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We report a knot cascade of magnetic field lines through the stepwise reconnection of a
pair of orthogonal helical flux tubes with opposite chirality. The magnetic-surface field
is developed to identify the evolution of flux tubes and pinpoint the reconnection region.
We find that the incipient X-type magnetic reconnection generates antiparallel U-shaped
field lines moving in opposite directions away from the plasmoid. This reconnection
is characterized by the decay of the magnetic flux through the diagonal symmetric
planes. Subsequently, overhand magnetic knots are tied via the secondary reconnection,
coinciding with the notable conversion from magnetic energy to kinetic energy. The
knotted field lines are then rotated and stretched in the plasmoid by the vortical-like
local motion induced by the magnetic knots themselves via the Lorentz force. This
nonlinear evolution triggers the tertiary reconnection to form double overhand knots, and
then further reconnections to produce more complex knots. From field lines extracted at
different times, the knot cascade via the sequence of reconnections in a finite time period
is quantified by the increment of the minimum crossing number and the migration of the
probability density function of the Alexander–Briggs notation. Finally, the knot cascade
slows down and then terminates due to resistive and viscous dissipations.

Key words: topological fluid dynamics, plasmas

1. Introduction

Knots, closed curves in three-dimensional space in mathematical language, have been
extensively studied in the physical and biological sciences (see Kauffman 2001; Berger
et al. 2009). Knotted structures arise in various systems, including vortex filaments
in hydrodynamic (HD) flows (e.g. Kleckner & Irvine 2013), long DNA and polymer
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molecules (e.g. Orlandini & Whittington 2007; Stolz et al. 2017; Klotz, Soh & Doyle
2018), topological defects in liquid crystals (e.g. Tkalec et al. 2011) and knot solitons in
Bose–Einstein condensates (e.g. Hall et al. 2016). In particular, magnetic knots have been
extensively reported in magnetohydrodynamic (MHD) flows (e.g. Moffatt & Ricca 1992;
Arrayás, Bouwmeester & Trueba 2017; Smiet et al. 2017; Knizhnik, Linton & Devore
2018) and magnetic torus knots are often used in model problems (see Candelaresi &
Brandenburg 2011; Arrayás & Trueba 2014; Smiet et al. 2015; Xiong & Yang 2020).

Magnetic knots are typical configurations of magnetic fields from astrophysical
observations (e.g. Finkelstein & Weil 1978; Farrugia et al. 1999; Xue et al. 2016), and
knot studies can be applied to astrophysical flows and solar coronal structures (see Ricca
2013). Beckers & Schröter (1968) found that hundreds of magnetic knots can be produced
in the active area of sunspots. Parker (1978) further observed the mutual attraction of
magnetic knots during the formation of sunspot regions when the magnetic flux comes
to the surface. Oberti & Ricca (2018) modelled solar coronal loops using magnetic torus
knots with an estimation of the magnetic energy and helicity.

Unlike the knotting mechanism of strings and ropes in daily life (e.g. Raymer & Smith
2007; Patil et al. 2020), tying or untying knots in fluids with topological changes of vortex
or magnetic field lines must go through the reconnection event (see Kida & Takaoka 1994;
Yao & Hussain 2020). Magnetic reconnection (see Priest & Forbes 2000) is essential to
alter the topology of field lines in MHD, and it is associated with extraordinary energy
release (e.g. Kopp & Pneuman 1976; Lin & Forbes 2000; Priest & Forbes 2000) in
astrophysical plasmas such as the solar eruption (e.g. Xiao et al. 2007; Xue et al. 2016).

Although a few studies have observed that a magnetic knot (Linton, Dahlburg &
Antiochos 2001) or a vortex link (Alekseenko et al. 2016) is tied during reconnection, the
detailed mechanism of tying complex knots from the unknotted state via reconnections
remains an open problem in fluid dynamics.

Most of the existing studies on knots in fluids focus on the evolution of vortex/magnetic
knots that are artificially constructed in HD/MHD flows at the initial time, in both
experiments (e.g. Kleckner & Irvine 2013) and numerical simulations (e.g. Kerr 2018;
Xiong & Yang 2019a, 2020). Furthermore, several studies reported that the reconnection
events generally untie knots of flow fields, particularly in classical fluids (Kleckner &
Irvine 2013; Xiong & Yang 2019a) and superfluids (Kleckner, Kauffman & Irvine 2016).
Thus, it appears that vortex knots undergo a degeneration through reconnections with
gradually reduced topology in HD flows (see Liu & Ricca 2015, 2016). The pathway of
knot unlinking (see Buck & Ishihara 2015) through a series of intermediate states was also
observed in other systems, e.g. cascade degeneration in DNA with a minimal pathway of
unlinking replication (see Shimokawa et al. 2013; Stolz et al. 2017).

In principle, the gradient of a vector field, e.g. magnetic or vorticity field, in a dissipative
fluid system tends to diminish gradually with time. Hence, the vector field generally
evolves towards a nearly uniform field in the system, and initially knotted field lines can
eventually be untied via reconnections. On the other hand, in a system with moderate
external forcing or internal interactions, it is still possible to generate knots or even have
a knot cascade with increasing topological complexity during a finite time. Transient knot
cascade via reconnections may have an impact on the flow evolution, which has not been
reported in detail in MHD/HD flows.

The present study aims to elucidate the mechanism of how complex magnetic knots
are spontaneously tied from unknotted states in resistive MHD flows. In particular, we
demonstrate that the knotting process of field lines undergoes a cascade via a sequence of
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Magnetic knot cascade via reconnections

reconnections of two orthogonal, counter-helical and unknotted flux tubes, as an inverse
process of the unknotting cascade (e.g. Kleckner et al. 2016; Liu & Ricca 2016; Liu, Ricca
& Li 2020) from an initial knotted tube. Here, helical flux tubes are generally considered
as a model to study the formation and evolution of solar coronal loops and sunspots (e.g.
Gold & Hoyle 1960; Titov & Démoulin 1999; Linton et al. 2001; Wang et al. 2016; Priest
& Longcope 2020). In order to overcome the drawbacks of identifying evolving flux tubes
and field lines during reconnection using Eulerian methods (see Lau & Finn 1996), we
develop a Lagrangian-based structure identification method, the magnetic-surface field
(MSF), to characterize the evolution of flux tubes from the dataset of direct numerical
simulation (DNS). This method, as an analogue of the vortex-surface method (VSF)
developed by Yang & Pullin (2010) and used in Lagrangian-based diagnostics of HD flows
(e.g. Yang & Pullin 2011; Zhao, Yang & Chen 2016; Hao, Xiong & Yang 2019), facilitates
a clear illustration of detailed knotting processes of field lines near reconnection regions.
With the aid of the MSF, we are also able to quantify the effect of the knot cascade on the
magnetic energy release in the flow evolution.

The outline of this paper is as follows. Next, § 2 describes the set-up of simulating the
evolution of helical flux tubes in MHD flows and proposes the MSF method for identifying
evolving flux tubes. In § 3, we elucidate the knot cascade of field lines via stepwise
magnetic reconnection with detailed visualizations and quantifications. Some conclusions
are drawn in § 4.

2. Simulation overview

2.1. Direct numerical simulation of helical flux tubes
The three-dimensional incompressible resistive MHD equations (see Priest & Forbes
2000) include the momentum equation

∂u
∂t

+ (u · ∇)u = −∇p + j × b + ν∇2u (2.1)

for the fluid velocity u = (ux, uy, uz) with constant unit density, and the magnetic transport
equation

∂b
∂t

= ∇ × (u × b) + η∇2b (2.2)

for the magnetic field b = (bx, by, bz) in units of the Alfvén velocity, together with ∇ · u =
0 and ∇ · b = 0. Here, x = (x, y, z) denotes spatial Cartesian coordinates, j = ∇ × b is
the current density, p is the pressure, ν is the viscosity and η is the magnetic diffusivity.
Additionally, the transport equation for the vorticity ω = ∇ × u is

∂ω

∂t
= ∇ × (u × ω) + ν∇2ω + ∇ × ( j × b). (2.3)

We study the interaction of two orthogonally displaced helical flux tubes in the
three-dimensional periodic domain Ω = {x | x ∈ R

3, 0 � x, y, z � 2π}. As sketched in
figure 1(a), the two flux tubes parallel to the z-axis and the y-axis are referred to as T1
and T2, respectively, within tubular domains

Ωi =
{

x | x ∈ R
3, min

s
|x − xi(s)| � rc

}
, i = 1, 2. (2.4)

The central axes of T1 and T2 in Cartesian coordinates are

x1(s) = (π − rc, π, s) and x2(s) = (π + rc, s, π), (2.5a,b)
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Figure 1. Schematic diagram for the initial configuration of flux tubes T1 (red) and T2 (blue). (a) Perspective
view with some field lines attached on the flux tubes. (b) Local cylindrical coordinates (r, θ1, z) for T1 and
(r, θ2, y) for T2 on the tube cross-sections marked by grey slices in (a).

respectively, where s ∈ [0, Lc) is the arclength parameter, Lc = 2π is the length of the flux
tubes and rc = 0.6 is the radius of the flux tubes.

As sketched in figure 1(b), the initial magnetic fields

b(x, t = 0) = (0, qrf (r), f (r)), 0 � r � rc, (2.6)

for each tube are given in local cylindrical coordinates (r1, θ1, z) for T1 and (r2, θ2, y) for
T2, where r1 and r2 denote radial coordinates, θ1 and θ2 denote azimuthal angles, and y and
z denote axial coordinates. Moreover, q ≡ Lcbθ /(2πrbz) is a twist parameter, i.e. the field
lines wrap around the tube axis q times for every 2π of the axial distance. In Cartesian
coordinates (x, y, z), the initial b in (2.6) for T1 and T2 are, respectively,

b1 = f (r1)(qr1 sin θ1, −qr1 cos θ1, −1) and b2 = f (r2)(qr2 sin θ2, −1, −qr2 cos θ2).
(2.7a,b)

We set q = 10 for T1 as a right-hand twisted tube and q = −10 for T2 as a left-hand
twisted tube, and set a compactly supported kernel function

f (r) = f0 =
{

b0 exp[−r2/(2σ 2)][1 − g(r/rc)], r � rc,

0, r > rc,
(2.8)

in (2.6), with g(λ) = exp[−Kλ−1 exp(1/(λ− 1))] (Melander & Hussain 1988; Yao &
Hussain 2020), σ = 1/(2

√
2π), b0 = 3.068 and K = 10 to make the kinetic energy Eu =

〈|u|2〉/2 and the magnetic energy Eb = 〈|b|2〉/2 the same at the initial time. Although
twisted flux tubes with large q can exceed the threshold of the kink instability (see Priest
& Forbes 2000), the evolution of flux tubes is still stable owing to the numerical accuracy
and symmetric configuration in the MHD simulations without initial perturbation modes
(see Linton et al. 2001; Xiong & Yang 2020).

The two tubes are driven by an initial velocity field

u(t = 0) = u0[− sin x (cos y + cos z), cos x sin y, cos x sin z)] (2.9)

with u0 = 0.5, which is a superposition of two stagnation-point flows. In the temporal
evolution, the flux tubes are pushed to move towards each other and contact at the centre
x = y = z = π of Ω after a short time.
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Magnetic knot cascade via reconnections

Our DNS is performed in Ω discretized by N3 = 5123 uniform grid points. A symmetric
form of MHD equations (2.1) and (2.2) in terms of Elsässer variables z± = u ± b is solved
using the pseudo-spectral method with the two-thirds dealiasing rule and the maximum
wavenumber kmax ≈ N/3. The Fourier coefficients of z± are advanced in time using a
second-order Runge–Kutta scheme, and the time stepping �t is chosen to ensure that
the Courant–Friedrichs–Lewy (CFL) number is less than 0.5 for numerical stability and
accuracy. The numerical code has been validated in a number of MHD cases (e.g. Hao
et al. 2019; Xiong & Yang 2020).

The MHD flow is characterized by the Reynolds number Re ≡ Γ/ν and magnetic
Reynolds number Rem ≡ Γ/η, where

Γ = 2π

∫ rc

0
rf (r) dr (2.10)

denotes the strength of the flux tubes. We set ν = η = 0.005, with the magnetic Prandtl
number Pr ≡ ν/η = 1. In this case, the magnetic field has a strong action on the fluid
flow, characterized by a large interaction parameter Ni = b2

0rc/(ηu0) = 2.26 × 103 (see
Davidson 2001; Kivotides 2018).

The magnetic helicity (Woltjer 1958; Berger & Field 1984; Moffatt & Ricca 1992) is
defined as

H ≡
∫
V

A · b dV, (2.11)

where h ≡ A · b denotes the helicity density, A is the solenoidal vector potential satisfying
b = ∇ × A, and V is the integral domain bounded by a magnetic surface. The magnetic
helicity measures the intertwining or linking of field lines about each other for the
magnetic field enclosed V . In our DNS,

A = F−1
{

ik × F{b}
|k|2

}
+ x〈bz0〉ey − x〈by0〉ez (2.12)

is calculated by the spectral form of the Biot–Savart law, where F{·} and F−1{·} denote
the Fourier and the inverse Fourier transform operators, respectively, k is the wavenumber
vector and 〈·〉 denotes the volume average over Ω . The last two terms on the right-hand side
of (2.12) denote a linear correction to the vector potential (see Linton & Antiochos 2005)
with by0 = by(t = 0), bz0 = bz(t = 0) and unit vectors ey and ez in the y- and z-directions.
Thus, the two flux tubes are counter-helical with opposite initial magnetic helicities with
H > 0 for T1 and H < 0 for T2.

We remark that the magnetic helicity for the present b placed in a periodic box with net
fluxes in two directions may not be approximately conserved during magnetic reconnection
(e.g. Berger 1997; Panagiotou 2015). Therefore, the evolution of H and the conversion
between helicity components are not investigated in detail in the present study, and they
can be explored in the initial configuration of a closed trefoil tube (e.g. Smiet et al. 2015;
Xiong & Yang 2020) or linked flux rings (e.g. Del Sordo, Candelaresi & Brandenburg
2010).

2.2. Magnetic-surface field method
We develop the MSF to visualize the evolution of the flux tubes. The MSF φb(x, t), a
globally smooth scalar field, satisfies the constraint

b · ∇φb(x, t) = 0, (2.13)
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so that every isosurface of φb is a magnetic surface consisting of field lines. The MSF
method is rooted in the Alfvén theorem, which is an analogue of the Helmholtz vorticity
theorem to illustrate the ‘frozen-in’ nature of magnetic fields. As a Lagrangian-based
structure identification method, the MSF is also an analogue of the VSF φv developed
by Yang & Pullin (2010). Although the vorticity ω is the curl of u and b only implicitly
affects u via the Lorentz force, the same mathematical form of the magnetic transport
equation (2.2) in MHD and the vorticity transport equation in HD, i.e. (2.3) without the
last term, implies that the theoretical derivation of the MSF equations is identical to that
for the VSF equations in § 3.1 of Yang & Pullin (2010) except for replacing ω, φv and ν by
b, φb and η, respectively.

The calculation of the MSF is implemented as a post-processing step based on a time
series of u and b fields obtained by solving (2.1) and (2.2). First, we set the initial MSF as

φb0 ≡ φb(x, t = 0) =

⎧⎪⎨
⎪⎩

φ̃(x), x ∈ Ω1,

−φ̃(x), x ∈ Ω2,

0, otherwise,
(2.14)

with

φ̃ =
{

1 − exp{−2.5(r/rc)
−1 exp[1/(r/rc − 1)]}, r � rc,

0, r > rc.
(2.15)

Thus, the sign of φb0 distinguishes tubes T1 and T2. We remark that φb0 is not unique,
but different φb0 can evolve towards a stable geometric structure at late times (see Yang &
Pullin 2011; Xiong & Yang 2017).

The evolution of the MSF is calculated using the two-time method (Yang & Pullin 2011),
in which each time step is divided into prediction and correction substeps. In the prediction
substep, the temporary MSF φ∗

b is computed as

∂φ∗
b (x, t)
∂t

+ u(x, t) · ∇φ∗
b (x, t) = 0, t > 0, (2.16)

where u(x, t) is the Eulerian velocity obtained from DNS, and the temporary φ∗
b (x, t) can

deviate slightly from an accurate MSF at each physical time step owing to the breakdown
of the Alfvén theorem. Then in the correction substep, φ∗

b is transported along the frozen
instantaneous magnetic field b(x, t) in pseudo-time τ at a fixed physical time t as

∂φ∗
b (x, t; τ)

∂τ
+ b(x, t) · ∇φ∗

b (x, t; τ) = 0, 0 < τ � Tτ , (2.17)

with the initial condition φ∗
b (x, t; τ = 0) = φ∗

b (x, t). This correction substep projects
the temporary MSF onto the desired accurate MSF solution φb(x, t; τ) with the MSF
constraint (2.13). At the end of the correction substep, φb is updated by φ∗

b (x, t; τ = Tτ ),
where Tτ is the maximum pseudo-time and it should be large enough to ensure that
the solution φ∗

b (x, t; τ = Tτ ) of (2.17) is converged with τ (Yang & Pullin 2011). In our
implementation, Tτ is typically less than 20 times �t.

For solving (2.16) and (2.17), integrations in t and τ are advanced by the second-order
total-variation-diminishing Runge–Kutta scheme (Gottlieb & Shu 1998), where the choice
of the pseudo-time stepping satisfies the CFL condition based on b (Yang & Pullin 2011).
The convection terms are treated by the fifth-order weighted essentially non-oscillatory
(WENO) scheme (Jiang & Shu 1996). The numerical diffusion in the WENO scheme
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Figure 2. Temporal evolution of the volume-averaged (a) kinetic energy and its time derivative and (b)
magnetic energy and its time derivative.

serves as a numerical dissipative regularization for removing small-scale, nearly singular
scalar structures in solving (2.16) and (2.17). More details of the two-time method can be
found in § 3 of Yang & Pullin (2011).

In practice, the computed φb cannot be exact. The deviation of isosurfaces of a scalar φ

from magnetic surfaces is defined by the cosine of the angle between the magnetic field
and the scalar gradient as

λb ≡ b · ∇φ

|b||∇φ| . (2.18)

In this way, 〈|λb|〉, ranging from 0 to 1, characterizes the overall deviation of an MSF
solution φ = φb from an exact MSF. If 〈|λb|〉 is very small, the visualization of MSF
isosurfaces with a fixed isocontour level at different times is a good approximation of
tracking particular flux tubes in time (see Hao et al. 2019).

3. Results and discussion

3.1. Morphology of flux tubes
Figure 2 plots the temporal evolution of the kinetic energy Eu, magnetic energy Eb and
their time derivatives dEu/dt and dEb/dt. In general, the same initial Eu and Eb decay
with time owing to viscous and resistive dissipations. We observe that the profile of Eu
has a plateau at 1 � t � 1.4 in figure 2(a), and its negative time derivative reaches zero in
this period. Meanwhile, Eb keeps decaying at almost the same rate. Considering the small
volume ratio of flux tubes to the computational domain, the changes of the decaying trends
of Eu and Eb imply a remarkable conversion from Eb to Eu starting around t = 1.

We extract the MSF isosurface to study the morphology of flux tubes. figure 3
depicts the temporal evolution of isosurfaces of φb = 0.01 and φb = −0.01, respectively,
representing tubes T1 and T2. The field lines integrated from points on the isosurfaces
almost lie on the surfaces, so the MSF isosurfaces effectively identify flux tubes with a
very small averaged MSF deviation 〈|λb|〉 < 1 %. The identification of flux tubes is further
discussed in appendix A. The extracted flux tubes are colour coded by −1 � h∗ � 1 from
blue to red, where h∗ ≡ (A · b)/(|A||b|) denotes the normalized magnetic helicity density
(see Moffatt & Tsinoher 1992). Compared with the helicity density, the overall magnitude
of h∗ is not affected by the decay of Eu and Eb.

From the MSF visualization, we observe that the initially orthogonal helical flux tubes
first move towards each other and then merge. The colliding of T1 and T2 forms a
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h∗
1.0

0.5

–0.5

–1.0

0

z

y

(a) (b)

(c) (d)

Figure 3. Temporal evolution of MSF isosurfaces of φb = ±0.01 at (a) t = 1, (b) t = 2, (c) t = 3 and (d)
t = 4. Some field lines are integrated and plotted on the isosurfaces colour coded by −1 � h∗ � 1 from blue
to red.

convoluted plasmoid with knotted field lines (shown later in figure 7) at the centre of
Ω . The plasmoid stretches outwards along the diagonal direction (ez − ey) and gradually
dissipates. Finally, two highly twisted U-shaped tubes are formed and ejected from the
central region.

In addition, we observe that the evolution of the velocity–vorticity field shows no
significant event of vortex dynamics at early times owing to the simple initial stagnation
flow field in (2.9), but then intense local small-scale vortical structures are generated
during the interaction of T1 and T2 near the plasmoid via the Lorentz force term in (2.3)
with large Ni (not shown).

From the topological features of MSF isosurfaces and field lines, the temporal evolution
of T1 and T2 can be roughly divided into three stages: 1, incipient magnetic reconnection;
2, tying overhand knots; and 3, cascade of tying complex knots.

3.2. Stage 1: incipient magnetic reconnection
Driven by the straining velocity field (2.9), flux tubes T1 and T2 first collide and merge
at the centre of Ω . We find that the minimum distance (Zhao et al. 2016) between MSF

912 A48-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
45

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1145


Magnetic knot cascade via reconnections

xy
z

A2
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A2

xy
z

A′
1

A′
1

A′
2

A′
2

(a) (b)

Figure 4. MSF isosurfaces of φb = ±0.01 (translucent surfaces) at t = 1 in the subdomain [π/2, 3π/2] ×
[π/2, 3π/2] × [π/2, 3π/2], with typical field lines (a) before and (b) after the magnetic reconnection. The
reconnection zone is highlighted by the yellow dashed circle. The field lines are colour coded by −1 � h∗ � 1
from blue to red.

isosurfaces of φb = ±1 × 10−4 in the x-direction reaches zero around t = 1 (not shown),
which coincides with the time when notable energy conversion begins in figure 2(a). Thus,
both the MSF results and flow statistics suggest that the incipient magnetic reconnection
occurs around t = 1.

Figure 4 plots the isosurfaces of φb = ±0.01 in a subdomain [π/2, 3π/2] ×
[π/2, 3π/2] × [π/2, 3π/2] to provide a close-up view of the reconnection. We find that
incipient reconnection occurs at the intersection between the MSF isosurfaces of φb =
±0.01 and the isosurfaces of the current density magnitude | j| = 30, where the current
sheet is shown later in figure 6 for clarity. Near this reconnection zone, we integrate two
typical field lines before and after the reconnection in figures 4(a) and 4(b), respectively,
which illustrates an X-type reconnection (see Priest & Forbes 2000; Pontin 2011).

The field lines in figure 4 are colour coded by h∗. Before the reconnection, two field lines
within T1 and T2, respectively marked by A1 and A2 in figure 4(a), have opposite h∗ owing
to their opposite chirality, and they are nearly antiparallel in the reconnection region. After
the reconnection of A1 and A2, two types of field lines, marked by A′

1 and A′
2, form in

figure 4(b). Here, A′
1, a U-shaped field line encircling the central region, moves along the

direction of (ey − ez) and further reconnects in the subsequent stage; A′
2, a U-shaped field

line, moves along the direction of (ez − ey) away from the plasmoid.
Figure 5 sketches the reconnection process. Two field lines A1 and A2 with opposite

h∗ are antiparallel in the reconnection region; then they form X-lines near magnetic null
points. After the reconnection, the newly formed A′

1 or A′
2 consists of two pieces with

opposite chirality.
It is noted that this reconnection occurs symmetrically at two regions, as marked by

yellow circles in figure 3(a). The reconnection regions can be roughly located by the
closest antiparallel field lines between T1 and T2 with the initial magnetic field. Figures 1
and 3(a) illustrate that the flux tubes facing each other merge around t = 1 with negligible
deformation, and the field lines within −π/2 � θ1 � π/2 and π/2 � θ2 � 3π/2 first
reconnect. Considering the symmetry with r1 = r2 = r and a large twist parameter with
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A1 A2

A′
2

A′
1

Figure 5. Schematic diagram for the magnetic reconnection in figure 4. The typical field lines are colour
coded by red for h∗ > 0 and blue for h∗ < 0.

q2r2 � 1, we approximate the cosine of the alignment angle of b1 and b2 by

cos θ = q√
(1 + q2r2

1)(1 + q2r2
2)

(qr1r2 sin θ1 sin θ2 + r1 cos θ1+r2 cos θ2) ≈ sin θ1 sin θ2.

(3.1)
The reconnection of T1 and T2 implies antiparallel field lines with cos θ ≈ −1. From (3.1),
the reconnection region is close to the merged tubes in the central region with

θ1 = 3π/2, θ2 = π/2 or θ1 = π/2, θ2 = 3π/2. (3.2a,b)

These two locations are highlighted by yellow dashed circles in figure 3(a).
Figure 6(a) plots the contour of | j| on the x–z plane at y = 7π/8. This slice cuts through

the reconnection zone, which is marked by the green dashed line in figure 3(a). We observe
that a current sheet forms in between two approaching flux tubes, as highlighted by the
dashed box. Therefore, the reconnection X-points can be pinpointed by the intersection
between the current sheet and the region with the maximum MSF gradient. In figure 6(b),
the strong Lorentz force F L = j × b pointing to the current sheet implies that the merger
of flux tubes is driven not only by the background straining flow, but also by the induced
velocity from the deformation of the flux tubes themselves. The Lorentz force can further
accelerate the local velocity and generate intense local vortical structures, leading to more
complex magnetic reconnections in subsequent stages.

3.3. Stage 2: tying overhand knots
In stage 1, the helical field lines before and after the reconnection remain unknotted.
Then in stage 2, some field lines in the plasmoid are tied into knots by the secondary
reconnection around t = 1.75. The reconnection still occurs around the intersection
between MSF isosurfaces of φb = ±0.01 and isosurfaces of | j| = 30. From the
reconnection region, we integrate a number of field lines to seek the X-type reconnection
and knotted field lines.

The close-up view of MSF isosurfaces of φb = ±0.01 at t = 1.75 in figure 7 illustrates
a delicate knotting process of field lines via the secondary magnetic reconnection. In
figure 7(a), two typical field lines within T1 and T2, marked by B1 and B2, are almost
antiparallel near the reconnection X-point before the secondary reconnection. Note that
the �-shaped field line B1 encircling the central region consists of two line segments with
positive and negative h∗, indicating that it has undergone the first reconnection as A′

1 and
A′

2 in figure 4(b); B2 is a helical line along the y-direction, similar to A2 in figure 4(a).
The reconnection of B1 and B2 produces an overhand knot B′

1 in figure 7(b). At the mean
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(a) (b)

Figure 6. Contour of | j| colour coded by 0 � | j| � 30 from blue to red on the slice y = 7π/8 at t = 1, with
MSF isolines and the projected Lorentz force (arrows). (a) The x–z slice [3π/4, 5π/4] × [3π/4, 5π/4] at
y = 7π/8. (b) Close-up view of the region marked by the green dashed box in (a).

xy
z

B2

B1

B2

B1

xy
z

B′
1

B′
2

B′
2

B′
1

(a) (b)

Figure 7. MSF isosurfaces of φb = ±0.01 (translucent surfaces) at t = 1.75 in the subdomain [π/2, 3π/2] ×
[π/2, 3π/2] × [π/2, 3π/2], with typical field lines (a) before and (b) after the magnetic reconnection. The
reconnection zone is highlighted by the yellow dashed circle. The field lines are colour coded by −1 � h∗ � 1
from blue to red.

time, a U-shaped field line B′
2 forms and moves along the direction of (ez − ey) away from

the central region.
Figure 8 sketches the formation of the overhand knot via the secondary reconnection.

It is interesting that the knotting process is via such a simple antiparallel reconnection in
the present case, rather than more complex mechanisms such as bridging and threading
in vortex reconnection (e.g. Melander & Hussain 1988; Kida & Takaoka 1994; Yao &
Hussain 2020). After this reconnection, B′

1 consists of three pieces. The piece with positive
h∗ is embedded into the other two with negative h∗. Thus, this topological change also
makes the geometry of field lines more complex.

The reconnection location at t = 1.75 is similar to that at t = 1. Figure 9 plots the
contour of | j| on the slice at y = 7π/8. Driven by the combination of the fluid velocity and
the velocity induced by the Lorentz force, two MSF isosurfaces of φb = ±0.001 collide at
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2
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1

B2

Figure 8. Schematic diagram for tying the overhand knot via the magnetic reconnection in figure 7. The
typical field lines are colour coded by red for h∗ > 0 and blue for h∗ < 0.
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Figure 9. Contour of | j| colour coded by 0 � | j| � 30 from blue to red on the slice y = 7π/8 at t = 1.75,
with MSF isolines and the projected Lorentz force (arrows). (a) The x–z slice [3π/4, 5π/4] × [3π/4, 5π/4] at
y = 7π/8. (b) Close-up view of the region marked by the green dashed box in (a).

the reconnection point, along with the formation of the current sheet in between the two
approaching flux tubes.

The knotting process can happen at a range of φb. Since the MSF isosurfaces of different
isocontour levels are coaxial tubes, we can distinguish inner and outer flux tubes by
setting particular thresholds of φb, and quantify their respective influences on the statistics
and important events in the flow evolution. Considering the inner tubes within ΩI =
{x ∈ R

3 | 0.5 < φb(x) � 1} and outer tubes within ΩO = {x ∈ R
3 | 0.1 < φb(x) � 0.5},

the temporal evolution of the volume-averaged kinetic energy and normalized magnetic
helicity density for the inner and outer flux tubes is shown in figure 10.

At early times, both 〈Eu〉I and 〈Eu〉O decay due to the viscous dissipation in figure 10(a),
where 〈·〉I and 〈·〉O denote the volume averages over ΩI and ΩO, respectively. Around
t ≈ 1, 〈Eu〉I and 〈Eu〉O begin to rise with time, consistent with the incipient reconnection
time t = 1. Then the primary peaks of 〈Eu〉I and 〈Eu〉O occur at 1 < t < 2. These volume
averages effectively avoid the interference from the background flow outside the tube, i.e.
in the region with −0.1 � φb � 0.1, on the flow statistics. The peak of 〈Eu〉I is higher than
that of 〈Eu〉O. This implies that the energy conversion from Eb to Eu within inner tubes is
stronger than that within outer tubes through more frequent magnetic reconnections and
stronger release of the magnetic energy.

The exact quantification of the helicity evolution is difficult in the present configuration
owing to the periodic boundary condition with net fluxes (e.g. Berger 1997) and the
vanishing total helicity over the entire domain. As possible measures of knottedness or
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Figure 10. Temporal evolution of volume-averaged (a) kinetic energy and (b) normalized magnetic helicity
within inner or outer flux tubes.

helical degree of field lines, 〈h∗〉I and 〈h∗〉O surge around t = 1.5 in figure 10(b), and
〈h∗〉I peaks at t = 2, consistent with the knotting of field lines in figure 7. We remark that
the helicities 〈h〉I and 〈h〉O of inner and outer tubes generally decay with time due to the
dissipation, so they cannot distinguish the knotting period and are omitted here. Moreover,
the volume-averaged helicity density over the complement region {x ∈ R

3 | 0 < φb � 0.1}
is negligible.

Based on the MSF, the reconnection and tying of field lines can be characterized by
the magnetic flux F ≡ ∫

S b · n dS through a symmetric plane with the surface normal n.
Considering the flow symmetries, two typical magnetic fluxes

F1 = 1√
2

∫
S1

(bz(x) − by(x)) dS,

F2 = 1√
2

∫
S2

(bz(x) + by(x)) dS

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.3)

of T1 through diagonal planes are calculated, where S1 denotes the region enclosed by
φb = 0 and φb = 1 on the plane of y + z = 2π, and S2 denotes the region enclosed by
φb = 0 and φb = 1 on the plane of y − z = 0. We remark that the poloidal/toroidal flux
(see Moffatt & Ricca 1992) is not calculated here, because it is difficult to accurately
determine the centreline of the very distorted flux tubes during and after reconnection.

The temporal evolutions of F1 and F2 are shown in figure 11. The initial magnetic
field in (2.6) and (2.10) of T1 implies F1(t = 0) = F2(t = 0) = −Γ/

√
2. We observe that

both fluxes are nearly conserved before the first reconnection at t = 1, consistent with the
Alfvén theorem. Around t = 1, the magnitude of the fluxes significantly decays owing to
the direction change of field lines during the reconnection (see figure 4).

Figure 12 plots contours of the flux density (bz − by)/
√

2 of F1 on the
diagonal symmetric plane y + z = 2π in the subdomain [3π/4, 5π/4] × [3π/4, 5π/4] ×
[3π/4, 5π/4] with some typical field lines from two perspective views. The boundary of
T1, the isosurface of φb = 0.01, is marked by the thick line on the plane. At t = 1, the
field lines integrated on the outer side of the central region in figure 12(a) only have slight
deformation compared to the initial configuration. On the other hand, the directions of the
field lines integrated on the inner side of the central region have significant changes in
figure 12(b). Owing to the reconnection, some of these field lines of T1 originally through
S1 no longer pass through S1, and the angles between the field lines and the symmetric
plane are decreased. Hence, the strength of F1 is weakened in figure 11 at t = 1.
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Figure 11. Magnetic fluxes (3.3) through diagonal symmetric planes.

x
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x y
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(a) (b)
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nn

S1

S1

Figure 12. Contours of the flux density of F1 on the diagonal symmetric plane y + z = 2π from two
perspectives at (a,b) t = 1 and (c,d) t = 1.75 in the subdomain [3π/4, 5π/4] × [3π/4, 5π/4] × [3π/4, 5π/4],
where the arrow denotes the normal n of the symmetric plane. Some field lines are integrated on the MSF
isosurface of φb = ±0.01 (translucent surface). Region S1 is enclosed by the intersection (yellow line) of the
MSF isosurface and the diagonal plane.

From t = 1.5 to t = 2, the profile of F1 shows a plateau in figure 11, signalling the
secondary reconnection of field lines. At t = 1.75, magnetic overhand knots are generated
after the reconnection. The released kinetic energy shown in figure 2(a) accelerates the
distortion of the field lines in the central region, and produces more positive flux with
larger angle between field lines and the plane in figure 12(c). Meanwhile, the angle between
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Figure 13. MSF isosurfaces of φb = ±0.01 (translucent surfaces) at t = 2 in the subdomain [π/2, 3π/2] ×
[π/2, 3π/2] × [π/2, 3π/2], with typical field lines (a) before and (b) after the magnetic reconnection. The
reconnection zone is highlighted by the yellow dashed circle. The field lines are colour coded by −1 � h∗ � 1
from blue to red.

field lines and the plane also increases in the central region, producing more negative flux
in figure 12(d). Owing to the two competing effects, flux F1 through S1 remains almost
unchanged from t = 1.5 to t = 2.

3.4. Stage 3: cascade of tying complex knots
After the formation of overhand knots in the plasmoid, a sequence of reconnection events
at the same regions as marked in figure 3(a) leads to a cascade of tying more complex
knots. Figure 13 illustrates the formation of double overhand knots at t = 2. Two typical
field lines within T1 and T2 are marked by C1 and C2 before the tertiary reconnection.
Here, C1 is an unknotted line encircling the plasmoid, and has highly convoluted geometry
colour coded by h∗ with alternating signs; C2 is a helical line along the y-direction, with
geometry similar to A2 and B2. The reconnection of C1 and C2 forms a double overhand
knot C′

1 along the y-direction and a U-shaped line C′
2 moving away from the reconnection

zone. We find that the positions of the three reconnections in figures 4, 7 and 13 are very
close to the theoretical estimation in (3.2a,b). In addition, the initial magnetic condition
has an impact on the knotting process, which is discussed in appendix B.

The observations in figures 4, 7 and 13 imply that the major mechanism for the current
magnetic reconnection is the X-type reconnection (see Priest & Forbes 2000; Pontin 2011),
which is similar to viscous cancellation rather than bridging (see Melander & Hussain
1988; Kida & Takaoka 1994) in vortex reconnection. It is noted that vortex lines can be
tangled under the strong self-induced local velocity generated in the incipient reconnection
of vortex lines, whereas the reconnection of field lines can only alter the local velocity via
an implicit way at moderate and large interaction parameters (see Kivotides 2018).

The influence of the magnetic knot cascade on the local flow motion is through the
Lorentz force. figure 14 shows the knot motion projected onto the y–z plane, along
with the isoline of φb = 0.01 and the projected velocity field on the slice at x = 7π/8.
Several knotted field lines are integrated from the reconnection regions. We observe
that, in general, the local velocity is enhanced and small-scale vortical structures are
generated during the magnetic reconnection. In figure 14(a), the velocity shows a vortex
pattern, making the knots rotate around the x-axis and distort at t = 1.75. In figure 14(b),
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xy
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(a) (b) (c)

0–0.5 0.5–1.0 1.0

Figure 14. The projected velocity (arrows) on the y–z slice [3π/4, 5π/4] × [3π/4, 5π/4] at x = 7π/8, along
with a set of knotted field lines integrated from the reconnection regions and the isoline of φb = 0.01:
(a) t = 1.75, (b) t = 2 and (c) t = 2.25.

the velocity components inclined to the z-direction gradually dominate. They drive the
U-shaped field lines after the reconnection to separate, and stretch the knots along the
z-direction. The knotting process is gradually spread from inner tubes to outer tubes,
causing the growth of 〈Eu〉O and 〈h∗

m〉O in figure 10 around t = 1.75. In figure 14(c), the
knots move closer to the reconnection zone, triggering further reconnections to generate
triple overhand knots and more complex knots at t = 2.25. Furthermore, induced by
the Lorentz force term in (2.3), the initially closed, unknotted vortex lines also become
highly tangled and twisted, and some of them can be knotted (not shown), which is worth
investigating in future work.

We use the minimal crossing number, which is a knot invariant under Reidemeister
moves (Reidemeister 1927; Alexander & Briggs 1926), to quantify the knotting cascade
via a sequence of magnetic reconnections. The typical knotted field lines in the plasmoid,
shown in figures 4, 7 and 13, are projected from proper perspective views to depict a
‘knot diagram’ in figure 15(a–c). Reducible or nugatory crossings (Hoste, Thistlethwaite &
Weeks 1998) can be removed in knot diagrams by proper Reidemeister moves. Meanwhile,
non-reducible crossings, counted by the minimal crossing number nc in reduced knot
diagrams, are marked by thick ‘−’ in figure 15(a–c). We find that nc grows with time,
indicating the increasing complexity of knots in a cascade process.

If the ends of the field lines at the boundary of Ω , e.g. points P1 and P2 of the overhand
knot in figure 15(a), are closed at infinity without intersecting other field lines in Ω , the
knots are equivalent to the torus knots, e.g. the trefoil knot with nc = 3 in figures 15(d).
For more complex knots, we demonstrate how to deform the double overhand knot in
figure 15(b) into the cinquefoil knot in figure 15(e) using Reidemeister moves. First, the
two ends P1 and P2 of the field line are connected to form a loop. Second, part L1 marked
by the red solid curve is moved completely over crossing O0, from right to left as marked
by the red arrow, by the type-III Reidemeister move, and part L2 marked by the blue
dashed line is moved under crossing O0 from left to right by the type-III Reidemeister
move. Finally, L1 is moved over crossing O1 and L2 is moved under crossing O2 by
type-III Reidemeister moves. Thus, the crossing number of the two knots in a minimal
two-dimensional knot diagram is nc = 5. Similarly, the triple overhand knot in figure 15(c)
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P1
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P2

P1 P2

O1
O2

O0

(a) (b) (c)

(d) (e) ( f )

Figure 15. (a–c) Cascade of tying magnetic knots in the plasmoid, with non-reducible crossings marked by
thick ‘−’: (a) overhand knot (trefoil knot) at t = 1.75, (b) double overhand knot (cinquefoil knot) at t = 2.0, and
(c) triple overhand knot (septafoil knot) at t = 2.25. (d–f ) Corresponding reduced knot diagrams of torus knots
(these knots are equivalent to those in the upper row): (d) trefoil knot, (e) cinquefoil knot, and ( f ) septafoil
knot.

is equivalent to the septafoil knot with nc = 7 in figure 15( f ) after proper Reidemeister
moves.

Figure 16 plots a highly coiled field line (blue) at t = 2.25, surrounded by the triple
overhand knot (red) shown in figure 15(c). The inner field line, in the global shape of a
Mobius band, has thousands of turns around the plasmoid. The stretching effect shown
in figure 14(b,c) appears to suppress the knotting process by merging neighbouring field
lines, and both 〈h∗〉I and 〈h∗〉O begin to decay around t = 2.25. In addition, we did not
observe any clear sign of the relaxation of magnetic knots (e.g. Taylor 1974; Moffatt 1990)
as in Xiong & Yang (2020). A possible reason is that each knotted field line in the present
study is not isolated and it is distorted by fluctuating local fluid motion.

The knot cascade slows down and then terminates at later times owing to the separation
of the U-shaped tubes shown in figure 3(c,d). The plasmoid at the centre is stretched
along the direction of (ez − ey). The highly coiled field lines are severed by successive
reconnections with the cancellation of opposite directions of the field lines near the centre
of Ω . Finally, the untied magnetic knots gradually vanish in the central region at t > 4
with resistive and viscous dissipations, which is similar to the observation in Linton et al.
(2001).

3.5. Quantification of the magnetic knot cascade
We have demonstrated a knot cascade of field lines through a sequence of reconnection
events in the evolution of helical flux tubes. Starting from the unknotted state, the first
overhand knot with nc = 3 forms around t = 1.75, and then nc is incremented by two in
each subsequent reconnection event at the same region near (3.2a,b) in the plasmoid until
the separation of the U-shaped tubes and the vanishing of the plasmoid at late times.
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(a) (b)z

y

y

x

Figure 16. Complex knots in the plasmoid at t = 2.25. (a) MSF isosurfaces of φb = ±0.01 (translucent
surfaces) with typical field lines. (b) Close-up view of a triple overhand knot (red) and a highly coiled field
line (blue).

In order to further quantify the knot cascade using the statistical distribution of knot
types, we integrate 3700 field lines in both forward and backward directions from spatially
uniform points sampled on the symmetric plane

S∗ =
{

x
∣∣∣∣ |φb(x)| � 0.1,

3π

4
� x � 5π

4
, y = π, π � z � 5π

4

}
(3.4)

within the plasmoid at each of the three typical times t = 1.75, 2 and 2.25. Each field line
is extracted as a set of discretized points in three dimensions; then we artificially add an
unknotted and unlinked line segment consisting of several ghost points outside Ω to close
the two ends of a field line to form a loop.

The knot type of the closed field lines, in terms of the Alexander–Briggs notation
(Alexander & Briggs 1926), is identified by a knot analysis toolkit ‘pyknotid’ (Taylor
et al. 2017). In this toolkit, the Alexander polynomial is calculated via a standard matrix
determinant algorithm (see Orlandini & Whittington 2007). Although the Alexander
polynomial has some weaknesses to distinguish complex knots (see Kauffman 2001;
Liu & Ricca 2015), it is sufficient to identify simple torus knots (e.g. Kuei et al. 2015;
Mesgarnezhad et al. 2017) in the present study.

The probability density function (p.d.f.) of the identified knot type at the three typical
times is plotted in figure 17. Here, the p.d.f. of unknotted field lines is omitted for clarity.
Additionally, 12.5 % of extracted field lines at t = 2.25 are highly convoluted in the
plasmoid as observed in figure 16. Their knot types, which have large crossing numbers or
are not torus knots, may not be accurately identified owing to the finite spatial resolution
and total integration steps for extracting the field lines, so the p.d.f.s for these field lines
are also omitted.

The knot statistics in figure 17 reveals that the ratio of knotted field lines to all the field
lines in the central region surges with time, e.g. less than 4 % of field lines are knotted
at t = 1.75, and this ratio grows to 20 % at t = 2.25. As illustrated in figure 15, the p.d.f.
peak migrates from trefoil knots 31 at t = 1.75, through cinquefoil knots 51 at t = 2, to
septafoil knots 71 at t = 2.25. Moreover, the p.d.f. is broadened with time, indicating that
there are various types of complex knots at late times.
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Figure 17. The p.d.f. of magnetic knot types in terms of the Alexander–Briggs notation at t = 1.75, t = 2 and
t = 2.25.

It is interesting that the knotting cascade of field lines in MHD flows is in contrast with
the unknotting cascade of knotted vortex filaments found in HD flows (Kleckner & Irvine
2013; Xiong & Yang 2019a) and superfluids (Kleckner et al. 2016). The possible reason
is that the field lines tend to be twisted by the Lorentz force. The resultant helical field
lines have higher probabilities than straight lines to be tied into knots via the magnetic
reconnection in MHD flows, as illustrated in figure 7. By contrast, the twist of vortex lines
can decay rapidly without external forcing in HD flows (see Scheeler et al. 2017; Xiong
& Yang 2020), so that vortex lines appear to have lower probabilities to be knotted than
magnetic field lines.

In the characterization of the knotting cascade, the MSF plays an important role to
determine the reconnection region and the starting points for integrating knotted field
lines. On the other hand, there are several issues to hinder further quantifications of the
knotting cascade in dissipative systems using topological diagnostic tools such as adapted
knot polynomials (see Liu & Ricca 2015, 2016) and the pathway analysis in terms of the
minimal crossing number and topological writhe (see Kleckner et al. 2016).

First, it is hard, or even not well defined in principle, to track a particular field line
in a resistive MHD flow (see Hao et al. 2019). Second, there is a lack of a general
algorithm to compute knot polynomials for complex knots in a periodic domain (see Liu
& Ricca 2015; Cooper et al. 2019). Third, there are an infinite number of field/vortex lines
in complex MHD/HD flows, so it is not clear how to characterize the influence of the
knotting/unknotting cascade on important flow statistics. Therefore, the full topological
diagram and the significance of knotting/unknotting cascade in MHD/HD turbulence
remains an open problem.

4. Conclusions

We report the knot cascade of magnetic field lines via the stepwise reconnection of a pair of
mutually perpendicular helical flux tubes with opposite helicities and q = ±10. The MSF
method is used to visualize the morphology of flux tubes with attached field lines and to
locate the reconnection regions with theoretical analysis. Based on the MSF visualization,
the evolution of the flux tubes is divided into three stages. Incipient magnetic reconnection
occurs around t = 1 at the locations marked in figure 3(a). This X-type reconnection
generates antiparallel U-shaped field lines moving in opposite directions away from the
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plasmoid, and is quantified by the decay of magnetic flux through the region enclosed by
MSF isolines on the diagonal symmetric planes.

Secondary reconnection occurs around t = 1.75 near the same location as the first
reconnection. This reconnection of a U-shaped helical line encircling the central region
and a helical line along a straight tube ties an overhand magnetic knot. The knotting
process coincides with the rise of the kinetic energy and the normalized helicity density
averaged over inner flux tubes with 0.1 < φb � 0.5, indicating a strong release of magnetic
energy during the reconnection.

The distorted flux tubes generate the Lorentz force to induce a vortical-like velocity field
in the plasmoid. Under this local motion, the knotted field lines are rotated and stretched.
This nonlinear evolution triggers the tertiary reconnection to form double overhand knots
around t = 2 and further reconnections to produce triple overhand knots and more complex
knots around t = 2.25.

The minimum crossing numbers nc = 3 at t = 1.75, nc = 5 at t = 2 and nc = 5 at
t = 2.25 of these knots are obtained from extracted typical field lines integrated from the
reconnection region with Reidemeister moves. The statistical progression from unknotted
field lines, through simple knots, to complex knots is further quantified by the migrating
and broadening p.d.f. of knot types with time. Thus, we demonstrate a knotting cascade of
field lines through a sequence of reconnection events and its influence on the magnetic
energy release in a finite time period. Finally, the knot cascade slows down and then
terminates in the dissipative MHD flow.

In future work, the knotting/unknotting cascade and its significance on flow dynamics
are expected to be investigated in MHD/HD turbulence. More advanced methods need to
be developed to identify frequent reconnection events and to distinguish complex knots.
Furthermore, the parameters Re, Rem and Ni are relatively moderate in the present study,
and we expect more complex dynamics of field lines for larger parameters, e.g. more
tangled field lines during reconnection (e.g. Yao & Hussain 2020) and stronger interactions
between magnetic and vorticity fields via the Lorentz force (e.g. Kivotides 2018).
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Appendix A. Identification methods of flux tubes

The flux tubes are usually visualized by the isosurface of the magnetic strength |b| (e.g.
Linton et al. 2001) or bundles of field lines (e.g. Dahlburg, Antiochos & Norton 1997;
Hesse, Forbes & Birn 2005) in existing studies. These methods are simple to implement
but have weaknesses for tracking coherent flux tubes in time (see Lau & Finn 1996), such
as the lack of time coherence and the ad hoc choice of isocontour level at different times,
which are similar to the issues for identifying vortex tubes (see Xiong & Yang 2019b).

Figure 18 plots the averaged MSF deviations (2.18) in terms of the MSF solution and
the magnetic strength. We find that 〈|λb|〉 for φ = φb is less than 1 %, which is very low
and consistent with the accurate identification of flux tubes in figure 3. By contrast, 〈|λb|〉
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Figure 18. Temporal evolution of MSF deviations for the MSF solution and the magnetic magnitude.

y

z

(a) (b)

Figure 19. Isosurfaces of |b| = 0.5|b|max at (a) t = 2 and (b) t = 4, where |b|max denotes the maximum |b| in
Ω . Some field lines are integrated on the surfaces.

for φ = |b| is around 10 % at t = 2 and 20 % at t = 4. figure 19 plots the isosurfaces of
|b| and some field lines integrated on the surfaces at t = 2 and t = 4. We observe that the
field lines notably deviate from the surfaces, corresponding to the large MSF deviation in
figure 18. Therefore, compared with the regular visualization of |b|, the Lagrangian-based
MSF method facilitates the identification of flux tubes in a temporal evolution and provides
accurate integral boundaries for calculating the magnetic fluxes in figure 11.

In addition, if we evolve φb as a pure Lagrangian scalar by solving ∂φb/∂t + u · ∇φb =
0, in the same form as the prediction substep in (2.16), the isosurface of φb is a material
surface. We find that the evolutionary geometry of the material surface with the maximum
〈|λb|〉 ≈ 5 % is similar to that of the MSF isosurface. This indicates that the MSF
visualization has an essential Lagrangian nature, and the two-time method effectively
reduces the MSF deviation owing to breakdown of the Alfvén theorem in the ordinary
Lagrangian surface tracking via the correction substep in (2.17).

Appendix B. Effects of the initial condition on knotting process

The initial condition of the magnetic field can have an impact on the knotting process
of helical field lines. First, to demonstrate the effects of the initial twist, we perform two
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Figure 20. Temporal evolution of the volume-averaged (a) kinetic energy and (b) normalized magnetic
helicity within inner flux tubes in the DNS cases with various q.

additional simulations with q = 5 and q = 15 for T1, where the corresponding negative
q values for T2 are omitted for clarity. The other DNS set-ups for the two cases are the
same as those of q = 10. Additionally, if initial helical tubes have the same chirality, e.g.
q = 10 for both T1 and T2, their evolution has the ‘tunnel interaction’ (see Linton et al.
2001) without knot cascade.

For various q, figure 20 compares temporal evolutions of the volume-averaged kinetic
energy and normalized magnetic helicity density within inner flux tubes. All the profiles
are normalized by their initial values. For all three cases, 〈Eu〉I/〈Eu〉I0 first decays and
then rises. The incipient rising time is advanced with the increase of q, indicating that the
energy conversion accelerates with q. In figure 20(b), the peak of 〈h∗〉I/〈h∗〉I0 with q = 15
occurs earlier and the peak value is higher than those in the case with q = 10. For the case
with q = 5, 〈h∗〉I/〈h∗〉I0 monotonically decays without peaks.

Figure 21 plots MSF isosurfaces of φv = ±0.01 with q = 5 and q = 15 at t = 1.75 and
some typical field lines integrated on the surfaces. The distortion degree of the flux tubes
and field lines grows with q. For q = 5, the deformation of flux tubes is small and the
geometry of field lines is simple. Some U-shaped field lines form after the reconnection
with a low rate and they remain unknotted, consistent with the relatively steady profiles of
the kinetic energy and normalized helicity density within inner flux tubes in figure 20. By
contrast, for q = 15, knotted and highly coiled field lines are generated via reconnections
in the plasmoid. We plot a typical double overhand knot and a highly coiled field line
with many turns around the plasmoid in figure 21(d). Their occurrence time t = 1.75 is
earlier than that for the case with q = 10 shown in figures 7 and 16. Hence, the increase of
q accelerates the reconnection and tying processes of field lines and enhances the energy
conversion, consistent with the strongest peaks of 〈Eu〉I/〈Eu〉I0 and 〈h∗〉I/〈h∗〉I0 for q = 15
in figure 20.

Second, we investigate effects of the initial magnetic distribution on the knotting
process of helical field lines by performing two additional simulations with different initial
magnetic profiles f1(r) = f0(r) in (2.8) with a smaller K = 0.5 and

f2(r) =
{

b0[1 − g(r/rc)], r � rc,

0, r > rc,
(B1)

with K = 10. figure 22 shows that f1(r) < f0(r) < f2(r) for 0 < r < rc, causing the largest
initial circumferential component bθ = qrf (r) for f2 and the smallest bθ for f1.

Since the knotting process is triggered by the antiparallel reconnection of helical field
lines, as shown in figures 7 and 8 and implied by the q effect in figure 21, the strong initial

912 A48-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
45

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1145


Magnetic knot cascade via reconnections

z
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Figure 21. Isosurfaces of φb = ±0.01 for cases with (a) q = 5 and (b) q = 15 at t = 1.75. Some field lines
are integrated and plotted on the isosurfaces colour coded by −1 � h∗ � 1 from blue to red. Close-up views
in the plasmoid for cases with (c) q = 5 and (d) q = 15 at t = 1.75, with some field lines colour coded by
−1 � h∗ � 1 from blue to red.
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Figure 22. Comparison of different initial magnetic distributions of (a) the axial component and (b) the
circumferential component.
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(a) (b) (c)

Figure 23. Cascade of tying magnetic knots in the plasmoid in the case with initial f2, which is visualized by
typical field lines: (a) overhand knot (trefoil knot) at t = 0.75, (b) double overhand knot (cinquefoil knot) at
t = 1.0, and (c) triple overhand knot (septafoil knot) at t = 1.25.

bθ at large r in figure 22(b) can accelerate the reconnection and the knotting cascade
starting from the peripheral region of helical flux tubes. For the case with initial magnetic
distribution f2, figure 23 illustrates that the formation time of overhand knots is around
t = 0.75, which is much earlier than t = 1.75 for initial f0, and the subsequent cascade
towards 51, 71 and more complex knots from t = 0.75 to t = 1.25 is faster than that from
t = 1.75 to t = 2.25 for initial f0. Identified from the field lines sampled through S∗ in
(3.4), we calculate that 1.5 % and 47.2 % of sampled field lines are knotted at t = 0.75 and
t = 1.25, respectively. In contrast, there is no knotting in the case with initial f1, and the
evolutionary geometry of the isosurface of φb is very similar to that in figure 21(a,c).

Another factor to influence the knotting process of field lines is the interaction
parameter. Compared to the base DNS case with b0 = 3.068 in (2.8), we perform two
additional cases for a smaller Ni = 2.26 × 10−1 with b0 = 0.01 × 3.068 and a larger
Ni = 5.65 × 104 with b0 = 5 × 3.068. Under the weak action of magnetic field on the
velocity field with Ni = 2.26 × 10−1, the magnetic surface is similar to the material
surface (see Kivotides 2018). Two flux tubes are flattened in the central region without
knotting process, similar to the observation in figure 21(a,c). Under the very strong action
of the magnetic field with Ni = 5.65 × 104, the morphology of the MSF isosurface is
similar to that in figure 21(b). The knotting process begins around t = 0.75, and then
31.1 % of field lines sampled through S∗ are knotted at t = 1.25. Thus, the helical degree
of field lines tends to be maintained towards the force-free state (Woltjer 1958) and the
knotting process is accelerated at large interaction parameters.
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