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The objective of the present study is to investigate turbulence–coagulation interaction via
direct numerical simulation (DNS) coupled with the population balance equation (PBE).
Coagulation is an important process in several environmental and engineering applications
involving turbulent flow, including soot formation, gas-phase synthesis of nanoparticles
and atmospheric processes, but its interaction with turbulence is not yet fully understood.
Particle dynamics can be described by the PBE, whose Reynolds decomposition leads
to unclosed terms involving correlations of number density fluctuations. In this work,
we employ a discretisation (sectional) method for the solution of the PBE, which is
free of a priori assumptions regarding the particle size distribution (PSD), and couple
it with a DNS for the flow field in order to study the behaviour and significance of the
unknown correlations. At present, it is not feasible to resolve the Batchelor scales that
result from diffusion at high Schmidt number, hence a unity Schmidt number is employed.
The investigation is conducted on a three-dimensional planar jet laden with monodisperse
nanoparticles, and coagulation in the free-molecule regime is considered. The correlations
due to turbulent fluctuations of the particle number density are calculated at several points
in the domain and found to be positive in most cases, except close to the jet break-up.
The transport equation for the moments of the PSD is also studied, and it is found that
the correlations make a considerable contribution to the time-averaged coagulation source
term, up to 20 % on the jet centreline and 40 % close to the edges.

Key words: turbulent reacting flows, aerosols/atomization, breakup/coalescence

1. Introduction

Aerosols constitute dispersions of fine particles or droplets in gases, and are encountered in
many natural and engineering processes. Examples include soot or carbon black formation
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(Rigopoulos 2010, 2019; Raman & Fox 2016), flame synthesis of nanoparticles (Buesser
& Pratsinis 2012; Goudeli & Pratsinis 2016), sulphur-driven particle formation in exhaust
systems (Olin, Rönkkö & Dal Maso 2015), and atmospheric processes (Kulmala et al.
2004). Aerosols are polydisperse due to phenomena such as coagulation, condensation
and evaporation, and their polydispersity is characterised by the particle size distribution
(PSD). Aerosol dynamics can be described by the population balance equation (PBE), also
known as the general dynamic equation (GDE), which is an equation that describes the
spatial and temporal evolution of the PSD due to convective transport as well as physical
and chemical processes such as coagulation and condensation.

Coagulation occurs in several contexts such as atmospheric aerosols, cloud formation,
flame synthesis of nanoparticles and combustion aerosols originating from sources such as
incinerators and pulverised combustion units (Friedlander 2000). In particular, coagulation
is the dominant mechanism in aerosol synthesis of nanomaterials such as fumed silica
(SiO2), pigmentary titania (TiO2) and zinc oxide (ZnO) vulcanising catalysts (Buesser
& Pratsinis 2012). In most cases, particle formation and coagulation occur in turbulent
flows. The complexity of turbulence and the nonlinear interactions involved in the aerosol
processes render the resulting problem intractable via simplified methods. The objective
of this study is to employ direct numerical simulation (DNS) of turbulence coupled with
a discretised form of the PBE as a numerical tool for studying the turbulence–coagulation
interaction.

The effect of turbulence on coagulation is manifested in two ways. The first is associated
with the collision mechanism, which is substantially different in turbulent flows depending
on the particle size and inertia. This problem was first studied by Saffman & Turner
(1956) and Levich (1962), who proposed expressions for the turbulent coagulation kernel.
Numerous works, including Delichatsios & Probstein (1975), Wang, Wexler & Zhou
(1998) and Reade & Collins (2000), investigated experimentally and numerically the
collision mechanism in turbulent flows and the assumptions inherent in the expressions
for the kernels proposed.

The present study is concerned with the second, and rather less studied, effect of
turbulence on coagulation, which is the influence of fluctuations in the particle number
density. This is the ‘closure problem’ of turbulence for aerosols, and it arises from the
nonlinear interactions between number densities of particles of different sizes that appear
within the PBE for coagulation. Early discussions of this problem appear in the works
of Levin & Sedunov (1966,1968), Scott (1967) and Warshaw (1967). These studies were
concerned with turbulent coagulation in the context of coalescing cloud droplets and
were reviewed by Drake (1972). More specifically, Levin & Sedunov (1968) dropped the
correlations due to the coagulation source term because of the lack of knowledge at that
time regarding the fluctuations in the collision integral, while Warshaw (1967) assumed
that the correlations can be neglected in the case of a very large cloud volume. Friedlander
(2000) also stated that the importance of these terms has not been carefully studied, while
Drossinos & Housiadas (2006) mentioned that more attention must be given to the PBE in
turbulent flows.

The first study of coagulation with a DNS–PBE approach was done by Settumba &
Garrick (2003), where simulations of a two-dimensional (2-D) incompressible temporal
mixing layer were performed. A moment method, which requires a priori assumptions
on the shape of the PSD, was used to describe the coagulating aerosol. A coagulation
Damköhler number was also defined, which represents the ratio of the convection to
coagulation time scales.

A nodal method that makes no a priori assumptions regarding the PSD was used
by Miller & Garrick (2004) for their simulations of nanoparticle coagulation in a 2-D
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turbulent planar jet. They showed that large-scale vortical structures perturb the PSD from
the self-preserving distribution and lead to particle distributions with larger geometric
standard deviations. However, the computation of turbulent fluctuations that occur when
decomposing the particle concentration field into time-averaged and fluctuations (in the
context of Reynolds-averaged Navier-Stokes (RANS)) or resolved and subgrid components
(in the context of large-eddy simulation (LES)) was left for future work. Garrick, Lehtinen
& Zachariah (2006) performed further DNS of nanoparticle coagulation in a 2-D temporal
mixing layer, where a nodal representation with 12 bins was used. An increase in the
coagulation Damköhler number was found to result in an increase in particle growth
and in prediction of PSDs wider than the self-preserving limit. It was concluded that
three-dimensional (3-D) simulations, where vortex tilting and stretching can occur, are
needed to fully understand the effects of turbulence on the PSD.

The interaction of turbulence with nanoparticle coagulation was studied by Garrick
(2011). Coagulation was the sole aerosol mechanism in a 3-D turbulent shear flow. A
method of moments, which assumes that the PSD is log-normal, was employed to describe
the particle field. The particle growth rate was decomposed into large- and small-scale
interactions in order to investigate the effect of the flow dynamics and the coagulation
Damköhler number. The DNS results showed that small-scale interactions act to both
increase and decrease particle growth. Furthermore, probability density functions (PDFs)
conditioned on the Q-criterion suggested that in rotation-dominated regions, the effect of
the small-scale interactions is primarily to reduce particle growth.

The effect of turbulence on nanoparticle growth in turbulent reacting flows was studied
by Das & Garrick (2010). A nodal approach with 22 ‘bins’ was utilised to describe
nucleation, condensation and coagulation in a planar turbulent jet via DNS. Instantaneous,
filtered and spanwise averaged data of the particle field were computed in order to examine
the nature of the unresolved contributions (turbulent fluctuations) on particle growth. The
effect of turbulence on particle dynamics was assessed by decomposing the particle growth
rate in averaged and fluctuating components (in the context of RANS) and filtered and
unresolved components (in the context of LES). The results revealed that the unresolved
small-scale fluctuations can both augment and inhibit particle growth, but the predominant
effect is to reduce particle growth. That research concluded that turbulence or subgrid scale
(SGS) models are needed for accurately simulating particle dynamics in turbulent flows.

One of the few experimental studies of nanoparticle coagulation in turbulent flows
was done by Junzong, Haiying & Jinsheng (2013). The authors studied silica SiO2
nanoparticle dispersion and coagulation in a high-Reynolds-number round jet. It was
shown that there is an intermediate region across the centreline with high turbulence
intensity where the Sauter mean diameter, which was used to characterise particle size,
increases, and this was attributed to the turbulence coagulation effect, where turbulent
vortices promote coagulation. The experimental configuration of Junzong et al. (2013)
was investigated numerically by Pesmazoglou, Kempf & Navarro-Martinez (2017), where
a stochastic aggregation model based on a Lagrangian framework was applied in the
context of LES. The results showed good agreement with the experiments. However, the
authors concluded that for this configuration, aggregation did not play a big role since no
significant differences were found by including or excluding the aggregation model.

One of the first attempts to model the effect of turbulent fluctuations on the PBE was
made by Rigopoulos (2007), where a probability density function (PDF) approach, which
overcomes the closure problem, was developed and tested in a partially stirred reactor. It
was concluded that future work should evaluate the error that occurs by neglecting the
turbulent fluctuations of the PSD in particle formation/coagulation problems. Later work
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studied these fluctuations in nucleation-growth problems via the PBE–PDF method in
RANS (Di Veroli & Rigopoulos 2009, 2010, 2011; Rigopoulos 2010) and LES (Sewerin
& Rigopoulos 2017, 2018, 2019). The PBE in turbulent flow was also studied via coupling
with DNS in the context of a nucleation-growth problem by Tang, Rigopoulos & Papadakis
(2020). However, none of these studies included coagulation.

From the preceding review, it can be concluded that the turbulence–coagulation
interaction is not yet fully understood. This paper aims to study in more detail
this interaction, and in particular to shed light on the long-standing problem of the
unknown correlations that arise in the Reynolds decomposition of the PBE. The
behaviour and significance of these correlations are investigated by performing DNS
of a 3-D spatially developing planar jet laden with monodisperse nanoparticles. This
flow case is relevant to many engineering and environmental processes involving particle
coagulation (gas-phase synthesis of nanoparticles, plumes with particulate emissions). The
mathematical methodology used for the characterisation of the nanoparticle dynamics
is the PBE coupled with DNS, and thus results in a fully Eulerian description of
aerosol dynamics in a turbulent flow. The PBE is solved via a recently proposed
discretisation method (Liu & Rigopoulos 2019), and the whole distribution is retrieved
without any assumptions about its shape. By keeping the approach model-free, we aim
to focus on the turbulence–coagulation interaction and draw conclusions that will aid
the development of new models. The findings of the study are relevant to any problem
featuring turbulence and coagulation, such as soot formation and nanoparticle synthesis.
However, in such problems, it is difficult to distinguish the result of this interaction
from other effects, particularly those associated with chemical kinetic processes such as
nucleation and growth. As a result, it is difficult to determine the contribution of this
effect to discrepancies in comparisons between experimental and numerical results, which
are usually attributed to different reasons. The present study is effectively a DNS-based
computational experiment that isolates the effect of turbulence–coagulation interaction.

The rest of this paper is structured as follows. Section 2 presents the governing
equations, the numerical solution method, and details on the flow configuration and the
computational setup. Subsequently, in § 3, results for the flow field are validated with
experimental and other reference DNS data, while results of the particle field are validated
by comparing the PSD with the theoretical self-preserving distribution. The results are
presented and discussed in § 4, in the following order. First, the evolution of the moments
and the effects of coagulation and turbulent mixing are discussed. Following this, the
discussion focuses on the analysis of turbulent fluctuations of the number densities.
Particular emphasis is given to the effect of the unknown correlations that occur when
applying Reynolds decomposition to the transport equations of the zeroth and second
moments. Finally, the conclusions are presented in § 5.

2. Methodology

2.1. Governing equations
The flow is assumed to be incompressible and isothermal, governed by the Navier–Stokes
equations

∂u∗
i

∂t∗
+ u∗

j
∂u∗

i
∂x∗

j
= −∂p∗

∂x∗
i

+ 1
Re

∂2u∗
i

∂x∗
j ∂x∗

j
, (2.1)
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∂u∗
j

∂x∗
j

= 0, (2.2)

where u∗
i is the Cartesian velocity component in the ith direction, and p∗ is the pressure.

The asterisk denotes non-dimensional variables, defined as

u∗
i = ui

Uo
, p∗ = p

ρU2
o
, x∗

i = xi

h
, t∗ = t

h/Uo
, (2.3a–d)

where Uo is the jet velocity, h is the jet width at the inlet, and ρ is the fluid density. The
Reynolds number is defined as Re = Uoh/ν, where ν is the kinematic viscosity.

The nanoparticle dynamics is described by the PBE, which assumes the form
(Friedlander 2000)

∂n
∂t

+ uj
∂n
∂xj

= ∂

∂xj

(
Dp

∂n
∂xj

)
+ 1

2

∫ v

0
β(w, v − w) n(w) n(v − w) dw

−
∫ ∞

0
β(v,w) n(v) n(w) dw, (2.4)

where v and w denote particle volume, n = n(x, t, v) is the number density function per
unit volume of fluid (such that n dv is the concentration of particles with volume between
v and v + dv), Dp is the diffusion coefficient of particles of volume v yielded by the
Stokes–Einstein equation (Friedlander 2000), and β(v,w) is the coagulation kernel, a
function that represents the frequency of collisions that lead to coagulation events and will
be discussed further below. Coagulation is described by the two integral terms in (2.4),
which denote particle birth and death. The birth term accounts for all possible particle
pairs whose coalescence results in particles of volume v, while the death term accounts
for the disappearance of particles of volume v due to coagulation with particles of any
volume. The PBE can include additional mechanisms representing nucleation, growth and
breakage, but the focus of the present study is on coagulation.

When the particle diameter is much smaller than the mean free path of the carrier gas,
the particles can be assumed to behave like rigid elastic spheres, and an expression for the
collision frequency β(v,w) can be derived from the kinetic theory of gases. In this case,
coagulation takes place in the free-molecule regime and the kernel is

β(v,w) = A1

(
1
v

+ 1
w

)1/2 (
v1/3 + w1/3

)2
, (2.5)

with the factor A1 defined as

A1 =
(

3
4π

)1/6 (6kbT
ρp

)1/2

, (2.6)

where ρp is the particle density, T is the temperature, and kb is the Boltzmann constant.
For future reference, we also present the transport equation for the moments of the

distribution n = n(x, t, v). The kth moment, Mk, is defined as

Mk =
∫ ∞

0
vk n(v) dv. (2.7)

Some of the low-order moments have a physical interpretation. For example, the zeroth
moment, M0, is the total number concentration of particles, while the first moment, M1,
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represents the particle volume fraction. Furthermore, when the diameter of the particles is
smaller than the wavelength of the incident light, the second moment, M2, is proportional
to the total light scattering by particles (Friedlander 2000). The following transport
equation for the evolution of Mk can be derived (Williams & Loyalka 1991; Whitby &
McMurry 1997):

∂Mk

∂t
+ uj

∂Mk

∂xj
= ∂

∂xj

(
Dp

∂Mk

∂xj

)
+ 1

2

∫ ∞

0

∫ ∞

0
(v + w)k β(v,w) n(v) n(w) dv dw

−1
2

∫ ∞

0

∫ ∞

0
(vk + wk) β(v,w) n(v) n(w) dv dw. (2.8)

In the absence of convection and diffusion (i.e. in a perfectly stirred reactor), it can be
shown that (2.4) admits self-similar solutions. It must be noted that M1 is constant under
these conditions. If the number density function and particle volume are scaled as

ψ = M1

M2
0

n, (2.9)

η = M0

M1
v, (2.10)

and substituted in (2.4), then the solution reaches a time-independent distribution ψ(η)
after a sufficient amount of time. The initial particle distribution affects the time to reach
the self-preserving (SP) state but not the distribution itself (Friedlander 2000). For an
initially monodisperse aerosol undergoing coagulation in the free-molecule regime, the
time to reach the self-similar distribution is (Landgrebe & Pratsinis 1990; Vemury, Kusters
& Pratsinis 1994)

τSP = τf

A1v
1/6
o N0

, (2.11)

where τf ≈ 5 (Vemury et al. 1994), vo is the initial particle volume, and N0 is the initial
particle concentration.

Using (2.3a–d) and the non-dimensional variables

n∗ = n
no
, v∗ = v

vo
, (2.12a,b)

where no, vo are the number density and volume of particles at the inlet, respectively, and
substituting into (2.4), we obtain

∂n∗

∂t∗
+u∗

j
∂n∗

∂x∗
j

= 1
Sc

1
Re

∂2n∗

∂x∗
j ∂x∗

j
+Dacoag

(
1
2

∫ v∗

0
β∗(w∗, v∗−w∗) n∗(w∗) n∗(v∗−w∗) dw∗

−
∫ ∞

0
β∗(v∗,w∗) n∗(v∗) n∗(w∗) dw∗

)
, (2.13)

where β∗(v∗,w∗) = (1/v∗ + 1/w∗)1/2(v∗1/3 + w∗1/3)2 is the normalised collision
function, and Sc = ν/Dp is the particle Schmidt number (defined as the ratio of the
kinematic viscosity to the particle diffusion coefficient). The factor Dacoag is the
coagulation Damköhler number, which is equal to the ratio of a convection time scale
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to a coagulation time scale. The time scales are defined here as in Garrick et al. (2006),
and for the case of the free-molecule regime, Dacoag is given by

Dacoag = τconv

τcoag
= A1hN0

Uo
v1/6

o , (2.14)

where the convection time scale is τconv = h/Uo, and the coagulation time scale is
τcoag = (A1N0v

1/6
o )−1. For the case of an initially monodisperse aerosol, (2.11) shows

that the coagulation time scale is one-fifth of the time needed to reach the self-preserving
distribution. Based on (2.11) and (2.14), the coagulation Damköhler number can be written
as

Dacoag = 5τconv

τSP
. (2.15)

The assumptions of the approach adopted in the present paper are listed below.

(i) Coagulation in the free-molecule regime is considered, which means that particles
should be smaller than the mean free path in the carrier fluid. It must be mentioned
that our simulations are carried out in terms of dimensionless variables, but if we
assume, for example, that the particles at the inlet of the jet have diameter 5 nm, then
the maximum particle mean size in the jet would be around 25 nm, which is less than
the mean free path in air at normal temperature and pressure (approximately 65 nm).

(ii) The particles have no effect on the fluid motion and do not affect the fluid properties
(density, viscosity etc.). If we assume that the particles at the inlet have diameter
4–5 nm, the jet nozzle width is roughly 1 cm and the temperature of the jet is close
to 50 ◦C, conditions not far from those in the experimental work of Junzong et al.
(2013), then the particle volume fraction at the inlet is less than 10−6. This value is
small enough to ensure the validity of the assumption (Elghobashi 2006).

(iii) The particles are spherical due to instantaneous coagulation. While we are not
considering a particular physical system, this is usually true for nanoparticle
coagulation in the free-molecule regime.

(iv) The flow is assumed to be isothermal.
(v) Electrostatic effects (Van der Waals forces) are not taken into account.

(vi) The Stokes number St – which is the ratio of a characteristic time scale of the
particles, τp = ρpd2

p/(18μ) (Friedlander 2000), to that of the flow, τf – is much
smaller than unity and therefore the particles follow the fluid. This assumption
is satisfied easily for nanoparticles, and an example is given here to justify this
assertion. If we assume that particles at the inlet have diameter 5 nm, then the largest
particles found in the jet (at the right edge of the PSD with very low number density)
would have diameter 200 nm (as will be found later in this study). Then τp can be
calculated by using ρp = 2200 kg m−3 , which is a typical value of density for silica
nanoparticles, and μ = 1.82 × 10−5. The smallest time scale in our problem is the
Kolmogorov time scale, τη = √

ν/ε, and this is taken as τf in this example. The
smallest non-dimensional value of τη calculated by the present DNS was 0.38, while
the way the variables are non-dimensionalised has been shown in (2.3a–d). If we
assume a jet nozzle width h ≈ 1 cm, then the corresponding dimensional value of
τη would be 7.59 × 10−4. Based on these assumptions, the estimated Stokes number
would be St ≈ 4 × 10−4 � 1.

(vii) A Schmidt number Sc = 1 is assumed for all particle classes. In reality, Sc takes a
range of values because it depends on the particle diffusion coefficient Dp, which
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in turn is a function of particle size according to the Stokes–Einstein equation
(Friedlander 2000). For temperature 298 K, for example, particles with 20 nm
diameter have Schmidt number 1415. The use of Sc = 1 implies higher diffusive
transport, and studies of flows with high Sc have so far been conducted only in
the context of 2-D flows, such as the study of Garrick & Khakpour (2004) on a
2-D mixing layer and the study of Cifuentes et al. (2020) on a 2-D flame–vortex
interaction. However, a high Sc results in Batchelor scales, ηc = η/

√
Sc, that are

much smaller than the Kolmogorov scale, η (Davidson 2004). For example, for
Sc = 1415, ηc would be roughly 37 times smaller than η, hence in a 3-D flow, it
would require a grid with 373 more cells. For the present simulation, which currently
uses 52 million cells, this would amount to 2.6 trillion cells. Therefore, the study of
the effect of high Sc in a 3-D flow simulation has to be left for future work.

2.2. Numerical method
The simulations were performed with our computational fluid dynamics (CFD) code,
PANTARHEI, which is coupled with the in-house code for population balance modelling,
CPMOD. PANTARHEI has been used to simulate a number of transitional and
turbulent flows (Xiao & Papadakis 2019; Alves Portela, Papadakis & Vassilicos 2020).
The incompressible Navier–Stokes equations are discretised by applying the finite
volume method in unstructured grids, and all unknown variables are stored at the
cell centroids (collocated variable arrangement). A second-order central discretisation
scheme is employed for the convection and viscous terms, while a third-order backward
differentiation formula (BDF) is used for the transient term. The orthogonal viscous terms
are treated implicitly, while the convection term and the non-orthogonal diffusion terms
are extrapolated from the previous three time steps. The pressure–velocity coupling is dealt
with by the fractional step method. The code is parallelised with the aid of the PETSc and
HYPRE libraries (Balay et al. 2021).

A method developed recently by Liu & Rigopoulos (2019) is employed for the
discretisation of the PBE. The method (a) provides an accurate prediction of the
distribution with a small number of sections, (b) conserves the first moment (or any other
single moment) in coagulation, (c) is applicable to any non-uniform grid (even an adaptive
one), and (d) is efficient and robust when coupled with CFD. It is based on the framework
of finite-volume methods applied to the particle volume domain, v, truncated to (vo, vmax).
The latter is discretised in (vo, . . . , vk), the intervals 
vi = vi − vi−1, i = 1, . . . , k are
defined, and each interval corresponds to a number density ni. One of the main challenges
in the numerical solution of the PBE is the conservation of the first moment in coagulation,
due to the presence of the integral terms. In our method, a transformation is employed to
decompose the birth term into fluxes of coagulating particles, and a map is constructed to
record them. An algorithm for constructing this map in an arbitrary non-uniform grid has
been developed, and the aggregation birth and death terms are then calculated via these
fluxes, resulting in mass conservation without introducing correction terms. The map is
constructed once at the start of the simulation and accessed throughout the run, making
the method computationally efficient and easy to couple with CFD. Test cases, including
analytical solutions and a co-flow laminar flame (Liu & Rigopoulos 2019), have shown
that the method produces very accurate solutions that conserve the first moment, even on
coarse grids.

After discretisation in the volume domain, the PBE is converted into a coupled system
of partial differential equations that govern the temporal and spatial evolution of the PSD
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in terms of discretised number densities, ni. The transport equation for ni is

∂ni

∂t
+ ∂(ujni)

∂xj
= ∂

∂xj

(
Dp

∂ni

∂xj

)
+ Si(n1, . . . , nk), (2.16)

where the source term, Si(n1, . . . , nk), represents the effect of coagulation for particles in
the interval i. The numerical scheme used for the solution of these transport equations is
slightly different from that described previously for the flow field. More specifically, the
convection and viscous terms are treated explicitly using third-order extrapolation from the
previous three time steps. The values of n1, . . . , nk are also extrapolated similarly and used
to calculate Si. In order to ensure boundedness for ni, the Gamma differencing scheme
(Jasak, Weller & Gosman 1999) was employed for the discretisation of the convection
term, and the value 0.1 was used for the scheme parameter βm.

2.3. Flow configuration and computational setup
Direct numerical simulations of a 3-D spatially developing planar turbulent jet were
performed. The jet is laden with monodisperse nanoparticles and flows into a particle-free
co-flow stream. There is a wealth of data for validating the flow field (Rajaratnam 1976; Le
Ribault, Sarkar & Stanley 1999; Pope 2000; Stanley, Sarkar & Mellado González 2002;
Klein, Sadiki & Janicka 2003a,b; Suresh et al. 2008; Watanabe et al. 2014).

The flow configuration is similar to that of Stanley et al. (2002). The Reynolds number
is Re = Uoh/ν = 3000, and the ratio of co-flow velocity, U∞, to the jet velocity, Uo,
is U∞/Uo = 0.2. The x, y and z coordinates (corresponding to indices i = 1, 2, 3 in the
notation of (2.1)) are defined in the streamwise, cross-stream and spanwise directions,
respectively. Turbulent properties are statistically homogeneous in the z direction. The size
of the computational domain Lx × Ly × Lz is 25h × 26h × 5h, similar to that of Stanley
et al. (2002) and Das & Garrick (2010). The computational domain is long enough in
the streamwise direction for the flow to reach fully developed turbulence. In addition, the
domain is extended in the cross-stream direction in order to minimise the effect of the top
and bottom boundaries.

A convective boundary condition was applied at the outlet boundary in the streamwise
direction; this boundary condition allows vortices to propagate through the exit plane with
minimal reflection. Periodic boundary conditions were used in the spanwise direction.
Finally, a symmetry boundary condition was applied in the top and bottom boundaries.
This condition does not allow for mass entrainment, and this causes a small reduction
in the local co-flow velocity in the streamwise direction. To mitigate this effect, the
computational domain was significantly extended in the cross-stream direction. Good
agreement between the DNS and reference data from the literature, to be presented later,
in § 3.1, suggests that the effect of the boundaries is very small.

At inflow, a top-hat profile with smooth edges is prescribed for the mean (i.e.
time-averaged) velocity. The profile is given by (Klein et al. 2003b; Stanley et al. 2002)

U( y) = Uo + U∞
2

+ Uo − U∞
2

tanh
−|y| + h/2

2θo
, (2.17)

where θo = h/20 (Le Ribault et al. 1999) is the shear layer momentum thickness. The
mean cross-stream and spanwise velocities were set to zero. The mean profile of the
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number density for the first interval n1 is given by the tangential profile

n1( y) = n1o + n1o tanh
−|y| + h/2

2θo
, (2.18)

where n1o is the time-averaged value of n1 at the centreline.
The method of Klein et al. (2003a) was employed to generate artificial turbulent

fluctuations at the inlet. The method requires a mean velocity profile, a profile for the
Reynolds stresses, turbulence length and time scales, a filter width, and the number of
slices (snapshots) of data to be generated. The output of the algorithm is a 3-D matrix
that represents the velocity components at the inlet plane for different time snapshots. In
the present study, the mean velocity profile is given by (2.17). Strictly speaking, the r.m.s.
profile in the x direction, urms, should be zero at y = ±h/2. However, it grows quickly
due to high shear, and for this reason, urms/Uo is set to 1.25 % at the jet centreline, and
increases parabolically to 5 % at y = ±h/2. The turbulence intensity of the co-flow is set
to 1 %. This urms profile is similar to that employed by Stanley et al. (2002). The velocity
r.m.s. profiles in the y and z directions were set equal to urms. The turbulence length scale
was lTurb = 0.3h, and the turbulence time scale was tTurb = 10h/Uo, where it was assumed
that tTurb = lTurb/Urms, with Urms = 3 %Uo. A discussion on the value and the effect of
the turbulence length scale can be found in Klein et al. (2003a). The number of snapshots
was equal to 100, which is large enough to generate data for one flow-through time (defined
using the length of the computational domain and the co-flow velocity, T = Lx/U∞). The
number of snapshots was calculated based on the prescribed turbulence length and time
scales mentioned above.

The simulations were performed on a non-uniform computational grid with
approximately 52 million cells, distributed as 900 × 452 × 128 in the x, y, z directions,
respectively. The grid spacing was uniform in the x and z directions, and equal to 
x =
0.028h and 
z = 0.039h. In the y direction, it was very fine close to the centreline, where

y = 0.018h, and increased exponentially towards the boundaries, where 
y = 0.124h.
The time step was 
t = 0.005h/Uo, resulting in a maximum Courant–Friedrichs–Lewy
(CFL) number of 0.24. Convergence studies with a perfectly stirred reactor showed that
this time step is adequate for the coagulation dynamics for the conditions considered.

Each simulation was run first for one flow-through time T to reach a state that is
independent of the initial conditions (recall that T is defined using the co-flow velocity
U∞, which is five times smaller than Uo). Following this, the simulations were run for
80 000 time steps (corresponding to 3.2T), and statistics were computed by averaging in
time and in the homogeneous spanwise direction. Finally, where possible, exploitation of
the jet symmetry with respect to the centreline was used to double the sample size. The
number of cores was 1008, and 84 672 Cray XC30 CPU hours were required for each case.

The maximum value of the ratio of cell size, defined as 
cell = (
x
y
z)1/3, to the
Kolmogorov length scale η = (ν3/ε)1/4 in the domain was 2.8, while the mean value
in the region of fully developed turbulence was 1.95. The grid resolution was assessed
by checking the balance of the turbulent kinetic energy equation; results are shown
in Appendix A, figure 17. The terms of the equation balance well, and the maximum
error was less than 5.5 % of the peak absolute value of convection due to mean flow,
indicating that the grid resolution is fine enough. The one-dimensional spectra of the
velocity fluctuations for a selected point in the fully turbulent region are also presented
in Appendix A, figure 18. The spectra exhibit a −5/3 power-law slope over about a
decade. There is also a dissipative range with faster decay rate at high frequencies,
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Dacoag Re PSD becomes self-preserving No. of intervals vmax/vo

Case 1 1 3000 before jet break-up 35 11 250
Case 2 1

3 3000 after jet break-up 35 2800

Table 1. Computational parameters of the simulations.

indicating that the turbulent motions are well resolved. The maximum Reynolds number

Reλ =
√

|u′|2λ/ν, based on the Taylor micro-scale λ =
√
ν|u′|2/ε, was found to be 160.

Simulations for two different coagulation Damköhler numbers, Dacoag = 1 and
Dacoag = 1/3, were performed. The values of Dacoag are close to those examined in
previous studies of nanoparticle coagulation (Garrick et al. 2006; Garrick 2011). The two
cases correspond to different times for the PSD to reach the self-preserving distribution.
According to (2.15), in a perfectly stirred reactor, these times would be τSP = 5 and
τSP = 15, respectively. As will be shown later, the jet breaks up at x/h ≈ 7.5. For the
chosen values of Dacoag, the PSD becomes self-similar upstream and downstream of the
break-up location for the first and second cases, respectively.

The PBE was discretised with 35 intervals in the particle volume domain. An
exponential grid was employed for all cases; this is well suited for fast-growing particles.
The range (vo, . . . , vmax) covered was different for each Dacoag case; vo remained the
same but the maximum value was vmax = 11 250vo for Dacoag = 1, and vmax = 2800vo
for Dacoag = 1/3. Convergence studies with a perfectly stirred reactor showed that this
grid is sufficiently accurate and ensures that the size distribution does not grow beyond
the maximum value during the simulation time. The computational parameters of the
simulations are also summarised in table 1.

The simulations were carried out in terms of dimensionless variables. The
non-dimensionalisation of the equations is described in § 2.1, where an asterisk was
introduced to denote dimensionless variables; refer to (2.3a–d) and (2.12a,b). In the
sections that follow, only dimensionless variables are presented, and for the sake of
simplicity, the asterisk has been removed.

3. Comparison with reference data

3.1. Flow field
In this section, the DNS data for the planar jet flow are presented and compared with
experimental and other reference simulation data from the literature. Additional data for
the balance of the terms in the turbulent kinetic energy equation and the one-dimensional
spectra of turbulent fluctuations are given in Appendix A. The turbulent kinetic energy,
k, in the (x–y) plane is depicted in figure 1(a) (because of symmetry, only the top half is
shown). The jet breaks up at x ≈ 7.5, and downstream of this location the turbulent kinetic
energy rapidly grows and decays again; the maximum of k is located at (x, y) = (11, 0.7).
Contours of instantaneous spanwise vorticity and passive scalar fields, ωz and φ, are shown
in figures 1(b) and 1(c), respectively. A downstream region with intense turbulent mixing
and a wide range of turbulence length scales is evident.

The growth of the jet half-width based on the streamwise velocity, δU , is shown in
figure 2(a). The jet half-width δU is defined as the distance from the symmetry plane
(centreline) to the point in the cross-stream direction where the mean streamwise velocity
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Figure 1. Flow field data: (a) turbulent kinetic energy (TKE) k; (b) 3-D view of the instantaneous spanwise
vorticity field ωz; (c) instantaneous contours of the passive scalar on (x–y) plane z = 0.

excess with respect to the co-flow velocity, Ue(x, y) = U(x, y)− U∞(x), is half that with
respect to the centreline,
Uc(x) = Uc(x)− U∞(x). The ratio of the velocity excess at the
jet nozzle exit, 
Uo = Uo − U∞, to 
Uc(x) is shown in figure 2(b).

The growth of the jet half-width based on the passive scalar, δφ , is shown in figure 3(a).
The half-width δφ is defined (similarly to δU) as the distance from the symmetry plane
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Figure 2. Growth of the jet half-width based on the velocity (a) and centreline mean velocity excess decay (b).
Blue line, present results; �, Thomas & Chu (1989); 	, Browne et al. (1983); dotted line, DNS (Stanley et al.
2002).
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Figure 3. Downstream growth of the jet half-width based on the passive scalar (a) and decay of the mean
scalar on the jet centreline (b). Blue line, present results; 	, Browne et al. (1983); �, Davies, Keffer & Baines
(1975); dotted line, DNS (Stanley et al. 2002).

(centreline) to the point where the passive scalar concentration is half of that on the
centreline. The mean scalar decay, defined as (φo/φc)

2, where φc(x) is the value at the
centreline and φo is the value at the jet nozzle exit, is shown in figure 3(b).

It can be seen that there is good agreement with the experimental and other reference
data. Theoretical analysis (Rajaratnam 1976; Pope 2000) suggests that δU ∝ x and Uc ∝
1/

√
x for planar jet flow, and the same scaling is also valid for the scalar concentration.

It has been documented (Stanley & Sarkar 2000; Stanley et al. 2002; da Silva, Lopes &
Raman 2015) that the jet break-up location is highly affected by the inlet conditions at
the nozzle. The jet characteristics are also affected by the value of the Reynolds number
in cases where Re < 10 000 (Klein et al. 2003b; Deo, Mi & Nathan 2008). Therefore,
independently of the exact location of the jet break-up, the slope of the curves shown in
figures 2 and 3 for the present DNS exhibits good agreement with that of reference data.

The self-similar cross-stream profiles for velocity and scalar are depicted in figures 4(a)
and 4(b), respectively. The velocity profiles collapse to a single curve, and there is good
agreement with reference (experimental or other DNS) data. The velocity field reaches
self-similarity at x ≈ 12, while the passive scalar is slightly slower to develop and the
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Figure 4. Self-similar profiles of mean velocity and mean passive scalar for three axial positions. (a) Mean
velocity: solid lines, present results; �, Gutmark & Wygnanski (1976); ◦, Ramaprian & Chandrasekhara (1985);
dotted line, DNS (Stanley et al. 2002). (b) Mean scalar: solid lines, present results; �, Davies et al. (1975); ◦,
Jenkins & Goldschmidt (1973); dotted line, DNS (Stanley et al. 2002).

self-similar region is reached at x ≈ 17. The same behaviour was also observed by Stanley
et al. (2002).

3.2. Particle size distribution
The DNS–PBE approach allows for the prediction of the PSD at every point in the domain.
As mentioned in § 2.1, in a perfectly stirred reactor, the PSD reaches a self-preserving
distribution. Figure 5 shows the time-averaged PSDs at five different probe points on
the centreline for both Dacoag number cases. The computed distributions are scaled
according to (2.9) and (2.10), and compared with the self-preserving PSD from Vemury &
Pratsinis (1995). It can be seen that as the PSDs develop, they approach the self-preserving
distribution and there is good agreement with the reference data, especially close to the
exit of the domain. Turbulence may affect the time to reach the self-preserving state
(Friedlander 2000). As mentioned earlier, the values of Dacoag were chosen in such a
way that the PSD becomes self-preserving before and after the jet break-up location for
the two cases. In particular, for the Dacoag = 1/3 case, the PSD becomes self-preserving
slightly downstream of the expected location (x ≈ 15). However, the difference observed
is small. The fact that the PSDs in the turbulent flow field do not deviate a lot from the
self-preserving distribution can be attributed to the lack of recirculating flow structures
that would bring into contact particles with different distributions and would make the
PSD deviate from the self-preserving state. Finally, the good matching with the reference
data indicates that the number and distribution of volume intervals are sufficient to resolve
the PSD accurately.

4. Results and discussion

4.1. Effect of coagulation and mixing on the moments
The evolution of the moments is dominated by two physical mechanisms, coagulation
and turbulent mixing, and by their interaction. Coagulation reduces the total number of
particles, M0, with increasing distance from the orifice, but it does not alter the total
particle volume, M1, which behaves as a passive scalar. It also brings about an increase
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Figure 5. Normalised time-averaged PSDs at several probe points along the centreline. The results are
compared with reference data for the self-preserving distribution (Vemury & Pratsinis 1995). A logarithmic
scale was used for the horizontal axes. (a) Dacoag = 1; (b) Dacoag = 1/3.

in the second moment, M2, due to the heavier weighting of the large particles on the
distribution. Turbulent mixing brings about dilution, which can be quantified using M1.

The instantaneous M0 fields for the two Dacoag cases are depicted in figures 6(a) and
6(b), while the instantaneous M2 fields are shown in figures 7(a) and 7(b). It is evident that
M0 reduces at downstream locations. The second moment, M2, attains small values close to
the jet nozzle and increases rapidly due to coagulation until the jet break-up location. The
jet becomes unstable and breaks into smaller vortices, while the entrainment of co-flow
fluid dilutes the large values of M2. However, as can be seen, for example, in figure 7(a),
the remnants of the core of the jet (see region 14 < x < 22) are fluid patches with large
values of M2. Further downstream, the small-scale motion due to the strong turbulence in
the jet has mixed further the fluid patches of the jet core. However, it is evident that M0
reduces quite fast, while fluid patches with large values of M2 start to emerge.

The evolution of the zeroth moment, M0, is governed by the following equation in
non-dimensional form, derived from (2.8) for k = 0:

∂M0

∂t
+ uj

∂M0

∂xj
= 1

Sc
1

Re
∂2M0

∂xj ∂xj
− 1

2
Dacoag

∫ ∞

0

∫ ∞

0
β(v,w) n(v) n(w) dv dw. (4.1)

The source term is negative because coagulation results in a reduction in the total number
of particles. Figure 8(a) shows the centreline variation of the time-averaged M0, juxtaposed
with M1. There is a rapid reduction of the particle number concentration close to the
jet nozzle, and the rate is higher for the higher Dacoag; this is expected because higher
Dacoag represents more intense coagulation. Both curves start to change behaviour at x ≈
7.5, where the jet breaks up and turbulent mixing starts to play an important role. From
figure 8(a) it is evident that the rate of reduction (slope) of M0 is larger than that of M1
in the region of fully developed turbulence (x > 15). Dilutions due to turbulent mixing
and coagulation work in unison and result in a reduction of M0. The contribution of each
mechanism can be quantified as follows. In the case of Dacoag = 1, M0 is reduced by 89 %
between the jet break-up location and the exit of the domain, while a passive scalar, such
as M1, is reduced by 58 %. Similarly, in the case of Dacoag = 1/3, M0 is reduced by 88 %
between the same locations. This indicates that both effects contribute to the evolution of
M0, with turbulent dilution (rather than coagulation) having a slightly stronger effect.
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Figure 6. Instantaneous contour plots of M0 on (x–y) plane z = 0. (a) Dacoag = 1; (b) Dacoag = 1/3.
A logarithmic scale colourbar is used.

The transport equation for the second moment, M2, is derived from (2.8) for k = 2:

∂M2

∂t
+ uj

∂M2

∂xj
= 1

Sc
1

Re
∂2M2

∂xj ∂xj
+ Dacoag

∫ ∞

0

∫ ∞

0
vwβ(v,w) n(v) n(w) dv dw. (4.2)

For this moment, the source term is positive. Figure 8(b) shows the centreline variation
of the time-averaged M2. Unlike M0, in the case of M2 there is competition between
dilution and coagulation. Turbulent mixing acts towards reducing M2, while coagulation
acts towards increasing M2. As can be seen in figure 8(b), the net result is an increase in M2.
The effect of turbulence is thus to mitigate the rapid growth of the second moment. The
net increase of M2 with distance after the jet break-up location indicates that coagulation
has a greater effect on the evolution of M2 compared to dilution.
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Figure 7. Instantaneous contour plots of M2 on (x–y) plane z = 0.(a) Dacoag = 1; (b) Dacoag = 1/3.
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Figure 8. Centreline variation of time-averaged M0 (a) and M2 (b) for the two Dacoag cases. The red
dashed-dotted line indicates the jet break-up location. A logarithmic scale was used for the vertical axis in
(a). A black dashed-dotted line is used for M1 in (a).

937 A25-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

57
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.57


M. Tsagkaridis, S. Rigopoulos and G. Papadakis

4.2. Coagulation source term correlations
We now turn our attention to the effect of turbulent fluctuations and consider the Reynolds
decomposition of the PBE (Scott 1967; Friedlander 2000; Rigopoulos 2007). Apart from
velocities, the number densities are also decomposed into mean and fluctuating parts, and
this decomposition is substituted into (2.4). Time-averaging results in the equation

ūj
∂ n̄
∂xj

+
∂u′

jn
′

∂xj
= 1

Sc
1

Re
∂2n̄
∂xj ∂xj

+ Dacoag

(
1
2

∫ v

0
β(w, v − w) n̄(w) n̄(v − w) dw −

∫ ∞

0
β(v,w) n̄(v) n̄(w) dw

+1
2

∫ v

0
β(w, v − w) n′(w) n′(v − w) dw −

∫ ∞

0
β(v,w) n′(v) n′(w) dw

)
. (4.3)

The time-averaging of the transient term in (2.4) is zero for jet flow cases where statistical
stationarity is reached. The last two terms arise due to turbulent coagulation; both involve
integrals of correlations between number density fluctuations and are unclosed. Lack of
understanding of the behaviour of correlations n′(v) n′(w) is a long-standing problem in
the literature (Levin & Sedunov 1966, 1968; Scott 1967; Warshaw 1967; Drake 1972).

The Reynolds decomposition can also be applied to the transport equation of moments,
(2.8), resulting in

ūj
∂Mk

∂xj
+
∂u′

jM
′
k

∂xj
= 1

Sc
1

Re
∂2Mk

∂xj ∂xj

+ Dacoag

(
1
2

∫ ∞

0

∫ ∞

0
(v + w)k β(v,w) n̄(v) n̄(w) dv dw

− 1
2

∫ ∞

0

∫ ∞

0
(vk + wk) β(v,w) n̄(v) n̄(w) dv dw

+ 1
2

∫ ∞

0

∫ ∞

0
(v + w)k β(v,w) n′(v) n′(w) dv dw

−1
2

∫ ∞

0

∫ ∞

0
(vk + wk) β(v,w) n′(v) n′(w) dv dw

)
. (4.4)

Similarly to the transport equation for the number density, the last two terms are unclosed.
Analysis of these terms is important since the moments are measured frequently in
experiments, and also a family of numerical methods for modelling particulate flows is
based on the method of moments. Our analysis will focus on the unclosed terms in the
transport equations of M0 and M2 (coagulation does not alter M1, as already mentioned).
Knowledge of these moments is also required in order to characterise the particle field with
the method of moments when a log-normal size distribution is assumed (Brock, Kuhn &
Zehavi 1986).

As was mentioned in § 2.3, 35 intervals 
vi were used to discretise the particle volume
space v, thus for each computational cell there are 35 × 35 correlations n′

i n′
j. As this is a

very large amount of information, maps are presented for only a few points of interest
in the domain. Results for the number density fluctuation correlations n′(v) n′(w) for
the two values of Dacoag at points (x, y, z) = (10, 0, 0) and (17.5, 0.5, 0) are shown in
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Figure 9. Map of number density fluctuation correlations n′(v) n′(w): (a) for Dacoag = 1 at probe point
(10, 0, 0); (b) for Dacoag = 1 at probe point (17.5, 0.5, 0); (c) for Dacoag = 1/3 at probe point (10, 0, 0);
(d) for Dacoag = 1/3 at probe point (17.5, 0.5, 0).

figure 9. The first point is located on the centreline and relatively close to the jet break-up
location (x ≈ 7.5), while the second point is further downstream, in the region of fully
developed turbulence and slightly off the centreline. The results are presented in the form
of contour maps with non-uniform spacing because of the exponential grid employed for
the discretisation of the particle volume space. The map of the time-averaged number
density combinations n(v) n(w) for Dacoag = 1 at probe point (10, 0, 0) is also shown in
figure 10(a). As expected, the maps are symmetric with respect to the diagonal v = w.
For most of the points examined, it is found that the magnitude of n′(v) n′(w) follows that
of n(v) n(w), as can be seen in figures 9(a) and 10(a). More specifically, the maximum
value of the correlation is found along the diagonal v = w and close to the interval where
n̄(v) has a local maximum, which is at the same interval where n(v) n(w) receives the
maximum value. For instance, the PSD at probe point (10, 0, 0) for Dacoag = 1, shown in
figure 10(b), has a local maximum for v ≈ 5 (in terms of discretised PBE, this corresponds
to the third interval, n3), while the maximum value of the correlations at the same probe
point were found for (v,w) ≈ (7.1, 7.1) (see figure 10a). Furthermore, for large values of
v and w, n′(v) n′(w) tends to zero. These values correspond to the right tail of the PSD,
where the mean number density n̄(v) is small (there are few particles of large size, as seen
in figure 10b).

The correlations n′(v) n′(w) are found to be mostly positive for most v,w combinations,
as shown in figure 9. Since we are not considering differential diffusion of particles of
different sizes, the distribution is affected as a whole by turbulence, and coagulation is not
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Figure 10. (a) Map of time-averaged number density combinations n(v) n(w); (b) time-averaged PSD for
Dacoag = 1 at probe point (10, 0, 0).

rapid enough to redistribute fluctuations in a way that generates negative correlations, with
the exception discussed below.

Negative values of the correlations n′(v) n′(w) can also appear. This can be seen, for
example, in figure 9(a) for Dacoag = 1 at probe point (10, 0, 0). These negative values
involve mainly the fluctuation of the number density of the first interval, n′

1, and that of
intervals that are on and to the right of the local maximum of n̄(v) (see figure 10b), e.g.
the correlations n′

1 n′
3 and n′

1 n′
4 etc. A possible explanation for this effect is that at the

inlet, only n1 is non-zero, and coagulation acts towards reducing the instantaneous values
of n1 and increasing those of n2, n3, etc. A general trend is that the effect of coagulation
is to move the distribution to the right in particle volume space towards higher particle
volumes. For example, at probe point (10, 0, 0), on average, coagulation acts towards
reducing the instantaneous values of n1 and increasing those of intervals at the right of
the local maximum of n̄(v), such as n4 (see figure 10b). Therefore, negative fluctuations
of n′

1, in that case, are correlated with positive fluctuations of n′
4 and vice versa (when

n1 is consumed, n4 is created). Once coagulation has progressed and the consumption
of n1 is not so intense, the correlations become positive. This also partly explains why
negative correlations are found only for the case of intense coagulation (Dacoag = 1) and
for points close to the jet break-up location (x < 12.5). Data for the downstream location
(17.5, 0.5, 0) are presented in figure 9(b), and it is observed that n′(v) n′(w) > 0 for all
combinations of (v,w). Negative correlations are not found for the case Dacoag = 1/3
(see also figures 9c,d). This means that n′

1 and n′
i have the same sign probably because of

the increased effect of turbulent mixing compared to the effect of coagulation.
It is of interest to examine the value of n′(v) n′(w) in relation to the value of n(v) n(w).

The intensity of the correlations of the number density fluctuations, the square of the
passive scalar fluctuation intensity and the turbulence intensity are defined, respectively,
as

In = n′(v) n′(w)
n(v) n(w)

, Iφ = φ′2

φ2
, Iu = u′2

i

U2
i

, (4.5a–c)

where Iu is defined here for future reference. Figure 11 shows a surface plot of In at the
probe point (10, 0, 0) for the two Dacoag cases. Here, In is normalised with the value of
Iφ at that specific location, while the location where the fluctuation intensities are equal
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Figure 11. Intensity of correlations of number density fluctuations In at probe point (10, 0, 0): (a) Dacoag = 1;
(b) Dacoag = 1/3. Results are normalised by Iφ = 0.156. The black dashed line indicates the location where
the fluctuation intensities are equal, i.e. In = Iφ .

(In = Iφ) is also shown. First, note that the negative correlations referred to above can
be seen very clearly in this plot. The differences with Iφ are small for the combinations
(v,w) of interest, i.e. the ones that make a large contribution to the integral. The value of
In increases as we move towards diagonal points with increasing v and w, due to the fact
that both the numerator and the denominator approach zero at these points. However, these
points make a small contribution to the coagulation source term.

4.2.1. Effect of fluctuations on the zeroth moment
The transport equation for the time-averaged zeroth moment, M0, is obtained from (4.4)
for k = 0 as

ūj
∂M0

∂xj
+
∂u′

jM
′
0

∂xj
= 1

Sc
1

Re
∂2M0

∂xj ∂xj
+ Dacoag

(
−1

2

∫ ∞

0

∫ ∞

0
β(v,w) n̄(v) n̄(w) dv dw

−1
2

∫ ∞

0

∫ ∞

0
β(v,w) n′(v) n′(w) dv dw

)
. (4.6)

In this section, we focus on the correlations arising from the Reynolds decomposition of
the coagulation source term. This decomposition is shown below, with the terms labelled
as A0, B0 and C0 to facilitate the subsequent discussion:

−1
2

∫ ∞

0

∫ ∞

0
β(v,w) n(v) n(w) dv dw︸ ︷︷ ︸

A0

= −1
2

∫ ∞

0

∫ ∞

0
β(v,w) n̄(v) n̄(w) dv dw︸ ︷︷ ︸

B0

−1
2

∫ ∞

0

∫ ∞

0
β(v,w) n′(v) n′(w) dv dw︸ ︷︷ ︸

C0

. (4.7)

A contour plot of the absolute values of A0 and a contour plot of C0 for Dacoag = 1/3
are depicted in figures 12(a) and 12(b), respectively (because of to symmetry, only
the top half is shown). The term C0 is unclosed and is usually neglected in studies
of turbulent coagulation; C0 attains the maximum value close to the orifice and in
particular at the shear layer between the jet stream with the co-flow stream. In this
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Figure 12. Contour plots of |A0| (a) and C0 (b) for Dacoag = 1/3. A logarithmic scale colourbar was used in
(a).

region, Kelvin–Helmholtz instabilities develop, leading to vortical structures, and also the
magnitude of the coagulation source term of the M0 equation is very large close to the
inlet. An important observation is that C0 is negative everywhere in the domain, because
for most v,w combinations, the correlations n′(v) n′(w) were found to be positive, as was
discussed before and shown in figure 9. The fact that C0 < 0 means that, by neglecting
it, one would overestimate M0. Qualitatively, this is also in agreement with the results of
Garrick (2011), where it was found that the predominant effect of the SGS contribution is
to reduce particle growth.

The evolution of A0 for both Dacoag numbers is depicted in figure 13. Solid lines were
used for the case of Dacoag = 1, and dashed lines for Dacoag = 1/3. The values of A0
along the centreline are shown in figure 13(a), where a logarithmic scale was used for the
y axis. It is observed that A0 is larger in magnitude for the low Dacoag case, and its values
cover a range of four orders of magnitude. Close to the inlet, similarly to M0, A0 attains
the highest magnitude, which is O(1). This is a region of rapid coagulation due to the high
particle concentration. The value of A0 drops rapidly with the distance from the orifice
and eventually takes values that are O(10−5) close to the outlet.

The cross-stream profiles at the axial position x = 20 – where self-similarity is verified
by both simulations – of each term in (4.7) are shown in figure 13(b). It is observed that the
maximum magnitude of C0 is not found on the centreline. Specifically, C0 increases as we
move from the centreline to the jet edges, reaches its maximum value, and then decreases.
This picture is consistent with the contour plot shown in figure 12. This behaviour is

similar to that found for the TKE and the passive scalar fluctuations
√
φ′2 profiles.

The horizontal axes in figures 13(b) and 14(b) are non-dimensionalised with δφ = 2.362
(the jet half-width based on the passive scalar for the axial position x = 20).
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Figure 13. Coagulation source terms for the zeroth moment (see (4.7)). (a) Centreline values of A0; the red
dashed-dotted line indicates the jet break-up location. (b) Cross-stream profiles of A0, B0 and C0 at the axial
position x = 20. A logarithmic scale was used for the vertical axis in (a). The horizontal axis in (b) was
normalised by δφ = 2.362. Note the different horizontal axes in (a) and (b).

y/δφx

100

80

18

16

14

12

10

8

6

4

2

60

40

20

0 5 10 15 20 25 0 0.5 1.0 1.5 2.0 2.5

(–) %

C0/A0 (Dacoag = 1)
C0/A0 (Dacoag = 1/3)
Iφ
Iu

(b)(a)

Figure 14. C0/A0 ratio (see (4.7)). (a) Centreline values of C0/A0. (b) Cross-stream profiles of C0/A0 at the
axial position x = 20. The horizontal axis in (b) was normalised by δφ = 2.362. Note the different horizontal
axes in (a) and (b).

To elucidate further the effect of turbulent fluctuations on coagulation, the relative
contribution of each term on the right-hand side of (4.7) is examined. Here, C0 is
normalised by A0, and the results along the centreline for both Dacoag values are shown
in figure 14(a). The ratio C0/A0 represents the contribution of the number density
fluctuations to the total coagulation source term. It can also be seen that C0/A0 seems
to have a weak dependence on Dacoag (figures 14a,b). The centreline values of C0/A0 are
zero close to the inlet. The ratio starts to increase after the jet break-up, and reaches the
value 18 % at x = 12.4. After this point, the ratio gradually decreases and reaches the value
5 % at the exit of the computational domain. It can be seen that at the centreline, C0 makes
a significant contribution (approximately 20 %) to the mean source term A0.

This contribution increases close to the jet edges, as shown by the cross-stream profiles
of C0/A0 plotted in figure 14(b) for x = 20 for both Dacoag cases. For example, at
y/δφ = 1, the ratio C0/A0 has values between 30 % and 40 %. In other words, as the jet
spreads, the difference between B0 and A0 increases, and at the point where the value
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of the first moment (M1 ≡ φ) has dropped to half of the value on the centreline, the
difference has reached a value between 30 % and 40 %. Further away from the centreline,
both A0 and C0 assume very small values and therefore no significance can be ascribed to
their ratio, which approaches 1 as C0/A0 = 1 − B0/A0 and B0 approaches zero. The same
behaviour was also found for Iφ . Nevertheless, the region far away from the centreline
is not of interest, since the number concentration of particles is also very small. From
this discussion, it can be concluded that C0 should not be neglected in the modelling of
turbulent coagulation.

For comparison purposes, the squares of the passive scalar fluctuations intensity, Iφ ,
and the velocity fluctuations intensity, Iu, are also shown in figure 14. An interesting
observation is that C0/A0 has qualitatively and quantitatively the same behaviour as Iφ .
Dilution due to turbulent mixing (rather than coagulation) was found to have a slightly
greater effect on the evolution of M0, as was discussed in § 4.1. This partly explains why
C0/A0 behaves like Iφ .

4.2.2. Effect of fluctuations on the second moment
The analysis of the previous section is now performed for the second moment. The
transport equation of M2 can be derived by setting k = 2 into (4.4), which results in

ūj
∂M2

∂xj
+
∂u′

jM
′
2

∂xj
= 1

Sc
1

Re
∂2M2

∂xj ∂xj
+ Dacoag

(∫ ∞

0

∫ ∞

0
vwβ(v,w) n̄(v) n̄(w) dv dw

+
∫ ∞

0

∫ ∞

0
vwβ(v,w) n′(v) n′(w) dv dw

)
. (4.8)

The correlations arising from the Reynolds decomposition of the coagulation source term
are labelled as follows:∫ ∞

0

∫ ∞

0
vwβ(v,w) n(v) n(w) dv dw︸ ︷︷ ︸

A2

=
∫ ∞

0

∫ ∞

0
vwβ(v,w) n̄(v) n̄(w) dv dw︸ ︷︷ ︸

B2

+
∫ ∞

0

∫ ∞

0
vwβ(v,w) n′(v) n′(w) dv dw︸ ︷︷ ︸

C2

. (4.9)

The evolution of A2 and C2 for Dacoag = 1/3 is shown in figure 15. The value of the term
C2 is positive everywhere in the domain, again because n′(v) n′(w) is mostly positive, as
discussed before. This implies that neglecting C2 would lead to an underestimation of M2.
Figure 15(b) shows that away from the centreline towards the jet edges, C2 increases until
reaching a local maximum, at roughly (x, y) = (9, 0.55) for both runs, and then drops to
zero. The maximum is located slightly downstream of the jet break-up and coincides with

the location where the r.m.s. value of the passive scalar fluctuations
√
φ′2 is maximised.

For reference, the location of the maximum TKE is (x, y) = (11, 0.7).
The variation of A2 in the centreline is shown in figure 16(a) for both Dacoag numbers.

In the absence of flow, A2 would increase monotonically with time. Indeed, this is exactly
what happens close to the jet nozzle; A2 increases with distance away from the orifice
(time can be converted easily to distance). Shortly upstream of the jet break-up location
(red dashed-dotted line in figure 16a), A2 starts to decrease and eventually reaches values
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Figure 15. Contour plots of A2 (a) and C2 (b) for Dacoag = 1/3.
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Figure 16. Coagulation source terms of the second moment equation (see (4.9)). (a) Centreline values of A2,
B2 and C2; the red dashed-dotted line indicates the jet break-up location. (b) Centreline values of ratio C2/A2.

smaller even than those at the inlet. The maximum of C2 along the centreline is found at
around x = 11. The highest deviation between A2 and B2 is found in the region between
x = 7.5 and 18, and this is true for both Dacoag numbers. It is also noted that even though
A2 is reduced, the effect of coagulation can compensate for the effect of turbulent dilution
on mean M2; this can be concluded from the fact that the latter increases in the streamwise
direction, as shown in figure 8(b).

The variation of the ratio C2/A2 along the centreline is depicted in figure 16(b). This
ratio represents the relative contribution of the number density fluctuations to the total
source term. Note that C2/A2 was found to have a weak dependence on Dacoag for the
cases examined, similar to C0/A0. The maximum along the centreline is 20.6 % and is
found at x = 12.5, while the peak value of C0/A0 was around 17.5 % found at the same

937 A25-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

57
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.57


M. Tsagkaridis, S. Rigopoulos and G. Papadakis

location x. It can be seen that C2 makes a large contribution to A2 and therefore should not
be neglected for accurate modelling of turbulent coagulation.

For comparison purposes, the squares of the passive scalar fluctuations intensity Iφ =
φ′2/φ2 and the velocity fluctuations intensity Iu = ui′2/Ui

2 are also shown in figure 16(b).
An interesting observation is that C2/A2 reaches higher values than the ratio C0/A0. It was
shown in § 4.2.1 that C0/A0 reaches values close to Iφ (see figure 14a). On the contrary, it
is observed from figure 16(b) that the relative difference between the peak value of C2/A2
and that of Iφ is 18 %. Coagulation was found to have a greater effect on the evolution of M2
in this region, as discussed in § 4.1. This has to do with the heavier weighting of the large
particles of the distribution, which are formed due to coagulation at downstream positions,
on the second moment. On the other hand, turbulent dilution (rather than coagulation) was
found to have a slightly stronger effect on the evolution of M0. This partly explains why
C2/A2 reaches higher values than the ratio C0/A0.

5. Conclusions

The objective of the present paper was to present a DNS study of turbulence–coagulation
interaction. In particular, the study focused on the behaviour and significance of the
unknown correlations of fluctuations that arise from the Reynolds decomposition of the
PBE and moment transport equations. These correlations appear in any problem featuring
turbulence and coagulation, such as soot formation and nanoparticle synthesis, but usually
in conjunction with other physical and chemical effects, such as those associated with
chemical kinetics. Hence the numerical experiments in the present study are intended
to isolate the effect of turbulence–coagulation interaction. The numerical experiments
were conducted in the Eulerian DNS–PBE framework, where the DNS resolves the flow
down to the Kolmogorov scale, while the PBE is solved via a discretisation method
that is free of a priori assumptions regarding the shape of the PSD. A unity Schmidt
number was employed, as it is not feasible at present to resolve the Batchelor scales
that result from diffusion at high Schmidt numbers. Direct numerical simulations of a
3-D turbulent planar jet flow at Re = 3000 were performed, for which it was feasible to
obtain a fully resolved turbulent flow as well as an accurate numerical solution of the
PBE in the whole domain, and the flow field was validated by comparison with reference
experimental and DNS data. The jet was laden with monodispersed nanoparticles issued
into a particle-free co-flow stream. The phenomena under investigation were turbulent
mixing and particle coagulation in the free-molecule regime. Simulations for two different
coagulation Damköhler numbers, Dacoag = 1 and 1/3, were carried out, where Dacoag is
defined as the ratio of a convection time scale to a coagulation time scale, the latter related
to the time needed to reach the self-preserving distribution.

The correlations of the fluctuating number densities were calculated at specific probe
points in the domain. It was found that the correlations were mostly positive for all
combinations of particle volumes. However, negative correlations were also present for
the case of more intense coagulation, i.e. Dacoag = 1, close to the jet break-up location.
Furthermore, the intensity of the correlations was examined by normalising them with the
mean of the product of the number densities. Results showed that the intensity maps have
rather uniform values with magnitude close to the square of the passive scalar fluctuations
intensity.

Unclosed terms also arise during the Reynolds decomposition of the transport equations
for the zeroth and second moments. The unclosed terms make a large contribution to
the time-averaged coagulation source terms and therefore should not be neglected. More
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specifically, for the transport equation of M0, the ratio of the term with the unknown
correlations (denoted C0) to the time-averaged coagulation source term (denoted A0)
reaches values as high as 18 % on the jet centreline, and increases up to 40 % close to the
jet edges. Furthermore, the value of C0 was negative everywhere in the domain because,
for most particle size combinations, the correlations of the fluctuating number densities
were found to be positive. The negative value of C0 indicates that neglect of C0 could lead
to an overestimation of M0. For the transport equation of M2, the ratio of the term with the
unknown correlations (denoted C2) to the time-averaged coagulation source term (denoted
A2) reached values as high as 20 % on the jet centreline, and the value of C2 was positive
everywhere in the domain.

In the present flow configuration, the ratio C0/A0 showed the same behaviour as that
of the square of the passive scalar fluctuations intensity. This indicates that dilution due
to turbulent mixing (rather than coagulation) had a slightly greater effect on the evolution
of M0 in the region downstream of the jet break-up location. On the contrary, C2/A2 was
found to reach higher values than C0/A0, with a relative difference of the peak values close
to 18 %, indicating that coagulation (rather than turbulent dilution) had a greater effect on
the evolution of M2. Finally, both ratios were found to have a weak dependence on the
Dacoag number, at least for the cases examined.

To summarise, the present study aimed to refine our understanding of the effect of
turbulent fluctuations on the coagulation process. Coagulation is a key process in several
engineering and environmental problems – including soot formation, flame synthesis of
nanoparticles such as silica and titania, and atmospheric aerosols – and understanding
its interaction with turbulence is important for developing judicious assumptions and
developing accurate models for predicting particle-laden flows. Future work should
examine these interactions within more complex flows and in situations where other
particulate phenomena, such as nucleation and growth, are present.
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Appendix A

The turbulent kinetic energy (TKE) equation takes the form (Pope 2000)

−ūj
∂

∂xj

(
1
2

u′
iu

′
i

)
︸ ︷︷ ︸

Ck

− ∂

∂xj

(
1
ρ

u′
jp

′
)

︸ ︷︷ ︸
πk

− ∂

∂xj

(
1
2

u′
iu

′
iu

′
j

)
︸ ︷︷ ︸

Tk

+ ∂

∂xj

(
2ν u′

i sij

)
︸ ︷︷ ︸

Dk

− u′
iu

′
j Sij︸ ︷︷ ︸

Pk

− 2ν sij sij︸ ︷︷ ︸
εk

= 0, (A1)
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Figure 17. Variation of turbulent kinetic energy budgets along the jet centreline (all terms are
non-dimensionalised with the variables defined in (2.3a–d)).

where Sij and sij denote the mean and fluctuating strain rates, respectively:

Sij = 1
2

(
∂ ūi

∂xj
+ ∂ ūj

∂xi

)
, sij = 1

2

(
∂u′

i
∂xj

+
∂u′

j

∂xi

)
. (A2a,b)

In (A1), terms Ck, πk, Tk, Dk, Pk and εk denote convection due to mean flow, pressure
gradient work, transport by velocity fluctuations, viscous diffusion, production by mean
flow, and dissipation, respectively. The variation of these terms together with their sum,Σ ,
along the jet centreline is shown in figure 17. Overall, the equation is well balanced, with
the maximum error being less than 5.5 % of the peak absolute value of convection due to
mean flow. This indicates that the resolution of the computational grid is fine enough.

Figure 18 shows the one-dimensional E11(κ1) and E22(κ1) spectra of turbulent
fluctuations, plotted with Kolmogorov scaling. For the definition of these quantities, we
refer to Pope (2000). The spectra are presented as functions of streamwise wavenumber
κ1, and they were obtained from the frequency spectra of the streamwise and cross-stream
velocity fluctuations at the probe point (x, y, z) = (20, 1.5, 0), which is located in the
region of fully developed turbulence. The conversion of the frequency to wavenumber
spectra is based on Taylor’s ‘frozen turbulence’ hypothesis (Taylor 1935) and was
performed through the variable transformation κ1 = 2πf /Uc, where f is the frequency,
and Uc is a convection velocity taken as the time-averaged streamwise velocity at
that probe point. The Kolmogorov −5/3 power-law one-dimensional spectra E11(κ1) =
C1 ε

2/3 κ
−5/3
1 and E22(κ1) = C′

1 ε
2/3 κ

−5/3
1 were also calculated using the value of the

turbulent kinetic energy dissipation rate at that probe point and presented in the figures
for comparison. The values of the universal constants C1 and C′

1 are 0.49 and 0.65,
respectively (Pope 2000). Although, for the flow conditions examined, an extended inertial
region is not expected, the DNS data do exhibit a power-low close to −5/3 over about
a decade, and match well the theoretical spectra. Furthermore, at high frequencies, a
dissipative range with a faster decay rate is observed, which indicates that the turbulent
motions are well resolved.
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Figure 18. One-dimensional power spectra E11(κ1) (a) and E22(κ1) (b) obtained from the frequency spectra of
the streamwise and cross-stream velocity fluctuations at the probe point (x, y, z) = (20, 1.5, 0). Kolmogorov’s
universal scaling was used. The dashed red lines represent the one-dimensional wavenumber spectra
(a) E11(κ1) = C1 ε
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Y. Nagano & S. Jakirlić). Begell House.
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