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ABSTRACT
In this paper, we designa robust Successive Generalised Dynamic Inversion (SGDI) flight control system for high-
performance trajectory tracking of target sun-synchronous orbit Satellite Launch Vehicles (SLVs). The robust SGDI
control system is designed to track an optimal reference trajectory such that the desired orbital terminal conditions
of the ascent flight phase are achieved. The proposed SGDI is composed of two loops. The attitude control loop
employs Dynamically Scaled Generalised Inversion (DSGI) of Servo Constraint Dynamics (SVD) in the deviations
of Euler attitude angles from their desired optimal trajectories. The inner-dynamics control loop employs DSGI of
an SVD in the SLV angular velocity components. Robustification control elements are augmented within the two
loops of the baseline SGDI control system to overcome control performance degradation due to dynamic scaling of
the Moore-Penrose generalised inverse, modeling and parametric uncertainties, and exogenous disturbances. The
robust SGDI control system works to enforce global convergence of the SLV attitude trajectories to the reference
trajectories. The high-performance attributes of the robust SGDI control system are verified via comparisons with a
classical sliding mode control system, and by performing numerous runs of Monte Carlo simulations under various
types of uncertainties and external wind disturbances.

Nomenclature
h altitude
href reference altitude
V velocity
Vref reference velocity
p roll rate
q pitch rate
r yaw rate
X displacement vector
V velocity vector
e error vector
g acceleration due-to-gravity vector
m mass
T thrust
D drag
Q dynamic pressure
Sref reference surface area
CD drag coefficient
CLα lift coefficient derivative with respect to α
CLβ lift coefficient derivative with respect to β
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L aerodynamic and propulsive moment vector about body x axis
M aerodynamic and propulsive moment vector about body y axis
N aerodynamic and propulsive moment vector about body z axis
Jx moment of inertia about body x axis
Jy moment of inertia about body y axis
Jz moment of inertia about body z axis
S×(·) skew symmetric cross product matrix
Cmx pitching moment coefficient about body x axis
l vehicle length
Re Earth’s equatorial radius
RL local Earth’s radius
brud distance between centre of motor and vehicle’s longitudinal axis
Xcg distance from the vehicle’s nose to its centre of mass
Xcp distance from the vehicle’s nose to its centre of pressure
Xrud distance from the vehicle’s nose to the motor’s hinge line
P null projection matrix

Greek symbol
ϑ flight path angle
ϑref reference flight path angle
α angle-of-attack
σ heading angle
β side slip angle
φ roll angle
θ pitch angle
ψ yaw angle
ϑl local flight path angle
ωe Earth’s rotational speed
δφ roll control deflection
δθ pitch control deflection
δψ yaw control deflection
λ latitude
ξ attitude error deviation function
η null control vector
ν dynamic scaling factor
ζ body rate deviation function
� attitude corrections
εy normal positional error
εz lateral positional error
∇ thrust offset
� thrust misalignment

1.0 Introduction
The attitude control system design for Satellite Launch Vehicles (SLVs) has been an active area of
research for the last three decades. The factors that make it challenging to design a robust SLV flight con-
trol system include the highly complex nonlinear SLV dynamics, the big variations in aerodynamic loads
and propulsive forces throughout the flight envelope, inertia and aerodynamic parametric uncertainties
of the SLV, in addition to wind and other exogenous disturbances that the SLV may be exposed to.

The vast majority of practical control system designs that were proposed initially for SLVs were linear.
To overcome SLV control performance degradations that result from neglecting high nonlinearities in
the SLV dynamics, gain scheduling of the linear control system parameters were used to be implemented
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[1–4]. However, gain scheduling methods are costly and became needless with the recent advancements
in nonlinear control systems.

The focus has been shifting during the last two decades towards designing modern SLV control
systems that overcome the limitations of classical linear control systems and the complexity of gain
scheduling. A variety of nonlinear control system methodologies are now found in the SLV control
literature, e.g. dynamic inversion with backstepping control [5], Sliding Mode Control (SMC) [6],
fault-tolerant control [7, 8], adaptive control [9, 10] and intelligent control [11–13].

Among the popular nonlinear control system design methodologies is global feedback linearisation
via Nonlinear Dynamic Inversion (NDI). The NDI control law is designed to eliminate system non-
linearities by means of feedback. As a consequence, well-established linear control techniques can be
incorporated in the outer feedback control loop. In NDI, however, the linearised system is obtained by
direct nonlinearity cancellation. Therefore, the methodology is heavily dependent on the mathematical
model of the controlled system.

As a consequent, dynamic inversion errors of a poorly modeled plant dynamics degrade an NDI con-
trol system stability and performance by a big extent [14]. Numerous modifications were made to the
NDI control system structure to improve its robustness [15–17]. However, some limitations of feedback
linearisation via NDI remain problematic, including useful nonlinearities cancellations, large NDI con-
trol efforts, squaring assumptions and approximations of nonsquare controlled plants, and singularity
configurations of the controlled system matrix.

Generalised Dynamic Inversion (GDI) [18–23] is a dynamic inversion control design methodology
that avoids many disadvantages of classical NDI. The GDI control design methodology provides the
ability of partial feedback linearisation of the closed loop dynamics, and it provides the flexibility of
involving other control system design methodologies within the dynamic inversion framework, e.g.
energy-based control techniques.

Therefore, the GDI control methodology avoids blind cancellation of plant nonlinearities and makes
it possible to reduce the control effort that is required to execute dynamic inversion. Finally, the GDI con-
trol methodology is based on the nonsquare Moore-Penrose Generalised Inversion (MPGI) tool [24, 25].
Hence, GDI control bypasses the plant squaring assumptions and approximation tactics, and it is not
affected by the controlled system square matrix singularity configurations.

The GDI control methodology is rooted in analytical dynamics [26], and it was inspired by the MPGI-
based Greville formula [27, 28] for solving linear algebraic systems of equations. The GDI control law
is composed of two cooperating control parts that act on two orthogonally complement control spaces:
one part is a particular part that realises the dynamic constraints, and the other is an auxiliary part
that is affine in a null control vector. Orthogonality of the particular and the auxiliary control subspaces
guarantees noninterference of the two control actions, and thus it ensures that both actions work towards
a unified goal, and work to reduce the total control effort.

A GDI nonlinear control system design begins by prescribing a desired Servo Constraint Dynamics
(SVD) that encapsulates the GDI control design objectives. The SVD is generalised inverted for the
control variables that realise that dynamics by using a modification of the Greville formula. The modified
Greville formula is constructed by scaling the MPGI in the particular part of the formula by a dynamic
factor. The Dynamically Scaled Generalised Inverse (DSGI) avoids MPGI singularity as the controlled
system dynamics evolves. The nonempty nullspace of the nonsquare generalised-inverted matrix in the
modified Greville formula is utilised to perform other objectives of the GDI control design, mainly for
stabilising the inner dynamics of the closed loop GDI control system. The GDI control methodology
has been applied to numerous aerospace engineering and robotics applications [18–23, 29–34].

The present paper extends the authors’ previous works on SLV GDI control [29, 30]. The baseline
GDI control methodology is modified by applying GDI control in a successive manner to design the
null control vector in the auxiliary part of the GDI control law on top of its application to design the
particular part of the GDI control law. The particular part of the Successive GDI (SGDI) control law
employs GDI on an SVD in the SLV’s Euler attitude angles, and it is responsible for controlling the
SLV’s outer dynamics. The auxiliary part of the SGDI control law employs GDI on an SVD in the
SLV’s angular velocity variables, and it is responsible for controlling the SLV’s inner dynamics.
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Due to the favourable geometry of the Greville formula, the order in which the attitude and the inner-
dynamics loops closures is performed is irrelevant and can be performed arbitrarily to achieve the same
SGDI closed loop dynamics. To enhance SGDI control performance robustness against SLV modeling
uncertainties and exogenous disturbances and generalised inversion dynamic scaling, integral control
elements are augmented within the attitude and the inner-dynamics loops of the baseline SGDI con-
trol system. The performance-robustifying control elements are augmented in a manner that maintains
geometrical features of the nominal SGDI control law.

The proposed robust SGDI control system is validated by numerical simulations on a six Degrees
Of Freedom (DOFs) simulator of a four-stage SLV subjected to inertial, aerodynamic and propulsive
parametric uncertainties under unsteady wind effects. Moreover, the proposed control system is compare
with a classical SMC control system, the second of which is known for its high, robust performance.
Finally, diversified Monte-Carlo statistical simulations are carried out to verify robustness attributes
of the SLV robust SGDI control system in the presence of internal perturbations and environmental
disturbances.

In the realm of SLV attitude control systems, the major contribution of this article is threefold. First,
a novel variant of GDI control is introduced for controlling the complex coupled nonlinear SLV attitude
dynamics under environmental challenges. The control actions on the outer and inner SLV dynam-
ics work synergistically without interference towards robust SLV attitude control. Second, a detailed
Lyapunov stability-based analysis is presented to prove asymptotic convergence of the state variables
to their optimal reference trajectories. Third, numerical simulations supported with diversified Monte-
Carlo analysis are carried out to validate efficacy of SGDI control in the presence of model uncertainties
and environmental disturbances.

The remaining part of the paper is organised as follows. Mathematical modeling of the SLV is pre-
sented in Section 2. Section 3 elucidates the baseline SGDI control system design, and Section 4 delves
into SGDI control system robustification. Section 5 describes the optimal reference trajectory gener-
ation methodology, and elaborates the trajectory reshaping strategy and rational energy management.
Numerical simulations of the proposed robust SGDI SLV control system are shown in Section 6, in addi-
tion to performance evaluation of the proposed system by comparisons with a SMC system and through
Monte Carlo simulations. The paper is concluded in Section 7.

2.0 Six-DOFs mathematical modeing
In developing a mathematical model for the SLV’s kinematics and dynamics, the Earth is assumed to be
ellipsoidal, and its rotation together with the atmosphere is taken as a single frame of reference. The effect
of Earth’s rotation is also taken into account by modeling the Coriolis and the centrifugal accelerations.
The synergy between the Earth and the SLV is modeled with the aid of the two-body problem formula-
tion. The SLV’s six DOFs kinematics is given by the following translational and rotational kinematical
equations of motion [35]

Ẋl = Vl, (1)

φ̇ = p + q tanψ sin φ + r cos φ tanψ (2)

θ̇ = q sin φ/ cosψ + r cos φ/ cosψ (3)

ψ̇ = q cos φ − r sin φ. (4)

In Equation (1), Xl = [xl yl zl]T , where xl, yl, and zl are the displacement vector components of the
SLV from its launch site, expressed in the Launch Reference Frame (LRF), and Vl = [Vxl Vyl Vzl ]

T ,
where Vxl , Vyl , and Vzl are the velocity vector components of the SLV relative to the LRF. The SLV’s
three translational DOFs dynamical equations of motion are given by [35]

https://doi.org/10.1017/aer.2024.144 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.144


The Aeronautical Journal 5

V̇l = Llb

m

⎡
⎢⎣−QSrefCD + T cos δφ

QSrefCLα + 0.5T sin δθ
QSrefCLβ + 0.5T sin δψ

⎤
⎥⎦ + Llege − Lle�

×
e �

×
e Xe − 2Lle�

×
e Ve. (5)

In Equation (5), Xe = [xe ye ze]T , where xe, ye, and ze are the displacement vector components
of the SLV from its launch site, expressed in the earth-fixed Geocentric Reference Frame (GRF), and
Ve = [Vxe Vye Vze]T , where Vxe , Vye , and Vze are the SLV’s velocity vector components relative to the
GRF. Similarly, ge = [gxe gye gze]T , where gxe, gye, and gze are the acceleration-due-to gravity vector
components in the GRF. The variable�×

e denotes the skew symmetric cross product matrix of the vector
�e = [0 0 ωe]T , and is given by

�×
e =

⎡
⎢⎣ 0 −ωe 0

ωe 0 0

0 0 0

⎤
⎥⎦ , (6)

The matrices Llb, Lle ∈R
3×3 are the transformation matrices from the Body-fixed Reference Frame

(BRF) to the LRF and from the GRF to the LRF, respectively. Also, The SLV’s three rotational DOFs
dynamical equations of motion in the SLV’s BRF are given by [35]

ṗ =L/Jx (7)

q̇ = (Jz − Jx) pr/Jy +M/Jy (8)

ṙ = −
(
Jy − Jx

)
pq

Jz

+ N
Jz

, (9)

θ = ϑ + α, ψ = σ + β. (10)

The moment components L, M, and N in Equations (7)–(10) are composed of aerodynamic
moments, control moments and disturbance moments due to thrust misalignment [35]. The aerodynamic
moment components in the BRF are given by Equations (11)–(13)

La = QSreflCmx (11)

Ma = −QSrefCLαα
(
Xcp − Xcg

)
, (12)

Na = QSrefCLβ β
(
Xcp − Xcg

)
. (13)

The control moments in the BRF are given by Equations (14)–(16)

Lδ = Tbrudδφ (14)

Mδ = 1

2
T

(
Xrud − Xcg

)
δθ , (15)

Nδ = 1

2
T

(
Xrud − Xcg

)
δψ . (16)

Finally, the moments caused by disturbances due to misalignment of the thrust vector � from the
SLV’s centre of mass are caused by the thrust offset ∇ relative to the centre of mass, and are expressed
in the BRF as seen in Equations (17)–(19)
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L� = Tsin (�)∇T , (17)

M� = 1

2
Tsin (�)

(
Xrud − Xcg

) + 1

2
T∇T , (18)

N� = 1

2
Tsin (�)

(
Xrud − Xcg

) + 1

2
T∇T . (19)

By combining the moment components about each BRF axis as given by Equations (11)–(19), the
following expressions for aerodynamic, propulsive and thrust misalignment moment components are
obtained

L= QSreflCmx + Tbrudδφ + Tsin (�)∇T (20)

M= −QSrefCLαα
(
Xcp − Xcg

) + 0.5T
(
Xrud − Xcg

)
δθ + 0.5Tsin (�)

(
Xrud − Xcg

) + 0.5T∇T , (21)

N = QSrefCLβ β
(
Xcp − Xcg

) + 0.5T
(
Xrud − Xcg

)
δψ + 0.5Tsin (�)

(
Xrud − Xcg

) + 0.5T∇T . (22)

Let the attitude state vector of the SLV be defined as x = [φ θ ψ p q r]T , and let the control
vector of the SLV be defined as u = [δφ δθ δψ ]T . Also, let the state vector x be partitioned as

xo = [
φ θ ψ]T , xi =

[
p q r]T (23)

where xo is the vector of outer (unactuated) attitude state variables, and xi is the vector of inner (actuated)
angular velocity state variables. Hence, the unactuated attitude dynamics given by Equations (2), (3) and
(4) may be written compactly as

ẋo = H (xo) xi (24)

where

H (xo)=
⎡
⎢⎣ 1 tanψ sin φ cos φ tanψ

0 sin φ/cosψ cos φ/cosψ
0 cos φ −sin φ

⎤
⎥⎦ . (25)

Also, the actuated inner velocity dynamics given by Equations (7), (8) and (9) can be written
compactly as

ẋi = −J−1S× (xi) Jxi + J−1M (26)

where S×(xi) is given by

S× (xi)=
⎡
⎢⎣ 0 −r q

r 0 −p

−q p 0

⎤
⎥⎦ (27)

In Equation (26), J = diag
(
Jx, Jy, Jz

)
is the diagonal matrix containing Jx, Jy, and Jz in its diagonal

entries, and M = [L M N ]T . Substituting the expressions given by Equations (20), (21) and (22) in
Equation (26) yields

ẋi = −J−1S× (xi) Jxi + J−1QSreff (α, β)+ J−1Gu (28)

where

f (α,)=
⎡
⎢⎣ lCmx

−CLαα
(
Xcp − Xcg

)
CLβ β

(
Xcp − Xcg

)
⎤
⎥⎦ , (29)
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GDI inner-dynamics control loop

GDI attitude control loop

Figure 1. General SGDI control system structure: the inner loop controls SLV’s internal dynamics,
and the outer loop controls SLV’s attitude dynamics.

G =
⎡
⎢⎣ Tbrud 0 0

0 0.5T
(
Xrud − Xcg

)
0

0 0 0.5T
(
Xrud − Xcg

)
,

⎤
⎥⎦ , (30)

and

u = [δφ δθ δψ ]T . (31)

Finally, Equation (28) is rewritten more compactly as

ẋi = A + Bu (32)

where

A = −J−1S× (xi) Jxi + J−1QSreff (α, β) , (33)

and B is the full-rank control influence matrix given by

B = J−1G. (34)

3.0 Baseline SGDI feedback control system design
The SGDI control system is the backbone of the proposed robust SGDI control system. The SGDI
control system is composed of two GDI control loops as illustrated in Fig. 1. The guidance system feeds
the reference attitude trajectories to the GDI attitude control loop, which works to control the attitude
dynamics given by Equation (24) such that the attitude variables track the reference attitude trajectories.
The GDI inner-dynamics control loop works to stabilise the inner (angular velocity) dynamics of the
SLV given by Equation (26).

3.1 GDI attitude control loop design
The first step in designing the attitude control loop of the baseline SGDI control system is to prescribe
a time differential SVD that resembles the SLV’s desired attitude trajectories deviation dynamics from
their desired trajectories. Hence, the outer (attitude) error vector is defined as

eo = xo − xor (t) , (35)
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where xor (t)= [φr (t) θr (t) ψr (t) ]T is a bounded twice differentiable reference attitude angles
vector function. The attitude error deviation function is defined as

ξ = 1

2
eT

o Koeo (36)

where Ko ∈R
3×3 is a positive definite constant matrix such that ξ vanishes if and only if the attitude state

trajectories converge to the corresponding desired attitude state trajectories. To fulfill that purpose, an
asymptotically stable SVD in ξ is prescribed and is enforced by means of GDI control. The SVD takes
the following Linear Time Invariant (LTI) form

ξ̈ + a1ξ̇ + a2ξ = 0, a1 > 0, a2 > 0 (37)

where the order (two) of the SVD is equal to of the relative degree of ξ with respect to u, such that(
ξ , ξ̇

) = 02 is globally asymptotically stable [20]. The first and second time derivatives of ξ are

ξ̇ = eT
o Koėo (38)

and

ξ̈ = eT
o Ko (�o + H (xo) Bu)+ ėT

o Koėo (39)

where

ėo = H (xo) xi − ẋor , (40)

and

�o = H (xo)A + Ḣ (xo, xi) xi − ẋor (41)

such that Ḣ (xo, xi) is the element-wise time derivative of H (xo). By substituting the time derivatives
given by Equations (38) and (39) in the SVD given by Equation (37), the differential form of the SVD
is converted to the following algebraic form

Aou =Bo, (42)

where

Ao = eT
o KoH (xo) B (43)

and

Bo = −eT
o Ko�o − ėT

o Koėo − a1ξ̇ − a2ξ . (44)

Equation (42) is over-determined in u and is consistent for all eo �= 03. Therefore, Equation (42) has
infinite number of solutions. The solutions for u are parameterised by an arbitrary outer null control
vector ηo ∈R

3 in the MPGI-based Greville formula as

u = A+
o Bo︸ ︷︷ ︸

∈R(AT
o )

+ Poηo︸︷︷︸
∈N (Ao)

, (45)

where A+
o is the MPGI of Ao, and is given as

A+
o =

{
AT

o/
(AoAT

o

) Ao �= 01×3

03 Ao = 01×3

(46)

and Po is the null projection matrix on the nullspace of Ao, and is given by

Po = İ3×3 −A+
o Ao. (47)

The control vector u is composed of a particular part A+
o Bo and an auxiliary part Poηo. The

particular part of u acts on the range space R (AT
o

)
, and it works to enforce the SVD given by

Equation (42). The auxiliary part of u acts on the orthogonally complement nullspace N (Ao) such that
rank

(AT
o

) + rank (Po)= dim (u)= 3. The value of ηo does not affect the SVD enforcement because the
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null projection matrix Po projects ηo on N (Ao). The vector ηo is designed to stabilise the inner dynam-
ics of the SLV as shown later in the paper. Because A+

o is a nonzero single column matrix, it follows
that rank (Po)= dim (u)− rank

(A+
o

) = 3 − 1 = 2. However, the MPGI A+
o is a discontinuous function

at eo = 03, and it reaches infinite values in the neighbourhood of eo = 03 where Ao and A+
o approach

01×3 and = 03, respectively according to Equation (46). Therefore, utilising the Greville formula given
by Equation (45) is hindered by a singularity at the steady state phase of closed loop response, and the
formula cannot be used directly as a control law that enforces the algebraic SVD given by Equation (42).
Instead, a singularity-free continuous GDI control law is constructed to enforce the SVD by scaling the
MPGI A+

o in the particular part of the Greville formula. The dynamically scaled generalised inverse
(DSGI) is given by [23] as

A*
o = AT

o

AoAT
o + νo (t)

(48)

where νo is governed by the differential equation

ν̇o (t)= −νo (t)+ ko

‖ėo‖2

‖eo‖2
, νo (0) > 0, ko > 0. (49)

The GDI attitude control law of the SGDI control system is based on the DSGI A*
o instead of the

MPGI A+
o , and is given by

ugdi = A*
oBo︸ ︷︷ ︸

∈R(AT
o )

+ Poηo︸︷︷︸
∈N (Ao)

. (50)

Unlike the MPGI A+
o , the DSGI A*

o remains bounded [23]. Therefore, the GDI attitude control law
provides robustness to the kinematical loop against MPGI singularity. The particular part A*

oBo of the
GDI attitude control law vanishes as ‖ėo‖ grows, i.e. dynamic scaling of A+

o works to deactivate the
GDI attitude control loop as the attitude error variables accelerate, which drives the SLV’s kinematical
subsystem to the open loop status. On the other hand, intensity of the particular part A*

oBo increases by
the convergence of A*

o to A+
o as ‖eo‖ grows, which works to re-enforce the SVD given by Equation (42).

Therefore, the GDI attitude control law guarantees boundedness of the attitude error vectors eo and ėo,
which implies robustness of the kinematical loop against closed loop instability due to environmental
disturbances. Finally, although GDI is dependent on the mathematical model of the SLV, the dynamics
of the scaling factor νo is dependent only on the error measurements eo and ėo. Therefore, the GDI
attitude control law provides robustness to the kinematical loop against closed loop instabilities due to
modeling and parametric uncertainties. It follows from the expression of A*

o given by Equation (48) that
Ṙ

(A*
o

) = Ṙ
(A+

o

) = Ṙ
(AT

o

)
. Therefore,

Ṙ
(A*

oBo

) = Ṙ
(A+

o Bo

) ∈R (AT
o

)
. (51)

Hence, the GDI attitude control law preserves the geometric structure of the Greville formula. The
resulting closed loop inner angular velocity dynamics is

ẋi = A + B
(A*

oBo +Poηo

)
. (52)

The full rank of the control influence matrix B implies that

rank (BPo)= rank (Po)= 2. (53)

Therefore, enforcing the algebraic SVD given by Equation (42) exploits one control subspace among
the three control subspaces by which the SLV’s controlled dynamics is equipped. Closing the kinematical
GDI control loop by means of DSGI control guarantees boundedness of e trajectories [36], but not
convergence to zero, which necessitates robustifying the kinematical loop performance.
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3.2 GDI inner-dynamics control loop design
The closed loop xi response changes dramatically with the design of ηo. Therefore, it is essential to
design ηo in a manner that guarantees stability of the SLV’s inner dynamics. To fulfill that purpose, the
following inner deviation function is defined

ζ = 1

2
xT

i Kixi, (54)

where Ki ∈R
3×3 is a positive definite constant matrix, such that xi converges to zero if and only if ζ

converges to zero. The following asymptotically stable SVD in ζ is prescribed next and is enforced by
means of GDI control. The SVD takes the following linear form

ζ̇+b1ζ = 0, b1 > 0 (55)

such that ζ = 0 is globally asymptotically stable. The first-time derivative of ζ is

ζ̇ = xT
i Kiẋi = xT

i Ki (�i + BPoηo) (56)

where �i = A + BA*
oBo. Hence, Equation (55) is rewritten in the following algebraic form

Aiηo =Bi, (57)

where

Ai = xT
i KiBPo, (58)

and

Bi = −xT
i Ki�i − b1ζ . (59)

Equation (57) is consistent for all xi �= 03 and is over-determined in ηo, and therefore it has infinite
number of solutions. These solutions are parameterised by an arbitrary inner null control vector ηi ∈R

3

in the MPGI-based Greville formula as

ηo = A+
i Bi︸ ︷︷ ︸

∈R(AT
i )

+ Piηi︸︷︷︸
∈N (Ai)

, (60)

where A+
i is the MPGI of Ai, and is given by

A+
i =

{
AT

i /
(AiAT

i

) Ai �= 01×3

03 Ai = 01×3

(61)

and Pi is the null projection matrix on the nullspace of Ai, and is given by

Pi = İ3×3 −A+
i Ai. (62)

The particular partA+
i Bi of the null control vector ηo acts on the range spaceR (AT

i

)
, and the auxiliary

part projects ηi on the orthogonally complement nullspaceN (Ai). Because ηo ∈R
3 andA+

i is a nonzero
single column matrix, it follows that rank (Pi)= dim (ηo)− rank

(A+
i

) = 3 − 1 = 2. The expression of
Ai given by Equation (58) implies that AT

i ∈R (Po). Therefore, AoAT
i = 0, i.e. R (AT

o

)
and R (AT

i

)
are orthogonal subspaces of R3, R (Po) and R (Pi) are also orthogonal subspaces of R3, R (AT

o

) =
R (Pi), and R (AT

i

) =R (Po). Similar to the limitation of the MPGI A+
o , the MPGI A+

i suffers from a
discontinuity at the point xi = 03, and it reaches infinite values in its neighbourhood where Ai and A+

i

approach 01×3 and 03, respectively. Therefore, the Greville formula given by Equation (60) cannot be
used directly as a control law that enforces the algebraic SVD given by Equation (57). Following the
same procedure of designing the GDI attitude control loop, a singularity-free continuous GDI control
law that works to enforce the SVD is constructed by replacing the MPGI A+

i in the particular part of the
Greville formula by the DSGI A*

i given by [23]

A*
i = AT

i

AiAT
i + νi (t)

(63)
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where the dynamic scaling factor νi is governed by the differential equation

ν̇i (t)= −νi (t)+ ki

‖ẋi‖2

‖xi‖2
, νi (0) > 0, ki > 0. (64)

The dynamically scaled outer null control law ηogdi is obtained by replacing the MPGI A+
i by the

DSGI A*
i in the expression of ηo given by Equation (60), resulting in

ηogdi =A*
i Bi +Piηi. (65)

Similar to the DSGI A*
o, the DSGI A*

i is always bounded [23]. Therefore, the dynamically scaled
outer null control law ηogdi provides robustness to the inner-dynamics control loop against MPGI sin-
gularity. Moreover and similar to the effect of ugdi on eo and ėo, ηogdi guarantees boundedness of xi

and ẋi. Therefore, ηogdi provides stability robustness to the inner-dynamics control loop against external
disturbances. Finally, the dynamics of the scaling factor νi is independent of the SLV’s mathematical
model and is dependent only on the angular velocity measurements xi and ẋi. Therefore, ηogdi pro-
vides robustness to the inner-dynamics control loop against instabilities due to modeling and parametric
uncertainties. Because Ṙ

(A*
i

) = Ṙ
(A+

i

) = Ṙ
(AT

i

)
, it follows that

Ṙ
(A*

i Bi

) = Ṙ
(A+

i Bi

) ∈R (AT
i

)
. (66)

Hence, dynamic scaling of A+
i does not alter the geometric structure of the Greville formula, and it

follows consequently that

A∗T
i A∗

o =A∗T
i A+

o =A+T
i A∗

o =A+T
i A+

o = 0. (67)

Substituting the expression of ηogdi given by Equation (65) in place of ηo in Equation (50) yields the
SGDI control law

usgdi = A*
oBo︸ ︷︷ ︸

∈R(AT
o )

+Poηogdi︸ ︷︷ ︸
∈N (Ao)

= A*
oBo︸ ︷︷ ︸

∈R(AT
o )

+Po(

∈R(AT
i )︷︸︸︷

A*
i Bi +

∈N (Ai)︷︸︸︷
Piηi︸ ︷︷ ︸

∈N (Ao)

. (68)

The fact thatAT
i ∈R (Po) implies thatA*

i ∈R (Po) also. Hence, the projective property ofPo implies
that PoA*

i =A*
i , and the expression of usgdi given by Equation (68) reduces to

usgdi = A*
oBo︸ ︷︷ ︸

∈R(AT
o )

+ A*
i Bi︸︷︷︸

∈R(AT
i )

+Po

∈N (Ai)︷︸︸︷
Piηi︸ ︷︷ ︸

∈N (Ao)

. (69)

The fact that R (A*
o

)
is orthogonal to R (A*

i

)
implies that the two vectors A*

oBo and A*
i Bi are always

orthogonal to each other. Therefore, the dynamics of the two GDI control loops that compose the SGDI
control system are independent. It follows that the order in which the two control loop closures takes
place is irrelevant in designing the SGDI control system and can be performed arbitrarily. The resulting
closed loop inner dynamics is

ẋi = A + B
(A*

oBo +A*
i Bi +PoPiηi

)
. (70)

Because R (A*
o

) �=R (A*
i

)
, Po and Pi project to different subspaces of R3. Therefore,

rank (PoPi)= dim
(
usgdi

) − rank
(A*

o

) − rankA*
i ) = 3 − 1 − 1 = 1. (71)

The full rank of the control influence matrix B implies that

rank (BPoPi)= rank (PoPi)= 1. (72)
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GDI inner-dynamics control loop

GDI attitude control loop

+

+

+
+

+
-

Figure 2. Baseline SGDI control system structure: detailed block diagrams of inner and outer GDI
control loops and their interactions.

Therefore, enforcing the dynamical SVD given by Equation (57) exploits one additional control
subspace on top of the control subspace that is exploited to enforce the kinematical SVD given by
Equation (42), leaving one free control subspace among the three SLV control subspaces. The con-
trol redundancy that the third control subspace provides can be used to fulfill further objectives of
the SGDI control system. Closing the inner-dynamics GDI control loop by means of DSGI control
guarantees boundedness of xi trajectories [36], but not convergence, which necessitates robustifying
the inner-dynamics loop performance. Actually robustifying the inner-dynamics loop performance is
more important than robustifying the outer loop performance because the inner SLV dynamics given by
Equation (26) is inherently dependent on the aerodynamic and inertia parameters of the SLV and on the
external moments, which makes the closed loop inner dynamics of the SLV very susceptible to degra-
dations in performance due to uncertainties in these parameters and to exogenous moment disturbances.
The structure of the SGDI control system is illustrated in Fig. 2.

4.0 Performance robustification of SGDI control system
The baseline SGDI control system design guarantees boundedness of the attitude tracking error trajec-
tories [36]. However, dynamic scalings of the MPGIs A+

o and A+
i , unmodeled dynamics, aerodynamic

and inertia parametric uncertainties, and exogenous disturbances hinder the convergence of eo and xi.
Therefore, it is necessary to robustify the SGDI control system performance against these internal and
external tracking performance retardation effects.

4.1 Outer SGDI control loop design robustification
The outer loop of the baseline SGDI control system is robustified by augmenting an additional control
element in the loop. Define the functional So as
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So

(
ξo, ξ̇o, t

) = ξ̇o + a1ξo + a2

∫ t

t0

ξodτ , t> t0 ≥ 0 (73)

where t0 is an initial time instant. It is obvious from Equation (73) that convergence of both ξo and ξ̇o to
zeros is equivalent to the convergence of So to a finite number. The time derivative of So is

Ṡo = ξ̈o + a1ξ̇o + a2ξo, (74)

which can be written in the following form

Ṡo =Aou −Bo. (75)

Let us now consider the following modified kinematical SVD

Ṡo + a3So = 0, a3 > 0. (76)

The algebraic form of the modified kinematical SVD is

Aou =Bo − a3So. (77)

The GDI attitude control law ugdi given by Equation (50) modifies accordingly to

urgdi =A*
o (Bo − a3So)︸ ︷︷ ︸

∈R(AT
o )

+ Poηo︸︷︷︸
∈N (Ao)

. (78)

With the inner loop design ηogdi given by Equation (65), the SGDI attitude control law usgdi given by
Equation (69) modifies to

urgdi =A*
o (Bo − a3So)︸ ︷︷ ︸

∈R(AT
o )

+Po(

∈R(AT
i )︷︸︸︷

A*
i Bi +

∈N (Ai)︷︸︸︷
Piηi︸ ︷︷ ︸

∈N (Ao)

=A*
o (Bo − a3So)︸ ︷︷ ︸

∈R(AT
o )

+ A*
i Bi︸︷︷︸

∈R(AT
i )

+Po

∈N (Ai)︷︸︸︷
Piηi︸ ︷︷ ︸

∈N (Ao)

. (79)

The robust GDI control law urgdi preserves the geometric structures of ugdi and usgdi, i.e. the two
vectors that compose urgdi act on the two orthogonally complement subspaces R (AT

o

)
and N (Ao). The

resulting closed loop inner dynamics is

ẋi = A + B
(A*

o (Bo − a3So)+A*
i Bi +PoPiηi

)
. (80)

Setting the second term on the left-hand side of Equation (76) to zero reduces the differential and
algebraic forms of the modified kinematical SVD to those given by Equations (37) and (42), respectively,
and reduces the the expression of urgdi given by Equation (79) to that of usgdi given by Equation (69). The
integral action modification on the kinematical SVD aims to improve tracking performance of the GDI
attitude control loop by suppressing attitude tracking errors and perturbations.

4.2 Inner SGDI control loop design robustification
The null control vector design given by Equation (65) guarantees boundedness of the SLV’s angular
velocity vector. However, the GDI design of the inner loop does not guarantee convergence of the angular
velocity vector, mainly because of dynamic scaling of the MPGI A+

i . Moreover, the inner SLV dynamics
given by Equation (26) is directly dependent on the aerodynamic and inertia parameters and on external
moments. Therefore, the closed loop inner dynamics of the SLV is very susceptible to degradation in
performance due to uncertainties in these parameters and due to exogenous disturbances.

Robust closed loop inner SGDI control system performance can be achieved in a manner that is
similar to the manner followed in robustifying the closed loop outer stability of the SGDI control system,
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i.e. by augmenting an additional control element in the inner loop while preserving the structure of the
SGDI control law. Define the functional Si as

Si (ζi, t)= ζi + b1

∫ t

t0

ζidτ , t> t0 ≥ 0 (81)

where t0 is an initial time instant. It is obvious from Equation (81) that convergence of both ζi and ζ̇i to
zeros is equivalent to convergence of Si to a finite constant. The time derivative of Si is

Ṡ = ζ̇i + b1 i (82)

which can be written in the following form

Ṡi =Aiηo −Bi. (83)

We now seek to enforce the following modified SVD on the SLV inner dynamics

Ṡi + b2Si = 0, b2 > 0. (84)

The algebraic form of the modified dynamical SVD is

Aiηo =Bi − b2Si. (85)

Performing dynamically scaled GDI on the modified SVD given by Equation (85) yields the following
expression for the differential form of the robustified GDI outer null control vector ηorgdi

ηorgdi =A*
i (Bi − b2Si)+Piηi. (86)

Substituting ηorgdi in the expression of urgdi given by Equation (78) yields the following robustified
SGDI control vector of the SLV

ursgdi =A*
o (Bo − a3So)︸ ︷︷ ︸

∈R(AT
o )

+Po(

∈R(AT
i )︷ ︸︸ ︷

A*
i (Bi − b2Si)+

∈N (Ai)︷︸︸︷
Piηi︸ ︷︷ ︸

∈N (Ai)

=A*
o (Bo − a3So)︸ ︷︷ ︸

∈R(AT
o )

+A*
i (Bi − b2Si)︸ ︷︷ ︸

∈R(AT
i )

+Po

∈N (Ai)︷︸︸︷
Piηi︸ ︷︷ ︸

∈N (Ao)

. (87)

The resulting closed loop inner dynamics is

ẋi = A + B
(A*

o (Bo − a3So)+A*
i (Bi − b2Si)+PoPiηi

)
. (88)

Setting the second term on the left-hand side of Equation (84) to zero reduces the differential and
algebraic forms of the modified inner SVD to those given by Equations (55) and (57), respectively,
and reduces the the expression of ursgdi given by Equation (87) to that of urgdi given by Equation (79).
Augmenting an integral element of ζ in the GDI inner-dynamics control loop works to suppress the
perturbations in the angular velocity vector xi. The performance-robustified SGDI control system is
illustrated in Fig. 3.

5.0 Optimal reference trajectory generation, reshaping and rational energy management
This section describes the procedure that is followed in this paper to optimise the SLV reference trajec-
tory according to the ascent flight mission requirements and constraints. The section also highlights the
need to reshape the open loop optimal reference trajectory and the strategy that is followed to fulfill that
purpose. Finally, the rational energy management is described.
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Table 1. Data of a four-stage SLV

Parameters Stage-1 Stage-2 Stage-3 Stage-4
Stage’s mass (kg) 11836.87 4701.7 2436.65 459.73
Stage’s length (m) 5.178 2.089 2.047 4.29
Max. deflection (deg) 10.2 4 4 4
Burning time (s) 63 69 63.6 61.8

GDI inner-dynamics control loop

GDI attitude control loop

+

+

+
+

+
-

Figure 3. Robust SGDI control system structure: detailed block diagrams of robustified inner and outer
GDI control loops and their interactions.

5.1 Optimal reference trajectory generation
The SLV under consideration is capable of injecting a payload of 500 kg into a 300 km sun synchronous
low Earth orbit (LEO). The SLV has four stages as shown in Table 1 and was utilised in Refs. (11–13)
for the purpose of SLV trajectory generation, optimisation, and control for different objectives and under
different constraints.

The ascent flight of the considered SLV is composed of four burning phases, during which the SLV
manoeuvers are performed by means of four engine motors. Also, the SLV experiences two coasting
phases of 100 and 85 s after the second and the third stage burnouts, respectively. The ascent flight
coasting phases are crucial for the SLV to attain desired orbital altitude. A schematic of the four-stage
SLV’s structural design is given in Fig. 4, showing stage configuration, engine motors arrangement
and overall shape of the SLV. Fig. 5 depicts the operational trajectory of the present SLV ascent flight
experiment and the corresponding sequence of events. The figure outlines the burning phases of each
stage and the coasting phases that follow, and how these stages function sequentially during the launch
process.

Generating an optimal reference trajectory for the ascent flight phase is crucial to plan for the energy
that is required to fulfill the SLV mission, and to avoid excessive thrust requirements and control
actuators limitations. Optimising the reference trajectory aims also to restrict aerodynamic heating on
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Figure 4. Four-stage SLV structural design.

Figure 5. Four-stage SLV operational trajectory: ascent flight sequence of events and stage
functionality.

the SLV’s body and to maintain its structural loading within the design limits. To generate the optimal
flight trajectory, the following point mass model of the SLV is used [35]

V̇l = Llb

m

⎡
⎢⎣ T − QSrefCD

QSrefCLα

0

⎤
⎥⎦ + Llege (89)

ḣ = √
xe

2 + ye
2 − RL (90)

ϑ = tan−1

{
Vyl

Vxl

}
(91)

θ = αprog + ϑ (92)
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Figure 6. Designing the angle-of-attack profile: parameters t1, tm, t2, and αm are optimised using genetic
algorithms to achieve desired orbital parameters.

where αprog is the optimal angle-of-attack profile required to achieve desired orbital parameters, and RL

is the local radius of the earth given by

RL = RE

1 − f√
1 − f (2 − f ) cos2λ

. (93)

In the above expression of RL, RE = 6378.140 km is the Earth’s equatorial radius, f = 0.00335281 is
the Earth’s oblateness factor, and λ is the latitude above which the point mass is located. The optimal
SLV trajectory is determined by constrained optimisation of the angle-of-attack profile. The involved
optimisation constraints are mainly on the maximum value of the angle-of-attack and the dynamic pres-
sure, maximum axial and lateral inertial acceleration loadings on the body of the SLV, in addition to the
orbital parameters of the mission, namely terminal velocity and altitude, and time duration of the ascent
flight phase.

The design methodology that was followed to obtain the optimal SLV trajectory is based on global
genetic algorithms (GA) open loop optimal guidance [11, 12]. The GA algorithm strives to find the
optimal angle-of-attack profile parameters, namely the time t1 to start the pitch-over phase, the maximum
value of the angle-of-attack αm and its occurrence time tm, and the time t2 at which the angle-of-attack
returns back to zero as depicted in Fig. 6.

In addition to producing the optimal path to the orbit and the corresponding velocity profile, the
optimal trajectory design produces the desired profiles of the pitch and yaw angles. The reference roll
attitude angle is maintained at the zero value throughout the ascent flight mission. The SLV’s trajectory
optimisation is performed by minimising the following objective function

O = (h − href)
2 + (V − Vref)

2 + (ϑl − ϑlref)
2, (94)

where href = 300 km, Vref = 7800 m/s, and ϑlref = 0 deg are the corresponding reference values. Values of
the parameters used in the GA implementation that yield fast convergence speed and and high solution
quality are shown in Table 2.

The obtained profiles of the variables that correspond to the achieved open loop optimal ascent flight
phase trajectory are shown in Fig. 7.

5.2 Reference trajectory reshaping and rational energy management
The mathematical model that is usually used for the purpose of SLV trajectory generation is a simple
idealised point mass model. Obtaining the point mass model requires performing several approximations
and assumptions on the original six DOFs SLV model, at the cost of lowering the SLV model fidelity.
Moreover, the open loop approach that is used to generate the optimal trajectory assumes undisturbed
nominal environmental conditions along the SLV ascent flight trajectory.

Hence, tracking the open loop optimal trajectory leads to unsatisfactory terminal flight conditions in
the presence of un-modelled SLV dynamics and external disturbances, i.e. it causes the actual values of
the orbital parameters to deviate from the desired terminal constraint values. In particular, the final SLV
altitude will be different from the desired orbital altitude, the orbital injection velocity will be different
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Table 2. GA parameters

Parameters Values
Generations 150
Population type Double vector
Crossover Single point, pc = 0.8
Mutation Gaussian distribution
Reproduction Elite count = 2
Population size 30
Termination criteria Fitness value zero

 t (sec)

0

500

 T
 (k

N
)

 t (sec)

0

10

20

 m
 (t

on
)

 t (sec)

-4
-2
0

 (d
eg

)

 t (sec)

-0.06
-0.04
-0.02

0
 (d

eg
)

 t (sec)

0
50

100

 (d
eg

)

 t (sec)

0

2

 (d
eg

)

 t (sec)

0

200

 h
 (k

m
)

0 100 200 300 400 0 100 200 300 400

0 50 100 0 50 100

0 100 200 300 400 0 100 200 300 400

0 100 200 300 400 0 100 200 300 400
 t (sec)

0

5000

 V
 (m

/s
)

Stage-1 Stage-2 Stage-3 Stage-4 Coasting

Figure 7. Optimised SLV open-loop reference trajectories: optimal parameters for different stages of
the ascent flight phase versus time.

from the orbital velocity, and the orbital injection angle will be different from the desired zero flight
path angle, resulting in terminal dispersions from the desired orbit.

Therefore, a realistic SLV trajectory generation design must involve a continuous in-flight updating
of the open loop optimal trajectory such that the desired terminal conditions of the ascent flight phase
are achieved while satisfying the mission and vehicle constraints.

To accomplish that goal, a hybrid GA/Fuzzy logic-type closed-loop guidance loop was used to
reshape the generated optimal trajectory of the considered SLV and to update the reference roll and
yaw commands [11, 12]. The optimal steering logic of the guidance law enhances the autonomy of the
SLV by steering it closer to the pre-computed optimised reference trajectory while satisfying the mission
and the vehicle constraints, in addition to satisfying the desired terminal altitude and flight path angle
conditions under the influence of point mass modeling uncertainties and environmental disturbances.

Additionally, the ‘rational energy management method’ for velocity control was also suggested in Ref.
(11) through activations of engine shutoff commands during the third stage powered phase to correct
for the SLV velocity such that the achieved orbital injection velocity is equal to the required terminal
velocity constraint despite the presence of inherent perturbations and environmental disturbances. The
general structure of the closed-loop guidance and control loops is depicted in Fig. 8.
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Figure 8. SLV closed-loop guidance and robust SGDI control system: reference attitude trajectories
are reshaped by the guidance loop and are fed into the robust SGDI control system.

The optimal reference trajectory design provides the open loop attitude commands φd = 0, θd, andψd

to the guidance (outer) loop. The trajectory reshaping mechanism is implemented to generate the closed
loop reference attitude commands θr and ψr given by

θr = θd +�θ , ψr =ψd +�ψ (95)

where �θ and �ψ are computed as

�θ = kθ εy, �ψ = kψεz, . (96)

In (96), the normal dispersion εy is the deviation of the SLV position trajectory from its nominal
path in the xlyl plane of the LRF, i.e. εy = h − href . The lateral dispersion εz is the deviation of the SLV
position trajectory from the nominal path in the transverse (normal to the xlyl plane) direction, and kθ
and kψ are positive gain constants. The aim of this paper is to design the robust SGDI control system to
track the closed loop reference attitude trajectories θr and ψr while maintaining φd at zero.

6.0 Numerical simulations
The robust SGDI SLV closed loop control system simulations are carried out next with reference tra-
jectory reshaping. To emphasise the advantage of robustifying the baseline SGDI control system via the
integral term, closed loop simulations are carried out with and without the integral robustifying term
for the purpose of comparing the performance of the two control laws. A comparative study follows the
proposed robust SGDI control system and a classical SMC trajectory tracking control system. Finally, a
statistical dispersion analysis of the robust SGDI control system is performed by extensive Monte Carlo
simulations.

6.1 Robust SGDI SLV control simulations with trajectory reshaping
Numerical simulations of closed loop-controlled attitude manoeuvers along with trajectory reshaping
are performed on a six DOFs SLV simulator to demonstrate the performance of robust SGDI control.
The parameter values of reshaped closed loop guidance and robust SGDI control are summarised in
Table 3 for different time intervals of the ascent flight.

To demonstrate the robustness attributes of SGDI control, parametric uncertainties and external per-
turbations are included intentionally in the mathematical model of the multi-stage SLV simulator while
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Table 3. Numerical values of guidance and control parameters

Parameters Stage-1 Stage-2 Stage-3 Stage-4
a1 35 (<10 sec) 50 15 5

30 (10–20 s)
50 (>20 s)
25 (<10 s) 105 5 8

a2 35 (10–20 s)
105 (>20 s)

a3 0.5 0.5 0.5 0.1
b1 10 (<10 s) 55 50 40

25 (10–20 s)
55 (>20 s)

b2 0.5 0.5 0.5 0.5
ko 0.5 0.5 0.5 0.5
ki 0.5 0.5 0.5 0.5
kθ 0.0005 0.0005 0.0001 0.0015
kψ 0.0004 0.0004 0.0004 0.0004
Ko 0.5 0.5 0.5 0.1
Ki 0.5 0.5 0.5 0.5

Table 4. Parametric uncertainties and disturbances

Parameters Perturbation Magnitude
Specific impulse (sec) 2 %
Thrust misalignment (deg) 0.25 deg
Thrust offset (mm) 2 mm
Drag coefficient 6 %
Lift coefficient 10 %
Centre of pressure (m) 10 %
Centre of gravity (m) 10 %
Moment of inertia (kg.m2) 10 %
Atmospheric density (kg/m3) 10 %
Wind azimuth (deg) 270 deg

keeping these parameters at their nominal values in the SGDI control loops. The perturbed parameters
and their perturbation percentages are listed in Table 4.

The aim of the robust SGDI control system is to track the reshaped attitude angle profiles of φ, θ
and ψ by generating the control deflection commands uφ , uθ , and uψ . The attitude tracking history is
shown in Fig. 9. Tracking is lost during the coasting phases due to the absence of thrust. However, the
robust SGDI control system exhibits fast convergence towards the desired (reshaped) attitude profiles
once thrust is restored. Very small oscillations are experienced in the θ andψ reshaped reference attitude
angles profiles and the corresponding actual controlled values during the final phase (4th stage) of flight
because the inertia of the SLV continues to cause lateral and normal dispersions from the desired orbit
as the guidance system is working to reshape the attitude reference profiles in order to eliminate these
dispersals. The robust SGDI control system, however, provides excellent tracking of the reshaped attitude
trajectories during the final phase.

The time history of the SLV body angular velocity components is shown in Fig. 10. The robust SGDI
control system limits the angular velocity level and fluctuations throughout the flight trajectory even
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Figure 9. Robust SGDI control system performance: time histories of reference, reshaped and actual
attitude angles trajectories under parametric uncertainties and wind disturbance.
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Figure 10. Robust SGDI control system performance: time histories of body angular velocity compo-
nents under parametric uncertainties and wind disturbance.

in the region of high dynamic pressure, despite the inherent instability of the SLV and the presence of
parametric uncertainties and wind disturbances.

The time history of the control surfaces deflection commands uφ , uθ , and uψ is shown in Fig. 11. The
control surfaces deflections that are required to perform the attitude manoeuvers vary within a permitted
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Figure 11. Robust SGDI control system performance: time histories of control surface deflections
required to perform the attitude manoeuvers.

range of ±5deg, and none is experiencing undesired chattering. The control surfaces deflections are
obviously zeros during the two coasting phases.

The ascent trajectory tracking performance of the SLV is depicted in Fig. 12. The SLV tracks the
reference altitude profile closely as the reshaped attitude guidance commands are followed by the robust
SGDI control system until the SLV achieves the desired orbit and afterwards. The positional dispersions
variables εy and εz are also shown in Fig. 12. Finally, the time histories of actual and desired latitude and
longitude profiles are shown in Fig. 13.

Figure 14 compares control, aerodynamic and disturbing torques due to thrust offset and misalign-
ment throughout the ascent flight phases. Although disturbance torques are relatively small, aerodynamic
torques are significant during the high aerodynamic pressure endo-atmospheric phase. The control
moments effectively counterbalance these torques, maintaining stable and high-performance ascent
flight.

6.2 Impact of SGDI control system robustification
In order to emphasise on the significance of robustifying the SGDI control law via the integral terms So

and Si, a series of comparative simulations were conducted by implementing robust SGDI control and
by deliberately omitting the robustifying integral terms. The attitude variables tracking behaviours for
both cases are shown in Figs 15, 16 and 17. Also, Fig. 18 shows the magnitudes of residual errors across
the three attitude channels for both cases. The simulation-driven depictions highlight the distinctive
impact and contribution of the SGDI robustifying terms in enhancing the overall SLV’s attitude tracking
performance.

The inclusion of the robustifying SGDI integral terms lead to an expedited convergence of attitude
angles towards the reference attitude profiles, particularly following the coasting phases. The accelerated
convergence is a clear advantage of employing robust SGDI control in improving stability robustness
of SGDI control. Furthermore, it is evident that the attitude errors during the controlled powered phase
are significantly reduced in the presence of the robustifying terms. The reduction of attitude tracking
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Figure 12. Robust SGDI control system performance: reference and actual altitude over time,
highlighting positional dispersions.

Figure 13. Robust SGDI control system performance: time histories of actual and desired latitude and
longitude profiles throughout the ascent flight stages.

discrepancies substantiates the positive influence of the integral terms on performance robustness of
SGDI control. Similarly, Figs 19 and 20 show the robust SGDI terms effect on the SLV’s body angular
velocity and control surfaces deflections.
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Figure 14. Robust SGDI control system performance: time histories of control moments in comparison
with aerodynamic and disturbance torques, showcasing the control moments counter effects.

Figure 15. SGDI vs. robust SGDI: roll angle behaviour throughout ascent flight stages.

However the outer guidance loop overshadow the impact of the robust SGDI terms in the context of
ascent flight trajectory. The trajectories as shown in Fig. 21 appear to follow a similar path regardless of
the presence of the robustifying terms.
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Figure 16. SGDI vs. robust SGDI: pitch angle behaviour throughout ascent flight stages.

Figure 17. SGDI vs. robust SGDI: yaw angle behaviour throughout ascent flight stages.

6.3 Comparison of robust SGDI and classical SMC
The robust SGDI control system performance is assessed by comparing it with the performance of a
classical SMC system, focusing on the initial pitch-over phase, which constitute approximately 100 s
of the ascent flight trajectory. The comparison focuses on attitude tracking performance of both control
systems during this critical phase. Time histories of attitude tracking and the corresponding square errors
are shown in Figs 22 and 23, respectively.
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Figure 18. SGDI vs. robust SGDI: residual errors magnitudes across attitude channels throughout
ascent flight stages.

Figure 19. SGDI vs. robust SGDI: body angular velocity components throughout ascent flight stages.

With the exception of the initial 15 s for the roll channel, robust SGDI control consistently demon-
strates a superior performance in minimising tracking errors when compared to SMC. Table 5 provides
mean square error (MSE) and root mean square error (RMSE) comparisons for robust SGDI and
SMC control across roll, pitch and yaw channels. It has been observed that robust SGDI consistently
outperforms SMC in terms of MSE and RMSE, except for roll channel.
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Figure 20. SGDI vs. robust SGDI: control surfaces deflections throughout ascent flight stages.

Figure 21. SGDI vs. robust SGDI: SLV’s altitude throughout ascent flight stages.

Similarly, the comparison of control deflections between robust SGDI control and SMC is shown
in Fig. 24. The control commands generated by SMC are impacted by the chattering phenomenon,
characterised by rapid and undesirable switching behaviour of the control signal. This phenomenon can
severely impede the performance and stability of the controlled system.

Table 6 provides comparisons of the control efforts required by the robust SGDI and SMC
designs for attitude tracking along roll, pitch and yaw axes. The control effort for a given channel
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Figure 22. Robust SGDI vs. SMC: attitude tracking performance, focusing on the initial pitch-over
phase of the ascent flight trajectory.

Figure 23. Robust SGDI vs. SMC: squared attitude tracking errors.

is defined as the area under the corresponding plot in Fig. 24. By examining these values, the high-
performance characteristics and practicality of implementation of the robust SGDI control approach
become clear.
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Table 5. Attitude error comparison for robust SGDI and SMC

Parameters Channel Robust SGDI SMC
Mean square error (deg2) Roll 0.00181 0.00075

Pitch 0.01135 0.32234
Yaw 0.00192 0.13453

Root mean square error (deg) Roll 0.04258 0.02739
Pitch 0.10653 0.56775
Yaw 0.04385 0.36679

Table 6. Comparison of control efforts for SGDI and SMC

Channel Control Effort: Robust SGDI (deg) Control Effort: SMC (deg)
Roll 0.72336 28.59339
Pitch 7.30811 148.33895
Yaw 4.89253 102.76015

Figure 24. Robust SGDI vs. SMC: control surface deflections, revealing the SMC chattering phe-
nomenon.

6.4 Statistical dispersion analysis of robust SGDI control
The present statistical analysis aims to investigate robustness of SGDI closed loop control with trajectory
reshaping when the SLV intervenes with random variations in its dynamic parameters and under the
influence of vital environmental turbulence. To accomplish this analysis, Monte Carlo simulations were
conducted by considering various combinations of variations in a set of parameters that affect the SLV
performance.
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Table 7. Parametric variations and disturbances

Parameters Variations
Specific impulse (s) up to 2 %
Thrust misalignment (deg) ±0.25 deg
Drag coefficient ±6 %
Lift coefficient ±10 %
Centre of pressure (m) ±10 %
Centre of gravity (m) ±10 %
Atmospheric density (kg/m3) ±10 %
Moment of inertia (kg.m2) ±10 %
Wind azimuth (deg) ±180 deg

Figure 25. Monte Carlo simulations: achieved orbital altitude versus Monte Carlo simulation samples.

Figure 26. Monte Carlo simulations: achieved orbital velocity versus Monte Carlo simulation samples.

The parameters that are chosen to perform the Monte Carlo simulations are the specific impulse, mass
flow rate, drag and lift coefficients, atmospheric density and wind azimuth. A number of 500 cases were
simulated by considering an array of random variations in the chosen parameters. The variations comply
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Table 8. Monte-Carlo analysis

Parameters Nominal Max Mean Standard Deviation
h (km) 300 300.58 300.39 0.07
V (m/s) 7725 7732 7722 4.76
ϑl (deg) 0 0.0047 0.0025 0.0007

Figure 27. Monte Carlo simulations: achieved local flight path angle at orbital injection versus Monte
Carlo simulation samples.

with Gaussian distributions with predefined tolerances and bounds in a specified envelope as shown in
Table 7. The results acquired from Monte Carlo simulations are depicted by plotting the achieved orbital
parameters against number of samples in Figs 25, 26, and 27.

The obtained dispersion data of the orbital parameters from their terminal state values using Monte
Carlo simulation are depicted in Table 8, including the nominal and maximum values, the mean
value and 1σ standard deviation. The achieved orbital altitude, velocity and flight path angle are
within reasonable ranges and are well distributed against parametric uncertainties and environmental
perturbations.

7.0 Conclusion
The paper presents a novel SGDI-based control system design for multistage SLV attitude tracking.
The GDI control methodology is applied in a successive manner to design the outer and inner loops
of the proposed SGDI control system, taking advantage of the favourable geometric features of GDI
control. Additionally, robustifying integral control elements are augmented in the outer and inner loops
of the SGDI control system to improve the SLV tracking performance against dynamic scaling of the
MPGI, modeling and parametric uncertainties and exogenous disturbances. Numerical simulations are
conducted on a six DOFs simulator of a four-stage SLV. The optimised reference flight trajectories are
generated using genetic algorithms by employing the data of the SLV. The numerical simulations exhibit
satisfactory tracking performance of the proposed robust SGDI control system by closely tracking the
SLV pre-determined optimised path to achieve the required orbital parameters. The proposed robust
SGDI-based control system efficiently and effectively meets the requirements of attitude control system
design for multistage SLVs.
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