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Lock-in phenomenon of vortex shedding in flows
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An analytical investigation is performed to study the dynamics of vortex shedding
behaviour during two commensurate frequency velocity excitations, with an emphasis on
the phenomenon of lock-in. We attempt to theoretically study the dynamical features of
lock-in under two-frequency excitations and contrast the behaviour with single-frequency
excitation. We employ an existing low-order model to characterise the vortex shedding
process behind a step/bluff-body. The continuous-time domain model is transformed to
a nonlinear dynamical map that relates time instances of successive vortex shedding.
Further, these time instances are converted to phase instances, involving which criteria
for a generic p : q phase lock-in is obtained. Four parameters are involved: amplitude
and frequency of the two excitation components termed as primary and secondary.
Bifurcations occurring are investigated using return maps. The inclusion of secondary
excitation leads to the existence of two orders of lock-in within a single lock-in boundary.
Furthermore, our results indicate that secondary excitation can be used as a control in
order to tailor the 1:1 lock-in region formed by the primary excitation. Finally, analytical
expressions are obtained to identify lock-in boundaries and their salient geometrical
features. Interesting features such as the occurrence of bistability and change in the order
of lock-in are observed, which can be explored further with future experiments.

Key words: bifurcation, low-dimensional models, vortex dynamics

1. Introduction

Combustion instability is a catastrophic phenomenon characterised by self-sustained,
large-amplitude pressure oscillations. When pressure fluctuations in the flow field are
in-phase with heat release rate fluctuations, there is a growth of the oscillation amplitude,

† Email address for correspondence: sathesh@iitk.ac.in

© The Author(s), 2021. Published by Cambridge University Press 925 A9-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

62
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:sathesh@iitk.ac.in
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2021.624&domain=pdf
https://doi.org/10.1017/jfm.2021.624


A.B. Britto and S. Mariappan

Afterburner of turbojet

u′ (t)

u′ (t)

u′ (t)

u′ (t)
V-gutter

Recirculation zones

Swirl-stabilised combustor

Backward facing step
Entrainment of
reactants and products

Vortices

Swirler

Cold reactants

Separation edge
Recirculation zones

Vortices

Vortices shed at time t2
with same circulation

Equal circulation strength
shed at time t1

Equal circulation strength
shed at time t1

Vortices shed at time t2
with same circulation

(b)(a)

(c) (d )

Figure 1. Schematic of the nature of vortex shedding often observed in V-gutters of turbojet afterburners and
backward-facing step of swirl-stabilised combustors. The physical features described by the lower-order model
(Matveev & Culick 2003) are illustrated in (b,d).

described by the Rayleigh criterion (Rayleigh 1878). Although several active and passive
control techniques (Crocco 1969; Candel 1992; Schadow & Gutmark 1992; Dowling
& Morgans 2005) are proposed to mitigate combustion instability, understanding the
mechanism of instability in a given configuration is still a difficult task. This is partly
owing to a variety of mechanisms such as flame–surface fluctuations, equivalence ratio
fluctuations and hydrodynamic instabilities (Candel 2002; Lieuwen & Yang 2005) that
drive combustion instability either individually or in a combined fashion. Vortex shedding
is one such driving mechanism. Gas turbine combustion chambers involve carefully
designed geometries that facilitate the mixing of air, fuel and hot products for efficient
burning, stable anchored flame and low NOx emissions. Flame anchoring requires
recirculation zones. In the afterburners of jet engines and ramjets, the flame is stabilised
behind bluff bodies (Hertzberg, Shepherd & Talbot 1991; Schadow & Gutmark 1992).
Recirculation zones formed behind them facilitate vortex shedding (figure 1). Gas turbine
main combustors have a dump plane with a swirl burner that creates vortex shedding
(Huang et al. 2003; Huang & Yang 2009). In such designs, large vortex structures act
as a driving element for instability.

The earliest experiments on premixed dump combustors (flame anchored over a
backward-facing step) by Zukoski (1985) indicated a general mechanism that triggers
vortex-driven combustion instability. They observed that the shear layer formed at the
edge of the dump plane rolls up to form a vortex structure. The fuel–air mixture is trapped
in this vortex. The recirculation zone formed just downstream of the dump plane has
hot products formed owing to the presence of flame. The presence of high shear in the
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vortex does not allow the trapped reactants and products in the recirculation zone to
mix. When this convecting vortex impinges on sidewalls and obstacles, it disintegrates,
leading to quick mixing between hot products and reactants. This mechanism leads to a
sudden heat release rate. In turn, this unsteady heat release creates acoustic waves. The
upstream propagating wave perturbs the shear layer, which in turn generates vortices. This
perturbation alters the vortex shedding frequency and the phase of shedding (Anderson
& Yang 1995; Keller 1995). A feedback loop is formed between the vortex shedding and
the acoustic waves, which overcomes damping in the system and leads to combustion
instability. Poinsot et al. (1987) introduced the concept of vortex-acoustic lock-in through
their experiments performed in premixed dump combustors. Their results indicated that
during instability, vortex shedding occurs at the frequency of the acoustic mode of
the combustor. Heat release rate fluctuations also occur in synchronisation with vortex
shedding, confirming that the latter drives instability. Similar investigations on lock-in
were reported by Chakravarthy et al. (2007) for a non-premixed half-dump combustor.
They observed that the dominant frequency moved from vortex shedding to acoustic
mode during the onset of lock-in. Previous investigators have performed experiments,
wherein the main idea was to show vortex shedding occurring at the frequency of
the chamber acoustic mode. Recently, our group has performed experiments (Singh &
Mariappan 2021) on a premixed, axisymmetric bluff-body stabilised combustor, where
the system is progressively taken from a no lock-in to a lock-in region. In this study,
various identifiable intermediate regions on route to lock-in were observed. In all of the
aforementioned experimental investigations, it was found that the frequency of the acoustic
mode was hardly altered. Therefore, the self-excited problem of vortex-acoustic lock-in
can be replaced by an equivalent externally forced problem, where the external excitation
(mostly in the form of velocity fluctuations) represents the acoustic field. The excitation
is mostly realised in the form of velocity fluctuations upstream of the separation edge,
where the genesis of the vortex begins. The response of the shedding process is measured
in terms of the vortex shedding frequency.

Two academic groups, the Georgia Institute of Technology and Cambridge University,
have performed significant investigations to understand lock-in under external excitation.
Emerson et al. (2012) experimentally reported that vortex shedding occurs at the forcing
frequency when the latter is near the natural vortex shedding frequency. This lock-in is
found to be weakened when the density ratio between the unburnt and burnt gas increases.
On the other hand, Emerson, Murphy & Lieuwen (2013) and Emerson & Lieuwen (2015)
reported abatement in heat release rate oscillations during lock-in. This observation is
contradictory with the conventional perception that the response of the flame is strong
when excited near the natural hydrodynamic instability frequency.

The other group performed experiments, where they externally excited reacting (Li
& Juniper 2013b; Balusamy et al. 2015) and non-reacting (Li & Juniper 2013a,c)
jets. The reacting case was self-excited owing to the feedback from the acoustic
field. In this case, the external excitation was studied from the context of active
control of the self-excited instability. In these studies, the flow field was subjected
to a single-frequency ( f ) sinusoidal excitation of known amplitude (A). Its response
was reported in terms of pressure and heat release rate (in the reacting flow case)
fluctuations. They observed that heat release fluctuations occurred at the forcing frequency
(lock-in) when the excitation amplitude had a particular threshold value. In the A–f
plane, the threshold amplitude represented a V-shape boundary stemmed at f = 1 ( f
being normalised by the natural hydrodynamic frequency). When the forcing parameters
were within this boundary, the self-excited system responded at the forcing frequency.
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These experimental results were shown to compare well with lower-order mathematical
models (Van der Pol and Landau–Stuart model). In addition, the route to lock-in from the
perspective of the attractor in phase space was studied. Recent experimental investigations
(Guan, Murugesan & Li 2018) show the transition from lock-in to non-chaotic and
chaotic dynamics at large-amplitude excitation. Furthermore, Guan et al. (2019b) used
large-amplitude forcing for a short time period to switch from a large-amplitude unstable
mode to a lower-amplitude mode. In this case, the forcing locks the system to the latter
lower-amplitude mode. Therefore, this short-term forcing was proposed as a control
strategy.

Matveev & Culick (2003) introduced a reduced-order mathematical model that gives
the circulation strength of the vortex dependant on the unsteady flow field. For a dump
combustor model, they performed a mathematical study using the reduced-order model,
considering vortex shedding, acoustic field and combustion as driving mechanisms of the
instability in the combustor. Using the one-dimensional wave equation, they obtained the
amplitude of pressure fluctuations in the combustion chamber and compared their results
with the available experimental data. The lock-in characteristics of the model compare
well with the experimental results. Therefore, this commendable lower-order model is
frequently used for numerical analyses of combustion instability driven by vortex shedding
(Pastrone, Casalino & Carmicino 2014; Nair & Sujith 2015; Pawar et al. 2017).

Our group used the aforementioned Matveev model to obtain analytical predictions
of the onset of lock-in (Singaravelu & Mariappan 2016), which compared well with the
experimental results of Chakravarthy et al. (2007). Since the analysis was linear, the extent
of lock-in could not be determined. Later, nonlinear terms describing vortex shedding were
included (Britto & Mariappan 2019a); however, the self-excited thermoacoustic system
was replaced by a forced system for analytical tractability. Lock-in characteristics such as
onset and extent were determined for single-frequency ( f ) velocity excitation at various
amplitudes (A). Analytical expressions for 1 : 1, 2 : 1, . . . , p : 1 lock-in boundaries in the
A–f plane were presented. A general p : q lock-in (in the context of single-frequency
excitation) indicates that forcing and vortex shedding frequencies are in the ratio p/q,
where p/q is a rational number. In comparison to the previous models presented for
lock-in (Li & Juniper 2013a), the Matveev & Culick (2003) model shows two additional
features. (1) The presence of a critical excitation frequency (given as fmin in § 3 of Britto
& Mariappan 2019a), below which lock-in did not occur for any excitation amplitude.
(2) There was an upper critical amplitude, above which a transition out of lock-in
occurred. This critical amplitude was found to depend on the particular p : 1 lock-in state.
Experiments performed by Guan et al. (2018) showed the latter feature. Apart from lock-in
behaviour, Britto & Mariappan (2019b) identified that for physically relevant forcing
parameters (0 � A � 1), the Matveev & Culick (2003) model does not exhibit chaotic
dynamics.

All the previously mentioned investigations focused on the study of lock-in in the
presence of single-frequency excitation. However, even in a simple laminar self-excited
premixed flame, multiple frequency peaks in thermoacoustic oscillations were reported
(Kabiraj & Sujith 2012; Kabiraj et al. 2012a; Kabiraj, Sujith & Wahi 2012b). These peaks
occur owing to the presence of quasi-periodic (incommensurate dominant frequencies
f1 and f2), higher-periodic ( f1, f2 = f1/2), superharmonic ( f1, f2 = 2f1) oscillations and
their combinations. Furthermore, chaotic oscillations were reported, which also presents
multiple peaks. Practical combustors do exhibit multiple peaks (Lieuwen 2003). A brief
discussion on the experimental and theoretical investigations pertaining to the study of
flame response to multiple-frequency excitation is made subsequently.
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The following experimental studies explore the effects of multiple-frequency excitation
on combustion instability: Joos & Vortmeyer (1986), Balachandran, Dowling &
Mastorakos (2008), Kim (2017). Balachandran et al. (2008) studied the response of a
lean premixed flame to two-frequency inlet velocity perturbations. Depending on the
excitation amplitude, the introduction of a second forcing component (harmonic of the
first) altered vortex formation, shedding frequency and flame response. In the works of
Kim (2017) on both premixed and partially premixed flame, nonlinear interactions between
the fundamental and higher harmonics of pressure, velocity and heat release fluctuations
were analysed. Kim (2017) observed that the interaction between the fundamental and
higher harmonics of the inlet velocity fluctuation leads to a transition of heat release
response from a linear to a nonlinear regime. This transition marked a significant increase
in the pressure fluctuations of the combustion chamber.

On the theoretical front, Moeck & Paschereit (2012), Orchini & Juniper (2016),
Acharya, Bothien & Lieuwen (2018), and Haeringer, Merk & Polifke (2019) presented
methodologies to predict limit-cycle oscillations in thermoacoustic systems, containing
multiple frequencies in the velocity field. These works were dedicated to modelling
a flame using a multi-input flame describing function, having multiple (velocity)
excitation inputs at various frequencies. Using the aforementioned flame model, Moeck &
Paschereit (2012) and Orchini & Juniper (2016) presented a harmonic-balance approach to
calculate the amplitude and frequency of limit-cycle oscillations having multiple unstable
thermoacoustic modes. Their approach was shown to effectively predict the interactions
between the two unstable modes observed in experiments. Recently, a multi-input model
describing the function and harmonic balance framework was employed successfully
to predict limit-cycle amplitudes in an annular combustor, configured to exhibit mode
interactions and mode switching (Humbert et al. 2021).

Limit-cycle oscillations caused by additional frequency components in the flow field are
also studied using coupled oscillator models (Acharya et al. 2018). In this mathematical
work, time-dependant Galerkin modes of acoustic pressure and velocity fluctuation are
considered as two sinusoidal functions with time-varying amplitude and frequency. Two
amplitude equations are obtained, through which several observations were presented in
relation to the spacing effect between the frequencies. Interestingly, they identified that
the first unstable mode exhibited dominance in the limit-cycle oscillations for a larger
frequency spacing, although the second mode had a higher linear growth rate.

The above literature review emphasises that the presence of additional frequency
components with comparable amplitudes to that of the primary component significantly
affects the flame response. Therefore, we believe that they also have an important impact
on vortex-acoustic lock-in. To the best of the authors’ knowledge, there have been no
formal studies performed to understand lock-in caused by multiple frequency excitation.
As a first step, we attempt to study it from a theoretical perspective using the Matveev
& Culick (2003) model. Specifically, we explore the difference in lock-in characteristics
between single- and two-frequency excitations. The aforementioned reduced-order
mathematical model is chosen, as it describes several experimentally reported dynamics
associated with vortex-acoustic lock-in under single-frequency excitation (Britto &
Mariappan 2019a). External periodic velocity excitation that consists of two sinusoidal
components, namely primary and secondary excitation, is introduced. Although the
theoretical study made in this paper is applicable for any general two-frequency
excitations, which are commensurate, the results are presented only for sub- and
superharmonic secondary excitations. The effect of these components on the vortex
shedding behaviour is studied in terms of cobweb diagrams.
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The rest of the paper is arranged as follows. Section 2 begins with using the Matveev
& Culick (2003) model to derive a discrete map equation that relates the time instances
of successive vortex shedding in a two-frequency excited flow. In § 3, we study phase
portraits of the vortex shedding time period using numerically obtained iterations.
Critical differences between single- and two-frequency excitations are highlighted. The
phenomenon of lock-in is studied in the context of phase lock-in. It is identified as
synchronisation of the generalised phase, obtained using the Hilbert transform. Its details
are discussed in § 4. The dynamics of phase points during the excitation is studied
geometrically, and an analytical condition to identify a generalised p : q lock-in in terms of
these phase points is derived. In § 5, the occurrence of lock-in and subsequent bifurcations
are studied using return maps and cobweb diagrams. A detailed explanation of the
bifurcations that are observed during two-frequency excitation is presented in § 5.1. In
§ 6, we provide analytical solutions for a few geometrical characteristic features of the
lock-in boundary observed during two-frequency excitation. Finally, the notable results
and conclusions of this paper are summarised in § 7.

2. Governing equation for vortex shedding

A mathematical model for the vortex shedding process in inviscid flows was introduced
by Matveev & Culick (2003) to study combustion instability in dump combustors. The
non-dimensional form of the equations governing the vortex shedding process is given as
follows:

dΓm

dt
= 1

2

[
1 + u′(t)

]2
, (2.1)

Γsep = 1
2

[
1 + u′(t)

]
. (2.2)

Non-dimensionalisation is performed with mean flow velocity ū and steady-state vortex
shedding frequency 1/�tst as reference parameters. Further details are discussed in Britto
& Mariappan (2019a). The variables Γm and Γsep are the non-dimensional circulation
strength of the mth vortex and the circulation threshold for shedding, respectively.
Non-dimensional velocity fluctuations in the flow near the separation edge of the step/bluff
body geometry are given by u′(t).

Figure 1(a) is a schematic of a turbojet afterburner designed with a V-gutter for
flame stabilisation. Local velocity fluctuations near the separation edge of the V-gutter
cause hydrodynamic fluctuations, leading to fluctuations in vortex shedding frequency.
A similar physical mechanism occurs in combustors designed with a swirled flow over a
backward-facing step (shown in (c)). In such configurations, the recirculation zone holds
the flame owing to its low-velocity region. The velocity gradient between the recirculation
zone and the flow causes hydrodynamic fluctuations, which alter the vortex shedding
frequency. Idealised versions represented by Matveev & Culick (2003) of the previous two
configurations (a,c) are shown in (b) and (d), respectively. In the ideal case, the shed vortex
is assumed to convect downstream with the base-flow velocity, with a constant circulation
strength. As already mentioned, in this paper, we focus on two-frequency excitation, where
the external velocity perturbation u′(t) is chosen as a sum of two sinusoidal forcings of the
form shown below,

u′(t) = Ap sin(2πfpt)+ As sin(2πfst + γ ), (2.3)
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Figure 2. Time evolution of Γsep and Γm for fp = 0.8, Ap = 0.5, (a) As = 0. Here, Γm(t) and threshold
circulation Γsep(t) are shown using black and blue curves, respectively. Vortex shedding time instances
(Γm = Γsep) obtained from (3.1) are marked with blue dots. The vortex shedding time period is obtained from
the relation �tm = tm − tm−1 after every reset of Γm. Arrows indicate the course of Γm(t) over time. In (b), a
comparison of Γsep(t) between single- (blue curve, As = 0) and two-frequency (red curve, As = 0.1, fs = 2fp)
excitation is shown. The evolution of shedding time period �tm in comparison with single- and two-frequency
excitation is shown in (c).

where fp and fs are primary and secondary excitation frequencies, respectively. Similarly,
Ap and As are their respective excitation amplitudes. Henceforth, the two terms in (2.3)
are called primary (subscript p) and secondary (subscript s) excitation components in
this paper. It should be noted that these terminologies are chosen based on the excitation
frequency rather than amplitude. We use the term ‘primary excitation’ when the excitation
forcing frequency is near the natural vortex shedding frequency. For the secondary
excitation, its frequency is rationally related ( fs = pf fp/qf , pf and qf are integers) to the
primary excitation frequency. The initial phase difference between fp and fs is denoted by
γ . Although the initial phase does influence the results, we have chosen γ = 0 throughout
this paper. The reason for this choice is discussed in § 5.

Equations (2.1) and (2.2) together represent an integrate and fire model. The value of
Γm(t), associated with the mth vortex increases nonlinearly in time, till a threshold value
(Γsep(t)) is attained (defined by (2.2)). When Γm(t) = Γsep(t), the mth vortex is shed.
Specifically, for m = 1, Γ1(t) increases from 0 (at t = 0) until a time t1, when Γ1(t1) =
Γsep(t1). At t1, the first vortex is considered to be shed instantly and the circulation of the
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second vortex Γ2 is reset to zero. Similar to the first vortex, the increase in circulation
and subsequent shedding of the second vortex is calculated. The corresponding shedding
time t2 is noted. The procedure is repeated to obtain shedding instances (tm) of an mth
vortex. The time period between successive shed vortices is called an instantaneous vortex
shedding time period: �tm = tm − tm−1.

Figure 2(a) illustrates the evolution and reset of Γm (black curve) over time t for
single-frequency excitation having the parameters fp = 0.8, Ap = 0.5 and As = 0. The
evolution of threshold circulation Γsep(t) is shown as a blue curve. Vortex shedding time
instances (Γm = Γsep) are illustrated with blue dots. The corresponding shedding time
periods are indicated as �t1,�t2, . . .. The continuous nonlinear growth of Γm(t) and its
reset, resulting in discrete vortex shedding events can be observed in panel (a).

In figure 2(b), a comparison of shedding time instances between single- (a) and
two-frequency ( fs = 2fp, As = 0.1, other parameters are the same as in (a)) excitations is
illustrated. For clarity, only the Γsep curves are shown. Here, Γsep and shedding instances
for single- and two-frequency excitations are indicated as blue/red curves and blue/red
dots, respectively. Note that the amplitude of the secondary excitation is 20 % of the
primary excitation and Γsep(t) is found to change slightly in shape. This alters the shedding
dynamics to a large extent. Shedding occurs at far different time instances between single
(blue dots) and two-frequency (red dots) excitations (b). The impact of the secondary
component on the vortex shedding time period Δtm is illustrated in (c). The iterations
(m) of �tm during single-frequency excitation appear to reach a constant value indicating
that vortex shedding occurs at a constant frequency (period-1 state). Whereas, owing to the
inclusion of a secondary component, the period-1 state collapses and shedding exhibits a
higher-periodic behaviour. To understand the overall influence of secondary excitation, we
perform a systematic study as follows.

3. Numerical investigation of secondary excitation

In this section, we numerically study the response of vortex shedding in terms of its
shedding time period �tm for a range of primary excitation components ( fp and Ap) at
given secondary excitation parameters ( fs and As). An implicit dynamical map (similar
to that discussed in Britto & Mariappan 2019a) in �tm is obtained. We substitute (2.3)
into (2.1) and (2.2), and integrate (2.1) between the events: just after the shedding of the
(m − 1)th vortex (limits Γm = 0 at tm−1) and just before the shedding of the mth vortex
(limits Γm = Γsep at tm), to obtain[

sin
(
4πfptm−1

) − sin
(
4πfptm

) − 4πfp (tm−1 − tm)
]

Ap
2

16πfp

+
[
cos

(
2πfptm−1

) − cos
(
2πfptm

)]
Ap

2πfp

+
[
sin (2πfstm−1 + γ ) cos

(
2πfptm−1

) − sin (2πfstm + γ ) cos
(
2πfptm

)]
fpApAs

2πfp2 − 2πfs2

−
[
cos (2πfstm−1 + γ ) sin

(
2πfptm−1

) − cos (2πfstm + γ ) sin
(
2πfptm

)]
fsApAs

2πfp2 − 2πfs2

+
[
sin (4πfstm−1 + 2γ )− sin (4πfstm + 2γ )− 4πfs (tm−1 − tm)

]
A2

s

16πfs
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+
[
cos (2πfstm−1 + γ )− cos (2πfstm + γ )

]
As

2πfs
− (tm−1 − tm)

2

= 1
2

[
1 + Ap sin

(
2πfptm

) + As sin (2πfstm + γ )
]
. (3.1)

Equation (3.1) represents the implicit map connecting tm−1 and tm. For a given set
of primary and secondary excitation parameters, and for initial time t1 = 0, we obtain
the subsequent vortex shedding time instances (t2, t3, . . .) from the solution of (3.1). For
every parametric set, (3.1) is solved for 2000 iterations and the first 1000 iterations are
discarded to eliminate the effect of transients. Secondary excitations are restricted to be
super- and subharmonics of the primary excitations. This restriction allows us to study
vortex dynamics analytically in a framework using return maps and cobweb diagrams,
described in this paper. Moreover, often experiments of combustion instability report
multiple frequency peaks, which are either super- or subharmonic of the primary peak.

3.1. Superharmonic secondary excitation
Figure 3 shows the Feigenbaum diagrams across a range of primary excitation amplitudes
Ap = 0 − 1 at fp = 0.9. In these panels, we consider superharmonic secondary excitation
with frequency fs = 2fp and amplitude As = 0, 0.05, 0.1 and 0.15 (figure 3a–d). During
single-frequency excitation (figure 3a), shedding occurs at the natural vortex shedding time
period (period-1 state) when Ap = 0. As the amplitude Ap is gradually increased, torus
birth bifurcation occurs, and shedding endures a quasi-periodic route, which is evident
from the dense points near the low Ap range. This quasi-periodic behaviour is found to
extend to Ap = 0.119.

A second bifurcation occurs (saddle-node bifurcation as reported in our previous
study Britto & Mariappan 2019a) when the amplitude Ap is increased further. In
this amplitude region, shedding exhibits a period-1 state, locked-in with the excitation
frequency fp. Finally, when Ap is increased above 0.75, a transition from period-1 state to
a higher-periodic orbit is observed. It is observed in various dynamical systems that are
susceptible to lock-in (Gollub & Benson 1980; Franceschini 1983; Anishchenko, Safonova
& Chua 1993; Guan et al. 2018).

In figure 3(b), we have introduced non-zero secondary excitation (As = 0.05). Since
the total excitation amplitude of u′ starts from 0.05 at Ap = 0, vortex shedding never
occurs at its natural time period. Quasi-periodic behaviour is observed right from Ap = 0.
Comparing figure 3(a–d), the extent of quasi-periodicity reduces with an increase in
secondary excitation amplitude (0 < Ap < 0.085 for As = 0.05 and 0 < Ap < 0.022 for
As = 0.1). Finally, after a certain amplitude As, quasi-periodicity ceases to exist, and
shedding begins to occur at the locked-in time period 1/2fs (2 : 1 lock-in) as shown in
figure 3(d).

Figure 3(e–h) shows phase portraits�tm −�tm−1 at Ap = 0.02 (indicated in red dashed
line in figure 3a–d). Referring to figure 4 of Britto & Mariappan (2019a), it was reported
that during single-frequency excitation, the phase portrait in the quasi-periodic region
exhibits a two-dimensional torus. With the increase in amplitude Ap, the size of the
torus increases with its shape being retained. In the current scenario, we observe that
the additional secondary excitation changes the shape of the torus as it evolves to a
2-quasi-periodic curve ( f ). Similar shape change was reported by Gardini et al. (1987),
Van Veen (2005) and Gyllenberg, Jiang & Niu (2020). In the Lotka–Voltera model,
Gardini et al. (1987) first reported that the quasi-periodic curve (two-dimensional torus
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Figure 3. Plots showing the last 1000 iterations (Feigenbaum diagrams) of �tm across Ap for superharmonic
secondary excitation frequency fs = 2fp. With fp = 0.9, each panel indicates Feigenbaum diagrams for a fixed
secondary excitation (a) As = 0, (b) As = 0.05, (c) As = 0.1 and (d) As = 0.15. Panels (e–h) show the phase
portraits between�tm and�tm−1 for amplitudes associated with (a–d), respectively, at Ap = 0.02 (shown with
red dashed line in (a–d)).

in the phase portrait) undergoes a Hopf bifurcation and the curve rounds twice to exhibit a
2-quasiperiodic curve (named recently by Gyllenberg et al. 2020). Subsequently, when the
parameters are varied, the system undergoes a cascade of Hopf bifurcations and attains
chaos (similar to classical period-doubling bifurcation to chaos). In the present model,
as the secondary amplitude is increased gradually, the shape of the two-dimensional
torus evolves and a bifurcation occurs therein, and the curve in the phase portrait rounds
twice retaining its dense points, thereby exhibiting a 2-quasi-periodic curve. Unlike
Lotka–Voltera model, we do not observe quasi-period-doubling. Whereas, when the
amplitude As is further increased, the size of the 2-quasi-periodic curve increases gradually
and it breaks into a higher-periodic orbit (seen in figure 3(g,h)) before it encounters lock-in.
Similar behaviour is observed when the secondary excitation frequency is switched to a
subharmonic of the primary component ( fs = fp/2), as described next.

3.2. Subharmonic secondary excitation
Figure 4(a–d) shows the Feigenbaum diagrams of �tm across Ap = 0 − 1 for As = 0,
0.05, 0.1 and 0.2. When a subharmonic ( fs = fp/2) secondary excitation is introduced, the
lock-in region becomes a period-2 orbit. For comparison, primary excitation frequency
fp = 0.9 is kept the same as that of the superharmonic excitation. We observe the
following similarities with the superharmonic case (§ 3.1): (1) before the onset of lock-in,
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Figure 4. Plots showing the last 1000 iterations (Feigenbaum diagrams) of �tm across Ap for subharmonic
secondary excitation frequency fs = fp/2. With fp = 0.9, each panel shows the Feigenbaum diagram for a fixed
secondary excitation amplitude (a) As = 0, (b) As = 0.05, (c) As = 0.1 and (d) As = 0.2. Panels (e–h) show
the phase portraits for amplitudes associated with (a–d), respectively at Ap = 0.1 (red dashed line).

a quasi-periodic behaviour is observed; (2) in the presence of (non-zero) secondary
excitation (b–d), shedding does not occur at its natural frequency (even at Ap = 0); (3)
from the phase portraits (�tm−2 −�tm considering period-2 orbit) in the quasi-periodic
regime, shown in figure 4(e–h), the two-dimensional torus undergoes a fold and evolves
into a 2-quasi-periodic curve ( f ) as secondary excitation is introduced; and (4) when
As is increased further, the size of the 2-quasi-periodic curve increases and transitions
to a higher-periodic orbit (g,h). However, unlike the superharmonic case, quasi-periodic
shedding never disappears in the subharmonic secondary excitation (compare 3d and 4d).

Furthermore, we observe the following differences between single- and two-frequency
excitation from Feigenbaum diagrams and phase portraits: (1) the reduction in the
extent and subsequent disappearance of the quasi-periodic nature followed by a lock-in
observed during superharmonic excitation (figure 3, (a) and (b–d)) highlights an important
quantitative difference; and (2) the absence of a natural vortex shedding frequency
and the appearance of folds in the phase portraits (observed both in subharmonic and
superharmonic excitation) indicates a significant qualitative difference ((a) and (b–d) of
figures 3 and 4).

In addition, we observe the following difference between subharmonic and
superharmonic excitation. For fp = 0.9, the gradual increase in As decreases the
critical amplitude at which the onset of lock-in occurs and it leads to early lock-in
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(figure 3a–d). This behaviour is absent in the subharmonic excitation case. In contrast,
the quasi-periodic nature with intermediate periodic windows never disappears during
subharmonic excitation, whereas, when As is gradually increased, the shedding occurs
at a wider range of time period before the onset of lock-in (figure 4a–d).

These differences motivated further analyses that are presented in the rest of this
paper. Since multiple frequencies are involved in excitation, lock-in is investigated from
the perspective of phase lock-in. In the next section, we introduce the phase lock-in
phenomenon often observed in interacting dynamical systems. The procedure to identify
it in the current model is discussed in detail.

4. Phase lock-in owing to two-frequency excitation

In our previous work (Britto & Mariappan 2019a), we stated that 1:1 frequency lock-in is
encountered when vortex shedding and excitation time periods (1/fp) are equal. However,
in the current scenario, the excitation signal has two-frequency components. Therefore,
we study lock-in behaviour using the concept of phase. Phase lock-in is a common
phenomenon observed in dynamical systems that are susceptible to external excitation.
During phase lock-in, phases of the interacting systems are in a certain relation with
each other (Pikovsky & Rosenblum 2007). This behaviour is well understood in various
physical (Strogatz et al. 2005) and biological systems (Daan, Beersma & Borbély 1984;
Graves et al. 1986). For hydrodynamic systems, Li & Juniper (2013c) and recently Mondal,
Pawar & Sujith (2019) studied phase-locking behaviour in a self-excited low-density jet
and Rijke tube, respectively, under single-frequency periodic excitation. When the system
(low-density jet or Rijke tube) is subjected to external excitation, Li & Juniper (2013c)
measured the streamwise velocity fluctuation as the response of the jet and Mondal
et al. (2019) measured the acoustic pressure fluctuations inside the Rijke tube. In both
the studies, the forcing frequency was kept near the system natural frequency. They
summarised their observations as two categories of behaviours across the parametric plane
(the A–f plane): (i) when the forcing frequency ( f ) is close to the natural frequency ( fn)
of the oscillating jet, they observe phase slipping, where the phase difference between
the response and the forcing stays nearly constant with time, followed by discrete rapid
jumps by 2π; and (ii) when f is far away from fn, there was no phase slipping, whereas
phase trapping was observed. In this case, the phase difference oscillates periodically and
remains bounded throughout in time. Both phase slipping and trapping behaviour were
observed before the onset of lock-in. After (phase) lock-in, the phase difference becomes
constant with time. In the following section, we examine lock-in in the present model
through the previously described concept of phase, first for single-frequency excitation
and later extended for two-frequency excitation.

4.1. Hilbert transform for single- and two-frequency excitation
As mentioned in the previous paragraph, phase lock-in is identified by the difference
between the phase of the system’s response and excitation. In the present case, the system’s
response are the shedding time instances t1, t2, . . .. Between two successive shedding
instances, say tm−1 and tm, the circulation of the mth vortex begins to grow from zero
and reaches Γsep, after which the vortex sheds. This forms a cycle, and the associated
phase increases by 2π. Therefore, phase (ψR,m) of the response is defined only at vortex
shedding instances (tms), given as ψR,m = 2mπ where m = 1, 2, 3, . . . indicates vortex
shedding events. Subscripts R and m represent response and mth vortex, respectively.
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On the other hand, the phase of the excitation signal u′ is obtained using the concept of
the analytic signal (Pikovsky & Rosenblum 2007). An analytic signal ζ(t) is constructed
from a signal or time series u′(t) as below:

ζ(t) = u′(t)+ iH(u′(t)), (4.1)

where H(u′(t)) is the Hilbert transform of u′(t). As usual i = √−1. The instantaneous
phase (ψE(t), subscript E stands for excitation signal) of u′ is given by the following:

ψE(t) = arctan
(

H(u′(t)
u′(t)

)
= arctan

(−Ap cos(2πfpt)− As cos(2πfst + γ )

Ap sin(2πfpt)+ As sin(2πfst + γ )

)
. (4.2)

For the functional form of u′ (2.3), H(u′(t)) = −Ap cos(2πfpt)− As cos(2πfst + γ ), and
ψE(t) is, in general, a continuous function of time. We calculate it at discrete vortex
shedding time instances t1, t2, . . . to obtain the phase of excitation signal, ψE,m = ψE(tm).

To identify 1:1 phase lock-in, the phase difference (�ψm) between excitation signal
and response at vortex shedding time instances is calculated as �ψm = ψE,m − ψR,m.
The dynamics of �ψm with m allows one to identify phase lock-in. The same idea can
be extended to identify a general p : q phase lock-in, where �ψm = qψE,m − pψR,m is a
constant value.

In the subsequent sections, we first discuss the dynamics of �ψm in the vicinity of the
1:1 lock-in region in the Ap–fp plane. In § 4.3, we explore the nature of p : q lock-in during
two-frequency excitation.

4.2. Phase lock-in during single-frequency excitation
Identification of phase lock-in through �ψ is first demonstrated in single-frequency
excitation (As = 0). The lock-in region (represented by green in figure 5a) is obtained from
the analytical solution discussed in our previous paper (Britto & Mariappan 2019a). Phase
difference �ψ is evaluated at three significant regions in Ap–fp plane: (i) before the onset
of lock-in; and (ii) inside the lock-in region and (iii) in the region after the transition from
lock-in. In the following discussions, we highlight the behaviour of�ψ at these locations.

For two primary excitation frequencies on either side of fp = 1 ( fp = 0.8 and fp = 1.1),
the evolution of �ψm/2π with m at the selected locations in the Ap–fp plane is illustrated
in figure 5(b,c). The colour of the curves corresponds to the cross symbols shown in the
Ap–fp plane of (a). For fp = 0.8, we begin with a low amplitude, Ap = 0.1 (illustrated
with a blue marker). Clearly, there is no lock-in, and �ψm increases unboundedly,
exhibiting a large positive slope (blue curve in (b)). This phenomenon is called phase
drifting (Pikovsky & Rosenblum 2007; Li & Juniper 2013c). As the amplitude is increased
gradually, the slope of�ψm approaches zero. This phenomenon is called frequency pulling
(Pikovsky & Rosenblum 2007; Li & Juniper 2013c), where the average frequency of
the shedding is pulled towards the forcing frequency. Finally, the instantaneous phase
difference, �ψm, attains a constant value leading to phase lock-in (green curve). Near
the lock-in boundary (in the unlocked state), �ψm is almost constant with phase slips
occurring at discrete instances (red and yellow curves). During a phase slip, �ψm jumps
by 2π. Phase slips occur less frequently as one approaches the lock-in boundary (compare
red and yellow curves). This indicates that shedding begins to exhibit intermittent, long
epochs of lock-in between phase slips as Ap approaches the lock-in boundary. In the phase
lock-in region (green shaded portion), �ψm remains constant without any phase slips.
When the amplitude reaches higher values, a transition out of lock-in occurs. The black
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Figure 5. Phase lock-in during single-frequency excitation. Lock-in boundary is shown in (a). Phase difference
�ψm for various forcing amplitudes and excitation frequency (b) f = 0.8 and (c) f = 1.1 are illustrated.
Excitation amplitudes chosen in (b,c) are colour coded and are shown in (a) using cross symbols with the
corresponding colours. Lock-in region is obtained from the analytical expression given in Britto & Mariappan
(2019a).

marker in panel a is outside the lock-in boundary, and the corresponding �ψm shows
phase slips. It must be noted that for all Ap in fp < 1, �ψm remains positive. Since fp is
less than the natural vortex shedding frequency, the phase of the excitation signal ψE(t)
is greater than ψR(t). Hence the positive slope is consistent in no lock-in amplitudes.
The three salient features of phase that are observed in the current model, namely phase
drifting, phase slipping and frequency pulling, were reported in experiments (Li & Juniper
2013c).

In (c), the above exercise is repeated for fp = 1.1 (a case where fp > 1), we see that
�ψm exhibits similar characteristics as that for fp = 0.8, but with the slope of �ψm
negative before the onset of lock-in (since ψE(t) < ψR(t)). However, during the transition
out of lock-in, the phase difference exhibits a positive slope similar to the fp < 1 case.
Overall, we have shown that the identification of a lock-in region through �ψm is
possible for single-frequency excitation. We now proceed to extend the same idea during
two-frequency excitation.

4.3. Phase lock-in during two-frequency excitation
Figure 6(a) shows the boundary of lock-in in the Ap–fp plane, during a two-frequency
excitation. In this case, the excitation signal, apart from the primary frequency ( fp)
contains a secondary superharmonic component with amplitude As = 0.05 and frequency
fs = 2fp. Similar to the previous single-frequency excitation, we consider two cases for
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Figure 6. Phase lock-in during two-frequency excitation. Lock-in boundary is shown in (a). Phase difference
�ψm obtained for various forcing amplitudes and excitation frequency fs = 2fp (b) fp = 0.85 and (c) fp = 1.4.
Lock-in region can be identified when the phase difference is constant. The chosen excitation amplitudes in
(b,c) are colour-coded and are marked in (a) using cross symbols with the corresponding colours.

the frequency of primary excitation: fp < 1 and fp > 1. The corresponding evolution of
phase difference �ψm is shown in (b) and (c), respectively. Considering first the case at
fp = 0.85 in the no lock-in, �ψm (blue curve in (b)) increases with time, and exhibits
phase slipping with an intermediate 2π jump. As Ap is increased, the interval between
the jump increases (refer to red and yellow curves). Finally during lock-in (green curve),
�ψm attains a constant value. Overall, both for fp < 1 and fp > 1 (see (b,c)),�ψm follows
qualitatively similar characteristics as that of their single-frequency excitation counterpart.
It is important to mention the following observation. For the case, fp = 1.4 which is
relatively far (in comparison with the case, fp = 0.85) from the natural vortex shedding
frequency, �ψm becomes constant during lock-in (Ap = 0.25, green curve in (c)) and
decreases unboundedly near the lock-in boundary (Ap = 0.24, pink curve in (c)). This
shows that the current model does not exhibit phase trapping, a behaviour in which �ψm
remains bounded but fluctuates near the lock-in boundary. The same observation is found
in our previous investigation (Britto & Mariappan 2019a) which involved single-frequency
excitation.

Unlike the case of single-frequency excitation, where the lock-in boundary is obtained
analytically (Britto & Mariappan 2019a), the boundary for the case of two (or
multiple)-frequency excitation is identified by tracking the evolution of �ψm.

To find lock-in regions in multiple-frequency excitation, we use the criteria �ψm = C,
where C is a constant. Throughout this study, we restrict ourselves to only rational relations
between primary and secondary excitation frequencies, fs = pf fp/qf , where pf and qf
are integers. A discussion on such a choice of secondary excitation is provided in § 4.4.
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Figure 7. Illustration of boundary of lock-in obtained using the condition (4.3). Panels (a–c) and (d–f )
correspond to the superharmonic and subharmonic secondary excitation, respectively, with As = 0.05. In (a,d),
the dark blue region (K = 0) represents 1:1 phase lock-in. Similarly, in (b,e), it represents 2 : 1 and 1 : 2 phase
lock-in, respectively. The boundary of blue regions in these panels are mapped in (c, f ).

During phase lock-in, the iterations of �ψm are period-qf and bounded. Therefore, a p : q
lock-in region is identified using the following relations:

�ψm −�ψm−qf = 0, with �ψm = qψE,m − pψR,m. (4.3)

To identify a given p : q lock-in, �ψm −�ψm−qf = K is plotted in the Ap–fp plane.
For illustration, we choose fs = 2fp for superharmonic and fs = fp/2 for subharmonic
excitations. Consequently, we expect 1:1, 2 : 1 and 1:1, 1 : 2 lock-in for super- and
subharmonic excitations, respectively. Figures 7(a,b) and (d,e) show the contour plots of
K corresponding to superharmonic and subharmonic secondary excitation, respectively,
with As = 0.05. The dark blue region (K = 0) in the contour represents phase lock-in
regions. The corresponding boundary of lock-in is shown in figure 7(c, f ). This boundary
is obtained by increasing Ap gradually till K = 0 is attained for the first time, at each
fp, blue and red curves represent 1:1 and 2 : 1/1 : 2 lock-in, respectively, in figures 7(c)
and 7( f ).

The following observations are common to both variants of secondary excitations:
(i) when Ap < As, the system exhibits 2 : 1 or 1 : 2 lock-in for super- and subharmonic
excitation, respectively; and (ii) when Ap > As, vortex shedding encounters 1:1 lock-in.
For superharmonic excitation (a,b), both 1:1 and 2 : 1 lock-in regions show a plateau
boundary (upper and lower plateau) at their onsets (c). On the other hand, a prominent
plateau boundary is observed only at the onset of the 1:1 lock-in boundary (upper plateau)
for subharmonic excitation ( f ). Our simulations indicate that the lower plateau is so small
that it appears to be absent.

Furthermore, in contrast to the lock-in boundary of single-frequency excitation
(figure 5a), we observe the following difference in its shape during two-frequency
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Figure 8. The 1:1 phase lock-in regions for (a) fs = 2fp, (b) fs = 3fp, (c) fs = fp/2 and (d) fs = fp/3. Three
different secondary excitation amplitudes are chosen to illustrate the variation of lock-in boundary.

excitation (the differences are common in both super- and subharmonic secondary
excitation). The 1:1 lock-in forms a plateau boundary at Ap = As which is in contrast to
the classical V-shaped boundary at fp = 1 during single-frequency excitation (figure 5a).
Although the contribution of secondary excitation is present throughout the Ap–fp plane,
it is dominant in the region where Ap < As. This dominance restricts the 1:1 lock-in
region to the Ap > As region. This behaviour is observed for other superharmonic
( fs = 3fp) and subharmonic ( fs = fp/3) secondary excitation (figure 8). The same
figure shows that the 1:1 lock-in boundary stemmed at fp = 1 for single-frequency
excitation, detaches from (Ap, fp) = (0, 1) and shifts to a value of Ap = As, forming a
plateau.

At this point, it is worth to mention the parallels with the experimental study by Guan
et al. (2019a). They periodically forced a ducted laminar premixed flame, exhibiting
quasi-periodic unforced (natural) oscillations. The parallel is that the shape of the
lock-in boundary is altered by the presence of two natural frequencies. This is similar
to the present altered lock-in boundary (figure 8), where there is a change in the
order of lock-in. In our investigations, two forcing frequencies are used, while in Guan
et al. (2019a), two natural frequencies are present. In both studies, three modes are
involved.

These results show the possibility of controlling and tailoring the lock-in region by
introducing a secondary excitation component in the flow stream. Since some of the
previous experimental results do indicate the occurrence of 1:1 lock-in during combustion
instability (Poinsot et al. 1987; Singh & Mariappan 2021), the above method can be
considered as active control for its mitigation.

In order to understand the formation of a plateau in the lock-in boundary, analytical
investigation through first return maps is performed in § 5. This requires a geometrical
interpretation of phase difference �ψm, discussed in the next section.
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4.4. Geometric interpretation of �ψm

We begin by studying the geometrical interpretation of the phase of the excitation
signal ψE,m. As explained in § 2, vortex shedding time instances (tm) are identified by
the condition Γm(tm) = Γsep(tm), Γsep(tm) is linearly related to excitation u′. Since the
excitation is sinusoidal, for a particular set of Ap, fp, As and fs, Γsep(tm) can be located as
phase points on a geometry consisting of two circles: primary and secondary (figure 9).
The primary excitation along with the steady base flow is represented by the primary
circle of radius Ap/2, centred (point O) at 1/2 from the origin (point S) in the vertical
direction. The shift 1/2 is to accommodate the steady flow velocity in Γsep(tm). The
vertical distance between points P and S equals 1/2 + Ap sin(2πfp)/2, which represents
the contribution of steady and primary frequency components of u′ excitation in Γsep(tm)
(refer to (a)). Over time t, the point P traces over the primary circle and forms an
angle 2πfpt. Similarly, the presence of the secondary component (As sin(2πfst)) can be
represented by another point Q lying on the secondary circle having a radius As/2. This
circle is centred at the primary phase point P, allowing the secondary circle to move along
the primary circle. Geometrically, the vertical distance between points Q and S equals
Γsep(tm) = 1/2 + Ap sin (2πfptm)/2 + As sin (2πfstm + γ )/2 (refer to (b)). Therefore, the
evolution of Γsep is the movement of point Q with time. Crucially, the angle (φm) subtended
between the line joining points Q and O with the horizontal (OR) equals

φm = arctan
Y
X
, (4.4)

where X = Ap cos(2πfptm)+ As cos(2πfstm + γ ) and Y = Ap sin(2πfptm)+ As sin(2πfstm
+ γ ) (b). Now, φm at time instances tm, where m = 1, 2, 3, . . . are the phase points of the
vortex shedding events on the Γsep(t). The angle φm can be related to the phase ψE,m of
the excitation signal u′ using (4.2):

tanψE,m = − 1
tanφm

, =⇒ φm = ψE,m − π/2. (4.5)

As discussed in § 4.1, a p : q lock-in is identified when�ψm is constant. For a secondary
excitation given by fs = pf /qf fp, where pf and qf are integers, the constant phase criteria
translates to �ψm −�ψm−qf = 0, from which we obtain the following relation between
φm and φm−qf :

q
(
ψE,m − ψE,m−qf

) − p
(
ψR,m − ψR,m−qf

) = 0,

q
(
φm + π

2
− φm−qf − π

2

)
− p

(
qf 2π

) = 0,

=⇒ φm − φm−qf = 2πpqf

q
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.6)

Equation (4.6) is similar to that of the phase relation reported for single-frequency
excitation during p : q lock-in (Britto & Mariappan 2019a).

Specifically, for the superharmonic excitations considered in this paper, qf = 1 (refer
to figure 8a,b). The phase relation becomes φm − φm−1 = 2πp/q. Furthermore, in the
present vortex shedding model, we always observed lock-in with q = 1. Therefore, in
a p : 1 lock-in, the consecutive phases φms are 2πp radians apart. On the other hand,
for the present subharmonic excitations, pf = 1 (refer to figure 8c,d). Therefore, the
condition for lock-in becomes φm − φm−qf = 2πqf /q. Specifically, during 1 : 2 lock-in,
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Figure 9. Time instances of vortex shedding are illustrated as phase points on the circle. (a) The circle centred
at O represents the primary excitation signal with the parameters Ap and fp. The inclusion of a secondary
component results in an additional circle of radius As with frequency fs centred at the point P. Over time t
points P and Q trace over the primary and secondary circle, respectively. (b) At any time instant t, the phase
point Q lies at a vertical distance Γsep(t) from S. The angle subtended by QO with OR is φm.

owing to subharmonic ( fs = fp/2) secondary excitation, the phase follows φm − φm−2 =
2π. Therefore, phases φms are 2π radians apart for every two iterations. Depending on the
lock-in order and frequency ratio, the phase relation exhibits different periodicity. Overall,
the period of φm is equivalent to the lowest frequency among the primary and secondary
excitation signals. This behaviour was recently reported by Kashinath, Li & Juniper (2018)
in a model oscillator subjected to large amplitude forcing. Hence, an appropriate modulo
operation (modulo 2π, 4π, 6π, . . .) on φm leads to a fixed point during lock-in. We utilise
this fact to study bifurcations across the lock-in boundary in § 5.

Since the condition of lock-in can be expressed elegantly using (4.6), we prefer to study
a map relating φm−qf and φm, instead of investigating (3.1) in time t. Furthermore, the
transformation allows us to conveniently study dynamical features of lock-in, such as
bifurcations, through first return maps (discussed in § 5).

At this point, it is necessary to highlight lock-in in the presence of quasi-periodic
excitations. Quasi-periodic behaviour of oscillations were reported during combustion
instability in multiple previous investigations Kabiraj & Sujith (2012). During lock-in,
under a non-zero secondary excitation ( fs = pf fp/qf ), (4.6) implies that the oscillations
(φm) are qf periodic. As qf is infinite for the quasi-periodic excitation, it is not possible to
study phase lock-in in the current framework (refer to (4.6)). In fact, only frequency lock-in
is viable during the quasi-periodic excitation, which is shown in figure 10.

Figure 10(a) represents the evolution of the instantaneous phase difference �ψm for
fp = 0.9, As = 0.05 and fs = √

2fp. At the lowest amplitude Ap = 0.08, �ψm decreases
unboundedly indicating phase drifting (unlocked state). When the amplitude is increased
gradually, the slope of �ψm moves towards zero. At Ap = 0.12, �ψm becomes bounded,
although fluctuating about a mean. The bounded nature indicates frequency lock-in, while
the fluctuations show the absence of phase lock-in. Panels (b–d) show the corresponding
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Figure 10. Response caused by quasi-periodic excitation with fp = 0.9, fs = √
2fp and As = 0.05. Panel (a)

shows the evolution of�ψm with Ap = 0.08–0.12. Panels (b–d) show the corresponding phase portrait between
�tm and �tm−1 for amplitudes associated with (a) (curves are colour coded in (a)).

phase portraits between �tm −�tm−1, which reveal the occurrence of frequency lock-in.
At the lowest amplitude (Ap = 0.08), we observe that the iterations occupy a dense region
in the phase portrait, exhibiting three frequency quasi-periodicity (3-tori shown in (b,c)).
During frequency lock-in (d), the phase portrait collapses to a 2-torus quasi-periodic orbit.
Since the present framework allows us to study only phase lock-in, we restrict ourselves to
super- and subharmonic secondary excitations, which are rational multiples of the primary.

It is found that a dynamical map between φm−qf and φm for the two-frequency excitation
cannot be obtained explicitly. However, the map can be indirectly determined. For this
purpose, we introduce αm = 2πfptm and βm = 2πfstm + γ as notations for phase angles of
points P and Q, respectively, in their corresponding circles (refer to figure 9). The following
relation between αm and βm exists:

βm = pf

qf
αm + γ, (4.7)

where γ is the initial (t = 0) relative phase between the primary and secondary excitation.
Using the above notations in (3.1), the map equation connecting successive vortex
shedding events become

F(αm, αm−1,Ap,As, fp, fs, γ ) = 0. (4.8)
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Analytical investigation of lock-in

The full implicit equation (4.8) is given in Appendix A. The parameters Ap, As, fp and fs,
along with the initial condition γ govern the successive instantaneous phase αm of vortex
shedding. In the next section, the influence of these parameters on the dynamics of αm,
and hence φm, is studied in detail using return maps and cobweb diagrams.

5. Analysis of return maps

A qf th return map is a mapping between φm and its previous φm−qf iteration. We use the
following approach to obtain it. It should be noted that (4.8) is 2π or 2πqf periodic for
super- or subharmonic secondary excitation. Therefore, using (4.8), we solve for αm in the
range of αm−1ε[0, 2π] and αm−1ε[0, 2πqf ] to study p : 1 and 1 : q lock-in, respectively.
It is to be noted that αm solved from (4.8) contains harmonic terms, leading to the
occurrence of multiple solutions, where αm closest to the previous iteration αm−1 is the
correct solution, while other αm are termed as forbidden solutions. The correct solution
is extracted numerically through a careful choice of algorithm, the details of which were
given in Appendix A by Britto & Mariappan (2019a).

It is found that the relative phase γ in (4.8) influence the shape of Γsep. Therefore, it
is true that γ does affect vortex shedding behaviour and subsequent lock-in. Figure 11
illustrates the effect of γ on the evolution of �ψm. The parameters fs = 2fp, fp = 0.9
and As = 0.05 are fixed, while the primary amplitude Ap is increased until lock-in is
encountered; (a) corresponds to γ = 0 and lock-in is attained at Ap = 0.09 (purple
curve). On the other hand, when γ is set to π/2 (b), �ψm exhibits similar qualitative
behaviour with a delayed lock-in occurring at a larger amplitude Ap = 0.18. Although
γ does influence the onset of lock-in, we choose its value to be zero in this paper.
This choice provides considerable simplification and analytical tractability (see § 6). The
authors believe that the influence of the initial phase on lock-in during multiple-frequency
excitation can be studied as a separate work. Figure 12 shows a map between φm and φm−1
for parameters fs = 2fp, fp = 0.9 and As = 0.15, Ap = 0.1. The iterations of αm, βm and φm
are evaluated from (4.8), (4.7) and (4.4), respectively. The successive iterations φ1, φ2, . . .

are obtained using α0, α1, . . ., respectively. The lines connecting these iterations are called
cobwebs and are shown as black lines. As mentioned before, multiple solutions for a given
αm−1 are possible. The correct solution is represented by green curves, while the other
solution, termed as the forbidden solution is shown in red (a). Initially, the cobweb jumps
vertically from φ0 = 0 (for t1 = 0 and γ = 0) to its correct solution φ1 that lie on the
first return map (green curve). Since φ1 is the initial condition to the next iteration (φ2),
the cobweb jumps horizontally to the φm = φm−1 line shown using black dashed line. The
flow of the cobwebs now follow alternate vertical and horizontal jumps from the first return
map to the dashed line, respectively; the arrows indicate the direction of flow.

The chosen parameters in figure 12 lie in the 2 : 1 lock-in region. Hence, a modulo
4π operation is chosen in compliance with (4.6). This further helps the illustration of
the lock-in process elegantly. Panel (b) represents the first return map (only the correct
solution is shown in the present and subsequent figures), along with cobwebs of (a), after
the modulo operation. A stable fixed point (shown as a green circle) at φm = φm−1 is
observed.

Using the geometry of return maps, we study the bifurcations across the lock-in
boundary observed in figure 8. First, the dynamics inside the lock-in boundary below
Ap < As is studied. Subsequently, we analyse the bifurcations that occur across Ap = As
and Ap > As regions.
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Figure 11. The effect of initial relative phase γ on the onset of lock-in. Phase difference �ψm obtained for
various forcing amplitude at excitation frequency fs = 2fp with (a) γ = 0 and (b) γ = π/2. Lock-in is identified
when �ψm is constant.
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Figure 12. First return map and cobweb diagrams to illustrate the flow of φm. The primary and secondary
excitation components are fp = 0.9, Ap = 0.1, fs = 2fp and As = 0.15. Map between φm − φm−1 obtained using
(4.8) and (4.4) is shown in (a). Correct and forbidden solutions are represented by green and red curves,
respectively. Since the chosen parameters lie in the 2 : 1 lock-in region, a modulo 4π operation is chosen in
compliance with (4.6) to observe the fixed point. (b) The map φm − φm−1 spans from 0–4π. Only the correct
solution is shown. Arrows indicate the direction of cobwebs.

5.1. Bifurcations in the Ap–fp plane
In previous work (Britto & Mariappan 2019a), for a single-frequency excitation case, we
observed the birth of stable and unstable fixed points in the return maps at the onset of
lock-in. This occurred through a saddle-node bifurcation. An analytical stability analysis
was performed to confirm the same. In this study, we follow a similar procedure and
analyse our return maps. Since a functional relation between φm and φm−1 (or φm and
φm−2) is not available, we rely entirely on the geometry of return maps and cobweb
diagrams to study bifurcations. In the present study, we observed two orders of lock-in
in three regions of the Ap–fp plane (refer to figure 7). Therefore, we explore the nature
of bifurcations across these regions: Ap < As, Ap = As and Ap > As. First, we study the
geometry of return maps in the Ap < As region where the secondary excitation is dominant
over the primary (discussed in figure 7). Further, the bifurcation associated when both
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Analytical investigation of lock-in

primary and secondary excitation amplitudes are equal across Ap = As. In the end, the
bifurcation beyond the Ap > As region is studied.

5.1.1. Phase dynamics in the Ap < As region
Figure 13(a) shows the lock-in region in focus. Using criteria (4.6), we find the occurrence
of 2 : 1 lock-in for Ap < As. To illustrate the occurrence of bifurcations, we choose Ap =
0.01 < As = 0.05 with fs = 2fp (superharmonic excitation). As we increase the primary
excitation frequency, from fp = 0.935–1.07 (refer to (b–h)), the first return map exhibits
a series of saddle-node bifurcations (SN1 − SN4) (see supplementary movie 1, available
at https://doi.org/10.1017/jfm.2021.624). Using (4.6), we have set modulo 4π on φm to
observe fixed points on return maps during 2 : 1 lock-in. Initially, in (b), fp = 0.935 lies
outside the lock-in region and, hence, there are no fixed points in the first return map. The
flow of cobwebs occupy a dense region in the map representing quasi-periodic behaviour.
The parameter fp now enters the 2 : 1 phase lock-in region illustrated in (c). The return
map, in turn, intersects with φm = φm−1 at two locations (solid and hollow green circles),
marking the formation of two new fixed points through saddle-node bifurcation (SN1).
At one of the fixed points (hollow circle), the return map has a slope greater than one,
identifying it as linearly unstable. Therefore, the cobwebs flow towards the stable fixed
point (solid circle), where the slope is less than one (solid green circle). The dynamics
governed by the geometry of the first return map alters once fp enters the blue shaded
region shown in (a). Although fp lies inside the 2 : 1 phase lock-in region, a new pair of
fixed points (solid and hollow orange circles) are formed through a second saddle-node
bifurcation (SN2), in addition to the existing set (d). This causes the cobweb to choose
between the two stable fixed points (between solid green and orange circles). The flow
of cobwebs now depends on the initial φ0, which defines a bistable region that exists
throughout the blue shaded region shown in (a). When the cobweb switches from one
fixed point to another, it changes the vortex shedding phase instances as illustrated in (i),
through threshold curve Γsep(t). Although Γm remains almost same, both φms and, hence,
tms change with the initial condition (φ0). This behaviour is critical from the perspective
of combustion instability. The phase of heat release in comparison to the acoustic pressure
fluctuation in the combustion chamber largely alters the Rayleigh criterion (Lieuwen
2012), which governs the growth/decay of pressure oscillations. If the conditions are right,
one of the fixed points can have an appropriate φm for the occurrence of instability. So the
bistable region has the potential to exhibit pulsed combustion instability (Culick, Burnley
& Swenson 1995).

Now, as the primary excitation frequency crosses fp = 1, the shape of the first return
map begins to exhibit another transformation (see (e–h)). The curve of the first return
map near the first fixed point (green circle) begins to detach from the φm = φm−1 line.
This causes another saddle-node bifurcation (SN3), and the first fixed point disappears (g),
marking the end of bistability. Hence, the cobweb flows towards the second fixed point
(orange circle). Finally, when fp is increased beyond the lock-in boundary, the second
fixed point disappears through the final saddle-node bifurcation (SN4) and causes the
cobweb to occupy a dense region in the map (h). It should be noted that bistability is
only observed during superharmonic secondary excitation when Ap < As. In subharmonic
secondary excitation, we observe only SN1 and SN4 bifurcations.

The origin of the bistability region is comprehended using the return maps. In
figure 14(a–d) represent return maps for super- ( fs = 2fp) and subharmonic ( fs = fp/2)
secondary excitations, respectively. According to (4.6), modulo 4π and 2π operations must
be performed on the corresponding return maps. However, we use modulo 2π operation
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Figure 13. Illustration of bifurcations occurring in region Ap < As. (a) The bistability region is shown using
blue shade. It lies within the 2 : 1 lock-in boundary. (b–h) Return maps and cobweb diagrams for superharmonic
secondary excitation fs = 2fp. With the primary excitation amplitude set to Ap = 0.01, fp is swept across
the lock-in boundary (the chosen fps are marked using red cross symbols in (a)). Appearances of stable
and unstable fixed points are marked using solid and hollow circles, respectively. Saddle-node bifurcations
marked SN1 − SN4 are shown in (c–g). Vortex shedding time instances for two initial conditions φ0 = 0, 0.5
corresponding to (d) are shown using green and orange circles in (i). Refer to supplementary movie 1 showing
the continuous variation of the return map with fp, along with the occurrence of saddle-node bifurcations.

throughout (a–d) to illustrate better the origin of bistability. Consequently, the curves that
span from 0–2π and 2π–4π are shown in blue and red colours, respectively. We begin
with Ap = 0, which corresponds to the single-frequency excitation. In this scenario, we
observe that the return map (a,c) that spans between φm = 2π–4π (red curve) overlaps
with the curve that lies within 0–2π (blue curve). Hence, the two sets (both stable and
unstable) of fixed points formed between φm = 0–4π are the same (solid and hollow
red circles). This observation is common for both sub- and superharmonic secondary
excitations.

Bistability occurs when a non-zero primary excitation is introduced into the flow field
(Ap = 0.02, refer to (b,d)). In the superharmonic excitation, the 2π periodicity is broken as
the first return map begins to exhibit 4π periodicity (blue and red curves do not overlap).
This behaviour is in line with the lock-in criterion given in (4.6). In (b), it can be observed
that the return map and fixed points (blue and red circles) exhibit a slight difference
between them. Therefore, it creates a bistable region during superharmonic secondary
excitation. The absence of this behaviour during subharmonic secondary excitation (refer
to (d)) is discussed below.

Panels (e–h) represents the time evolution of threshold circulation strength Γsep (blue
curve) for super- (e,g) and subharmonic ( f,h) secondary excitations, respectively. In both
cases, the primary excitation is increased from Ap = 0.01 to 0.045. In the considered
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Figure 14. Origin of bistability owing to the inclusion of primary excitation. Panels (a–d) represent the
return maps for super- and subharmonic secondary excitations, respectively. In both the cases, the primary
excitation frequency is set at fp = 1.01 and Ap is increased from 0 to 0.02. Panels (e,g) and ( f,h) represent the
threshold circulation strength Γsep for super- ( fs = 2fp) and subharmonic ( fs = fp/2) secondary excitations,
respectively. Panels in the rows (e, f ) and (g,h) correspond to primary excitation amplitudes Ap = 0.01 and
0.045, respectively. The evolution of Γsep is shown as a blue solid curve, while black and red dashed curves
correspond to the contributions from primary and secondary excitations, respectively.

parametric regime (Ap < As), secondary excitation is dominant, which dictates the
vortex shedding. The presence of the primary excitation modulates Γsep. This can be
observed by the evolution of the contributions of primary (black dashed curve) and
secondary (red dashed curve) excitations to Γsep, shown in (e–h). In our current model, we
observe that the period of oscillation of φm (also in Γsep) corresponds to that of the lowest
frequency of excitation (also reported in Kashinath et al. 2018). In the superharmonic case
( fs = 2fp), the lowest frequency corresponds to the primary component Ap (black dashed
curve). Hence, the non-zero primary excitation creates a change in the periodicity of the
return map, leading to two stable solutions (bistability). Whereas, in the subharmonic
case, the lowest frequency is caused by the dominant secondary excitation (red dashed
curve). Hence, the introduction of the primary (having a larger frequency) does not break
the 2π periodicity in the corresponding return maps (c,d). Therefore, the presence of
two-frequency excitation causes bistability only in the superharmonic case.

5.1.2. Phase dynamics across Ap = As
In this section, we discuss the dynamics of φm across the Ap = As line that separates the
relative dominance of the two excitation signals. As discussed in § 4.3, there are two orders
of lock-in regions within the lock-in boundary in the Ap–fp plane (discussed in figure 7).
This indicates a jump in the order of lock-in across Ap = As. Using the analytical criterion
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Figure 15. Return maps and cobweb diagrams for (a,b) superharmonic fs = 2fp and (c,d) subharmonic
secondary excitation. With the primary excitation frequency set to fp = 1.05, Ap is swept across As = 0.05. The
transformation in the periodicity of the first return map and the flow of cobwebs are illustrated in supplementary
movie 2.

given in (4.6), for a superharmonic (or subharmonic) excitation fs = 2fp ( fs = fp/2),
the iterations of φm exhibit a phase difference of 4π (2π) and 2π (4π) in 2 : 1 (1 : 2) and 1:1
(1:1) lock-in regions. Hence, we use the appropriate modulo operation on their return maps
to study the behaviour of fixed points and the flow of cobwebs. In figure 15, we have set
As = 0.05 and varied Ap in the range 0.048–0.051. In the superharmonic excitation (a,b),
the first return map spans from 0–4π and 0–2π when Ap < As and Ap > As, respectively
(refer to (4.6)). First, during 2 : 1 lock-in, a stable fixed point (slope less than one) exists at
φm−1 = 10.15 (green solid circle in figure 15a). When Ap is increased gradually, the shape
of the first return map changes slightly (not shown). As Ap crosses As, the geometry of
the first return map changes drastically and becomes 2π periodic as shown in (b). A new
pair of fixed points are formed at φm−1 = 1.14π (solid green circle) and 1.85π (hollow
green circle) (refer to figure 15b). It should be noted that previously, there was no fixed
point below φm−1 = 2π (illustrated using vertical dashed line in (a)). This indicates that
the map undergoes a saddle-node bifurcation when Ap is increased across the Ap = As
line. The aforementioned can be observed in supplementary movie 2, where the return
maps between φm−1 − φm (superharmonic, left panel) and φm−2 − φm (subharmonic, right
panel) are animated in blue. Note that both the axes are between 0–4π. To highlight the
occurrence of 2π periodicity, the map between 2π–4π is re-plotted between 0–2π in red.
From the movie, one can observe at Ap = As, the first return map (left panel) changes its
periodicity from 4π to 2π (shown by the overlap between blue and red curves in 0–4π).
A contrasting behaviour is observed during subharmonic secondary excitation shown in
figure 15(c,d). Since qf = 2, we now study the second return map and its corresponding
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Figure 16. Occurrence of saddle-node bifurcation through the appearance of a stable and unstable fixed point
in the Ap > As region. Panel (a) shows the lock-in boundary for fs = 2fp and As = 0.05. The chosen parameters
in (b,c) are represented using green and pink cross symbols. First return maps for (b) fp = 0.88 and (c) fp = 0.92
with cobweb diagrams show the presence of saddle-node bifurcation.

cobweb diagram in φm–φm−2 plane. When Ap < As (c), the return map lies within 0–2π
with a fold near φm−2 = π/2–3π/2 (between red vertical dashed lines in (c)). There are
two stable fixed points (orange and green solid circles) that lie within 0–2π. When Ap
is increased above 0.05, the return map unfolds and stretches between 0–4π (d). One of
the stable fixed points (solid green circle), along with its unstable counterpart, disappears
and a new pair of fixed points is formed at φm−2 = 11.14 and 11.61 (hollow and solid
pink circles). Therefore, a saddle-node bifurcation is observed when the primary excitation
amplitude is increased across the Ap = As line (refer to the right panel of supplementary
movie 2). In the next section, we study the bifurcation observed beyond Ap = As.

5.1.3. Bifurcations in the Ap > As region
We set the excitation amplitudes at Ap = 0.07 and As = 0.05. For the superharmonic
secondary excitation, the iterations φm are 2π periodic (refer to (4.6)). First, we start
from fp = 0.88 and increase fp across the lock-in boundary. figure 16(a) shows the two
frequencies considered across the 1:1 lock-in boundary (green and pink cross symbols).
Initially, at fp = 0.88, cobwebs densely fill a region (as observed in § 5.1.1) of the return
map indicating quasi-periodic nature of vortex shedding (b). Subsequently, when fp is
increased to fp = 0.92 (c), the map intersects φm−1 = φm (dashed line) at two locations,
indicated as solid and hollow green circles. They represent the stable and unstable fixed
points of the map. The cobwebs converge to the solid green circle. In (b), there are no fixed
points, while in (c) two fixed points (stable and unstable) occur. Therefore, 1:1 lock-in
occurs through a saddle-node bifurcation.

A similar behaviour is observed during subharmonic secondary excitation fs = fp/2
(not shown). Since qf = 2, the iterations are of period-2 and second return maps in the
φm–φm−2 plane are used to identify saddle-node bifurcation.

Throughout, we have dealt with two-frequency excitation using the phase of the
excitation signal. Using the geometric interpretation of phase φm, we observed various
dynamics of return map and cobweb diagrams across the phase lock-in boundary. We
observed plateaus at (i) Ap = 0 during superharmonic secondary excitation (the extent
of the plateau is comparably small during subharmonic secondary excitation) and (ii)
Ap = As during both super- and subharmonic secondary excitation (refer to figure 8). In
the next section, we obtain analytical relations for lock-in boundaries.
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6. Analytical relations for the boundary of lock-in

In this section, we use the discrete difference equation (4.8) and obtain analytical
relations for the boundary of lock-in. Furthermore, we present analytical solutions for the
frequencies associated with the ends of upper and lower plateaus observed in figures 7(c)
and 8. Owing to the form of the sinusoidal terms present in (4.8), it is found that analytical
relations are limited only to superharmonic secondary excitation ( fs = pf fp). When a
superharmonic component ( fs = pf fp) is included along with the primary excitation signal,
we observe a period-1 response (shown in the cobweb diagrams of figures 13, 15 and
16). This implies that the phase points φm and, hence, αm make 2πp and 2π rotations,
respectively, in each iteration. Therefore, we revisit (4.8) and substitute αm = αm−1 + 2π

as the criterion for lock-in. Equation (4.8) reduces to the following form for fs = pf fp:

A2
p + A2

s − 2fp
[
Ap sin(αm−1)+ As sin( pfαm−1)

] + 2
(
1 − fp

) = 0. (6.1)

For a given Ap, As and αm−1, the sinusoidal terms in (6.1) govern the positive values of fp.
Therefore, collecting all the harmonic terms together, we obtain the following:

Ap
2 + As

2 + 2
(
1 − fp

)
2fp

= Ap sin(αm−1)+ As sin( pfαm−1). (6.2)

Note that the right-hand side of (6.2) is a function of αm−1 and bounded between
±M, where M is the maximum value of |Ap sin(αm−1)+ As sin( pfαm−1)|, maximised
over αm−1. From our previous investigation for single-frequency excitation (Britto &
Mariappan 2019a), we found that the boundary of lock-in occurs at the extreme values:
±M. We now assume that the same is valid for the present case (two-frequency excitation).
This assumption is found to be fairly accurate, as shown in figure 17. An analytical
expression to determine the frequency range fp,b − fp,e (refer to 6.3), inside which lock-in
occurs (subscript b and e indicate beginning and end) is found as follows:

fp,b = A2
p + A2

s + 2

2(1 + M)
, fp < 1

fp,e = A2
p + A2

s + 2

2(1 − M)
, fp > 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6.3)

where M depends on pf , Ap and As. Figure 17 shows comparison between analytical (red
curve obtained using (6.3)) and numerical (black dashed curve, evaluated through the
procedure mentioned in § 4.3) solutions of the lock-in boundary for fs = 2fp,As = 0.05
(panel a) and As = 0.15 (panel b). A good comparison is observed at lower amplitudes
(a), while it deteriorates as we move higher, as shown in (b) (reason discussed later).
Subsequently, at the upper (Ap = As) and lower (Ap = 0) plateaus in the lock-in boundary,
the expression for lock-in frequency range is obtained as below:

fp,Ub = Ap
2 + 1

(1 + M)
, fp < 1

fp,Ue = Ap
2 + 1

(1 − M)
, fp > 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6.4)
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Figure 17. Comparison between lock-in boundaries obtained analytically and numerically for fs = 2fp,
(a) As = 0.05 and (b) As = 0.15. Pink and black circles mark the (analytical) ends of the upper and lower
plateaus given by (6.4) and (6.5), respectively.

fp,Lb = As
2 + 2

2(1 + As)
, fp < 1

fp,Le = As
2 + 2

2(1 − As)
, fp > 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6.5)

where the subscripts U and L are short notations for upper and lower plateaus, respectively,
and the subscripts b and e denote the beginning and the endpoint of the plateaus,
respectively.

Figure 18 shows a comparison of the frequencies ( fp,Ub , fp,Ue , fp,Lb , fp,Le , represented as
pink and black circles) at the ends of the plateaus obtained through (6.4)–(6.5) with the
numerical lock-in boundary for secondary excitation amplitudes, As = 0.05, 0.1, 0.15 and
0.2 at fs = 2fp (a–d) and fs = 3fp (e–h). The solid and dashed curves represent p : 1 and
1:1 lock-in boundaries, respectively. The analytical expression for the frequency range of
the upper plateau (6.4) depends on pf (through M), whereas for the lower plateau (6.5),
it is independent of pf . This is observed through figure 18, where the range of the lower
plateau is the same for pf = 2, 3 at a given As. As mentioned before, the comparison
between the numerical and analytical lock-in boundaries at the plateaus deteriorates for
higher amplitudes. This deterioration is studied using the first return map of αm and its
cobweb diagrams for the upper plateau (similar behaviour is observed in lower plateau) in
figure 19.

Primary and secondary excitations are fixed at Ap = As = 0.2 with fs = 2fp. The
primary excitation frequency fp is increased from fp,Ub to the actual (numerical) end of
the plateau (for fp < 1). The chosen parameters lie along the upper plateau in figure 18(d).
As discussed in § 5, αm solved from (4.8) contains harmonic terms, leading to multiple
solutions: correct (green) and forbidden (red) solutions shown in figure 19); the αm closest
to the previous iteration αm−1 is the correct solution. At fp,Ub , although the first return map
exhibits a stable fixed point (orange circle), the cobwebs are not attracted to it (figure 19a).
This is owing to the rightward protrusion of the upper branch of the map (shown in (a))
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Figure 18. Comparison of frequencies ( fp,Ub , fp,Ue , fp,Lb , fp,Le , represented as pink and black circles) at the
ends of the plateaus obtained through (6.4)–(6.5) with the numerical lock-in boundary for secondary excitation
amplitudes, As = 0.05, 0.1, 0.15 and 0.2 at fs = 2fp (a–d) and fs = 3fp (e–h). Solid and dashed curve represent
p : 1 and 1:1 lock-in boundaries, respectively.
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Figure 19. First return map and cobweb diagrams to illustrate the discrepancy between analytically (6.4) and
numerically obtained lock-in boundaries. Panels (a–c) show the flow of cobwebs on the first return map of
αm − αm−1 for fs = 2fp and Ap = As = 0.2. Rightward protrusion of the upper branch over the stable fixed
point (orange circle) is observed in (a). Although the cobwebs approach the stable fixed point (in the forbidden
region of the solution), it is thrown away from it by the protrusion. The location of the stable fixed point is
highlighted using an orange vertical dashed line for reference. The protrusion keeps retracting towards the
stable fixed point (a,b). In (c), the upper branch of the map falls to the left of the stable fixed point, and the
cobwebs flow towards the stable fixed point. Black arrows indicate the flow of cobwebs, while pink arrows
represent the movement of the protrusion.

over the fixed point (observe the orange dashed line for reference). This protrusion also
forces the fixed point to lie in the forbidden solution. The protrusion persists on further
increase in fp; however, the upper branch keeps retracting (leftward) towards the fixed
point (b). Finally, the cobwebs flow towards the stable fixed point as the upper branch
falls behind the fixed point (c). This parameter location fp = 0.863 corresponds to the
beginning of the upper plateau obtained numerically (solid pink curve in figure 18d).
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The analytical expression for the frequency at the beginning of the plateau (given by fp,Ub
and fp,Lb) marks only the birth of the stable fixed point (figure 19a). However, the cobwebs
never reach this fixed point as they are hindered by the protrusion of the upper branch
of the map over the fixed point. This causes the discrepancy in the comparison between
the analytically and numerically obtained lock-in boundaries. The effect of this protrusion
is more prominent at large excitation amplitudes. The same behaviour is observed for
fs = 3fp, although the discrepancy begins to become dominant at still higher amplitudes
(compared with fs = 2fp). It should be noted that in single-frequency excitation, the
previously discussed nature of the first return map is encountered, which causes a transition
out of lock-in (refer to § 4 of Britto & Mariappan 2019a) at large excitation amplitudes.

7. Conclusion

In this paper, the dynamics of vortex shedding under two-frequency (primary and
secondary) excitation is studied using geometrical, numerical and analytical techniques.
The low-order model given by Matveev & Culick (2003) is converted to a map equation
that governs successive time instances of vortex shedding behind the bluff body/step.
The map equation is implicit and nonlinear. It has two sets of input parameters,
associated with primary and secondary excitation quantities: Ap, fp and As, fs, respectively,
where A and f indicate excitation amplitude and frequency, respectively, and the
subscripts p and s represent primary and secondary excitation, respectively. We consider
secondary excitations having fs = pf fp/qf , (pf , qf = 1, 2, 3, . . .), which comprise super-
and subharmonic frequencies observed during combustion instability. For a given input,
the iterations of instantaneous vortex shedding time periods are monitored as the output.
Lock-in is defined as phase synchronisation between these iterations and the excitation
velocity. Through numerical simulations, we observed that the addition of secondary
excitation leads to the occurrence of multiple orders of lock-in existing within the
lock-in boundary. This is the striking difference between single- and multiple-frequency
excitations.

We begin the analytical investigation of phase synchronisation by obtaining the
instantaneous phase of the input velocity excitation through the Hilbert transform (ψE,m).
At successive vortex shedding instants (output), their phase (ψR,m) is increased by 2π.
A p : qth order lock-in is identified, when the phase difference between the output and
input, �ψm = qψE,m − pψR,m is qf -periodic. Contours of �ψm −�ψm−qf revealed two
orders of lock-in region (1:1 and p : 1 or 1 : q in this paper). This transition between the
orders occurs when both the excitation amplitudes are equal, identified as an upper plateau
formed at Ap = As in the lock-in boundary. This plateau also forms the lower bound of
the 1:1 lock-in region. In addition, another (lower) plateau at Ap = 0 exists during both
super- and subharmonic excitations. However, its extent during subharmonic excitation is
comparatively small.

As an analytical interpretation, we observe that the dynamics of instantaneous vortex
shedding periods can be represented by the movement of phase points on a secondary
circle, whose centre also moves along a primary circle. The angle φm subtended by the
phase point with the centre of the primary circle is used to indicate the map dynamics.
Return maps, φm − φm−qf and their cobweb diagrams are used to identify bifurcations
occurring across and within lock-in boundary. We identify two lock-in regions: (i) Ap < As
and (ii) Ap > As. In the former, p : 1 or 1 : q lock-in is observed for super- and subharmonic
excitations, respectively. Furthermore, in the superharmonic case, a region of bistability
exists, and the two stable solutions have different vortex shedding phase instances (with
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respect to velocity excitation). The latter region (Ap > As) contains only 1:1 lock-in.
The geometry of the return map shows that all the transitions: (a) from no lock-in to
lock-in, (b) p : 1 or 1 : q to 1:1 lock-in and (c) bistable region inside Ap < As occur through
saddle-node bifurcations. In the end, we obtained analytical relations that give the shape
of the lock-in boundary during superharmonic excitation. These relations exhibit a fair
comparison with the actual shape of the lock-in boundary, capturing the occurrence of
plateaus. Furthermore, various identified new features such as a change in the order of
lock-in and the existence of a bistable region within a lock-in boundary can be explored
with experiments, which might perhaps lead to new methods of instability mitigation in
vortex shedding combustors.

Supplementary data. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.624.
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Appendix A

An explicit expression for F, which is used in (4.8) is given as follows:

F =
[
sin (2αm−1)− sin (2αm)− 2 (αm−1 − αm)

]
Ap

2

16πfp

+
[
cos (αm−1)− cos (αm)− πfp sin(αm)

]
Ap

2πfp

+
[
sin

(
γ + pfαm−1/qf

)
cos (αm−1)− sin

(
γ + pfαm/qf

)
cos (αm)

]
fpApAs

2π
(
fp2 − fs2)

−
[
cos

(
γ + pfαm−1/qf

)
sin (αm−1)− cos

(
γ + pfαm/qf

)
sin (αm)

]
fsApAs

2π
(
fp2 − fs2)

+
[
sin

(
2γ + 2pfαm−1/qf

) − sin
(
2γ + 2pfαm/qf

) − 2
(
pfαm−1/qf − pfαm/qf

)]
As

2

16πfs

+
[
cos

(
γ + pfαm−1/qf

) − cos
(
γ + pfαm/qf

) − πfs sin
(
γ + pfαm/qf

)]
As

2πfs

−
(
αm−1 − αm + 2πfp

)
4πfp

. (A1)
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