TLP 8 (2): 201-215,2008. () 2007 Cambridge University Press 201
doi:10.1017/S1471068407003134  First published online 23 May 2007  Printed in the United Kingdom

TECHNICAL NOTE
Improving Prolog programs: Refactoring
for Prolog

ALEXANDER SEREBRENIK

Laboratory of Quality of Software (LaQuSo), T.U. Eindhoven, HG 5.91,
Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
(e-mail: A.Serebreniketue.nl)

TOM SCHRIJVERS!

Department of Computer Science, K.U. Leuven, Celestijnenlaan 200A, B-3001, Heverlee, Belgium
(e-mail: Tom.Schrijversaecs.kuleuven.be)

BART DEMOEN

Department of Computer Science, K.U. Leuven, Celestijnenlaan 200A, B-3001, Heverlee, Belgium
(e-mail: Bart .Demoen@cs .kuleuven.be)

submitted 24 December 2004, revised 28 August 2005, 20 September 2006, accepted 12 February 2007

Abstract

Refactoring is an established technique from the object-oriented (OO) programming community
to restructure code: it aims at improving software readability, maintainability, and extensibility.
Although refactoring is not tied to the OO-paradigm in particular, its ideas have not been applied
to logic programming until now. This paper applies the ideas of refactoring to Prolog programs. A
catalogue is presented listing refactorings classified according to scope. Some of the refactorings
have been adapted from the OO-paradigm, while others have been specifically designed for Prolog.
The discrepancy between intended and operational semantics in Prolog is also addressed by some
of the refactorings. In addition, ViPReSS, a semi-automatic refactoring browser, is discussed and the
experience with applying ViPReSS to a large Prolog legacy system is reported. The main conclusion
is that refactoring is both a viable technique in Prolog and a rather desirable one.

KEYWORDS: refactoring, software engineering, program transformation, programming environments,
tools

1 Introduction

Maintaining and adapting software take up a substantial part of the entire programming
effort, in terms of both time and money. Both Erlikh (2000) and Moad (1990) report on the
proportion of maintenance costs exceeding 90% of the budget. About 75% of these costs
are spent on providing enhancements (in the form of adaptive or perfective maintenance)
(Nosek and Palvia 1990; van Vliet 2000).

IResearch Assistant of the Fund for Scientific Research-Flanders (Belgium) (F.W.0O.-Vlaanderen).

https://doi.org/10.1017/5S1471068407003134 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068407003134

202 A. Serebrenik et al.

Before providing enhancements, it is recommended to improve the design of the soft-
ware in a preliminary step. This methodology, called refactoring, emerged from a number
of pioneer results in the OO-community (Opdyke 1992; Fowler et al. 1999; Roberts et al.
1997) and recently came to prominence for functional (Li et al. 2003) and procedural
(Garrido and Johnson 2003) languages.

Refactoring is a disciplined technique for restructuring an existing body of code, al-
tering its internal structure without changing its external behavior. Its heart is a series of
small source-to-source program transformations, called refactorings, that change program
structure and organization, but not program functionality. The major aim of refactoring is
to improve readability, maintainability, and extensibility of the existing software.

While performance improvement is not considered as a crucial issue for refactoring,
it can be noted that well-structured software is more amenable to performance tuning.
We also observe that certain techniques that were developed in the context of program
optimization, such as dead-code elimination and redundant argument filtering, can improve
program organization and, hence, can be used as refactoring techniques.

In this paper we study refactoring techniques for Prolog. Our goals are threefold. First,
we want to show that refactoring is a viable technique for Prolog and many of the existing
techniques developed for refactoring, in general, are applicable. Second, Prolog-specific
refactorings are possible and the application of some general techniques may be highly
specialized toward Prolog. Finally, it should be clear that refactoring is not only viable for
Prolog but also very useful for the maintenance of Prolog programs.

To achieve our goals, we present a catalogue of refactoring techniques for Prolog. The
listed refactorings are a mix of general and Prolog-specific ones. Most of the refactorings
proposed have been implemented in a prototype refactoring browser ViPReSS. ViPReSS
has been successfully applied for refactoring a 50,000 lines-long legacy system.

As completeness of the catalogue is clearly not possible, we aimed to show a wide range
of possibilities for future work on combining the formal techniques of program analysis
and transformation with software engineering. The formal elaboration of a particular topic
may be a substantial study on its own, as shows the work on detecting duplicate code by
Vanhoof (2004) that was inspired by a preliminary version of our work.

Outline of the Paper. First, Section 2 provides a brief overview of the refactoring process.
Next, the use of several refactoring techniques is illustrated on a small example in Sec-
tion 3. Then a catalogue of Prolog refactorings is given in Section 4. In Section 5, we
introduce ViPReSS, and discuss its application in a case study. Finally, in Section 6 we
conclude.

2 The refactoring process

The refactoring process consists of applying a number of refactorings, with both localized
and global impact, to a software system. The individual significance of a refactoring may
be apparent, but often a refactoring seems trivial on its own and only in conjunction with
other refactorings or intended changes does the usefulness become clear. That is the reason
why it is not feasible to fully automate refactorings. They must be carefully considered in
view of the programmer’s intentions.

https://doi.org/10.1017/5S1471068407003134 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068407003134

Improving Prolog programs 203

For this reason the process of applying a single refactoring is to be split into a number of
distinct activities (Mens and Tourwé 2004). These activities involve decisions to be made
by the programmer.

The first decision is where the software should be refactored. Making this decision
automatically can be a difficult task on its own. Several ways to resolve this may be
considered. For instance, one can aim at identifying so-called bad smells, i.e., “structures
of the code that suggest (sometimes scream for) the possibility of refactoring” (Fowler
et al. 1999). To this end, program analysis can be used. For example, it is common practice
while ordering predicate arguments to start with the input arguments and end with the
output arguments. Mode information can be used to detect when this rule is violated.

Next, one should determine which refactorings should be applied. Sometimes, the cor-
respondence between bad smells and refactorings is clear. For instance, if the predicate
arguments are not ordered according to the “input first output last” rule, one can suggest
to the user to reorder the arguments. This refactoring is further discussed in Section 4.3. In
more complex situations the relation becomes less obvious: a number of different refact-
orings are applicable and the user has to choose between them. For example, let module A
contain a predicate that is mutually recursive with predicate p from module B, and module
C contain a predicate that is mutually recursive with predicate g from module B. This
situation can be identified as problematic since no clear hierarchy can be defined between
these modules. One possible solution would be to merge the three modules (Section 4.2).
Alternatively, one may try to first split B into B1, containing p, and B2 containing g such that
there are no circular dependencies between B1 and B2 (Section 4.2). If this split is possible,
A could be merged with B1, and C with B2 (Section 4.2). Automatic refactoring tools, so-
called refactoring browsers, can be expected to make suggestions on where refactoring
transformations should be applied. These suggestions can then be either confirmed or
rejected by the programmer.

By definition, refactorings should preserve the software’s functionality. Hence, the next
step consists of ensuring that the behavior is indeed preserved. This step, of course, de-
pends on the definition of behavior. In the case of logic programming, behavior comprises
computed answers semantics, termination, and side effects such as input—output. It should
be observed that particular application domains might require extending the notion of
behavior to include such concepts as efficiency or memory use. Moreover, in order for
some refactorings to be applicable, certain preconditions should hold like absence of user-
defined meta-predicates for dead-code elimination discussed in Section 4.1. Sometimes
verification of the preconditions cannot be done automatically, but must be delegated to
the user.

Subsequently, the chosen transformation is applied. This step might also require user
input. Consider, for example, a refactoring that renames a predicate: while automatic tools
can hardly be expected to guess the new predicate name, they should be able to detect
all program points affected by the change. This refactoring is further studied in Sec-
tion 4.3.

Finally, the consistency between the refactored program code and other related arti-
facts should be maintained. By artifacts we understand among others software document-
ation, specifications, and test descriptions. The ability to perform this task automatically
strongly depends on the formalisms used to express the corresponding artifacts. For

https://doi.org/10.1017/5S1471068407003134 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068407003134

204 A. Serebrenik et al.

instance, documentation generators such as Ipdoc (Hermenegildo 2000) make it possible to
keep the documentation consistent automatically, whereas ad hoc unstructured comments
are much harder to update automatically. Ensuring consistency is considered as future
work.

3 Detailed Prolog refactoring example

We illustrate some of the techniques proposed by a detailed refactoring example. Con-
sider the following code fragment from O’Keefe’s “The Craft of Prolog” (1994, p. 195).
It describes three operations on a reader data structure used to sequentially read terms
from a file. The three operations are make_reader/3, which initializes the data structure,
reader_done/1, which checks whether no more terms can be read, and reader_next/3,
which gets the next term and advances the reader.

Listing 3.1 - O'Keefe’s original version
make reader (File,Stream,State) :-

open (File, read, Stream),

read (Stream, Term) ,

reader code (Term, Stream, State) .

reader code(end of file, ,end of file) :- !
reader code(Term,Stream,read(Term, Stream, Position)) :-
stream position(Stream,Position).

reader done(end of file).

reader next (Term,read(Term,Stream, Pos), State)) :-
stream position(Stream, ,Pos),
read (Stream, Next),
reader code (Next, Stream, State) .

We will now apply several refactorings to the above program in order to improve its
readability.

First, we use if-then-else introduction (Section 4.4) to get rid of the red cut in the
reader_code/3 predicate (modified code is underlined). Recall that a red cut is a cut that
alters the meaning (O’Keefe 1994).

Listing 3.2 - Replace cut by if-then-else
reader code(Term,Stream,State) :-
( Term = end of file,
State = end of file -»>
true

State = read(Term,Stream,Position),
stream position(Stream,Position)

The result of this automatic transformation reveals two malpractices: the first is produ-
cing output before the commit, something O’Keefe himself disapproves of in (1994). This

https://doi.org/10.1017/5S1471068407003134 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068407003134

Improving Prolog programs 205

malpractice and the ways to resolve it are further investigated in Section 4.4. The problem
is fixed to:

Listing 3.3 - Output after commit
reader_ code(Term,Stream,State) :-
( Term = end_of_file -»
State = end of file

State = read(Term,Stream, Positicn),
stream position(Stream,Position)

The second malpractice is a unification in the condition of the if-then-else where an
equality test is meant. Consider the case that the Term argument is a variable. Then the
binding of Term to the atom end_of_file is certainly unwanted behavior. The transform-
ation in question is discussed in Section 4.4. The following code does not exhibit the
problematic behavior:

Listing 3.4 - Equality test
reader code(Term,Stream, State) :-
[ Term == end of file ->
State = end of_file

State = read(Term,Stream,Position),
stream position(Stream,Position)

Next, we notice that the conjunction read/2, reader_code/3 occurs twice. By
applying predicate extraction (Section 4.4) of this common sequence, we get the
following:

Listing 3.5 - Predicate extraction
make reader (File,Stream,State) :-

open (File, read, Stream),

read next state(Stream,State).

reader next (Term, read(Term, Stream, Pos),State)) :-
stream position(Stream,_,Pos),
read next state(Stream,State).

read next state(Stream,State) :-
read (Stream, Term) ,
reader code (Term,Stream,State) .

Next we put the input argument first and the output arguments last (Section 4.3 below),
a principle also advocated in (O’Keefe 1994):

Listing 3.6 - Argument reordering

reader next (read(Term, Stream, Pos),Term,State) :-
stream position(Stream, ,Pos),
read_next_code (Stream, State) .

https://doi.org/10.1017/5S1471068407003134 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068407003134

206 A. Serebrenik et al.

Finally, note that the naming of the two builtins stream_position/ [2, 3] may be con-
fusing to the user. It is easier to distinguish between their functionality based on predicate
name than based on arity. We introduce the less confusing names get _stream_position/2
and set_stream position/3, respectively. In addition, we provide a more consistent
naming for make_reader, more in line with the other two predicates in the interface. The
importance of consistent naming conventions is also stressed in (O’Keefe 1994).

Note that direct renaming of built-ins such as stream_position is not possible, but a
similar effect can be achieved by extracting the built-in into a new predicate with the de-
sired name. Extracting a predicate and renaming predicates are considered in Sections 4.3
and 4.4, respectively.

To avoid confusion between a built-in predicate read and a functor read, we rename
the latter functor to reader.

Listing 3.7 - Renaming
reader init(File,Stream,State) :-

open(File,read, Stream),
reader next state(Stream, State).

reader next(reader(Term,Stream, Pos),Term,State)) :-
set stream position(Stream,Pos),
reader_next_state({Stream,State).

reader done(end of file).

reader next_ state(Stream,State) :-
read (Stream, Term) ,
build_reader_state(Term,Stream,State) .

build reader state(Term,Stream,State) :-
( Term == end_of_file ->
State = end of file

State = reader(Term,Stream,Position),
get stream position(Stream,Position)

set stream position(Stream, Position) :-
stream position(Stream, ,Position).

get stream position(Stream, Position) :-
stream_position(Stream,Position).

This example demonstrates how the code readability can be ameliorated by performing
a series of relatively simple transformation steps. We have seen that some of these steps
required user’s input. Clearly the changes can be performed manually. However, refactor-
ing browsers should be able to guarantee consistency and correctness and furthermore can
automatically single out opportunities for refactoring.

Techniques applied above are well-suited for local code improvement; i.e., the objects
modified are predicates and clauses. In the next section we also consider techniques for
global code restructuring such as duplicate predicates removal (Section 4.1).

https://doi.org/10.1017/5S1471068407003134 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068407003134

Improving Prolog programs 207

4 A catalogue of Prolog refactorings

In this section we present the refactorings that we have found to be useful for Prolog
programs. The considered Prolog programs are not limited to pure logic programs, but
may contain various built-ins such as those defined in the ISO standard (1995). The only
exception are higher-order constructs that are not dealt with automatically, but manually.
This is done because higher order constructs such as call make it impossible to decide at
the compile-time which predicate is going to be called at the corresponding program point
during execution. Automating the detection and handling of higher-order predicates is an
important part of future work.

The refactorings in this catalogue are grouped by their scope. The scope expresses the
user-selected target of a particular refactoring. Hence, refactoring starts by choosing an
object in the specified scope. For instance, split module (Section 4.2) starts with selecting a
module. Then the object is transformed. For us, this means that the module is split. Finally,
the changes propagate to the affected code outside the selected scope. The latter might
happen when there is a dependency outside the scope. This corresponds to updating import
declarations in other modules of the system.

For Prolog programs we distinguish the following four scopes, based on the code units
of Prolog: system scope (Section 4.1), module scope (Section 4.2), predicate scope (Sec-
tion 4.3), and clause scope (Section 4.4).

As a starting point for this catalogue, we used Fowler’s (2003) for object-oriented lan-
guages. We selected those with clear Prolog counterparts and extended the list with Prolog-
specific transformations and some well-known program transformations, such as dead code
elimination.

In the current technical note we include only a short summary of the refactorings here
and refer to the companion technical report (Schrijvers et al. 2003). This report contains
the full catalogue with detailed description of the refactorings, examples, preconditions,
and automatization techniques.

4.1 System scope refactorings

The system scope encompasses the entire code base. The user wants to consider the system
as a whole.

4.1.1 Eliminate explicit module qualification

In many Prolog systems, such as Quintus (Intelligent Systems Laboratory 2003a), the
module system is nonstrict; i.e. the normal visibility rules can be overridden by a special
construct, called explicit module qualification and written as m: g, where m is a module that
contains definition of the predicate g/0. The refactoring proposed adds import and export
declarations to get rid of these special syntax constructions. By forcing the code to conform
to a strict module system, a number of quality characteristics are improved. First of all, a
strict module system better expresses the idea of information hiding, which is important
for software maintainability and readability (Parnas 1972). Moreover, since not all Prolog
systems support the above construct, code portability is improved.

https://doi.org/10.1017/5S1471068407003134 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068407003134

208 A. Serebrenik et al.

4.1.2 Extract common code into predicates

This refactoring looks for common functionality across the system and extracts it into new
predicates. The common functionality consists of identical subsequences of goals that are
called in different predicate bodies, and extracts them into new predicates. The overall
readability of the program improves as the affected predicate bodies get shorter, and the
calls to the new predicates can be more meaningful than what they replace. Moreover, the
increased sharing simplifies maintenance as now only one copy needs to be modified.

The problem of identifying identical subsequences of goals is related to determining
longest repeated subsequences (Crow and Smith 1992; Pitkow and Pirolli 1999).

4.1.3 Hide predicates

This refactoring removes export declarations for predicates that are not imported in any
other module. It simplifies the program by reducing the number of entry points into mod-
ules and hence the intermodule dependencies.

4.1.4 Remove dead code

Dead code is code that can never be executed and therefore can be safely eliminated without
affecting correctness of the execution. Dead code elimination is sometimes performed in
compilers for efficiency reasons, but it is also useful for developers: dead code clutters the
program. We consider a predicate definition as the unit of dead code.

4.1.5 Remove duplicate predicates

Predicate duplication or cloning is a well-known problem, prominently caused by “copy
& paste” and unawareness of available libraries and exported predicates in other modules.
The main problem with duplication is its bad maintainability. It is up to the user to decide
whether to throw away some of the duplicates and to use one of the remaining definitions
instead or to replace all the duplicate predicates by a new version in a new module.

4.1.6 Rename functor

This refactoring renames a term functor across the system. If the functor has several
different meanings and only one should be renamed, it is up to the user to identify what
occurrence corresponds with what meaning.

4.2 Module scope refactorings

The module scope considers a particular module. Usually a module is implementing a
well-defined functionality and is typically contained in one file.

4.2.1 Merge modules

Merging several modules into one can be advantageous in case of strong interdependency
of the modules involved. Moreover, merging existing modules and splitting the resulting
module can lead to an improved module structure.

https://doi.org/10.1017/5S1471068407003134 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068407003134

Improving Prolog programs 209

4.2.2 Remove dead intramodule code

Similar to dead code removal for an entire system (see Section 4.1), this refactoring works
at the level of a single module. It is useful for incomplete systems or library modules with
an unknown number of uses. Recall that determining the liveness of the code requires
knowledge of top-level predicates. In the case of intramodule dead code elimination, the
set of top-level predicates is extended with, or replaced by, the exported predicates of the
module.

4.2.3 Rename module

This refactoring applies when the name of the module no longer corresponds to the func-
tionality it implements, e.g., due to other refactorings.

4.2.4 Split module

The refactoring is useful to split unrelated parts of a module or make a large module more
manageable.

(Moores 1998) has shown that the number of user-defined predicates correlates with the
number of errors detected. On the basis of an empirical study, he suggested a threshold of
around 35 £ 5 predicates per program. While this is hardly reasonable as a requirement for
an entire Prolog system, trespassing the threshold should be used as a guideline when the
Split Module refactoring can be applied.

4.3 Predicate scope refactorings

The predicate scope targets a single predicate. The code that depends on the predicate may
need updating as well. But this is considered an implication of the refactoring of which
either the user is alerted or the necessary transformations are performed automatically.

4.3.1 Add argument

This refactoring should be applied when a callee needs more information from its (direct or
indirect) caller, which is very common in Prolog program development. Given a variable
in the body of the caller and the name of the callee, the refactoring browser should propag-
ate this variable along all possible computation paths from the caller to the callee. This
refactoring is an important preliminary step preceding additional functionality integration
or efficiency improvement.

4.3.2 Move predicate

This refactoring moves a predicate definition from one module to another. It can improve
the overall structure of the program by bringing together interdependent or related predic-
ates, hence improving both cohesion of each one of the modules involved, and coupling of
the pair. Move predicate appears often after predicate extraction, i.e., extract common code
or extract predicate locally, discussed in Sections 4.1 and 4.4, respectively.

https://doi.org/10.1017/5S1471068407003134 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068407003134

210 A. Serebrenik et al.

4.3.3 Rename predicate

This refactoring can improve readability and should be applied when the name of a predic-
ate does not reveal its purpose.

4.3.4 Reorder arguments

Our experience suggests that while writing predicate definitions Prolog programmers tend
to begin with the input arguments and to end with the output arguments. This habit has been
identified as a good practice and even further refined by O’Keefe (1994) to more elaborate
rules. Unfortunately, this practice is difficult to maintain when additional arguments are
added later. We observed that failure to confirm to this “input first output last” expectation
pattern is experienced as very confusing.

4.3.5 Specialize predicate

By specializing a predicate, we mean producing a (number of) more specific version(s) of
a given predicate provided some knowledge on the intended uses of the predicate. Special-
ization can simplify code as well as make a meaningful distinction between different uses
of a predicate.

4.3.6 Remove redundant arguments

The basic intuition here is that parameters that are no longer used by a predicate should be
dropped. It improves readability.

Leuschel and Sgrensen (1996) established that the redundancy property is undecid-
able and suggested two techniques to find safe and effective approximations: top-down
goal-oriented RAF (Redundant Argument Filtering) and bottom-up goal-independent FAR
(RAF “upside-down”). In the context of refactoring, FAR is the more useful technique,
since only FAR deals correctly with exported predicates used in unknown goals.

4.4 Clause scope refactorings

The clause scope affects a single clause in a predicate. Usually, this does not affect any
code outside the clause directly.

4.4.1 Extract predicate locally

This refactoring is similar to the system-scope refactoring with the same name. However,
it does not aim to automatically discover useful candidates for replacement. The user is
responsible for selecting the subgoal that should be extracted, to improve the readability.

4.4.2 Invert if-then-else

The order of “then” and “else” branches can be important for code readability. To enhance
readability, it might be worthwhile putting the shorter branch as “then” and the longer one
as “else.” Alternatively, the negation of the condition may be more readable because, for
example, a double negation can be eliminated.

https://doi.org/10.1017/5S1471068407003134 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068407003134

Improving Prolog programs 211

4.4.3 Replace cut by if-then-else

This technique aims at improving program readability by replacing cuts (!) by the more
declarative if-then-else (-> ; ). More detailed discussion on replacing cut by if-then-else
is deferred to Related work and extensions.

4.4.4 Replace unification by (in)equality test

Often full unifications are used instead of equality or other tests. O’Keefe (1994) advocates
the importance of steadfast code. Recall that steadfast code produces the right answers for
all possible modes and inputs. A more moderate approach is to write code that works for
the intended mode only. Unification succeeds in several modes and so does not convey
a particular intended mode. Equality (==, =:=) and inequality (\==, =\=) checks usually
succeed only for one particular mode and fail or raise an error for other modes. Hence their
presence makes it easier in the code and at run-time to see the intended mode. Moreover,
if only a comparison was intended, then full unification may lead to unwanted behavior in
unforeseen cases.

4.4.5 Produce output after commit

This refactoring addresses a similar issue as the previous one. Producing output before the
commit (cut) does not properly convey the intended mode of a predicate. Moreover, it may
lead to unexpected results when used in the wrong mode.

5 The ViPReSS refactoring browser

The refactoring techniques presented in Section 4 have been implemented in the prototype
refactoring browser ViPReSS.? It has been implemented on the basis of VIM, a popular
clone of the well-known VI editor. The text editing facilities of VIM make it easy to
implement techniques like move predicate (Section 4.3).

Most of the refactoring tasks have been implemented as SICStus Prolog (Intelligent
Systems Laboratory 2003b) programs inspecting source files and/or call graphs. Updates
to files have been implemented either directly in the scripting language of VIM or, when
many files need updating at once, through ed scripts. VIM functions were written to initiate
the refactorings and to get user input.

ViPReSS has been successfully applied to a large (more than 53 KLOC) legacy system
used at the computer science department of the Katholieke Universiteit Leuven to manage
the educational activities. The system, called BTW, has been developed and extended
since the early eighties by more than 10 programmers, many of whom are no longer
employed by the department. The implementation has been done in MasterProLog (IT
Masters 2000), which is no longer supported. Therefore, preparing the code for migration
to a more modern Prolog dialect and general structure improvement were essential for
further evolution of the system.

2 Vi(m) P(rolog) Re(factoring) (by) S(chrijvers) (and) S(erebrenik).

https://doi.org/10.1017/5S1471068407003134 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068407003134

212 A. Serebrenik et al.

By using the refactoring techniques, we succeeded in obtaining a better understanding
of this real-world system, in improving its structure and maintainability, and in preparing
it for intended changes: porting it to a state-of-the-art Prolog system and adapting it to new
educational tasks the department is facing as a part of the unified Bachelor—Master system
in Europe.

A preliminary study revealed that many modules were unused. We brought in an expert
to help us identify the bulk of these unused modules, including out-of-fashion user inter-
faces and outdated versions of program files. This reduced the system size to a mere 20,000
lines.

Next, the actual refactoring process was started. As the first phase we applied system-
scope refactorings. ViPReSS was used to clean up after the bulk dead code removal: 299
predicates in the remaining modules were identified as dead. This reduced the size by
another 1,500 lines. Moreover ViPReSS discovered 79 pairwise identical predicates. In
most of the cases, identical predicates were moved to new modules used by the original
ones. The previous steps allowed us to improve the overall structure of the program by
reducing the number of files from 294 to 116 with a total of 18,000 lines. Very little time
was spent to bring the system into this state. The experts were sufficiently familiar with the
system to identify obsolete parts. The system-scope refactorings took only a few minutes
each. During this phase most of the work has been done by ViPReSS, while the user’s
involvement was limited to choosing a way to deal with duplicate predicates.

The second phase of refactoring consisted of a thorough code inspection aimed at local
improvement. Many malpractices were identified: excessive use of cut (Section 4.4) com-
bined with output construction before commit (Section 4.4) being the most notable one.
Additional “bad smells” discovered include bad predicate names such as g, unused argu-
ments and unifications instead of identity checks or numerical equalities (Sections 4.3,
and 4.4, respectively). Some of these were located by ViPReSS, others were recognised by
the users, while ViPReSS performed the corresponding transformations. This step is more
demanding of the user. She has to consider all potential candidates for refactoring separ-
ately and decide on what transformations apply. Hence, the lion’s share of the refactoring
time is spent on these local changes.

In summary, from the case study we learned that automatic support for refactoring
techniques is essential and that ViPReSS is well-suited for this task. As the result of
applying refactoring to BTW, we obtained better-structured lumber-free code. Now it not
only is more readable and understandable but also simplifies implementing the intended
changes. From our experience with refactoring this large legacy system and the relative
time investments of the global and the local refactorings, we recommend starting out with
the global ones and then selectively apply local refactorings as the need occurs.

The current version of ViPReSS can be downloaded from http://www.cs.kuleuven.
ac.be/"toms/vipress.

6 Conclusions

In this paper we have studied refactoring techniques for Prolog. First, we have shown
that refactoring is a viable technique for Prolog and that many of the existing techniques

https://doi.org/10.1017/5S1471068407003134 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068407003134

Improving Prolog programs 213

developed for refactoring in general are applicable. Our refactoring catalogue contains
many such refactorings.

Second, Prolog-specific refactorings are possible and the application of some general
techniques may be highly specialized toward Prolog. In this context, the companion tech-
nical report (Schrijvers et al. 2003) shows how refactoring fits in with existing work on
program analysis and transformation in the context of Prolog and how many of these
existing techniques may be adapted for the purpose of partially automating the refactoring
process. Also, ViPReSS, our refactoring browser, integrates several automatable parts of
the presented refactorings in the VIM editor.

Finally, it should be clear that refactoring Prolog programs is not just viable but very
useful for the maintenance of Prolog programs. Refactoring helps bridge the gap between
prototypes and real-world applications. Indeed, extending a prototype to provide additional
functionality often leads to cumbersome code. Refactoring allows software developers both
to clean up code after changes and to prepare code for future changes. These are important
benefits that also apply to logic programming.

As completeness of the catalogue is clearly not possible, we aimed to show a wide range
of possibilities for future work on combining the formal techniques of program analysis
and transformation with software engineering. Throughout the catalogue, many specific
issues for future work have been mentioned. Below we list related work and more general
challenges for the future.

6.1 Related and future work

Logic programming has often been used to implement refactorings for other languages;
e.g., a meta-logic very similar to Prolog is used to detect, for instance, obsolete parameters
in Tourwé and Mens (2003).

Seipel et al. (2003) include refactoring among the analysis and visualization techniques
that can be easily implemented by means of FNQUERY, a Prolog-inspired query language
for XML. However, the discussion stays at the level of an example. The M.Sc. thesis of
Steinke (2003) was dedicated to refactoring of logic programs. A catalogue of refactor-
ings has been composed and a prototype system has been implemented. However, only
predicate-scope refactorings have been considered and only the transformation step has
been implemented.

In the logic programming community questions related to refactoring have been intens-
ively studied in the context of program transformation and specialization. There are two
important differences with this line of work. First, refactoring improves readability, main-
tainability, and extensibility rather than performance. Second, for refactoring user input is
essential while in the mentioned literature strictly automatic approaches were considered.
However, some of the transformations developed for program optimization, e.g., dead code
elimination, can be considered as refactorings and have an important function in refactoring
browsers.

To further increase the level of automation of particular refactorings, additional inform-
ation such as types and modes can be used.

Future refactoring tools can also benefit from integration with Prolog development en-
vironments. Modern Prolog systems are often equipped with features extending the ISO

https://doi.org/10.1017/5S1471068407003134 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068407003134

214 A. Serebrenik et al.

Standard such as constraint solving over different domains and Constraint Handling Rules,
coroutining, interfaces to foreign languages, GUI-development systems and databases. In
most of the cases, the refactoring techniques described above can still be applied to improve
the code. Certain refactorings may be specially designed for particular extensions. For
instance, our experience suggests that simplifying primitive constraints may be useful in
the case of CLP.

References

1995. Information Technology—Programming Languages—Prolog—Part 1: General Core. ISO/IEC.
ISO/IEC 13211-1:1995.

CrOW, D. AND SMITH, B. 1992. DB_HABITS: Comparing minimal knowledge and knowledge-
based approaches to pattern recognition in the domain of user—computer interactions. In Neural
Networks and Pattern Recognition in Human—Computer Interaction, R. Beale and J. Finley, Eds.
Ellis Horwood, 39-63.

ERLIKH, L. 2000. Leveraging legacy system dollars for e-business. IT Professional 2, 3 (May), 17—
23.

FOWLER, M. 2003. Refactorings in alphabetical order. URL: http://www.refactoring.com/
catalog/. Accessed April 2, 2007.

FOWLER, M., BECK, K., BRANT, J., OPDYKE, W. AND ROBERTS, D. 1999. Refactoring:
Improving the design of existing code. Object Technology Series. Addison-Wesley.

GARRIDO, A. AND JOHNSON, R. 2003. Refactoring C with conditional compilation. In /8th IEEE
International Conference on Automated Software Engineering, H. Kirchner and C. Ringeissen,
Eds. IEEE, 323-326.

HERMENEGILDO, M. V. 2000. A documentation generator for (C)LP systems. In Computational
Logic - CL 2000, First International Conference, London, UK, July 2000, Proceedings, J. Lloyd,
V. Dahl, U. Furbach, M. Kerber, K.-K. Lau, C. Palamidessi, L. Moniz Pereira, Y. Sagiv, and P. J.
Stuckey, Eds. Lecture Notes in Artificial Intelligence, vol. 1861. Springer Verlag, 1255-1269.

INTELLIGENT SYSTEMS LABORATORY. 2003a. Quintus Prolog User’s Manual. P.O. Box 1263,
SE-164 29 Kista, Sweden.

INTELLIGENT SYSTEMS LABORATORY. 2003b. SICStus Prolog User’s Manual. P.O. Box 1263,
SE-164 29 Kista, Sweden.

IT MASTERS. 2000. MasterProLog Programming Environment. URL: www.itmasters.com.
Accessed September 19, 2006.

LEUSCHEL, M. AND S@RENSEN, M. H. 1996. Redundant argument filtering of logic programs. In
Proceedings of the 6th International Workshop on Logic Program Synthesis and Transformation,
J. Gallagher, Ed. LNCS, vol. 1207. Springer Verlag, 83-103.

L1, H., REINKE, C. AND THOMPSON, S. 2003. Tool support for refactoring functional programs. In
Haskell Workshop 2003, J. Jeuring, Ed. Association for Computing Machinery.

MENS, T. AND TOURWE, T. 2004. A survey of software refactoring. IEEE Transactions on Software
Engineering 30, 2 (February), 126—138.

MOAD, J. 1990. Maintaining the competitive edge. Datamation 36, 4 (February), 61-66.

MooREs, T. T. 1998. Applying complexity measures to rule-based Prolog programs. The Journal
of Systems and Software 44, 45-52.

NOSEK, J. T. AND PALVIA, P. C. 1990. Software maintenance management: Changes in the last
decade. Journal of Software Maintenance: Research and Practice 2, 3 (September), 157-174.

O’KEEFE, R. A. 1994. The Craft of Prolog. MIT Press, Cambridge, MA.

https://doi.org/10.1017/5S1471068407003134 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068407003134

Improving Prolog programs 215

OPDYKE, W. F. 1992. Refactoring Object-Oriented Frameworks. Ph.D. thesis, University of Illinois
at Urbana—Champaign.

PARNAS, D. L. 1972. On the criteria to be used in decomposing systems into modules.
Communications of the ACM 15, 12 (December), 1053-1058.

PiTKOW, J. AND PIROLLI, P. 1999. Mining longest repeating subsequences to predict World Wide
Web surfing. In 2nd USENIX Symposium on Internet Technologies and Systems, Boulder, CO,
1-12.

ROBERTS, D., BRANT, J. AND JOHNSON, R. 1997. A refactoring tool for Smalltalk. Theory and
Practice of ObjectSystems (TAPOS) 3(4), 253-263.

SCHRIJVERS, T., SEREBRENIK, A. AND DEMOEN, B. 2003. Refactoring Prolog Programs. Tech.
Rep. CW 373, Department of Computer Science, Katholieke Universiteit Leuven, Leuven,
Belgium.

SEIPEL, D., HOPFNER, M. AND HEUMESSER, B. 2003. Analysing and visualizing Prolog programs
based on XML representations. In Proceedings of the 13th International Workshop on Logic
Programming Environments, F. Mesnard and A. Serebrenik, Eds. 31-45. Published as technical
report CW371 of Katholieke Universiteit Leuven.

STEINKE, D. 2003. Refactoring von Logischen Programmen. M.S. thesis, Universitit
Rostock. URL: http://e-lib.informatik.uni-rostock. de/fulltext/2003/diploma/
SteinkeDirk-2003.ps.gz. Accessed September 20, 2006.

TOURWE, T. AND MENS, T. 2003. Identifying refactoring opportunities using logic meta
programming. In 7th European Conference on Software Maintenance and Reengineering,
Proceedings. IEEE Computer Society, 91-100.

VAN VLIET, H. 2000. Software Engineering: Principles and Practice, 2nd ed. John Wiley & Sons.

VANHOOF, W. 2004. Searching semantically equivalent code fragments in logic programs. In Logic-
based Program Synthesis and Transformation. 14th International Workshop, LOPSTR 2004,
Verona, Italy, August 26-28, 2004, Pre-Proceedings, S. Etalle, Ed. 1-18.

https://doi.org/10.1017/5S1471068407003134 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068407003134

