 0) or in perpendicular
(ø = π/2) direction to the centreline, respectively.

As shown in figure 9, reassuringly for Kn → 0, the results converges to the without-slip
solution of the Stokes equation. For larger values of the Knudsen number, the force
decreases owing to slip, and as Kn → ∞, it reaches a finite value for the NSF theory; while
from (6.10) it vanishes. Remarkably, from the results of the Grad-13 and the CCR models,
we find that the force indeed vanishes for large Knudsen numbers. The results obtained
from the Grad-13 and CCR models are both in good agreement with the experimental
results, a sightly better match at larger Knudsen number is obtained by the CCR with
α0 = 3/5.
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Figure 10. Streamlines and speed contours from the (a) Grad-13 and (b) NSF equations for Knudsen number
0.1: flow over a doublet with flow direction along the centreline (ø = 0). Vertical and horizontal axes represent
x- and y-directions (Nc = Ns = 650 and γ = Rs/Rc = 0.1).
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Figure 11. Streamlines and speed contours from the (a) Grad-13 and (b) NSF equations for Knudsen number
0.5: flow over a doublet with flow direction along the centreline (ø = 0). Vertical and horizontal axes represent
x- and y-directions (Nc = Ns = 650 and γ = Rs/Rc = 0.1).

Figures 10 and 11 show the streamlines and the speed contours for the case Kn = 0.1
and Kn = 0.5, respectively. The horizontal and vertical axes represent x- and z-axis,
respectively, with flow in the x-direction. The left-hand side of these figures shows the
Grad-13 (α0 = 2/5) results for the case ø = 0, and the right-hand side shows the results
computed from the NSF (α0 = 0) equations. Owing to the linearity of the equations, the
speed contours are symmetric about the x = 0 plane, resulting in equal drag forces on both
spheres.

These contours show that, as to be expected, the slip velocity at the bottom and top
surfaces increases with Knudsen number, resulting in reduced drag forces. For Kn = 0.1
(figure 10), the flow line pattern predicted by the Grad-13 (a) and NSF (b) are very
similar. The slip velocity is maximum near the top and bottom surface, which is virtually
the same for the NSF and Grad-13 theories, thus giving similar predictions for the drag
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Figure 12. Streamlines and speed contours from the (a) Grad-13 and (b) NSF equations for Knudsen number
0.1: flow over a doublet with flow direction perpendicular to the centreline (ø = π/2). Vertical and horizontal
axes represent x- and y-directions (Nc = Ns = 650 and γ = Rs/Rc = 0.1).
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Figure 13. Streamlines and Mach contours from the (a) Grad-13 and (b) NSF equations for Knudsen number
0.5: flow over a non-evaporative (ϑ = 0) doublet with flow direction perpendicular to the centreline (ø = π/2).
Vertical and horizontal axes represent x- and y-directions (Nc = Ns = 650 and γ = Rs/Rc = 0.1).

reduction (cf. figure 8). However, for Kn = 0.5 (figure 11), the Grad-13 theory predicts a
larger slip and thus greater drag reduction. The results from the CCR with α0 = 3/5 are
similar to those obtained from the Grad-13 theory, hence these are not shown here.

In figures 12 and 13, we again show the streamlines and speed contours predicted by both
theories at Kn = 0.1 and Kn = 0.5, respectively, for the case when flow (in the z-direction)
is in a perpendicular direction to the centreline, i.e. ø = π/2. Unlike the previous case, this
is a truly three-dimensional set-up, where no symmetry exists in the azimuthal direction,
with the MFS it is remarkably simple to solve this fully three-dimensional flow. The slip
velocity increases with increasing the Knudsen number thus reducing the drag coefficient.
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Figure 14. Two interacting droplets for the temperature-driven case (TI = 1, psat = 0): profiles of the (a) mass
flux with centre-to-centre distance 2lC = 0.001, (b) mass flux with 2lC = 10 (c) heat flux with 2lC = 0.001 and
(d) heat flux with 2lC = 10 as functions of the Knudsen number for NSF, Grad-13 and CCR with α0 = 3/5.
Symbols denote MFS and curves represent analytic solution from a single droplet.

6.3. Interaction of two evaporating droplets
The evaporation dynamics of two interacting droplets suspended in vapour will be
investigated here; a problem relevant to dense-spray applications. We consider two droplets
placed is a saturated vapour with centre-to-centre distance 2lC. Again, we consider the
shape, size and the surface temperature of the droplet to be fixed.

As before, we consider two cases, i.e. (i) evaporation is driven by temperature difference
(i.e. psat = p∞ = 0 and TI = 1) and (ii) evaporation owing to pressure difference (psat = 1
and TI = T∞ = 0). The distance between the two droplets and the value of the Knudsen
number are varied in order to investigate the proximity and rarefaction effects. The results
from three models are compared with the NSF, Grad-13 and CCR with α0 = 3/5.

Temperature-driven case: In figure 14, we show the mass flux and the heat flux per
unit area as a function of Knudsen number for the temperature-driven case. The mass
flux reduces monotonically with the Knudsen number whereas the NSF theory predicts
a higher mass flux than the CCR. Figures 14(a) and 14(b) illustrate the mass flux with
centre-to-centre distance 2lC = 0.001 (i.e. when the droplets are next to each other) and
2lC = 10 (i.e. at a distance where proximity effects are negligible), respectively. The
corresponding heat flux is shown in figures 14(c) and 14(d).

919 A35-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

40
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.405


A.S. Rana and others

–4

–4

–2

0

2

4

–4

|V |/Kn |q|

–2

0

20.60
0.54
0.48
0.42
0.36
0.30
0.24
0.18
0.12
0.06

0.240
0.216
0.192
0.168
0.144
0.120
0.096
0.072
0.048
0.024

4

–2 0 2 4

Kn = 0.1
Grad–13

–4 –2 0 2 4

(b)(a)

Figure 15. Two droplets placed adjacent to each other (2lc = 1.001) for the temperature-driven case (TI =
1, psat = 0): (a) streamlines and speed contours and (b) heat-flux lines and magnitude, obtained from the
Grad-13 MFS. Vertical and horizontal axes represent x- and y-directions (Nc = Ns = 650 and γ = Rs/Rc =
0.1).

When the droplets are next to each other a shielding effect is observed, and, as a
result, the mass flux reduces (cf. figure 14a,b). At Kn = 0.05, all three models predict
approximately 29 % reduction in the mass flux as compared with a single droplet (i.e.
lC → ∞). The reduction in the mass flux decreases with increase in Knudsen number.
For Kn = 1, NSF, Grad-13 and CCR with α0 = 3/5 predicts approximately 9 %, 13 % and
12 % reduction in mass flux, respectively.

The mass fluxes computed from the MFS (symbols) for centre-to-centre distance 10
are shown in figure 14(b). The analytic results from a single droplet are also plotted
(continuous lines) for comparison. As expected, as the droplets are moved farther apart,
the results converge to the single-droplet case; the mass flux is within 5 % (for Kn = 0.05)
and 1 % (for Kn = 1) for the single-droplet case.

Similarly, the proximity effects on the heat flux are visible in figures 14(c) and 14(d), for
2lC = 0.001 and 2lC = 10, respectively. Again, the heat flux reduces as lC → 1/2, and as
the value for the Knudsen number increases the proximity effects diminish. The percentage
difference in the heat flux from the single-droplet cases varies from approximately 29 %
to 12 % for 2lC = 1.001 and from approximately 4 % to 1 % for 2lC = 10, as the value of
Knudsen number varies from 0.05 to 1.

The vaporisation dynamics of a pair of droplets placed adjacent to each other is
markedly different from the single-droplet counterpart. In figure 15, (a) the streamlines
superimposed on the velocity magnitude contours and (b) the heat-flux lines and the
magnitude contours are shown. The heat leaves the hot droplets owing to negative
temperature gradients while condensation occurs in order to compensate for the heat loss.
Figure 15 shows that the mass flux and the heat flux at the confined region between
the droplets are sufficiently lower than at the outer regions. In this region, the vapour
temperature is relatively high, thus a smaller temperature jump which leads to a reduced
mass flux and heat flux.

Pressure-driven case: In figure 16, we show (a) mass flux with centre-to-centre distance
2lC = 0.001, (b) mass flux with 2lC = 10, (c) heat flux with 2lC = 0.001 and (d) heat flux
with 2lC = 10 as functions of the Knudsen number for the pressure-driven case. Again, in
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Figure 16. Two interacting droplets for the pressure-driven case (TI = 0, psat = 1): profiles of (a) mass flux
with centre-to-centre distance 2lC = 0.001, (b) mass flux with 2lC = 10, (c) heat flux with 2lC = 0.001 and
(d) heat flux with 2lC = 10 as functions of the Knudsen number for NSF, Grad-13 and CCR with α0 = 3/5.
Symbols denote MFS and curves represent analytic solution from a single droplet.

order to gain insights into the proximity effects, the numerical solution obtained via the
MFS (symbols) and the analytic results from a single-droplet case (continuous lines) are
compared in figure 16. In this case, the mass flux is slightly reduced (�3 % for 2lC = 0.001
and �0.06 % for 2lC = 10) in the range (0.05 ≤ Kn ≤ 1). On the other hand, the proximity
effects on the heat flux are observed to be significant. For 2lC = 0.001, the magnitude of
the heat flux is reduced approximately 29.3 % for NSF (28.7 % for Grad-13 and CCR) at
Kn = 0.05 and approximately 10 % for NSF (≤15 % for Grad-13 and CCR) at Kn = 1.
For 2lC = 0.001, all models give less than a 4 % reduction in heat flux, for all ranges of
Knudsen number considered.

Another interesting point to be noted from figure 16(c,d) is that the heat flux predicted
by the NSF equations is significantly lower in magnitude compared with the CCR and
Grad-13 models, especially in the transition regime (Kn � 0.1). Within this regime, the
heat flux is not only driven by the temperature gradient (i.e.Fourier’s law) but also
owing to the pressure gradient, this second-order effect can easily be understood from
the constitutive relations (2.5a,b) and the momentum balance equation (2.4a–c), which
give

q = −cpKn
Pr

(∇T − α0∇p) . (6.11)
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Figure 17. Two interacting droplets for the pressure-driven case (TI = 0, psat = 1): Fourier and non-Fourier
contributions to the normal heat flux (q · n/Kn) given by the Grad-13 theory plotted along the top surface of
the droplet in x–z plane.

Here, the second term on the right-hand side is the non-Fourier contribution to the heat
flux owing to pressure gradient (Rana et al. 2018a). In figure 17, we show two different
contributions to the scaled normal heat flux (q · n/Kn) along the surface of the droplet
(in the x–z plane) for the pressure-driven case with Kn = 0.1. As predicted from the
Grad-13 theory, the heat flux owing to the pressure gradient (non-Fourier) and heat flux
owing to the temperature gradient (Fourier) have opposing effects, and consequently the
net heat flux is reduced in the second-order theories.

In figure 18, we again show the streamlines and the velocity magnitude contours (a),
and the heat-flux lines and the magnitude contours (b) for the pressure-driven case. In this
case, evaporation occurs owing to a negative pressure gradient and the heat flows inwards.
The mass flux and the heat flux at the confined region between the droplets are reduced
owing to a high vapour pressure.

The high-pressure region created between two droplets pushes them away from each
other. The net drag force (in the x-direction) acting on each droplet is plotted in figure 19 as
a function Kn. The results for various values of centre-to-centre distance shown in figure 19
are computed from the Grad-13 model, the drag force predicted by the NSF model is
within 10 % and not shown. The force decreases exponentially as droplets become farther
apart, i.e. as lC increases. Interestingly, the drag force attains a minimum value at a certain
Knudsen number, which depends on how far the droplets are from each other. As Kn →
∞, the drag force vanishes.

6.4. Evaporation of a deformed droplet
In this section, we study evaporation/condensation from a deformed droplet with a fixed
shape and size, in order to gain some initial insight into evaporation occurring during
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Figure 18. Two droplets placed next to each other (2lc = 1.001) for the pressure-driven case (TI = 0, psat =
1): (a) stream lines and speed contours (b) heat-flux lines and magnitude, obtained from the Grad-13 MFS.
Vertical and horizontal axis represent x- and y-directions. (Nc = Ns = 650 and γ = Rs/Rc = 0.1).
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Figure 19. The drag force acting on the droplets versus Knudsen numbers for various values of the separation
distance as predicted by the Grad-13 theory for the pressure-driven case.
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oscillatory and/or deformed droplet events, leaving the step to unsteady flow as a focus
for future work. The effects of heat conduction and the flow inside the droplet are not
considered. The parametric equation for the droplet surface in the second harmonic mode
is given by (see, e.g., Sprittles & Shikhmurzaev 2012)

X = η0

[
1 + η

2

(
3 cos2 φ − 1

)]
{sin φ cos θ, sin φ sin θ, cos φ} , (6.12)

where φ ∈ [0, π], θ ∈ [0, 2π] and η is the shape factor. The volume of the droplet is

V = η0
4π

3

(
35 + 21η2 + 2η3

35

)1/3

. (6.13)

Therefore, in order to have the volume V equal to a spherical droplet of radius 1, the
normalising factor η0 is given by

η0 =
(

35
35 + 21η2 + 2η3

)1/3

. (6.14)

The droplet shapes with different values of shape parameter η = 0, 0.5 and 1 are
depicted in figure 20; the corresponding (non-dimensional) surface area of the droplets
are 4π, 4π × 1.078 and 4π × 1.192, respectively.

We shall again consider two cases: (i) flow caused by a unit pressure difference while
the temperature of the liquid is equal to the far-field temperature (i.e. psat − p∞ = 1
and Tl − T∞ = 0) and (ii) flow caused by a unit temperature difference while the
saturation pressure in the liquid is same as the far-field pressure (i.e. psat − p∞ = 0 and Tl

− T∞ = 1).
Pressure-driven case: In figure 21(a–c), we show the mass flux per unit area as a function

of Kn computed using the NSF, Grad-13 and α0 = 3/5 models, respectively for the shape
parameter η = 0, 0.5 and 1. Here, the numerical results from the MFS are denoted by
symbols and the analytic results for the spherical droplet (η = 0) are represented by the
solid line. For small deformity (η = 0, 0.5), the mass flux is nearly same, however when
the droplet is more deformed (η = 1) the mass flux is reduced. The percentage reduction
in the mass flux (compared with a spherical droplet) is approximately 11 % for Kn = 0.05
and approximately 21 % for Kn = 1. In a similar manner to the case of two droplets placed
next to each other, considered in the previous section, the reduction in the mass flux is
caused by the formation of a high pressure in the high curvature (for η = 1) cusp region
near z = 0, which is not present at smaller η.

Similarly, in figure 22(a–c) we plot the heat flux per unit area as a function of Kn for the
same shape parameters. Note that the heat flux owing to pressure difference is a first-order
quantity in terms of Kn (that is, it vanishes as Kn → 0), hence in these figures we have
scaled the heat flux with inverse Kn. Again, the heat-flux magnitude reduces as η → 1.
The reduction in the heat flux is approximately 13 %. Furthermore, the Grad-13 and CCR
theories predict a larger heat flux compared with the NSF results owing to non-Fourier
heat-flux contribution (6.11).

Temperature-driven case: In figure 23, we present the heat flux per unit area for the
temperature-driven case for different shape factors (see legend in the figures) for NSF
(a), Grad-13 (b) and CCR with α0 = 3/5 (c). Note that, owing to the Onsager reciprocity
relations (Chernyak & Margilevskiy 1989), the mass flux for the temperature-driven case
is the same as the heat flux for the pressure-driven case (figure 22), hence it is not shown.
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Figure 20. Droplet shapes given by second spherical harmonics with shape parameter η = 0, 0.5 and 1 and
the normalising factor η0 = 351/3/(35 + 21η2 + 2η3)1/3 ensuring that the droplet has fixed volume.

Evidently, from figure 23, the magnitude of the heat flux reduces with the deformation,
i.e. as η → 1. For NSF (figure 23a), the reduction is approximately 3 % for η = 0.5 and
approximately 12 % for η = 1.

Curvature dependence of the saturation pressure: Throughout this paper, we
have taken TI and psat as independent parameters. However, in general, the
Clausius–Clapeyron–Kelvin formula provides a relation between the saturation pressure
and the temperature at the interface (linearised and dimensionless) (McElroy 1979; Bond
& Struchtrup 2004):

psat

(
TI

)
= pp

sat

(
TI

)
exp (2γ κ). (6.15)

Here, γ is the dimensionless surface tension (γ = γ̂ /ρ̂l�̂R̂T̂0), κ is the dimensionless
curvature (κ = κ̂ �̂) and pp

sat(TI) = H0TI is the saturation pressure for a planar surface
with H0 (=Ĥ0/R̂T̂0) being the dimensionless heat of evaporation.

Thus far, the modelling assumption has been that H0 (and γ ) can be independently
chosen to give a desired value of the saturation pressure. Notably, for the noble gases
(vapour/liquid) the Kelvin correction term (underlined) in (6.15) are often small, unless
the radius of curvature κ̂ is in nanometers. For example, for argon, if we choose T̂0 =
103 K, p̂0 = pp

sat(T̂0) = 0.4 MPa, ρ̂l = 1294.6 kg m−3 and γ̂ = 8.75 mN m−1 (a case
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Figure 21. Pressure-driven case (psat − p∞ = 1, Tl − T∞ = 0); mass flux per unit area versus Knudsen
number with η = 0, 0.5 and 1: (a) NSF, (b) Grad-13 and (c) α0 = 3/5. The symbols denote the MFS and
the solid lines represent analytic results for a spherical droplet.
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Figure 22. Pressure-driven case (psat − p∞ = 1, Tl − T∞ = 0); heat flux per unit area/Kn versus Knudsen
number with η = 0, 0.5 and 1: (a) NSF, (b) Grad-13 and (c) α0 = 3/5. The symbols denote the MFS and the
solid lines represent analytic results for a spherical droplet.

considered in Rana et al. 2019), the Kelvin correction term gives exp(0.6305/a), where
a (in nanometres) is the inverse of local curvature κ̂ . Therefore, for a drop of size greater
than 10 nm, the effect of the Kelvin correction term will be less then 6.1 %.

In order to compare our results with existing literature, in § 7 we use the dimensionless
heat of evaporation H0 as an independent parameter.
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Figure 23. Temperature-driven case (psat − p∞ = 0, Tl − T∞ = 1); heat flux per unit area/Kn versus Knudsen
number with η = 0, 0.5 and 1: (a) NSF, (b) Grad-13 and (c) α0 = 3/5. The symbols denote the MSF solutions
and the solid lines represent analytic results for a spherical droplet.

7. Inverted temperature profile and Knudsen layer

A notorious deficiency of the NSF and CCR theories is their inability to capture the
Knudsen layer, a kinetic boundary layer extending within a few mean free paths into
the domain (Sone 2007; Struchtrup & Torrilhon 2008; Torrilhon 2016). We have seen
in previous sections that the CCR model is able to predict global flow features, such as
net mass flux, heat flux and drag, however, it may fail to describe finer flow features,
especially those in which the Knudsen layer and other rarefaction effects are dominant. In
this section, we consider such a case.

Let us consider heat and mass transfer between two liquid layers located at locations x =
±1/2, see figure 24. We prescribe the dimensionless temperature and saturation pressure
of the liquid layers as TI(±1/2) = ±�θ and psat(±1/2) = ±�p. For a planar surface,
κ̂ = 0, and thus �p = �θH0.

After some calculation, the analytic solution of the linear problems (2.4a–c) and (2.5a,b)
assumes the form

vx = c1, qx = c2, T = − Prc2

cpKn
x, (7.1a)

p = σxx = 0, (7.1b)

where c1 and c2 are integration constants, which need to be evaluated using boundary
conditions. Solving (4.2) for c1 and c2 gives

c1 =
√

2
π

(
(0.306763 + 1.62499Kn)H0 − 0.741358Kn

0.370583 + 1.77245Kn

)
�θ, (7.2a)

c2 = 5Kn
2Pr

(
0.741165 − 0.157738H0

0.370583 + 1.77245Kn

)
�θ. (7.2b)

Note that, for this problem, the CCR reduces to the NSF constitutive relations.
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Figure 24. Schematic for heat and mass transfer between two liquid layers.
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Figure 25. Temperature profiles as functions of location x for (a) (�θ = 0.05,H0 = 1) and
(b) (�θ = 0.05,H0 = 7.5) for Kn = 0.078. The figure on the right shows the inverted temperature profile.

Interestingly, as can be seen from inspection of (7.2b), the conductive heat flux
qx switches sign for H0 � 4.7, which leads to an inverted temperature profile in the
vapour, this is qualitatively consistent with kinetic theory (Pao 1971) and MD simulations
(Frezzotti, Grosfils & Toxvaerd 2003). Notably, the NSF equations with classical
boundary conditions, i.e. with no temperature-jump boundary conditions, along with the
Hertz–Knudsen–Schrage, can not describe the inverted temperature phenomenon.

Figures 25(a) and (b) show the temperature curves as functions of x for �θ =
0.05,H0 = 1(<4.7) and �θ = 0.05, H0 = 7.5(>4.7), respectively, for Kn = 0.078. These
flow parameters are chosen so that our results can be compared with those obtained from
the direct simulation Monte Carlo (DSMC) and R13 theories given in Beckmann et al.
(2018). Comparing both cases, when H0 is smaller than the critical heat of evaporation
(case 1) the temperature profile shows a large jump at both boundaries with higher
temperature on the lower boundary. In this case, the mass and heat fluxes are both positive
(i.e. from lower boundary to upper) and as expected, the temperature is higher at the lower
boundary. On the other hand, in case 2, H0 is larger then the critical heat of evaporation
and the temperature profile is inverted. For this case the heat flows from the hot side (where
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condensation occurs) towards the cold side (where evaporation occurs). The results from
the DSMC are denoted by symbols.

Evidently, the CCR theory qualitatively explains the intriguing inverted temperature
phenomenon. However, the CCR model does not provide detail of the temperature profiles
near to the boundaries, the region which is dominated by the Knudsen layer. The R13
theory provides improvement in predicting the temperature profile at this value of the
Knudsen number because, as is well known, it can capture some basic features of the
Knudsen layer.

8. Conclusion and future directions

The present paper studies liquid–vapour phase-transition processes in which Kn � 1, i.e.
down to sub-micrometre scales. In particular, we derive a set of fundamental solutions
for the CCR system which allows for three-dimensional multiphase micro-flows at
remarkably low computational cost, the fundamental solutions to the linearised NSF and
Grad-13 equations are obtained as a special case. A set of thermodynamically consistent
liquid–vapour interface conditions for the linearised CCR system are derived within the
framework of irreversible thermodynamics.

Different macroscopic models were applied to solve the motion of a sphere in a gas and
the results were compared with theoretical and experimental results from the literature.
We observed that the results for the drag force obtained from the Grad-13 and CCR model
are both in good agreement with the experimental results, a slightly better match at larger
Knudsen number is obtained by taking α0 = 3/5.

The motion of two spherical particles was investigated and compared with the classical
Stokes solutions and experimental results. The drag force reduces as the Knudsen
number increases, mainly owing to velocity slip at the surface. The effect of proximity
is investigated on the drag force, which decreases as the particles get closer. For a
doublet, contrary to the experimental observations, the Stokes and NSF equations predict
a non-zero drag whereas the Grad-13 and the CCR, with coupling coefficient α0 = 3/5,
provide an excellent match with the experimental data. Proximity effects on mass and
heat transfer coefficients of two interacting droplets were investigated over a range of
Knudsen numbers. Two far-field conditions were examined, (i) pressure-driven, where
psat − p∞ = 1, Tl − T∞ = 0, and (ii) temperature-driven, where psat − p∞ = 0, Tl −
T∞ = 1. However, owing to the linearity of the governing equations and the boundary
conditions involved, these two cases can be combined to give results for a general case.
For the pressure-driven case a slight reduction (�3 %) in the mass flux was observed
when the droplets are placed next to each other. On the other hand, the heat flux was
significantly reduced (∼30 %). For the temperature-driven case, the situation is reversed,
where a significant reduction in the mass flux was observed owing to shielding effects. We
also considered the case of a single deformed droplet and studied the effects of deformity
on the mass- and heat-transfer characteristics over a range of the Knudsen number.

Motivated by these findings, future work could be to extend this work to study the
phase-transition process in polyatomic fluids and binary mixtures.

Extension of the current work to unsteady flows and coupling to liquid dynamics (Rana
et al. 2019; Chubynsky et al. 2020) can be considered in the future, the liquid phase can
be modelled as an incompressible fluid (Stokeset/Oseenlet and heatlet) and the vapour
phase modelled via the CCR model. However, it will require solving the moving-boundary
problem efficiently within the MFS framework (Jiang et al. 2014). Another line of inquiry
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would be to implement these fundamental solutions via boundary integral methods which
offer more flexibility and robustness as compared to the MFS. A prominent deficiency of
the NSF and the CCR model is their inability to capture the Knudsen layer, a kinetic
boundary layer extending a few mean free paths into the domain. Future work can
also include finding fundamental solutions to the linearised R26 equations in order to
incorporate Knudsen layers. The cornerstone of this work is the linearity of the differential
operators involved, which allow us to obtain Green’s functions and formulate the MFS. As
such, the method developed here can not be directly applied to nonlinear problems. In
another context, the MFS has been applied to some nonlinear problems using appropriate
fixed-point iterative schemes (Fan, Chen & Monroe 2009). It would be interesting to
attempt a similar approach for solution of the nonlinear CCR model and/or nonlinear
boundary conditions.
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Appendix A. Derivation of the Green’s functions for the Sourcelet

The Fourier transformation of the energy conservation law (3.5a–c3) and the heat-flux
constitutive relation (2.5a,b2) gives

k · q̃ = 0 and q̃ = i
cpKn

Pr
kΘ̃, (A1a,b)

where we have defined Θ = T − α0p and its Fourier transformation F [Θ(r)] = Θ̃(k).
Clearly, the inverse Fourier transformation of (A1) leads to

q = 0 and Θ = 0. (A2a,b)

Similarly, taking a Fourier transformation of (3.5a–c1,2), one obtains

k · ṽ = ih and p̃k + Π̃ · k = 0, (A3a,b)

where from (2.5a,b1)

Π̃ = iKn
(
ṽk + kṽ − 2

3

(
k · ṽ

)
I
)

. (A4)

Equations (A3) and (A4) give

ṽ = ih
k

|k|2 , Π̃ = −2Knh
(

kk
|k|2 − 1

3
I
)

, p̃ = 4
3

Knh. (A5a–c)
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γ1 γ2 d1 d∗
4 C∗

4

HS 1.27004 1.9223 2.4001 −0.4557 −2.1412
BGK 1 1 1.3027 −0.4467 −2.1320

Table 1. The values of γ1, γ2, d1, d∗
4 and C∗

4 for a hard-sphere gas (HS) and for the BGK model. Data taken
from Sone (2007).

Finally, taking the inverse Fourier transformation of (A5) yields

v = ihF−1
[

k
|k|2

]
= h

4π

r
|r|3 , p = 0, and

Π = −2KnhF−1
[

kk
|k|2 − 1

3
I
]

= 3Knh
2π

1
|r|5

[
rr − 1

3
|r|2I

]
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A6a–c)

Here, we have used the following inverse Fourier transformation identities:

F−1
[

k
|k|2

]
= − i

4π

r
|r|3 and F−1

[
kk
|k|2

]
= − 3

4π

[
rr
|r|5 − 1

3|r|3 I
]

. (A7a,b)

Appendix B. Phenomenological coefficients in the boundary conditions

The numerical coefficients appearing in the phenomenological boundary conditions are
based on Sone (2007), where these were obtained by an asymptotic expansion of the LBE
for Kn → 0. The coefficients ηij appearing in (4.4a–c) can be directly compared with Sone
(2007), as

η11 = − 4
√

πd1

4C∗
4d1 + 5γ2d∗

4
, η12 = 5

√
πγ2d∗

4

4C∗
4d1 + 5γ2d∗2

4
(B1a,b)

η12 = − 25
√

πγ 2
2 d∗2

4

16C∗
4d2

1 + 20γ2d1d∗2
4

and τ0 = 5
√

πγ2

8d1
. (B2a,b)

Here, the values of γ1, γ2, d1, d∗
4 and C∗

4 for a hard-sphere gas (HS) and for the
Bhatnagar–Gross–Krook (BGK) model are given in table 1.

Appendix C. Analytic solutions obtained from fundamental solutions

The analytic solutions (6.1a–e) for an evaporating spherical droplet can also be obtained
from the fundamental solutions (3.7a)–(3.7c). Owing to the spherical symmetry let us
place one singular mass source of strength h and a heat source of strength g at the origin.
Let r = r{cos φ sin θ, sin φ sin θ, cos θ} be an arbitrary point outside the droplet (r � 1).
From (3.7) and (3.8) we get

v (r) · n = h
4πr2 , p (r) = 0, n · σ (r) · n = Kn (h + α0gKn)

πr3 (C1a–c)

and

T (r) = Pr
cp

g
4πr

, q (r) · n = Kng
4πr2 (C2a,b)

Comparing (C1) and (C2) with (6.1a–e), one finds c1 = h/4π and c2 = Kng/4π.
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