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The Substantial Role of Weyl Symmetry
in Deriving General Relativity

from String Theory
John Dougherty*

String theory reduces to general relativity in appropriate regimes. Huggett and Vistarini
have given an account of this reduction that includes a deflationary thesis about symme-
try: although the usual derivation of general relativity from string theory appeals to a premise
about the theory’s symmetry, Huggett and Vistarini argue that this premise plays no log-
ical role. In this article I disagree with their deflationary thesis and argue that their anal-
ysis is based on a popular but flawed conception of the interaction between symmetry
and quantization. I argue that a better conception recognizes a distinction between ordi-
nary, broken, and anomalous symmetries.
1. Introduction. The basic conceptual task for a quantum theory of grav-
itation is to recover something like the rough-and-ready picture of space and
time that we use to characterize the target gravitational phenomena. Much
recent philosophical work on this topic addresses general questions about
this task: the extent to which theories must presuppose the rough-and-ready
picture, the different possible success conditions for a recovery, whether and
how to make sense of claims that space-time emerges from some more fun-
damental quantum features of the world, and so on (Huggett and Wüthrich
2013; Crowther 2018). But there are also specific questions that arise within
particular research programs. For example, Huggett andVistarini (2015) and
Vistarini (2019) point out that symmetry considerations seem to be “a key
concept connecting string theory to phenomenological space-time” (Huggett
and Vistarini 2015, 1170) but that the status of these considerations is obscure.
Despite the apparent importance of symmetry, Huggett andVistarini argue that
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it is merely a formal feature of string theory, suggesting that it can play no sub-
stantial role. Getting to philosophical grips with string theory as a quantum
theory of gravity requires a resolution of this conceptual tension.

This article disagrees with Huggett and Vistarini’s account and suggests
an alternative. Their argument focuses on the interaction between symmetry
and quantization.We recover the Einstein field equation (EFE) in string theory
by quantizing a classical theory that exhibits so-called Weyl symmetry. On
Huggett and Vistarini’s telling, quantization breaks this Weyl symmetry, and
we face a choice: if we decide to reimpose the symmetry then we are led to
the EFE, and if we try to leave the symmetry broken then it will reappear in
a different guise and again lead to the EFE. They conclude that Weyl symme-
try is unavoidable and hence “not a logically independent postulate” (Huggett
and Vistarini 2015, 1173) of string theory. But I think this framing is mis-
leading. When a theory is quantized, its symmetries have three possible fates:
they might be preserved, they might be broken, or they might be anomalous.
As I will argue, Huggett and Vistarini confine their attention to the first case;
that is, their conclusion that Weyl symmetry is always preserved rests on con-
sidering only those cases in which it is preserved. Further attention to the other
cases—and especially to cases in which the symmetry is anomalous—shows
that Weyl symmetry is not a merely formal feature of string theory. It also il-
lustrates the more general use of symmetries in the string-theoretic approach
to theory construction, which plays an important role in defenses of the string
theory program (Dawid 2013).

The plan is as follows. In section 2 I isolate the feature of Huggett and
Vistarini’s framing that I disagree with. Although this debate is motivated
by the string-theoretic derivation of the EFE, my disagreement with Huggett
and Vistarini is really a disagreement about the interpretation of quantum
field theories with space-time-dependent symmetries. It bears on their anal-
ysis only insofar as the derivation they discuss occurs within such a theory.
As I argue, their presentation supposes that classical symmetries are either
broken or preserved in the process of quantization. Section 3 argues that this
is not a natural dichotomy, for there is a third possibility: the symmetrymight
be anomalous. Anomalous symmetries are in some sense preserved and in
some sense broken; as such, they fit uncomfortably in Huggett and Vistarini’s
account. Section 4 uses this third category to argue that Weyl symmetry is not
merely a formal feature of string theory.

2. Weyl Symmetry. The argument that string theory reproduces general
relativity in the appropriate domains has various prongs; Weyl symmetry
is primarily relevant to the recovery of the EFE for the space-time metric.
In the appropriate regimes, a morass of string excitations ought to look like
a Lorentzian metric to a test string moving through it. If the test string is to
have a consistent quantization it must be Weyl invariant, and if it is to be
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Weyl invariant then the effective Lorentzian metric must satisfy the EFE. Or
at least, this is the standard story. Huggett and Vistarini ultimately argue that
this appeal to Weyl invariance can be circumvented: whether or not we suppose
Weyl invariance, the EFEwill follow. This is the claim I want to take issue with.

On Huggett and Vistarini’s analysis, string theory’s recovery of general
relativity—and, thereby, phenomenological space—is expressed by two re-
sults. First, the spectrum of the string contains gravitons, the force carriers
for gravity. More precisely, upon quantizing the string you will find quantum
states containing massless spin-2 particles, the representation of the Lorentz
group in which gravitons live. Second, an adequate quantization of a string
moving in an approximately classical background made up of these massless
spin-2 quanta requires the background to satisfy the EFE. String theory there-
fore contains the right stuff behaving in the right way to reproduce general
relativity in the right regimes.

This article is concerned with the second of these results, which is set
within an effective theory of a string propagating in a classical background.
Effective field theories model the salient degrees of freedom in systems
where the fundamental degrees of freedom are unknown, or cannot be con-
nected to the salient degrees of freedom, or are computationally intractable.
For example, the Standard Model of particle physics contains 12 elementary
matter particles. While some of these particles are observable in isolation at
low energies, some only appear in bound states—the up and down quarks only
occur as constituents of protons, neutrons, and pions. The effective degrees
of freedom at low energies are therefore not those appearing in the Standard
Model, and the effective field theory used to model physics at this scale is
formulated directly in terms of protons, neutrons, and pions instead of quarks.
Analogously, the EFE is derived from string theory in an effective theory that
replaces gravitonic excitations with a classical Lorentzian metric. It is this met-
ric that must satisfy the EFE.

More formally, the effective theory of interest is as follows. The classical
background is given by a metric G on a manifold X of dimension D. A pos-
sible history for a string is a map Σ→ X with Σ a two-dimensional surface.
We define a quantum field theory on Σwith two fluctuating fields: a Lorentzian
metric g on Σ and amap f : Σ→ X picking out a possible history for the string.
The action for this theory is

S(g, f) 5

ð
Σ

kdfk2volg,

where volg is the volume element on Σ determined by g and the norm is in-
duced by g and G. That is, picking some coordinates on Σ and X, we have

kdfk2 5 gmn(∂mf
m)(∂nf

n)Gmn    volg 5
ffiffiffiffiffiffiffiffiffiffi
2 gj j

p
d2x,
86/715080 Published online by Cambridge University Press

https://doi.org/10.1086/715080


1152 JOHN DOUGHERTY

https://doi.org/10.1086/71508
where Roman indices run over the two dimensions of Σ and Greek indices
over the D dimensions of X.

The EFE for G is obtained by requiring the quantum theory to be well
behaved. As a first pass at articulating this requirement, consider the path
integral quantization of the action above. The theory is determined by the
path integral

ð
Dg

ð
Df exp iS(g, f)ð Þ:

If we fix a metric g on the worldsheet Σ, the inner integral is the path integral
for a quantum field theory of D scalar fields in two space-time dimensions.
Theories of this kind are relatively well understood, and the integral over f
is relatively easy to perform, at least when G is nearly flat. The path integral
of our effective theory is therefore an integral over a family of scalar field
theories indexed by metrics g on Σ. Integrating out the scalar fields, our in-
tegral becomes ð

Dg exp iSred(g)ð Þ,

where Sred(g) is an action for g that incorporates the quantum fluctuations of
the field f. The full path integral ought therefore reduce to an integral over g
alone.

We can only integrate out the field f ifG satisfies the EFE. If the reduced
action Sred exists then its exponentiation must have the same symmetries as
the integral over f. In particular, note that the original action S(g, f) is in-
variant under the Weyl transformation

g ↦ e2qg

determined by a positive real-valued function q on Σ, since the induced change
in the norm of df cancels out the induced change in the volume element.
Yet, to leading order in fluctuations in f, an infinitesimal Weyl transforma-
tion with parameter q shifts Sred by (D’Hoker 1999, eq. [6.61])

dSred(g) 5 2
1

2p

ð
Σ

d2x
ffiffiffiffiffiffiffiffiffiffi
2 gj j

p
q

1

2
gmn(∂mf

m)(∂nf
n)RG

mn 1
D 2 26

6
Rg

� �
,

with RG
mn the Ricci tensor associated with the metric G and Rg the scalar cur-

vature associated with the metric g. Since Sred must have the same symme-
tries as the original theory, this shift must vanish for all q and g. This implies
that the first term in the integrand vanishes for all g and f, so that RG

mn 5 0.
And this is the EFE in vacuum. The argument generalizes: if we add other
classical background fields on X to the effective action, then the shift in Sred
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under a Weyl transformation will include terms involving these other fields,
and the shift will vanish when RG

mn satisfies the EFE determined by the stress-
energy tensor of the added fields.

Huggett and Vistarini argue that Weyl symmetry plays no substantial role
in the derivation I have just sketched; this is our point of disagreement. The
derivation relied on the claim that Sred must have Weyl symmetry, and this
“must” requires justification. Huggett and Vistarini argue that it is tautolo-
gous: “although the derivation of the EFEs appeals to [Weyl] symmetry,
since that is itself a consequence of string theory, it is not, logically speaking,
a necessary premise of the derivation” (2015, 1173). On their view, the appeal
to Weyl symmetry could in principle be eliminated. We must have RG

mn 5 0
(and D 5 26), and Sred must be Weyl invariant, but according to Huggett
and Vistarini this is a downstream consequence of other hypotheses in string
theory. We could just as well take a different route, one that made no explicit
detour through Weyl symmetry.

Weyl symmetry certainly appears to play a role in the derivation just
sketched, so Huggett and Vistarini argue for their triviality thesis by arguing
that this is a mere appearance. In light of the generally nontrivial behavior
of Sred under Weyl transformations, Huggett and Vistarini say that the Weyl
symmetry of the original action is “broken by quantization” and that the EFE
appears to follow when the symmetry is “reimposed” on Sred (2015, 1170). If
we do not reimpose the symmetry then it seems we might have RG

mn ≠ 0 or
D ≠ 26. But, they claim, if we do not demand Weyl invariance then we must
change our classical background: “In this case, different choices of conformal
factor in the Weyl transformation of the internal metric . . . will be physically
different. Hence, [q] is a new physical degree of freedom over the worldsheet,
a scalar background field: specifically a dilaton field [F]” (1171). Suppose,
then, that we adopt a different effective field theory, one that includes a scalar
fieldF onX. Huggett and Vistarini argue that if we supposeF to be tachyonic,
and if we suppose that some mechanism gives it good long-distance behavior,
then we can show that Weyl invariance must hold. They conclude that Weyl
invariance is unavoidable: even if we suppose that it does not hold we can
derive that it does.

In the rest of this article I argue that Huggett and Vistarini’s reasoning
does not go through and that talk of breaking and reimposing Weyl invari-
ance is misleading. The Weyl symmetry of Sred is a necessary premise in
the derivation of the EFE just sketched and is not a logical consequence
of some other hypotheses. Huggett and Vistarini’s argument only shows that
Sred is Weyl invariant under the hypothesis that Sred is Weyl invariant. The
triviality of this conclusion is obscured by a common way of talking about
the role of symmetries in quantization, according to which quantization
can break symmetries of the classical theory, and it is left for us to decide
whether to reimpose them. A better accounting of the situation distinguishes
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between cases in which the symmetry is preserved, cases in which it cannot
be implemented, and cases in which it is anomalous.

3. Anomalies. My disagreement with Huggett and Vistarini’s framing is
not particular to Weyl symmetry but applies to symmetries of all kinds. This
section illustrates an alternative framing according to which any symmetry
might be preserved, broken, or realized anomalously. Huggett and Vistarini
also take their discussion to generalize to other kinds of symmetry. They
explicitly analogizeWeyl and gauge symmetry, and elsewhere Vistarini sug-
gests that the possibility of a substantial role forWeyl symmetry “challenges
the general idea that gauge symmetries are simply formal features of the way
in which a theory’s physical content is formally represented” (2019, 40).1 I
agree that deflationary views about Weyl and gauge symmetry stand and fall
together, but I think they are untenable in both cases. They fail to mark an
important distinction between anomalous and broken symmetries.2

3.1. Anomalous Global Symmetries in Field Theories. There is an im-
portant difference between a theory’s being invariant under a symmetry or
anomalous, and both of these situations are importantly different from a the-
ory lacking that symmetry altogether. These differences can be illustrated
by simpler theories with obvious physical application. Anomalous symme-
tries are also found in quantum field theory, where they can play an impor-
tant role in saving the phenomena. The chiral anomaly in the Standard Model
is a relatively simple example that illustrates why anomalous global symme-
tries are acceptable.

A particularly simple instance of the chiral anomaly appears in quantum
electrodynamics with one charged fermion. The setting is four-dimensional
Minkowski space, and the two fields in the theory are the electromagnetic
gauge potential A and a massless Dirac fermion w. The action is

S(A, w) 5

ð
M 4

d4x 2
1

4
FmnF

mn 2 �w=Dw

� �
,

with Fmn the field strength and =D the Dirac operator determined by A. As
in the string theory of section 2, the theory is specified by an iterated path
integral ð

DA

ð
DwD �w exp iS(A, w)ð Þ:
1. See Redhead (2003) and Healey (2007) for more detailed articulations of this general
idea as well as some discussion about how issues of symmetry and quantization are re-
lated to more obviously philosophical issues.

2. What follows are two simple examples of anomalies. See Monnier (2019) for a more
thorough but still relatively informal discussion of anomalous quantum field theories.

0 Published online by Cambridge University Press

https://doi.org/10.1086/715080


WEYL SYMMETRY IN GENERAL RELATIVITY 1155

https://doi.org/10.10
As before, we think of the inner integral as defining a quantum field theory
with a single fluctuating fermion field w in the presence of a fixed classical
electromagnetic potential A. And again as before, we proceed by integrating
out the fermionic degrees of freedom to obtain an action depending only on
A, with the full theory given by performing this remaining integration.

The integral over the fermion field transforms anomalously under the
global symmetries of the action. Recall that a Dirac fermion w naturally de-
composes into two parts: a left-handed Weyl fermion and a right-handed
Weyl fermion. The Dirac operator =D is chirally symmetric, so the fermion
term in S(A, w) can be split into two terms, one involving the left-handed
component of w and one involving the right-handed component. The action
S(A, w) is therefore invariant under two kinds of phase transformations,

w↦ eivw    w↦ eivg
5

w,

the first of which rotates the phase on the left- and right-handed components
by the same angle v, and the second of which rotates the phases of each
component the same magnitude v but in opposite directions. Call the latter
a chiral phase rotation, since it treats left- and right-handed components dif-
ferently. While the integral over the fermion fields is invariant under the first
type of phase rotation, a chiral rotation by v shifts the quantum effective ac-
tion by

dSeff (A, w) 5 2
Q2

16p2

ð
M 4

d4xvεmnabFmnFab,

where Q is the charge of the fermion. The effective fermion action trans-
forms under chiral rotations, so there is a sense in which it exhibits chiral
symmetry. But it is not invariant; it has an anomaly.

The chiral anomaly does not vanish, but this is not a problem. The deriva-
tion in section 2 required the Weyl anomaly to vanish, but a vanishing chiral
anomaly would lead to empirical inadequacy (Dougherty 2020). For example,
neutral pions decay to photons at a rate proportional to the chiral anomaly. If
the chiral anomaly vanished then pions would hardly ever decay to two pho-
tons, but this is their most common decay channel. Indeed, the chiral anomaly
was first discovered when trying to account for the neutral pion’s decay rate.
As another example, themass of the h0 meson is approximately proportional to
the chiral anomaly. A theory without the chiral anomaly gets the h0 meson’s
mass wrong by almost an order of magnitude.

The effective action varies under chiral rotations, but it exhibits chiral ro-
tation symmetry in a weaker sense. Because the chiral anomaly is a reflection
of this weaker invariance, it reflects the structure of the symmetry group by
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satisfying the so-calledWess-Zumino consistency conditions. This is impor-
tantly different from a theory that is not invariant under chiral rotations at all,
like a theory with massive fermions. These two cases should be distinguished.

3.2. Anomalous Gauge Symmetries in Field Theories. Anomalous global
symmetries like the chiral symmetry of section 3.1 or Galilei symmetry in non-
relativistic quantum mechanics are unobjectionable. Indeed, they are desir-
able, because neutral pions often decay and the mass of a nonrelativistic par-
ticle is not state dependent. Anomalous space-time-dependent symmetries
are less anodyne. These include Weyl symmetry when RG

mn ≠ 0 or D ≠ 26,
but they are also found in minor modifications of the Standard Model. The
demand for a vanishing Weyl anomaly is analogous to the demand for a van-
ishing gauge anomaly, and the latter is perhaps more easily interpreted in phys-
ical terms by comparison with the Standard Model.

To illustrate gauge anomalies, consider a slightly different theory of charged
matter. Replace the Dirac fermion in the action of section 3.1 with a charged
left-handed Weyl fermion x to give the action S(A, x). This action exhibits a
space-time-dependent symmetry: for any real-valued function a on M4, the
transformation

Am ↦ Am 2 ∂ma    x↦ eiQax

leaves the action S(A, x) unchanged. But when we integrate out the fermion x,
the reduced action transforms anomalously:

dSred(A) 5 2
Q3

96p2

ð
M 4

d4xaεmnabFmnFab:

This resembles the chiral anomaly but is distinct. The action S(A, x) does not
have chiral symmetry at all—neither ordinary nor anomalous—because it con-
tains only a left-handedWeyl fermion. And integrating out the Dirac fermion w
from the action S(A, w) of section 3.1 produces a gauge-invariant reduced
action, not one that transforms anomalously under gauge transformations.

The StandardModel has no gauge anomalies, and this expresses a nontriv-
ial fact about the charges of its various particles. If we replaced the Weyl fer-
mion in S(A,x) with a right-handed fermion of the same charge, thenwewould
obtain another anomalous theory, and the anomaly would have the same form
but with a sign flip. So we can build a theory with no anomaly if we include
twoWeyl fermions with the same charge, one of each handedness, for then the
two anomaly terms would cancel. This is just the theory of section 3.1, since a
Dirac fermion is a pair of opposite-handedWeyl fermions. By similar reasoning,
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the anomaly associated with the U(1) hypercharge gauge symmetry in the
Standard Model is proportional to (Schwartz 2014, eq. [30.73])

2(Y 3
L 1 3Y 3

Q) 2 (Y 3
e 1 Y 3

n 1 3(Y 3
u 1 Y 3

d )),

where the Ys are the hypercharges of left-handed leptons and quarks and right-
handed electron, neutrino, and up- and down-type quarks. In the classical ac-
tion these charges are freely specifiable independently, but their observed values
are such that this expression vanishes. Similar anomaly cancellation condi-
tions hold for other gauge symmetries in the Standard Model. And, of course,
these are all cousins of the Weyl anomaly cancellation conditions RG

mn 5 0 and
D 5 26.

The examples in this section show that the preserved-broken dichotomy
Huggett and Vistarini employ is too coarse a classification. Putting anom-
alous symmetries in the “broken” bucket neglects the fact that they satisfy
nontrivial constraints, like the Wess-Zumino consistency condition. But put-
ting them in the “preserved” bucket erases the difference between cases in
which anomalies cancel and cases in which they do not. In particular, it elides
theories in which the Weyl anomaly vanishes and theories in which it does
not. Once we recognize that symmetries may be anomalously realized, we
can further distinguish between anomalous global symmetries, like chiral
symmetry, and anomalous gauge symmetries, like that of an electromagnet-
ically charged Weyl fermion or the Weyl symmetry of section 2’s string the-
ory. While the former obtain in perfectly good theories—both in principle
and of particle phenomena—the latter are ruled out in the string-theoretic der-
ivation of the EFE.
4. Theory Space. The distinctions introduced in section 3 clarify the task
of justifying the string-theoretic derivation of the EFEs, and they lead to a
problem for Huggett and Vistarini’s analysis. The desired conclusion of
RG

mn 5 0 follows from the demand that the Weyl anomaly vanishes, and this
follows from the demand that the total gauge anomaly always vanishes. So
we need a justification for this more general demand. I will not try to pro-
vide one here. But, supposing this demand is justified, it is a nontrivial one.
There are theories that exhibit a nonvanishing gauge anomaly, like electro-
dynamics with a singleWeyl fermion, and there are theories in which the gauge
anomaly vanishes. Anomaly cancellation is not tautologous. Indeed, the strin-
gency of anomaly cancellation is sometimes claimed to uniquely determine a
possible model of string theory.

Weyl symmetry plays a substantial role in section 2’s derivation of the
EFE. This derivation required the reduced action to be exactly Weyl sym-
metric, not anomalously so. This is a substantial requirement because it forces
us to have RG

mn 5 0 and D 5 26. And this requirement is nontrivial because
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there are metrics that are not Ricci flat, and there are manifolds with a dimen-
sion other than 26. In just the same way, demanding gauge anomaly cancella-
tion in the theories of section 3 or in the Standard Model puts nontrivial con-
straints on the field content and charges. It rules out a theory containing a
single charged Weyl fermion, and it requires the electron’s charge to be pre-
cisely the opposite of the proton’s. Far from being a tautology, the vanishing
of theWeyl anomaly is a powerful constraint on the construction of a quantum
field theory.

The power of the vanishing anomaly condition requires an equally pow-
erful justification, and I think this deserves further philosophical attention.
Certainly we cannot count every anomaly as pathological, since the chiral
anomaly in section 3.1 is instrumental in reproducing low-energy collider
phenomena. But we can demand that every gauge anomaly vanish, and this
demand is often made. It is sometimes said that theories with gauge anom-
alies are not “coherent” (Dawid 2013, 12) or “consistent” (Schwartz 2014,
627), but this is not obviously right, at least not in the strict sense. The tra-
ditional argument for this conclusion claims that gauge anomalies “destroy
the renormalizability, and thus the consistency, of the gauge theory” (Bertlmann
1996, 245). This seems too quick. Plenty of perfectly respectable theories are
not renormalizable, including the effective field theories used to model low-
energy collider physics (Weinberg 1995, sec. 12.3). Yet, these effective field
theories have unitary truncations at each order in the momenta, while any
finite truncation of a gauge theory spoils unitarity. This is not the place to
sort out the exact relationship between gauge anomalies and renormalization,
but this relationship should be clarified if we would like to better understand
the derivation of the EFE in string theory.

Because the vanishing Weyl anomaly is a nontrivial constraint, Huggett
and Vistarini’s deflationary argument must misfire. The problem with it is
clear if we adapt it to a simpler theory with anomalous gauge symmetry, like
the theory of the single charged fermion. Their argument, recall, begins by
supposing that the reduced action is not exactly invariant under the gauge
symmetry. It is a matter of mathematical fact that the reduced action trans-
forms under the gauge symmetry; the only question is whether it is invariant
or anomalous. If we suppose it is anomalous then the fermion’s charge must
be nonzero. The theory then has a gauge anomaly and is not invariant under
the gauge symmetry. At this point Huggett and Vistarini introduce new de-
grees of freedom and show that these cancel the anomaly. The analogous
move in our charged fermion theory would be the introduction of further
Weyl fermions: one fermion with the opposite handedness and the same charge,
or two fermions with the opposite handedness and charge Q/2, or one Weyl
fermion with the same charge and handedness and two with the same charge
and opposite handedness, or something like this. The total gauge anomaly in
any of these modified theories vanishes, so they are exactly gauge invariant.
0 Published online by Cambridge University Press

https://doi.org/10.1086/715080


WEYL SYMMETRY IN GENERAL RELATIVITY 1159

https://doi.org/10.10
But they are also just different theories. Introducing another fermion does not
make the theory with one fermion consistent; it gives a theory with two fer-
mions. In the sameway,Weyl invariance in a theory containing a background
scalar field F does not lead to Weyl invariance in a theory without a back-
ground scalar field.

Huggett and Vistarini’s reasoning does not show that Weyl invariance is
a purely formal requirement, but it can be useful in a different way. Anom-
aly cancellation can be a guide to theory development, because it can suggest
modifications for the sake of anomaly cancellation. If you observe a charged
Weyl fermion then there must be at least one more out there, because a theory
with only one charged Weyl fermion has a gauge anomaly. Anomaly cancel-
lation therefore constrains our exploration of the possible space of theories.
Dawid’s (2013) account of nonempirical theory assessment promotes this type
of constraint to a general method for evaluating scientific theories. If we have
reason to believe that the vast majority of theories have gauge anomalies then
the fact that we have found some that lack them—the Standard Model or the
string theory with RG

mn 5 0 and D 5 26—is a good sign that we are on the
right track. The antecedent is a big “if,” but it does seem difficult to construct
theories in which all anomalies cancel.
5. Conclusion. I have argued that Weyl symmetry plays a substantial role
in the derivation of the EFE in string theory. More precisely, the EFE follows
from the hypothesis that theWeyl anomaly vanishes, and this hypothesis is not
empty. An adequate account of the Weyl anomaly requires a conception of
symmetry that goes beyond the preserved-broken dichotomy found inHuggett
and Vistarini’s analysis and more broadly. I have indicated a replacement. On
the alternative framing I have provided, the derivation of the EFE rests on the
prohibition of gauge anomalies, and the justification of this prohibition should
be further investigated. Leaving these details aside, I think Huggett and Vis-
tarini’s deflationary argument does not work. It finds Weyl invariance in ev-
ery theory because it responds to failures of Weyl invariance by changing
the theory under consideration. Some theories—indeed, most—are notWeyl
invariant.
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