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Loitsyanky’s integral I = −
∫

r2〈u · u′〉dr is known to be approximately conserved
in certain types of fully developed, isotropic turbulence, and its near conservation
controls the rate of decay of kinetic energy. Landau suggested that this integral
is related to the angular momentum H =

∫
(x × u) dV of some large volume V of

the turbulence, according to the expression I = 〈H2〉/V . He also suggested that the
approximate conservation of I is related to the principle of conservation of angular
momentum. However, Landau’s analysis can be criticized because, formally, it applies
only to inhomogeneous turbulence evolving in a closed domain. So how are we to
interpret the near conservation of I? And what is its relationship, if any, to angular
momentum conservation? We show that the key to extending Landau’s analysis to
strictly homogeneous turbulence is to rewrite Loitsyansky’s integral in terms of the
vector potential of the velocity field, i.e. I = 6

∫
〈A · A′〉dr , where ∇ × A = u. This

yields I =6〈[
∫

V
A dV ]2〉/V for any large spherical volume V of radius R. Crucially,

J =3
∫

V
A dV can be rewritten as the weighted integral of the angular momentum

density throughout all space. This fundamentally changes the way in which we
interpret the dynamical behaviour of I . For example, we show that the conservation
of 〈 J2〉/V , and hence of I , which occurs when the long-range correlations are weak,
is a direct consequence of the decorrelation of the flux of angular momentum out
through a spherical control surface S and the local angular momentum in the vicinity
of S. Thus, within the framework of strictly homogeneous turbulence, we provide
the first self-consistent interpretation of Loitsyanky’s integral in terms of angular
momentum conservation. We also show that essentially the same ideas carry over
to certain types of anisotropic turbulence, such as magnetohydrodynamic (MHD),
rotating and stratified turbulence. This is important because conservation of angular
momentum, which manifests itself in the form of a Loitsyansky-like invariant, places
a fundamental restriction on the way in which the integral scales can evolve in such
turbulence. This, in turn, controls the rate of decay of energy. We illustrate this by
deriving new decay laws for MHD and stratified turbulence. The MHD decay laws
are consistent with the available numerical evidence, but further study is required to
verify, or otherwise, the predictions for stratified turbulence.

1. Introduction
It is natural to ask if the principles of linear and angular momentum conservation

can be used to establish integral invariants for homogenous turbulence. While Saffman
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330 P. A. Davidson

(1967) used linear momentum conservation to great effect, establishing just such an
invariant, our attempts to deploy angular momentum conservation have proved more
problematic. This paper explores these difficulties and offers a remedy.

1.1. The Loitsyansky and Saffman integrals and their relationship to momentum
conservation

We consider isotropic turbulence in which 〈u〉 =0 and the Reynolds number is high,
Re = u�/ν � 1. (Here u and � are the usual integral scales and ν the viscosity.) The
energy spectrum at small wavenumber k then takes the form

E (k) = Lk2
/
4π2 + Ik4

/
24π2 + · · ·, (1.1)

provided that the two-point velocity correlation 〈u · u′〉 decays sufficiently rapidly
with separation r = |r| = |x ′ − x|, i.e. 〈u · u′〉 � O(r−6) (see, for example, Davidson
2004, § 6.3). The scalars L and I are known as the Saffman and Loitsyansky integrals
respectively, and can be written as

L =

∫
〈u · u′〉dr (1.2)

and

I = −
∫

r2 〈u · u′〉dr. (1.3)

Equation (1.1) suggests that, as far as the large scales are concerned, there are
two canonical cases: E(k → 0) ∼ Lk2, sometimes called a Saffman spectrum, and
E(k → 0) ∼ Ik4, the case in which L = 0. Of course other possibilities exist, in
particular E(k → 0) ∼ kn, 2 <n< 4. However, these are associated with singularities
in the spectral tensor (the transform of 〈uiu

′
j 〉) and so, perhaps, are of less interest.

Note that both E ∼ Lk2 and E ∼ Ik4 spectra are readily generated in computer
simulations (see, for example, Chasnov 1993; Eyink & Thomson 2000; Ossai &
Lesieur 2000; Oberlack 2002; Herring et al. 2006; Ishida, Davidson, & Kaneda 2006).
Which type of turbulence is seen simply depends on the initial conditions. If L is
non-zero at t = 0, then we obtain a Saffman spectrum for all t, whereas L =0 at t = 0
excludes such a spectrum. Opinion is divided, however, as to whether grid turbulence
is of the Saffman (E ∼ Lk2) or Batchelor (E ∼ Ik4) type, since the experimental data
is ambiguous on this point.

Let us consider these two classes of turbulence in a little more detail, starting with
Saffman spectra. Noting that ensemble and volume averages are equivalent, we may
rewrite Saffman’s integral in the form

L =

〈[∫
V

u dV

]2
〉/

V , (1.4)

where V is some large volume embedded within the turbulence. Evidently we obtain
a Saffman spectrum whenever the turbulence contains a sufficiently large amount of
linear momentum, P =

∫
V

u dV (Saffman 1967). Note that we cannot make L zero
simply through a change of frame of reference. That is we must ensure 〈u〉 = 0, and
this implies that there is a preferred frame of reference, in which

Lim
V →∞

∫
u dV

V
= 0. (1.5)
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However, this is not enough to enforce the stronger condition

L = Lim
V →∞

(∫
u dV

)2

V
= 0. (1.6)

Indeed, the central limit theorem suggests that, in general, we would expect
P =

∫
u dV ∼ V 1/2, and hence L 
= 0. This can be seen from the following argument:

We may consider the turbulence to be composed of a random sea of eddies (blobs
of vorticity), each of which has some linear impulse Li = (1/2)

∫
x × ω dV . (Here

the subscript i indicates the ith eddy within the volume V .) Moreover, the linear
momentum within some large spherical volume V is proportional to the sum of
the linear impulses of the individual eddies contained within V ,

∫
u dV ∼

∑
Li (see

Appendix A). Now suppose that our control volume is indeed spherical and that there
are N eddies within V , each assigned a random value of Li taken from a probability
density function (p.d.f.) of zero mean. Then the central limit theorem suggests that∫

u dV ∼ N1/2 ∼ V 1/2, so that (1.5) is satisfied, but (1.6) is not. In short, a Saffman
spectrum will be realized whenever the eddies possess a significant amount of linear
impulse.

Note that 〈u · u′〉 is related to the longitudinal correlation function f (r) by

〈u · u′〉 =
u2

r2

∂

∂r
(r3f ), u2 =

1

3
〈u2〉, (1.7)

and so Saffman’s integral can also be written as L =4πu2[r3f ]∞, where the subscript
∞ indicates r → ∞. Thus a finite value of L implies a slow, algebraic decline in f , i.e.
f∞ ∼ r−3, though it does not exclude the possibility that 〈u · u′〉∞ decays more rapidly.
Indeed, it is easy to construct kinematically admissible fields of isotropic turbulence
in which L is non-zero, yet 〈u · u′〉∞ ∼ exp(−r2/�2) (Davidson 2007).

Now Saffman showed that L is an invariant of freely decaying turbulence. This
follows from integrating the Kármán–Howarth equation in the form

∂

∂t
〈u · u′〉 =

1

r2

∂

∂r

1

r

∂

∂r
(r4u3K) + 2ν ∇2 〈u · u′〉 (1.8)

along with the observation that the triple correlation u3K(r) = 〈u2
x(x)ux(x + r êx)〉 falls

as [u3K]∞ ∼ r−4 + O(r−5) at large r (Batchelor & Proudman 1956). The invariance of
L also follows directly from the conservation of linear momentum, in the sense that
the flux of linear momentum out through the surface of V turns out to be smaller
than O(V 1/2) and so is too weak to change L in the limit of V → ∞ (see § 2.1). One
of the practical consequences of the conservation of L is that self-similarity of the
large scales demands u2�3 = constant, which in turn requires that the kinetic energy
decays as u2 ∼ t−6/5 (Saffman 1967).

Let us now turn to Batchelor spectra, E ∼ Ik4, where L is set equal to zero by
virtue of our choice of initial condition. For such turbulence Landau suggested that,
provided the two-point velocity correlations decay sufficiently rapidly with distance,
I can be related to the angular momentum of the fluid, H , via an expression similar
to (1.4). In particular he proposed

I ≈ Lim
V →∞

〈H2〉
V

, H =

∫
V

(x × u) dV (1.9)

and suggested that the invariance of I follows from the principle of angular
momentum conservation (Landau & Lifshitz 1959, p. 142). Thus, at face value, there
appears to be certain similarities between I and L, with momentum conservation
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providing the common theme. However, it turns out that the situation is far more
complicated than this. For example, unlike L, the intergal I is not, in general, an
invariant. That is the Kármán–Howarth equation integrates to give

dI

dt
= 8π

[
u3r4K

]
∞ , (1.10)

and the work of Batchelor & Proudman (1956) suggests that the long-range pressure
forces will, in general, establish long-range triple correlations of the form K∞ ∼ cr−4.
Certainly, numerical simulations of E ∼ Ik4 turbulence usually show a slow rise in I .
Curiously, though, recent simulations performed in very large computational domains
show I ≈ constant once the turbulence has become fully developed (Ishida et al. 2006).
This, in turn, suggests that c = (r4K)∞ is very small in fully developed turbulence.
(The magnitude of c is undetermined in Batchelor & Proudman’s 1956 analysis.) One
of the consequences of the approximate conservation of I is that Kolmogorov’s decay
law u2 ∼ t−10/7, which rests on the assumption that I = constant ∼ u2�5 (Kolmogorov
1941), is indeed observed in E ∼ Ik4 turbulence, at least in the fully developed state
(Ishida et al. 2006).

Another difference between I and L is that (1.9), unlike (1.4), is not rigorous,
since Landau’s arguments are formulated for inhomogeneous turbulence (see § 1.2).
Moreover, the relationship between the conservation, or otherwise, of I and the
principle of angular momentum conservation is not immediately apparent from (1.9).
For example, under what conditions, if any, is H conserved in (1.9)? On the other
hand, one can establish a very clear link between linear momentum conservation and
L = constant. Both of these points are discussed in § 2.

All in all it would seem that the role of momentum conservation in E ∼ Lk2

turbulence is well understood, whereas its role in E ∼ Ik4 turbulence is not so clear.
One of the purposes of this paper is to clarify the link between the behaviour of I

and the principle of angular momentum conservation in homogenous turbulence.

1.2. Landau’s analysis for inhomogeneous turbulence

As a prelude to our discussion of homogenous turbulence it is useful to review briefly
Landau’s analysis. Our aim is to expose the difficulties associated with his approach.

In order to apply the principle of angular momentum conservation, Landau
considered the case of inhomogeneous turbulence evolving in a large, closed domain,
V . The fact that the domain is closed turns out to be of crucial importance, as we
shall see. The starting point is the identity

(x × u) · (x ′ × u′) = 2x · x ′(u · u′) − u′
ix

′
j ∇ · [xixj u]

which integrates to yield

H2 =

[∫
V

x × u dV

]2

=

∫
V

∫
V

2x · x ′(u · u′) dx ′ dx,

as u · dS = 0 on the surface of V . Since
∫

V
u dV = 0 for a closed domain, this can be

rewritten as

H2 = −
∫

V

∫
V

(x ′ − x)2(u · u′) dx ′ dx, (1.11)

and on ensemble averaging we obtain

〈H2〉 =

∫
V

[
−

∫
V ∗

r2〈u · u′〉 dr

]
dx. (1.12)
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The role of angular momentum conservation in homogeneous turbulence 333

Note that the shape of V ∗ depends on the location of x within V . So far the analysis
is rigorous, but its relevance to homogeneous turbulence is unclear. It is now assumed
that 〈u · u′〉 falls off rapidly with separation r , say as 〈u · u′〉∞ ∼ exp(−r2/�2), which
seems unlikely in the light of the work by Batchelor & Proudman (1956) but cannot
be excluded. Then for all points x which are remote from the boundary the inner
integral in (1.12) can be replaced by an integral over all r . Since V � �3, this is a
good approximation for all points x in V , except those which lie within a distance
O(�) from the surface. It follows that

〈H2〉
/
V = −

∫
r2〈u · u′〉 dr

[
1 + O

(
�
/
V 1/3

)]
. (1.13)

In the limit of V � �3, we recover (1.9), and so it appears that there is indeed a link
between I and angular momentum H . Note, however, that two crucial ingredients of
Landau’s analysis are as follows:

(i)
∫

V
udV = 0, since the domain is closed;

(ii) 〈u · u′〉 is assumed to fall off very rapidly with separation r .
We shall see that, in general, neither of these conditions holds for a large, open
domain embedded within a field of homogenous turbulence.

Note also that, so far, we have not used conservation of angular momentum to
explain the invariance of I . (Recall that I can, in principle, be conserved, provided
that the long-range correlations are weak enough for (r4K)∞ = 0, which may not
always be true in practice but is nevertheless the situation considered by Landau.)
To do this we need to consider the particular situation in which the closed domain
is spherical, with radius R. In such a case H is conserved in each realization, in the
sense that the viscous stresses on the surface of V have a negligible influence on H
in the limit of (R/�) → ∞. Equation (1.13) then tells us that the invariance of I is
indeed a consequence of angular momentum conservation, provided, of course, that
conditions (i) and (ii) above hold true. However, this kind of logic breaks down when
we try to recast the ideas in terms of a large, open domain embedded within a field of
homogenous turbulence, since there is a flux of angular momentum out through the
open surface of the control volume. It seems that, yet again, any attempt to rework
Landau’s analysis for strictly homogenous turbulence fails.

1.3. Structure of the paper

In this paper we consider homogeneous turbulence, focusing on the E ∼ Ik4 spectra.
In particular, we explore the relationship between I and H and the link between
(1.10) and the principle of angular momentum conservation. We shall show that,
despite the reservations expressed above, Landau’s analysis can indeed be adapted
to homogeneous turbulence, although the way in which this is achieved is far from
straightforward. Certainly, simply applying angular momentum conservation to a
finite-sized control volume embedded within the turbulence does not work. A quite
different strategy is required.

The central difficulty is that the angular momentum held in any open control volume
of finite size is dominated by the residual linear momentum in V , P =

∫
V

u dV , a
problem which Landau avoided by using a closed domain. This residual linear
momentum turns out to be important because it changes the scaling 〈H2〉 ∼ V .
Kolmogorov suggested that this difficulty may be circumvented by evaluating a
weighted integral of x × u over an infinite domain, V∞ . In particular, he proposed
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evaluating

Ĥ =

∫
V∞

x × u exp(−|x2|/R2) dV (1.14)

and then looking at the behaviour of 〈Ĥ
2〉/R3 in the limit of R → ∞ (see Monin &

Yoglam 1975, p. 151, for a discussion of Kolmogorov’s analysis). We shall see that
such a strategy is indeed fruitful, though the details differ considerably from those
proposed by Kolmogorov.

The structure of the paper is as follows: We start, in § 2, by documenting the
difficulties which arise when trying to recast Landau’s analysis by applying momentum
conservation to a large, spherical control volume embedded in a field of homogeneous
turbulence. Next, in § 3, we show how these difficulties may be circumvented by
rewriting I in terms of the vector potential A,

I = 6

∫
〈A · A′〉 dr, (1.15)

where u = ∇ × A. This yields

I = Lim
V →∞

6

〈[∫
V

AdV

]2
〉

V
, (1.16)

where V is our finite-sized control volume of radius R. The crucial point is that
∫

V
AdV

can be expressed as an integral over the entire space of the angular momentum density:∫
V

A dV =
1

3

∫
V∞

(x × u) G
(
|x|/R

)
dx, (1.17)

where

G (χ) = 1 for χ � 1 and G (χ) = χ−3 for χ > 1.

This is reminiscent of (1.14) and shows that I is not proportional to 〈H2〉/V , as
suggested by (1.9), but rather to 〈 J2〉/V , where J is a weighted integral over the
entire space of x × u:

J =

∫
V∞

(x × u)G(|x|/R) dx. (1.18)

We then show that the conservation of I (in the absence of long-range interactions)
can be explained in terms of a lack of correlation between the flux of angular
momentum out through a spherical control surface S and the angular momentum in
the vicinity of S.

Next, in § 5, we show how these ideas can be extended to include certain types of
anisotropic turbulence, such as magnetohydrodynamic (MHD) turbulence, rotating
turbulence and stratified turbulence. Indeed, we use the approximate conservation
of I in these systems to derive decay laws for MHD and stratified turbulence. The
predictions for MHD turbulence are consistent with the available numerical evidence,
while those for stratified turbulence remain to be tested.

2. Momentum conservation applied to a spherical control volume embedded in
a field of homogeneous turbulence

In § 3 we shall show how a Kolmogorov-like strategy can be used to establish a
clear link between I and x × u, thus extending Landau’s arguments. First, however, it
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is instructive to consider what happens when momentum conservation is applied to a
large spherical control volume embedded within a field of homogeneous turbulence.
We shall examine both E ∼ Lk2 turbulence, where linear momentum conservation
holds the key, and E ∼ Ik4 turbulence, where it is the angular momentum that
interests us. We shall see that the procedure works well for E ∼ Lk2 turbulence,
providing results consistent with Saffman (1967) but that the procedure fails for
E ∼ Ik4 turbulence, in the sense that we cannot enforce condition (i) above, which in
turn leads to a scaling quite different from that of (1.9).

Many of the details in § 2.1 and § 2.2 may be found scattered across various
publications, particularly Davidson (2004, 2007), Davidson, Ishida & Kaneda (2006),
and Llor (2006). However, we have redeveloped the arguments more or less from first
principles because most of the published accounts are incomplete, yet the results are
important for the rest of the paper. The purpose of these sections is to set the scene
for the central results of § 3 and § 5.

2.1. The linear momentum balance

Consider a spherical control volume of radius R(R � �) embedded in a sea of
homogeneous turbulence. We wish to determine the square of the linear momentum
〈P2〉 held within V . Since ui = ∇ · (xiu), we have

P2 =

∫
V

u′
i dx ′

∮
s

xiu · dS =

∫
V

[
u′

i

∮
s

xiu · dS

]
dx ′, (2.1)

where S is the surface enclosing V . Let us take the origin for x and x ′ to lie at
the centre of V . Since all points on S are statistically equivalent, we focus on the
particular location x = Rêx when evaluating the inner integral. Equation (2.1) then
yields

〈P2〉 = 4πR3

∫
V

〈uxu
′
x〉 dr, (2.2)

where x ′ is an interior point in V , and the displacement vector r = x ′ − x links x = Rêx

to the interior point x ′. Substituting for 〈uxu
′
x〉 in terms of f yields

〈P2〉 = 2πR3u2

∫
V

[
1

r

∂

∂r
(r2f ) − r2

x

r

∂f

∂r

]
dr,

which is readily integrated using spherical polar coordinates centred on the point
x =Rêx . In particular, we use the result∫

V

g(r)rn
x dr = (−1)n

2π

n + 1

∫ 2R

0

g(r)rn+2[1 − (r/2R)n+1] dr, (2.3)

which holds for any function g(r). Applying (2.3) and then integrating by parts, we
find,

〈P2〉 = 4π2R2u2

∫ 2R

0

r3f (r)[1 − (r/2R)2] dr, (2.4)

(Davidson 2004, p. 360). For a Saffman spectrum, in which f∞ ∼ r−3, this demands

〈P2〉
/
V = 4πu2[r3f ]∞ (2.5)

in the limit of R/� → ∞. Comparing (2.5) with L =4πu2[r3f ]∞ we find

L = Lim
V →∞

〈P2〉
V

, (2.6)
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which is consistent with (1.4). For a Batchelor spectrum, on the other hand, K∞ ∼ r−4

combined with the Kármán–Howarth equation requires that f falls off no more
slowly than f∞ ∼ r−6. Equation (2.4) then reduces to

〈P2〉 = 4π2R2u2

∫ ∞

0

r3f (r) dr, (2.7)

for R/� → ∞. Note that in this case

Lim
V →∞

〈P2〉
V

= 0, (2.8)

which is consistent with the requirement that L =0. Nevertheless, 〈P2〉 is non-zero
and of order R2, so that we retain some residual linear momentum in V , even though
this residual momentum is not large enough to yield a finite value of L. This small
but finite linear momentum will turn out to be of crucial importance.

Finally, let us apply the principle of conservation of linear momentum to our
control volume V . Ignoring viscous forces we have

dP
dt

= −
∮

S

u (u · dS) −
∮

S

p dS, (2.9)

from which

dP2

dt
= −2

∫
V

u dV ·
[∮

S

u (u · dS) +

∮
S

p dS

]
. (2.10)

(Here p is the pressure, and we have taken the fluid density to be unity.) Since
〈up′〉 = 0 in isotropic turbulence, the pressure term vanishes on averaging, and we
obtain

d

dt
〈P2〉 = −2

〈∫
V

[
u′

i

∮
S

ui (u · dS)

]
dx ′

〉
. (2.11)

Once again we note that all points on the boundary are statistically equivalent and
fixed on the surface point x = Rêx . Then (2.11) simplifies to

d

dt
〈P2〉 = −8πR2

∫
V

〈uiuxu
′
i〉 dr, (2.12)

where, as before, x ′ is an interior point in V , and the displacement vector r = x ′ − x
links x =Rêx to the interior point x ′. We now substitute for 〈uiuxu

′
i〉 using the

isotropic relationship

〈uiuxu
′
i〉 =

u3rx

2r4

∂

∂r
(r4K) (2.13)

and evaluate the integral in (2.12) using spherical polar coordinates centred on the
point x = Rêx . The calculation is virtually identical to that which led up to (2.4), and
so using (2.3) we find

d

dt
〈P2〉 = 4π2R2u3

∫ 2R

0

[1 − (r/2R)2]
1

r

∂

∂r
(r4K) dr (2.14)

(Davidson 2004, p. 361). We now consider the limit R/� → ∞. Noting that K∞ ∼ r−4,
(2.14) reduces to

d

dt
〈P2〉 = 4π2R2u3

∫ ∞

0

1

r

∂

∂r
(r4K) dr = 4π2R2u3

∫ ∞

0

r2K dr. (2.15)
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The key result here is the scaling (d/dt)〈P2〉 ∼ R2. Evidently, for large R, the flux of
linear momentum out through S is too small to alter 〈P2〉/V . Thus, conservation of
Saffman’s integral can be thought of as a direct consequence of linear momentum
conservation, as suggested in § 1.1.

2.2. The angular momentum balance

Let us now apply angular momentum conservation to the same control volume.
Ignoring viscous stresses we have

dH
dt

= −
∮

S

(x × u) u · dS, (2.16)

from which

dH2

dt
= −2

∫
V

x ′ × u′ dx ′ ·
∮

S

(x × u) u · dS. (2.17)

We now deploy the usual trick of focusing on the surface point x = Rêx while noting
that all points on the boundary S are statistically equivalent. Then (2.17) simplifies to

d

dt
〈H2〉 = −8πR2

∫
V

〈(x ′ × u′) · (x × u)ux〉 dr, (2.18)

where, as before, x ′ is a interior point in V and r = x ′ − x. It is readily confirmed that〈(
x ′ × u′) · (x × u) ux

〉
= R2

[
〈uiuxu

′
i〉 −

〈
u2

xu
′
x

〉]
+ R

[
rx 〈uiuxu

′
i〉 − ri 〈uiuxu

′
x〉

]
,

(2.19)

while isotropy, which allows us to write 〈uiuju
′
k〉 in terms of u3K(r), demands

rx〈uiuxu
′
i〉 − ri〈uiuxu

′
x〉 = −u3(r2 − 3r2

x )

4r2

∂

∂r
(r2K) (2.20)

and

〈u2
xu

′
x〉 =

u3rx

2r

[
∂

∂r
(rK) − r2

x

∂

∂r
(K/r)

]
. (2.21)

We now substitute for 〈uiuxu
′
i〉 − 〈u2

xu
′
x〉 and rx〈uiuxu

′
i〉 − ri〈uiuxu

′
x〉 in (2.19), using

(2.13), (2.20) and (2.21). The integral in (2.18) can then be evaluated in the usual way,
using spherical polar coordinates centred on the point x = Rêx . Using (2.3) we find,
after a little algebra,

d

dt
〈H2〉 = 4π2R4u3

∫ 2R

0

[1 − 3(r/2R)2 + 2(r/2R)4]
1

r

∂

∂r
(r4K) dr, (2.22)

which is the angular momentum analogue of (2.14). Finally, noting that the inviscid
version of the Kármán–Howarth equation can be written as

∂

∂t
(u2r3f (r)) =

u3

r

∂

∂r
(r4K) (2.23)

and substituting for ∂(r4K)/∂r in terms of ∂(u2f )/∂t , we obtain, after integration,

〈H2〉 = 4π2R4u2

∫ 2R

0

r3f (r)[1 − 3(r/2R)2 + 2(r/2R)4] dr, (2.24)

a result which was obtained by Llor (2006) in a slightly different way. (Note that the
constant of integration in (2.24) is set to zero since 〈H2〉 → 0 as u2 → 0.) We now
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consider the limit of R/� → ∞. Noting that K∞ ∼ r−4, (2.22) becomes

d

dt
〈H2〉 = 4π2R4u3

∫ ∞

0

1

r

∂

∂r
(r4K) dr = 4π2R4u3

∫ ∞

0

r2K dr (2.25)

which, combined with (2.14), yields

d

dt
〈H2〉 = R2 d

dt
〈P2〉 + O((R/�)2). (2.26)

Equation (2.24), on the other hand, yields two results:

(i) 〈H2〉 =
16

5
π2R5u2[r3f (r)]∞ =

3

5
R2〈P2〉 (2.27)

for a Saffman spectrum (E ∼ Lk2, f∞ ∼ r−3), from which we see that 〈H2〉/R5 ∼ L is
an invariant; and

(ii) 〈H2〉 = 4π2R4u2

∫ ∞

0

r3f (r) dr = R2〈P2〉+O((R/�)2) (2.28)

for a Batchelor spectrum (E ∼ Ik4, f∞ ∼ r−6). The most striking feature of (2.28) is
that 〈H2〉 scales as

〈H2〉 = R2〈P2〉 ∼ R4, (2.29)

instead of the scaling 〈H2〉 ∼ R3 suggested by (1.13). In short, it seems that 〈H2〉 is
dominated by the residual linear momentum in V , and this is enough to alter the
scaling proposed by Landau, who set P = 0 through the choice of a closed domain.

Now Monin & Yaglom (1975) suggest that in an open domain, 〈H2〉 will be
dominated by contributions that come from a thin layer of fluid adjacent to boundary
and that this will influence the scaling of 〈H2〉 on R. No proof of this assertion is
offered by Monin & Yaglom (1975), but if it is true, it seems likely that this lies
behind the difference between the 〈H2〉 ∼ R3 scaling for a closed domain and the
〈H2〉 ∼ R4 scaling above.

The kinematic argument given in Appendix B lends support to Monin & Yaglom’s
(1975) claim and illustrates the nature of the problem. In brief, the argument goes
like this: Consider a field of turbulence which consists of a random sea of compact
vortex blobs (eddies). Let xi locate the ith eddy in a large spherical control volume
V and r i be a local coordinate defined by x = xi + r i . Next we introduce the intrinsic
linear and angular impulse of the ith eddy, defined as (Batchelor 1967, p. 519)

Li =
1

2

∫
Vi

r i × ω dV , M i =
1

3

∫
Vi

r i × (r i × ω) dV ,

where Vi is the volume occupied by the vorticity of the ith eddy. In order to eliminate
the possibility of a Saffman spectrum we set Li =0 for all eddies, including those
lying outside V . It is then possible to show that

〈H2〉 =
∑

i

〈M2
i 〉 +

∑
k

[〈[xk × Lk]
2〉 + other surface terms], (2.30)

where the first summation on the right is over all the eddies (blobs of vorticity) which
lie entirely within V , and the summation over k corresponds to only those vortex blobs
which intersect the surface of our control volume, i.e. those eddies which straddle the
surface S of V . The quantity Lk is the impulse-like integral Lk = (1/2)

∫
r i × ω dV but

where the domain of integration is restricted to that part of the volume of the kth
eddy which lies within V .
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The first term on the right of (2.30) is of order R3, which is consistent with Landau’s
analysis, while the second is of order R2S ∼ R4, which is consistent with (2.29). It
would seem, therefore, that there is support for the assertion by Monin & Yaglom
(1975) that 〈H2〉 in an open control volume is dominated by contributions that
come from a thin layer of fluid adjacent to boundary, and it is this which causes
the discrepancy between (1.13) and (2.29). Note, however, that this discrepancy is
a result of introducing a control surface which dissects some of the eddies. If, for
some (unlikely) reason, none of the eddies were to intersect S, we would recover the
〈H2〉 ∼ R3 scaling of Landau (see (B2) in Appendix B).

Clearly, we need an entirely different approach if we are to establish the link
between angular momentum and Loitsyansky’s integral in homogeneous turbulence
(assuming that such a link exists), and it seems appropriate to explore Kolmogorov’s
suggestion of evaluating a weighted integral of x × u over the entire space, thus
removing the problematic control surface S.

3. A new approach: Loitsyansky’s integral and the vector potential
3.1. Kinematics

We now turn to the central results of the paper. We restrict ourselves to isotropic
turbulence with a Batchelor spectrum (E ∼ Ik4) in which, according to Batchelor &
Proudman (1956), f (r) decays no more slowly than f∞ ∼ r−6. Let us introduce the
vector potential for u, defined in the usual way by ∇ × A = u and ∇ · A =0. Then
〈A · A′〉 is related to 〈u · u′〉, u2f (r) and I as follows:

〈u · u′〉 = −∇2〈A · A′〉, (3.1)

u2f (r) = −1

r

∂

∂r
〈A · A′〉, (3.2)

I = −
∫

r2〈u · u′〉 dr =

∫
r2∇2〈A · A′〉 dr. (3.3)

Equation (3.2) tells us that 〈A · A′〉∞ decays no more slowly than 〈A · A′〉∞ ∼ r−4, so
that (3.3) integrates by parts to yield

I = 6

∫
〈A · A′〉 dr. (3.4)

It follows from the equivalence of volume and ensemble averages that

I = Lim
V →∞

6〈[
∫

V
A dV ]2〉
V

, (3.5)

which is the Loitsyansky analogue of Saffman’s relationship (1.4). We note, in passing,
that (3.4) integrates to give

I = 8π〈A2〉[r3fA(r)]∞,

where fA(r) is the longitudinal correlation function for A. (This is the analogue of
L = 4πu2[r3f ]∞ for a Saffman spectrum.) Note also that (3.5) can be obtained from
(3.4) in a different way, i.e. by repeating the proof of (2.4) and (2.6) but with A, fA(r)
and I replacing u, f (r) and L, respectively.

Let us now take V to be the usual spherical control volume of radius R. Then we
may relate

∫
V

A dV to x × u using a well-known result from magnetostatics (Jackson
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1975, p. 187), which gives∫
V

A dV =
1

3

∫
V∞

(x × u)G(|x|/R) dx, (3.6)

where

G(χ) = 1 for χ � 1 and G(χ) = χ−3 for χ > 1.

The relationship between I and angular momentum in homogeneous turbulence is
now clear; I is not proportional to 〈H2〉/V , as suggested by (1.9), but rather to
〈 J2〉/V , where J is a weighted integral over the entire space of x × u:

I = Lim
R→∞

2

3

〈 J2〉
V

, (3.7)

J =

∫
V∞

(x × u)G(|x|/R) dx. (3.8)

Note the similarity between (3.8) and Kolmogorov’s proposal (1.14). In § 5 we shall
see how these expressions may be generalized to include certain classes of anisotropic
turbulence, such as MHD turbulence and stratified turbulence.

3.2. Dynamics

So far we have considered only kinematics. Turning now to dynamics, we note that
the Kármán–Howarth equation (1.8) can be combined with (3.1) to give

∂

∂t

∂

∂r
〈A · A′〉 = − 1

r3

∂

∂r
(r4u3K) − 2ν

∂

∂r
〈u · u′〉 . (3.9)

This integrates to yield

d

dt

〈
A2

〉
= 3

∫ ∞

0

u3K dr − 2ν
〈
u2

〉
, (3.10)

which suggests that 〈A2〉 decreases with time, K being negative (except at very large
scales), and

d

dt

[
6

∫
〈A · A′〉 dr

]
= 8π

[
u3r4K

]
∞ − 12νL, (3.11)

which is consistent with (1.10) in the form

dI

dt
=

d

dt

[
6

∫
〈A · A′〉 dr

]
= 8π

[
u3r4K

]
∞ . (3.12)

Perhaps the more important question, though, is can we use (3.7) and (3.8) to explain
why I is conserved in the absence of long-range correlations? This question may seem
somewhat academic in the light of Batchelor & Proudman’s (1956) prediction that
[u3K]∞ ∼ cr−4 + O(r−5). However, it is worth bearing in mind that the magnitude of
c is not determined by any rigorous theory, and the simulations of Ishida et al. (2006)
suggest that c is very small and that I ≈ constant in fully developed turbulence. Given
the near conservation of I , it seems worth asking what the physical basis for this
conservation might be. We consider the idealized case in which all of the two-point
correlations fall off exponentially with |r |, and our starting point is to determine
dJ/dt . From (3.8) we have

dJ
dt

=

∫
V∞

∇ × [pGx] dx −
∫

V∞

∇ · [(x × u) Gu] dx +

∫
V∞

[(x × u) u · ∇G] dx, (3.13)
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where we have ignored the viscous stresses. The first integral on the right vanishes if
we evaluate it over a sphere of radius R̂ and then let R̂ → ∞. Similarly, we may write
the second integral as∫

V∞

∇ · [(x × u) Gu] dx = Lim
R̂→∞

R3

R̂3

∮
(x × u) u · dS, (3.14)

which also vanishes because the random nature of u means that the integral on the
right scales as R̂2. (Strictly, we should show that the second integral on the right of
(3.13) makes no contribution to d〈 J2〉/dt in the limit of R̂ → ∞, and indeed it is not
hard to show that this is the case.) We are left with

dJ
dt

= −3R3

∫ ∞

R

F(ρ)
dρ

ρ4
, ρ = |x| , (3.15)

where F(ρ) is the angular momentum flux out through the spherical surface Sρ of
radius ρ,

F(ρ) =

∮
Sρ

(x × u)u · dS.

From this we conclude

2π
dI

dt
= Lim

R→∞

d

dt

〈
J2

〉
R3

= −6 Lim
R→∞

∫ ∞

R

〈
F(ρ) ·

∫
V∞

(
x ′ × u′) G′ dx ′

〉
dρ

ρ4
, (3.16)

where G′ = G(ρ ′/R). The key term here is 〈F(ρ) ·
∫

(x ′ × u′)G′ dx ′〉. Evidently, whether
or not I is an invariant depends on the degree to which the angular momentum flux
out through Sρ is statistically correlated to the angular momentum in the vicinity of
Sρ .

Now suppose that there are no long-range interactions, in the sense that all two-
point correlations decay rapidly (say exponentially) with separation. Then we may take
|r | =O(�) in 〈F(ρ) ·

∫
(x ′ × u′)G′ dx ′〉, since the velocities at x and x ′ are effectively

decorrelated for distances larger than �. Adopting |r |/ρ ∼ �/ρ as a small parameter,
we may make the substitution

G(ρ ′/R) = G(ρ/R)[1 − 3x · r
/
ρ2 + O(�2/ρ2)]

in (3.16), where x locates a point on the surface Sρ , while x ′ = x + r locates a point
adjacent to the surface. Taking x = ρ êx as a typical point on Sρ and noting that all
points on the surface are statistically equivalent, (3.16) gives

d

dt

〈 J2〉
R3

= −24πR3

∫ ∞

R

∫
V∞

〈
ux (x × u) ·

(
x ′ × u′)〉 [

1 − 3rx/ρ + O

(
�2

ρ2

)]
dr

dρ

ρ5
,

(3.17)

where, as usual, r = x ′ − x. We shall use isotropy to evaluate all the triple correlations
and integrals on the right of (3.17) shortly. First, however, let us examine the
implications of (3.17) for 〈F(ρ) ·

∫
(x ′ × u′)G′ dx ′〉 using arguments of a more general

nature. Substituting ρ êx + r for x ′ in (3.17) and then integrating over ρ yields

d

dt

〈 J2〉
R3

= −6

∫ ∞

R

〈
F(ρ) ·

∫
V∞

(x ′ × u′)G′ dx ′
〉

dρ

ρ4
= −4π[3RI1+(2I2 − 6I3)+O(R−1)],

(3.18)
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where

I1 =

∫
V∞

〈ux(êx × u) · (êx × u′)〉 dr =

∫
V∞

〈ux(uyu
′
y + uzu

′
z)〉 dr,

I2 =

∫
V∞

〈ux(êx × u) · (r × u′)〉 dr = 2

∫
V∞

[rx〈uxuyu
′
y〉 − ry〈uxuyu

′
x〉] dr

and

I3 =

∫
V∞

rx 〈ux(êx × u) · (êx × u′)〉 dr =

∫
V∞

rx

〈
ux(uyu

′
y + uzu

′
z)

〉
dr.

Next we note that in the absence of long-range correlations, I3 = 0, which corresponds
to setting G′ = G in (3.18). This becomes evident if we use isotropy to rewrite I3 as

I3 = 〈[uxuy]x=0

∫
(x ′u′

y + y ′u′
x) dx ′〉,

where the integrand takes the form of a divergence: (x ′u′
y + y ′u′

x) = ∇′ · (x ′y ′u′). It
follows that the integral over x ′ in I3 may be expressed as a surface integral evaluated
at |x ′| → ∞, and hence I3 is proportional to a two-point correlation evaluated at
infinite separation. Since we are assuming that all such long-range interactions are
transcendentally small, we have I3 = 0. We may now put G′ = G in (3.18), which then
simplifies to

d

dt

〈 J2〉
R3

= −6R3

∫ ∞

R

〈
F(ρ) ·

∫
V∞

(
x ′ × u′) dx ′

〉
dρ

ρ7
= −4π [3RI1 + 2I2] . (3.19)

It seems that 〈 J2〉/V is conserved, provided that the contribution of
〈F(ρ) ·

∫
(x ′ × u′) dx ′〉 to (3.19) is zero in the limit of R → ∞. However, it is

readily confirmed that symmetry demands that both I1 and I2 are zero, and hence
〈F(ρ) ·

∫
V∞

(x ′ × u′) dx ′〉 =0. We may show this as follows: Since x ′ = ρ êx + r we may

split 〈F(ρ) ·
∫

V∞
(x ′ × u′) dx ′〉 into two parts,〈

F(ρ) ·
∫

V∞

(
ρ êx × u′) dx ′

〉
= 4πρ4I1 = 4πρ4

∫
V∞

〈
ux

(
uyu

′
y + uzu

′
z

)〉
dr,

〈
F(ρ) ·

∫
V∞

(
r × u′) dx ′

〉
= 4πρ3I2 = 8πρ3

∫
V∞

[
rx

〈
uxuyu

′
y

〉
− ry 〈uxuyu

′
x〉

]
dr.

The first of these is zero by virtue of reflectional symmetry. That is 〈ux(uyu
′
y + uzu

′
z)〉

changes sign under a reversal of the x-axis and so is odd in rx . The second is zero
by virtue of rotational symmetry. For example, consider a new coordinate system
obtained by rotating about the z-axis by π/2. Then y → −x and x → y, and the
integrand in I2 changes sign, which in turn requires I2 = 0. We conclude, therefore,
that symmetry demands that 〈F(ρ) ·

∫
V∞

(x ′ × u′) dx ′〉 = 0, and so there is no statistical
correlation between the flux of angular momentum out through the surface Sρ and
the angular momentum in the vicinity of Sρ . Expression (3.19) then tells us that in

the absence of long-range interactions, 〈 J2〉/R3, and hence I , is an invariant. This
provides a simple physical interpretation for the conservation of I . Finally, it is worth
noting that the requirement for I to be conserved is that the flux F(ρ) is decorrelated
with

∫
V∞

(x ′ × u′) dx ′ and not with
∫

Vρ
(x ′ × u′) dx ′. Indeed, we know from (2.22) that

F(ρ) has a finite correlation with the latter integral.
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The same conclusions may be reached through a detailed evaluation of the triple
correlations in (3.17). The starting point is to note that (2.13) and (2.19)–(2.21) give
us 〈

ux (x × u) ·
(

x ′ × u′)〉 = ρ2 [g1(rx, r) − g3(rx, r)] + ρg2(rx, r),

where

g1(rx, r) = 〈uiuxu
′
i〉 =

u3rx

2r4

∂

∂r

(
r4K

)
, (3.20)

g2(rx, r) = rx 〈uiuxu
′
i〉 − ri 〈uiuxu

′
x〉 = −u3(r2 − 3r2

x )

4r2

∂

∂r

(
r2K

)
, (3.21)

g3(rx, r) =
〈
u2

xu
′
x

〉
=

u3rx

2r

[
∂

∂r
(rK) − r2

x

∂

∂r
(K/r)

]
, (3.22)

and hence (3.17) can be rewritten as

Lim
R→∞

d

dt

〈 J2〉
R3

= −24π Lim
R→∞

[
R3

∫ ∞

R

∫
V∞

[ρ2(g1−g3) + ρg2]

[
1−3rx/ρ + O

(
�2

ρ2

)]
dr

dρ

ρ5

]

Now g1 and g3 are both odd in rx and so integrate to zero, as does g2 because of
the factor (r2 − 3r2

x ) in (3.21). This corresponds to the vanishing of I1 and I2 in (3.19)
and confirms that 〈F(ρ) ·

∫
(x ′ × u′) dx ′〉 =0 by virtue of symmetry. Next, noting that

all the contributions arising from the term O(�2/ρ2) vanish in the limit of R → ∞, as
does the contribution from rxg2, the expression above simplifies to

Lim
R→∞

d

dt

〈 J2〉
R3

= 2π
dI

dt
= 24π

∫
V∞

rx [g1 − g3] dr. (3.23)

Finally, substituting for g1 and g3 in (3.23) and integrating by parts yields

Lim
R→∞

d

dt

〈 J2〉
R3

= 2π
dI

dt
∼ u3

[
r4K

]
∞ = 0. (3.24)

Note that this final step relies on there being no long-range interactions and
corresponds to the vanishing of I3. We are thus led to the same conclusion as
before. Either way, we find that the flux F(ρ) is not correlated to the local angular
momentum adjacent to Sρ , and so 〈 J2〉/V , and hence I , is conserved in the absence
of long-range interactions. (In practice, a complete absence of long-range interactions
in unlikely, with K falling off as a power law, so it would be interesting to redo this
calculation for the weaker assumption of K < O(r−4). )

4. A comparison with Kolmogorov’s analysis
The similarity between (1.14) and (3.8) is striking, and it is natural to ask if there

are significant links between the analysis of § 3.1 and that of Kolmogorov. Let us first
recall what Kolmogorov did, following the somewhat sketchy outline given in Monin
& Yaglom (1975, p. 151), adapted here to our notation. We introduce Ĥ defined by
(1.14) and note that

〈Ĥ
2〉 =

∫
V∞

∫
V∞

[
〈u · u′〉 x · x ′ −

〈
uiu

′
j

〉
xjx

′
i

]
exp[−(x2 + x ′2)/R2] dx ′ dx. (4.1)
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Introducing r = x ′ − x and s =(x + x ′)/2, substituting for x and x ′ and throwing out
terms in the integrand which are odd in s yields

〈Ĥ
2〉 =

∫
V∞

∫
V∞

[
〈u · u′〉

(
2

3
s2 − 1

4
r2

)
+

1

4
〈uiu

′
j 〉rj ri

]
exp[−2s2/R2] exp[−r2/2R2] dr ds.

(4.2)
Finally, integrating over s and using isotropy to relate 〈uiu

′
j 〉 to u2f (r), we find, after

some algebra,

〈Ĥ
2〉

R3
= − π

3
2

8
√

2

∫
V∞

exp
[
−r2/2R2

]
r3 ∂

∂r
(u2f ) dr, (4.3)

from which

Lim
R→∞

〈Ĥ
2〉

R3
= − π

5
2

2
√

2

∫
V∞

r5 ∂

∂r
(u2f ) dr =

5π
3
2

16
√

2
I. (4.4)

(Note that there is an error in Monin & Yaglom (1975), who quote 5π3/2I/4
√

2,
rather than 5π3/2I/16

√
2, for the term on the right of (4.4).) In short, we

have

I ∼ Lim
R→∞

〈Ĥ
2〉

R3
, (4.5)

which is analogous to (3.7).
Evidently, there are similarities between the two analyses. However, there are also

crucial differences. For example, (3.8) is motivated by the kinematic expression (3.4),
whereas (1.14) is introduced as a matter of mathematical expediency. Moreover,
Kolmogorov’s analysis is purely kinematic, whereas ours embraces dynamics, showing
that the conservation of I (in the absence of long-range interactions) can be explained
in terms of a decorrelation between the flux of angular momentum out through the
control surface Sρ and the local angular momentum density surrounding Sρ .

5. Extension to other types of homogeneous turbulence
5.1. Why Landau’s theory is important

One might legitimately question whether Landau’s analysis, or its various refinements,
are of any consequence. After all, (1.10) tells us that I is not, in general, an invariant.
Moreover, isotropic turbulence is itself an idealized state, rarely achieved. However,
the central value of Landau’s theory lies in the fact that c = [r4K]∞ is observed
to be very small in fully developed, isotropic turbulence (Ishida et al. 2006). Thus
the long-range correlations predicted by Batchelor & Proudman (1956) are weak,
at least in mature turbulence, and so for most practical purposes I can be treated
as a constant. Thus, for example, the decay exponent in the power law u2 ∼ t−n

is close to Kolmogorov’s prediction of n= 10/7 for E ∼ Ik4 turbulence (Ishida
et al. 2006). So the underlying assumption in Landau’s theory, that long-range
interactions may be neglected, turns out to be a reasonable approximation in isotropic
turbulence.

Moreover, if the long-range interactions are weak in other forms of homogeneous
turbulence, such as MHD, rotating and stratified turbulence, then it is possible to
generalize Landau’s analysis to embrace these anisotropic systems. As we shall see,
the only requirement is that there is no net torque associated with the body force
(the buoyancy, Coriolis or Lorentz force) in at least one direction. In such a case one
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can repeat the steps of § 1.2 but focusing on the conserved component of angular
momentum only. Now it turns out that the Lorentz, Coriolis and buoyancy forces
do indeed satisfy this constraint, and so the inhomogeneous theory of § 1.2 is readily
adapted to these anisotropic flows. In this sense, then, Landau’s analysis constitutes
an important, general result, provided, of course, that the long-range interactions are
weak in these more complex systems. One problem, however, is that these various
anisotropic extensions of § 1.2 all suffer from the same problem as Landau’s original
argument: they are formulated for inhomogeneous turbulence evolving in a closed
domain. In § 5.3 we shall show how this shortcoming may be remedied following the
logic of § 3, thus providing a self-consistent theory within a homogeneous framework.
First, however, it is useful to review briefly the way in which Landau’s inhomogeneous
analysis may be extended to these more complex systems.

5.2. Landau’s inhomogeneous analysis extended to MHD, rotating and stratified
turbulence

The details of how to generalize the inhomogeneous analysis of § 1.2 to stratified
and MHD turbulence are spelt out in Davidson (1997, 2004, pp. 514, 541). In the
case of rotating or stratified turbulence, that is turbulence evolving in the presence
of a background rotation or stratification, the component of angular momentum
parallel to the rotation axis or gravitational acceleration is clearly conserved. In
MHD turbulence, on the other hand, it turns out to be the component of H parallel
to the applied magnetic field which is conserved. This latter claim is not particularly
obvious but can be seen as follows: Consider a turbulent, conducting fluid evolving
in a large electrically insulated spherical domain and subject to an imposed magnetic
field B0. Let j be the current density induced in the fluid, which satisfies the boundary
condition j · dS = 0, and b be the magnetic field associated with j by virtue of the
Biot–Savart law or, equivalently, Ampere’s law ∇ × b = j . (For simplicity, we shall
take the permeability of free space to be unity.) Then the net torque exerted on the
fluid by the Lorentz force is

T =

∫
V

x × ( j × B0) dV +

∫
V

x × ( j × b) dV ,

where V is the closed spherical domain. However, a closed system of currents produces
zero net torque when interacting with its self-field b, and it follows that the second
integral on the right is zero. The first integral, on the other hand, can be transformed
using the identity

2x × [ j × B0] = (x × j ) × B0 + ∇ · [x × (x × B0) j ]

and the boundary condition j · dS = 0. This yields

T =
1

2

∫
V

(x × j ) dV × B0 = m × B0,

where m is the dipole moment associated with j . Ignoring the viscous stresses on
the surface of V and noting that we are taking the fluid density to be unity, the
angular momentum of the fluid evolves according to dH/dt = m × B0. Evidently, the
component of H parallel to B0 is conserved, as claimed above. Note that this true
for both poorly conducting and highly conducting fluids.
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Let us now denote the conserved component of H (for MHD, rotating or stratified
turbulence) by H// and introduce the Loitsyansky-like integral

I// = −
∫

r2
⊥ 〈u⊥ · u′

⊥〉 dr.

Then, repeating the steps in § 1.2, but focusing on H// only, leads to

I// = Lim
V →∞

〈
H 2

//

〉
V

= −
∫

r2
⊥ 〈u⊥ · u′

⊥〉 dr = constant, (5.1)

where r⊥ and u⊥ are the components of r and u in the plane normal to H//. This is
the anisotropic analogue of (1.13). Of course, as in Landau’s original analysis, (5.1)
relies on the assumption that all two-point correlations decay rapidly with separation
and on the fact that P =

∫
u dV = 0 in a closed domain.

An independent check on the validity of at least part of (5.1), i.e.

I// = −
∫

r2
⊥ 〈u⊥ · u′

⊥〉 dr = constant, (5.2)

can be made by integrating the appropriate form of the generalized, anisotropic
Kármán–Howarth equation, incorporating the appropriate body forces (the buoyancy,
Coriolis or Lorentz force). It may be confirmed that, provided the two-point
correlations decay sufficiently rapidly with separation, (5.2) does indeed hold for
homogeneous turbulence (Davidson 2004, pp. 514, 542). However, the attraction of
Landau’s approach is that it yields (5.1) with relative ease, whereas a derivation of
(5.2) via the generalized Kármán–Howarth equation is typically a long and tedious
calculation. In any event, whichever derivation we follow, (5.2) holds whenever the
long-range interactions are sufficiently weak.

Unfortunately, as noted above, these variants of § 1.2 all have a weakness: they
are formulated for inhomogeneous turbulence evolving in a closed domain. Thus, for
example, the link between (5.2) and angular momentum conservation becomes unclear
as we move from inhomogeneous to homogeneous turbulence and from closed to
open control volumes. Indeed, since I ∼ 〈 J2〉/V , rather than I ∼ 〈H2〉/V , in isotropic
turbulence, we might anticipate that I// ∼ 〈J 2

//〉/V in these anisotropic, homogeneous

flows, rather than the expression I// ∼ 〈H 2
//〉/V suggested by (5.1). It is natural to ask,

therefore, if our reformulation of Landau’s theory, outlined in § 3, can be adapted to
these anisotropic systems. It turns out that it can.

5.3. Reformulating our analysis for anisotropic, homogeneous turbulence

Our starting point is to note that in homogeneous turbulence,

〈uiu
′
j 〉 = −δij ∇2 〈A · A′〉 +

∂2

∂ri∂rj

〈A · A′〉 + ∇2 〈AjA
′
i〉 ,

from which

〈u⊥ · u′
⊥〉 = −∇2

〈
A//A

′
//

〉
− ∂2

∂r2
//

〈A · A′〉 . (5.3)

It follows that, if the two-point correlations decay sufficiently rapidly with r , then

I// = 4

∫ 〈
A//A

′
//

〉
dr = Lim

V →∞

4〈[
∫

V
A// dV ]2〉
V

, (5.4)
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which when combined with (3.6) and (5.2) yields

I// = Lim
R→∞

4
〈
J 2

//

〉
9V

= constant , (5.5)

J// =

∫
V∞

(x × u)// G
(
|x|/R

)
dx. (5.6)

Thus, as anticipated above, we have I// ∼ 〈J 2
//〉/V rather than I// ∼ 〈H 2

//〉/V . All of the
arguments of § 3.2 can now be adapted to MHD, rotating and stratified turbulence
but with attention focused on (x × u)// rather than x × u. In particular, since there is
no net torque T// associated with the body forces (the Lorentz, Coriolis or buoyancy
force), one can explain the conservation of I// in terms of a decorrelation between
the flux of (x × u)// out through the surface Sρ and the angular momentum (x × u)//
adjacent to Sρ .

The importance of (5.2) and (5.5) cannot be underestimated. If the large scales are
self-similar, then (5.2) demands

u2
⊥�4

⊥�// = constant, (5.7)

where �⊥ and �// are integral scales, defined, say, by

�⊥ =
1〈

u2
⊥
〉 ∫

〈u⊥(x) · u⊥(x + r êx)〉 dr, �// =
1〈

u2
⊥
〉 ∫

〈u⊥(x) · u⊥(x + r êz)〉 dr.

This imposes a powerful constraint on the evolution of the large scales. For example,
(5.7) can be used in the spirit of Kolmogorov (1941) to estimate the rate of decay of
energy in MHD turbulence (Davidson 2004, p. 543; Okamoto, Davidson & Kaneda
2008), and the resulting predictions are close to the numerical and experimental
evidence (see below).

A key question, of course, is whether or not the long-range interactions are indeed
weak in these anisotropic systems, just as they are in mature, isotropic turbulence.
If they are not weak, then (5.5) fails in the sense that I// is not constant. It is
reassuring in this respect to note that the Coriolis and buoyancy forces are less
efficient at transmitting information over large distances than the pressure force. That
is the Coriolis and buoyancy forces can generate internal waves (inertial waves and
gravitational waves), but these waves are less efficient at propagating information
than the pressure force, which acts instantaneously over large distances in the form
of infinitely fast acoustic waves. The situation is a little more complicated in MHD
turbulence, where the Lorentz force is a non-local function of u, but it is shown in
Davidson (1997) that the resulting long-range interactions are no stronger than in
conventional isotropic turbulence.

5.4. Decay laws in MHD turbulence

We close § 5 by showing how (5.7) can play a crucial role in freely decaying,
homogeneous turbulence. To make the point we focus on three particular cases:
(i) MHD turbulence in which the magnetic Reynolds number is small, Rm = u�/λ� 1,
λ being the magnetic diffusivity; (ii) MHD turbulence at high Rm; and (iii) turbulence
evolving in the presence of a background stratification. In each case we derive an
energy decay law for the system and predict the rate of change of the integral scales.
We wish to emphasis, however, that (5.7) is likely to play an equally important role in
other homogenous systems, such as rotating turbulence, rotating–MHD turbulence
and rotating–stratified turbulence. Our analysis of stratified and high-Rm MHD
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turbulence is new, whereas our discussion of low-Rm MHD turbulence, which is
included for completeness, is based on that given in Davidson (2004) and Okamoto
et al. (2008).

5.4.1. Low-Rm MHD turbulence

Let us start with MHD turbulence at low Rm. The low-Rm regime, which typifies
almost all terrestrial MHD, is characterized by a low electrical conductivity σ and
weak induced currents, and hence b � B0 (Moffatt 1978). The statistically averaged
kinetic energy equation is readily shown to be

d

dt

1

2
〈u2〉 = −ν〈ω2〉 − 〈 j 2〉/σ, (5.8)

where the second term on the right is the Joule dissipation. (As in § 2, we take the
fluid density to be unity.) The Joule dissipation in (5.8) may be estimated using the
curl of Ohm’s law ∇ × j = σ B0 · ∇u from which we obtain the estimate

〈 j 2〉
σ

∼
(

�min

�//

)2 〈u2〉
τ

, τ = (σB2
0 )

−1. (5.9)

Here �min and �// are suitably defined integral scales, and τ in known as the Joule
dissipation time. Now we know that the effect of B0 is to introduce anisotropy into
the turbulence, with �// > �⊥. Thus we have〈

j 2
〉

σ
=

β

2

(
�⊥

�//

)2
〈
u2

〉
τ

, (5.10)

where β is a coefficient of order unity – in fact it can be shown that β = 2/3 when the
turbulence is isotropic (Davidson 2004). Using this to estimate the Joule dissipation
in (5.8) we obtain

du2

dt
= −α

u3

�⊥
− β

(
�⊥

�//

)2
u2

τ
, (5.11)

where we have made the usual high-Re estimate of the viscous dissipation term, with
α a coefficient of the order of unity. Now in low-Rm turbulence it is conventional
to categorize the flow according to the value of the so-called interaction parameter
N = �⊥/uτ . When N is small (negligible magnetic effects), (5.7) and (5.11) reduce
to

du2

dt
= −α

u3

�
, u2�5 = constant, (5.12)

which yields the familiar Kolmogorov decay law u2 ∼ t−10/7. When N is large, on the
other hand, inertia is unimportant, and we have �⊥ = constant, since diffusive Alfven
waves increase �// but leave �⊥ unchanged on times of order τ . Thus the high-N case
is governed by a combination of (5.7) and

du2

dt
= −β

(
�⊥

�//

)2
u2

τ
, �⊥ = constant, (5.13)

from which we obtain the familiar results

u2 = u2
0

[
1 + 2βt/τ

] −1
2 , �// = �0

[
1 + 2βt/τ

] 1
2 . (5.14)

(Here the subscript 0 indicates a value at t = 0.) For intermediate values of N , however,
we have a problem. Equations (5.7) and (5.11) between them contain three unknowns,
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u2, �⊥ and �//. To close the system we follow Davidson (2004) and introduce the
heuristic equation

d

dt

(
�///�⊥

)2
= 2β/τ, (5.15)

which has the merit of being exact for N → 0 and N → ∞ but cannot be formally
justified for intermediate N . However, the direct numerical simulations (DNSs) of
Okamoto et al. (2008) suggest that (5.15) is indeed a reasonable approximation for
the intermediate values of N ∼ 1, lending some confidence to this estimate. Finally,
integrating (5.7), (5.11) and (5.15) yields the decay laws

u2
/
u2

0 = t̂−1/2[1 + (7α/15β)(t̂3/4 − 1)N−1
0

] −10
7 ,

�⊥
/
�0 = [1 + (7α/15β)(t̂3/4 − 1)N−1

0

] 2
7 ,

�//

/
�0 = t̂1/2[1 + (7α/15β)(t̂3/4 − 1)N−1

0

] 2
7 ,

(5.16)

where N0 is the initial value of N and t̂ = 1 + 2β(t/τ ). These expressions reduce
to Kolmogorov’s decay law for small N0 and to (5.14) at large N0, as they must.
Moreover, for the case of N0 = 7α/15β we obtain the power laws

u2
/
u2

0 ∼ t̂
−11
7 , �//

/
�0 ∼ t̂5/7, �⊥

/
�0 ∼ t̂

3
14
, (5.17)

and indeed these power laws are reasonable approximations to (5.16) for all values
of N0 around unity. Interestingly, experiments of low-Rm, homogeneous turbulence
suggest u2 ∼ t−1.6 for N0 ∼ 1 (Davidson 2004), which compares favourably with the
prediction of (5.17), i.e. u2 ∼ t−1.57. Moreover, the DNSs of Okamoto et al. (2008),
which were performed at N0 ∼ 1, show that (5.17) provides good estimates of u2, �⊥
and �//.

However, perhaps the particular details of decay laws (5.16) are unimportant for the
present purposes. The main point is that the Loitsyansky-like constraint (5.7), which
is related to angular momentum conservation, plays a critical role in determining the
rate of decay of energy in low-Rm MHD turbulence, just as it does in Kolmogorov’s
decay law for conventional hydrodynamic turbulence. It seems likely, therefore, that
(5.7) is equally important in determining the rate of energy decay in high-Rm MHD
turbulence and in rotating or stratified turbulence.

5.4.2. High-Rm MHD turbulence

Consider now the case of high-Rm turbulence evolving in the presence of a uniform,
imposed field. Here the energy associated with the induced field b cannot be neglected,
and a term b2 should be added to the right of (5.8). However, Alfven waves travelling
along the mean field tend to promote an equipartition of energy between u2

⊥ and b2,
and so (5.8) remains qualitatively correct. Indeed, the dissipation of energy in such
turbulence is observed to be of the order of u3

⊥/�⊥, as in hydrodynamic turbulence
(Cho & Vishniac 2000). Thus we have

du2
⊥

dt
= −α

u3
⊥

�⊥
, α ∼ 1, (5.18)

where α is a constant. Moreover, the ratio of integral length scales �///�⊥ is set by the
so-called critical-balance condition (again, see Cho & Vishniac 2000), which requires

�///�⊥ ∼ VA/u⊥, (5.19)
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where VA is the Alfven wave speed associated with the mean field, VA ∼ B0. Integrating
(5.18) subject to constraints (5.7) and (5.19) yields

u2
⊥

u2
0

=

[
1 +

3α

5

u0t

�0

] −5
3

, (5.20)

�⊥

�0

=

[
1 +

3α

5

u0t

�0

] 1
6

, (5.21)

�//

�0

∼ VA

u0

[
1 +

3α

5

u0t

�0

]
, (5.22)

where u0 and �0 are the initial values of u⊥ and �⊥. Yet again, our angular momentum
constraint yields simple decay laws. Note that at large times, (5.22) simplifies to
�// ∼ VAt . To date, the available numerical evidence is insufficient to put (5.20)–(5.22)
to the test.

5.5. The decay of stratified turbulence: speculative decay laws

We conclude by considering turbulence evolving in the presence of a uniform, stable
stratification. Let N be the Väisälä–Brunt frequency, defined in the usual way with
N2 proportional to the normalized density gradient, and

Fr = u⊥/N�⊥ (5.23)

be the corresponding Froude number. For low Fr and high Reynolds number it has
been suggested by several researchers, partly on the basis of empirical observation,
that the horizontal kinetic energy decays according to

du2
⊥

dt
= −α

u3
⊥

�⊥
, α ∼ 1, (5.24)

while �// is fixed by the condition

u⊥

N�//

= C ∼ 1. (5.25)

(Here u2
⊥ = (1/2)〈u2

⊥〉 and α and C are constants of order unity.) Expressions (5.24)
and (5.25), or their equivalent, are proposed in, for example, Godeferd & Staquet
(2003), Riley & deBruynKops (2003), Waite & Bartello (2004), Lindborg (2006) and
Brethouwer et al. (2007). Combining these with (5.7) and integrating yields

u2
⊥

u2
0

=

[
1 +

7α

8

u0t

�0

] −8
7

, (5.26)

�⊥

�0

=

[
1 +

7α

8

u0t

�0

] 3
7

, (5.27)

�//

�0

=
1

C

u0

N�0

[
1 +

7α

8

u0t

�0

] −4
7

, (5.28)

where u0 and �0 are the initial values of u⊥ and �⊥. Once again, (5.2) has determined the
rate of energy decay. Note, however, that unlike MHD turbulence, where our predicted
decay laws have been verified by numerical simulations, predictions (5.26)–(5.28) have
yet to be put to the test. This is important, as the physical basis of (5.24) and (5.25) is
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still a mater of debate. Moreover, there is the possibility that, depending on how the
turbulence is generated, the large scales may be of the Saffman type, in which case
(5.26)–(5.28) will not apply.

6. A problem: the elusive nature of the long-range interactions.
Although we have successfully reformulated Landau’s analysis for homogeneous

turbulence, there is still the mystery as to why the long-range correlations, as measured
by c = [r4K]∞, are so weak in fully developed, isotropic turbulence. After all, K∞ ∼ cr−4

seems to be an inevitable consequence of the long-range pressure forces or equivalently
the Biot–Savart law (Davidson 2004). Moreover, simple closure models, such as the
quasi-normal closure, have c as an order one quantity (Proudman & Reid 1954),
while more complex Markovianized closure models, such as the so-called eddy-
damped quasi-normal Markovian (EDQNM) closure, predict a small but finite time
dependence for I (t). For example, in Appendix C we show that EDQNM predicts
I ∼ (u2)−m, where

m =
7π

20a1A

√
3√
2

∫ ∞

0

F (x)

x
dx

[∫ ∞

0

F (x) dx

] −3
2

∫ ∞

1

F 2(x)
/
x2√∫ x

0
y2F (y) dy

dx. (6.1)

Here F (k/ki) is the normalized energy spectrum F ∼ kiE(k)/u2; ki is the wavenumber
at which E is a maximum; a1 is a model constant of order unity; and A is a
dimensionless measure of dissipation, A ≈ 1/3. It turns out (see Appendix C) that the
standard version of EDQNM has m ≈ 0.12, leading to I ∼ t0.16 (for a discussion of
EDQNM see, for example, Lesieur 1990; Sagaut & Cambon 2008).

In summary, then, conventional wisdom and quasi-normal-like closure models
would have c = [r4K]∞ finite, and hence I time dependant. If that were true,
Landau’s theory and its various extensions would be of limited interest. However,
high-resolution DNSs suggest that after a transient, I ≈ constant.

So why is c so small in practice, leading to I ≈ constant in fully developed
turbulence? This is an issue which has yet to be adequately addressed in the literature,
though there have been some tentative suggestions. For example, Ruelle (1990)
speculated that the long-range correlations might vanish by analogy with Debye–
Huckel screening in plasmas, whereby the long-range Coulomb forces are suppressed
through a clustering of oppositely signed charges, leaving the plasma electrically
neutral at each point, at least in a coarse-grained sense. Ruelle (1990) noted that, in a
similar way, current loops interacting via their induced magnetic fields can, in certain
situations, exhibit a form of partial screening, in the sense that the magnetic energy
associated with far-field interactions is reduced by a reorientation of the dipoles. Of
course, there is a kinematic analogy between such current loops and vortex tubes in
a turbulent flow, and it was this analogy that motivated Ruelle’s (1990) speculation
about screening in turbulence. It turns out, however, that the analogy is imperfect.
This becomes apparent if one looks at dynamics rather than kinematics, as illustrated
by the following example: Consider two distinct vortex loops interacting remotely in
an inviscid fluid via their induced velocity fields. Let loop 1 have a vorticity field ω1,
which is confined to the region V1, and loop 2 have a vorticity field ω2, confined to the
region V2. We take V1 and V2 to be non-overlapping, though of course the induced
velocity fields u1 and u2 pervade the entire space. We now consider the influence of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
00

71
37

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009007137


352 P. A. Davidson

loop 2 on the angular impulse of loop 1,

M1 =
1

3

∫
V1

x × (x × ω1) dV ,

and the corresponding influence of loop 1 on M2. We start by noting that the inviscid
vorticity equation yields, after some algebra,

D

Dt
(x × (x × ω)) = 3x × (u × ω) + ω · ∇ (x × (x × u)) . (6.2)

Moreover, using u × ω = ∇(u2/2) − u · ∇u to rewrite
∫

x × (u × ω) dV as a surface
integral, we have∫

V∞

x × (u1 × ω1) dV =

∫
V∞

x × (u2 × ω2) dV =

∫
V∞

x × (u × ω) dV = 0, (6.3)

where u = u1 + u2 and ω = ω1 + ω2. Combining (6.2) and (6.3) yields

dM1

dt
= −

∫
V1

x × (ω1 × u2) dV ,
dM2

dt
= −

∫
V2

x × (ω2 × u1) dV , (6.4)

and M1 + M2 = constant. (An expression similar to (6.4) appears in Saffman 1992,
p. 59.)

Let us now compare this with the equivalent problem in magnetostatics. Here we
have two current loops with current densities j 1 and j 2, exerting forces and torques
on each other through their induced magnetic fields, B1 and B2, with ∇ × B = j .
Clearly, there is a kinematic analogy, with j ↔ ω and B ↔ u. When we turn to
dynamics, however, the analogy breaks down, since the counterpart of (6.4) is

T 1 =

∫
V1

x ×
(

j 1 × B2

)
dV , T 2 =

∫
V2

x ×
(

j 2 × B1

)
dV ,

where j × B is the Lorentz force and T1 and T2 are the torques exerted on the two
current loops. Evidently, the torques in the two problems are in opposite directions.
The implication is that the behaviour of interacting current loops will be quite
different from that of interacting vortex tubes. It seems unlikely, therefore, that there
is screening in turbulence of the type seen in magnetostatics.

All in all, our understanding of the nature of the long-range correlations remains
poor, and we have no convincing explanation for the weakness of these interactions.
This is important because, if we cannot explain why the long-range interactions
are often so weak, then we cannot predict when they will be significant. Perhaps
this is the main drawback of Landau’s theory and its various extensions discussed
here.

7. Conclusions
Landau’s analysis, linking Loitsyansky’s integral to the angular momentum of the

turbulence, can be criticized because, formally, it applies to inhomogeneous turbulence
only. Any attempt to recast this analysis for homogenous turbulence, by applying
momentum conservation to an open control volume, is doomed to failure, as the
angular momentum in such a control volume is dominated by the residual linear
momentum. As noted in Monin & Yaglom (1975), the problem lies in the fact that
the fluid lying adjacent to the control surface dominates 〈H2〉. Clearly, an entirely
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different approach is needed. We have shown that the key is to rewrite Loitsyansky’s
integral in terms of the vector potential A,

I = 6

∫
〈A · A′〉 dr = 6

〈[∫
V

A dV

]2
〉/

V.

It follows immediately that I is not equal to 〈H2〉/V , as suggested by Landau’s
analysis, but rather proportional to 〈 J2〉/V , where J is the weighted integral of
the angular momentum density throughout the space. We have also shown that the
conservation of I , in the absence of long-range correlations, can be understood in
terms of the decorrelation of the flux of angular momentum out through a spherical
control surface and the local angular momentum itself. Our analysis bears some
similarities to that of Kolmogorov (1.14) but is essentially distinct. It is also readily
generalized to certain types of anisotropic turbulence, such as MHD, rotating and
stratified turbulence, yielding the important constraint u2

⊥�4
⊥�// =constant. We have

shown that this constraint yields decay laws for both MHD and stratified turbulence
and that the former are consistent with the available numerical data.

The author would like to thank Jim Riley whose discussions of stratified turbulence
helped establish (5.26)–(5.28).

Appendix A. The physical interpretation of Saffman’s scaling 〈P2〉 ∼ V

We suggested in § 1.1 that the scaling 〈P2〉 ∼ V could be thought of as a consequence
of the central limit theorem, provided that individual eddies (blobs of vorticity) retain
some finite linear impulse. This view can be confirmed as follows: As usual, we let
P =

∫
V

u dV , where V is a large spherical control volume of radius R. Moreover, let
us suppose that the turbulence consists of a random distribution of discrete eddies,
each occupying a volume Vi and with linear impulse Li = (1/2)

∫
Vi

x × ω dV . The
contribution that each eddy makes to P depends on whether or not it lies inside V .
In particular, it may be shown that (Jackson 1998, p. 187)

P =

∫
V

u dV =
2

3

∑
i

Li + V
∑

j

u0j , (A 1)

where the subscripts i and j refer to eddies inside and outside V respectively and u0j

is the velocity induced at the centre of V by the j th external eddy. If these eddies are
taken to be statistically independent, which is somewhat simplistic, then we have

〈P2〉 =
4

9

∑
i

〈L2
i 〉 + V 2

∑
j

〈(u0j )
2〉

or

〈P2〉 =
4

9
nV

〈
L2

i

〉
+ V 2

∑
j

〈(u0j )
2〉, (A 2)

where n is the number density of eddies, defined by nV 〈L2
i 〉 =

∑
〈L2

i 〉. Next we note
that for R � �, the Biot–Savart law yields

4πu0j = Lj · ∇
(
∇

(
r−1
j

))
+ O

(
r−4
j

)
(no summation over j ),
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where rj is the distance of the j th eddy from the centre of V . For an isotropic
distribution of eddies this yields

V 2〈(u0j )
2〉 =

2

9

〈
L2

j

〉 R6

r6
j

+ O
(
r−7
j

)
,

and if these eddies are uniformly distributed in space, with 〈L2
j 〉 independent of

position, we find

V 2
∑

j

〈(u0j )
2〉 =

2

9
〈L2

i 〉nV + O(R2).

Substituting back into (A 2) yields the desired result:

〈P2〉 =
2

3
nV 〈L2

i 〉 + O(R2) ∼ V. (A 3)

Of course, this analysis is somewhat näıve, as the eddies within V will not be
statistically independent. Nevertheless, this does provide a kinematically admissible
field of isotropic turbulence and so does lend support to the scaling 〈P2〉 ∼ V in
Saffman turbulence.

Note that, if Li = 0, which would be typical of Batchelor spectra, then (A 3) tells
us that 〈P2〉 ∼ R2, which is consistent with (2.7).

Appendix B. The physical reason for the 〈H2〉 ∼ R4 scaling in an open
control volume

Consider an artificial field of turbulence which consists of a random sea of compact
vortex blobs (eddies), each occupying a volume Vi within which the vortex lines are
closed. Let xi locate the ith eddy (i.e. xi lies within Vi) and r i be a local coordinate
defined by x = xi + ri . The intrinsic linear and angular impulse of the ith eddy are
(Batchelor 1967, p. 519)

Li =
1

2

∫
Vi

r i × ω dV , M i =
1

3

∫
Vi

r i × (r i × ω) dV .

In addition,
∫

Vi
ω dV = 0, since the vortex lines are closed in Vi . Now the total angular

momentum held in a spherical control volume V can be written in terms of the global
angular impulse as follows:

H =

∫
V

x × u dV =
1

3

∫
V

x × (x × ω) dV +
1

3
R2

∫
V

ω dV , (B 1)

where, as usual, R is the radius of the control volume. (This comes from integrating
the identity 6x × u =2x × (x × ω)+3∇ × (x2u) − ω · ∇(x2x).) Moreover, if none of the
eddies straddles the surface S of our control volume but rather lies inside or outside
V , then the second integral on the right of (B1) is zero. Making the substitution
x = xi + r i and assuming that none of the eddies straddles the surface S, we find

H =
1

3

∫
V

x × (x × ω) dV =
∑

i

[M i + xi × Li], (B 2)

where the summation is over all the eddies in the interior of V (Davidson 2004,
p. 363). (Note that in going from (B1) to (B2) we have made use of a second identity,
i.e. 2x × (x0 × ω) = x0 × (x × ω) + ω · ∇(x × (x0 × x)).)
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However, it is inevitable that the control surface will intersect some of the eddies
Vi , in which case the second integral on the right of (B1) is non-zero. Repeating the
analysis of Davidson (2004) but allowing some of the eddies to straddle the surface
S, we find after a little algebra

H =
∑

i

[
M i + xi × Li +

1

3

[
xi ·

∫
δSi

r i (ω · dS)

]
xi +

1

6

∫
δSi

r i × (xi × r i) (ω · dS)

]
,

(B 3)
where Li is now evaluated over that part of Vi that lies in V . The two extra terms
on the right clearly arise from those eddies which straddle S and δSi is that part of
S which intersects such an eddy. Now for the eddies which intersect S we are free to
take xi to lie on S. It follows that r i · xi = 0 on δSi , at least for R/� → ∞. Thus, to
leading order in R/�, (B3) simplifies to

H =
∑

i

[
M i + xi × Li +

1

6
xi

∫
δSi

r2
i (ω · dS)

]
. (B 4)

Next we note that the easiest way to generate a kinematically admissible field of
turbulence with a Batchelor spectrum is to create a random sea of eddies (vortex
blobs), each of which possesses some angular impulse but no linear impulse (Davidson
2004, p. 370). (If the eddies possess some linear impulse, we get a Saffman spectrum,
as discussed in § 2.1.) In such a case Li = 0, except for the eddies which intersect the
boundary, and so we have

H =
∑

i

M i +
∑

k

[
xk × Lk +

1

3
xk

∫
δVk

(rk · ω) dV

]
, (B 5)

where the summation over k corresponds to the eddies which intersect S and δVk is
that part of Vk which lies in V . Evidently we have two contributions to H , one from
the intrinsic angular impulse of the interior eddies and another from the eddies which
intersect the boundary. The final step is to assume that the eddies are statistically
independent, in which case

〈
H2

〉
=

∑
i

〈
M2

i

〉
+

∑
k

〈[
xk × Lk +

1

3
xk

∫
δVk

(rk · ω) dV

]2
〉

. (B 6)

The first term on the right is of order R3, which is consistent with Landau’s analysis,
while the second is of order R2S ∼ R4, which is consistent with (2.29).

Appendix C. The EDQNM closure prediction for the evolution of I(t).
The EDQNM closure model is discussed in detail in Lesieur (1990) and Sagaut

& Cambon (2008). If E(k → 0) = C(t)k4, then the model predicts that the large to
intermediate scales evolve in a self-similar manner,

E(k) = Ck4
i F

(
k/ki

)
, (C 1)

where C = I/24π2 and ki(t) is the wavenumber at which the spectrum peaks. Moreover,
it predicts that a good approximation to F (x), except in the vicinity of ki(t), is

F (x) = x4, x < 1 , and F (x) = x
−5
3 , x > 1, (C 2)

corresponding to the model spectrum E(k) = Ck4, k < ki, and E(k) = αε2/3k−5/3, k > ki .
(Here α ≈ 1.52 is the Kolmogorov constant and ε the energy dissipation rate.) Note

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
00

71
37

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009007137


356 P. A. Davidson

that the characteristic velocity u, defined via u2 = (1/3)〈u2〉, and the integral scale �,
defined in the usual way as the integral of the longitudinal correlation function, are
related to F (x) by

u2 =
2

3
Ck5

i

∫ ∞

0

F (x) dx, (C 3)

� =
π

2u2

∫ ∞

0

E(k)

k
dk =

π

2u2
Ck4

i

∫ ∞

0

F (x)

x
dx. (C 4)

The EDQNM model replaces the quasi-normal estimate

d2C

dt2
=

14

15

∫ ∞

0

E2(p)

p2
dp (C 5)

with

dC

dt
=

14

15

∫ ∞

ki

θ0pp

E2(p)

p2
dp, (C 6)

where θ0pp is a model parameter whose precise prescription varies somewhat from
one version of EDQNM to another. For large times and large Reynolds number Re,
a commonly used prescription for θ0pp is (Lesieur 1990)

θ0pp =

[
4a2

1

∫ p

0

q2E(q) dq

] −1
2

, a1 ≈ 0.22α
3
2 . (C 7)

Substituting for E(k) in (C6) using (C1) and making use of (C3), (C4) and (C7), we
obtain the EDQNM prediction

dC/C = Bu dt/�, (C 8)

where B is the constant,

B =
7

15a1

√
3√
2

3π

4

∫ ∞

0

F (x)

x
dx

[∫ ∞

0

F (x) dx

] −3
2

∫ ∞

1

F 2(x)
/
x2√∫ x

0
y2F (y) dy

dx. (C 9)

Next we note that

du2

dt
= −A

u3

�
, (C 10)

where measurements at large Re show A ≈ 1/3 (Davidson 2004). Combining (C8)
and (C10) yields I ∼ C ∼ (u2)−m, where m =B/A. Note that estimate (C9) of B , and
hence that of the exponent m, assumes only self-similarity of the spectrum, which is
consistent with the predictions of EDQNM. If we now adopt the model spectrum
(C2) to estimate A, then A is fixed by the requirement that Ck4

i =αε2/3k
−5/3
i , which,

combined with (C3) and (C10), demands

A =

(
3

2α

) 3
2 π

2

∫ ∞

0

F (x)

x
dx

[∫ ∞

0

F (x) dx

] −5
2

= 0.347. (C 11)

This estimate of A, which follows directly from (C2) and has nothing to do with
EDQNM, is remarkably close to the observed value of A ≈ 1/3. Full numerical
simulations of the EDQNM model, which do not prejudge the form of F (x), are
reported in Lesieur (1990), and these suggest that (C9) gives the modest value of
m ≈ 0.12. Now (C10) requires � ∼ ut , while self-similarity of the large scales demands
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C = cu2�5, where c is a constant. It follows that m is related to the exponents γ and
n in the expressions I ∼ C ∼ tγ and u2 ∼ t−n by γ =10/(7/m + 2) and n= γ /m. The
value of m ≈ 0.12 leads to γ ≈ 0.16 and n= 1.38.
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