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Abstract

Feature technology is considered an essential tool for integrating design and manufacturing. Automatic feature recognition
(AFR) has provided the greatest contribution to fully automated computer-aided process planning system development. The
objective of this paper is to review approaches based on application of artificial neural networks for solving major AFR
problems. The analysis presented in this paper shows which approaches are suitable for different individual applications
and how far away we are from the formation of a general AFR algorithm.
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1. INTRODUCTION

Feature technology is considered an essential tool for integrat-
ing design and manufacturing (Gupta et al., 1994; Dong et al.,
1996; Amaitik & Kiliç, 2004; Tolouei-Rad 2006). Feature rec-
ognition maps a geometric model to application-specific fea-
ture models using various recognition rule sets regarding the
application. Feature recognition techniques are required in all
systems that use features for analysis and decision making. Var-
ious feature recognition methods have been developed such
as syntactic pattern recognition, state transition diagrams, logic
rules, graph-based approach, volumetric decomposition, hint-
based approach, and hybrid approaches (Babić et al., 2008).
However, there are still problems with feature recognition
that hinder its practical applications, such as inability to learn,
limited range of recognition, and low speed. Artificial neural
network (ANN)-based feature recognition techniques have be-
come attractive because they can eliminate some drawbacks of
conventional feature recognition (Ding & Yue, 2004).

Feature represents one of the most important notions in
theoretical and industrial concepts related to computer-aided
activities in the product life cycle. Feature is probably the
most often and most diversely defined notion in the field ofpro-
duction engineering. These definitions differ in dependence

as to whether they have a general or particular character.
They have evolved in time following development of scien-
tific trends. In the first appendix of his doctoral thesis, Salo-
mons (1995) gave an exceptional review of feature definitions
and the current state of the art, as well as the application of
technologies based on it. However, even today, the academic
or research community has not been able to find a universal
and globally acceptable definition of this notion nor reach a
consensus in connection with accompanying terminology.

In this paper the authors will lobby for a newer definition of
feature given by Patrick Martin (2005): “A feature is a seman-
tic group (modeling atom), characterized by a set of parame-
ters, used to describe an object which cannot be broken down,
used in reasoning relative to one or more activities linked to
the design and use of products and production systems.”

The purpose of modeling using features is to formalize ex-
pert accomplishments, make knowledge capitalization easier,
provide data on all production activities in early design
phases, and advance communication between people coop-
erating on product creation in all phases of its life cycle.

The term feature has a universal character. When a special
application aspect needs to be emphasized, this is done using
a domain-specific attribute (geometrical features, manufactur-
ing features, functional features, metrological features, etc.).
Concerning manufacturing features in this paper, the authors
have sometimes omitted the attribute manufacturing in situa-
tions when no confusion on what type of feature is in question.
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The design concept based on features is characterized by a
high semantic level, but it still cannot support every possible
industrial context in a general formulation. This is where the
significance of mapping features from one to another applica-
tion domain is noted. For the problems dealt with in this
work, the mapping process from a geometrical (functional)
domain in which a part is designed in accordance with func-
tional application requirements into a form domain where
features have characteristics of significance for production
processes is the most significant. This process is called (manu-
facturing) feature recognition.

Manufacturing features are closely connected with the
handling process and give information on the type of han-
dling process that needs to be applied, tool types, their move-
ment routes, and possible tool approach and exiting direc-
tions. They also present instruments for solving fixture and
metrological problems.

Manufacturing features are characterized via the following
information categories:

† inherent characteristics (dimension, surface quality, tol-
erance),

† geometrical relations with other manufacturing features
(dimension, position tolerance, and orientation), and

† topological relations with other manufacturing features
(distance, i.e., adjacency rank and overlapping, i.e., in-
teraction).

When speaking of manufacturing features we differentiate
the notion of an isolated manufacturing feature and the inter-
acting manufacturing feature. The isolated manufacturing fea-
ture is a set of interconnected geometric features correspond-
ing to an individual manufacturing method or process, or can
be used for examining a suitable method or process for creat-
ing the mentioned geometric feature. Transition features ( fil-
lets, chamfers) and replicate features (a series of identical fea-
tures that are repeated according to a pattern) can be defined as
subclasses of isolated features. The interacting manufacturing
feature represents any complex form created by an interaction
between two or more isolated manufacturing features where
changes in some geometric features characteristic for any of
the constitutive isolated features occur.

Many classifications of manufacturing features can be
found in literature (Gindy 1989; Gindy et al., 1998; Owodunni
et al., 2002; Shah et al., 2001); they most often do not have a
general character but are related to individual classes of parts.
The most comprehensive classification is given as part of the
224-application protocol (AP224), ISO 10303 standard series
(STEP standards; ISO 10303-224; ISO, 2001). AP224 is re-
lated to definition of a machined part for process planning
using manufacturing features and gives directions for repre-
senting data needed for defining the machining part in accor-
dance with requirements of the process planning; in addition,
it defines integrated resources necessary for fulfilling these re-
quests. AP224 give the following definition of a manufactur-
ing feature (ISO 10303-224; ISO, 2001):

A Manufacturing_ feature is a type of Shape_element that
identifies the types of features necessary to manufacture a
machined part. Each Manufacturing_ feature is either a
Machining_ feature, a Replicate_ feature, or a Transi-
tion_ feature.

All three-dimensional (3-D) manufacturing features are gen-
erally defined as the volume obtained from a series of consec-
utive positions wich open_shape_profile [profile, open two-
dimensional (2-D) path] or closed_shape_profile (contour,
closed 2-D path) have during their movement through space
along a 3-D path.

The Machining_ feature identifies the material volume that
will be removed in the treatment process from the blank in or-
der to obtain a finished part and is connected with characteris-
tic treatment processes. It includes eight basic feature types,
of which some have subtypes: Knurl, General_removal_
volume, Outer_round, Multi_axis_ feature (Boss, Hole,
Rounded_end, Planar_ face, Pocket, Profile_ feature, Pro-
trusion, Rib_top, Slot, Step), Compound_ feature (one or more
features combined into a complex feature, which corresponds
to the term interacted feature), Thread, Marking, Revolved_
feature, Spherical_cap.

Replicate_ feature represents a manufacturing feature con-
sisting of a series of entities of the Machining_ feature type
repeated in part (corresponding to the repeated manufactur-
ing features notion) and includes Circular_pattern, Rectan-
gular_pattern and General_ pattern subtypes (Fig. 1a).

Transition_ feature represents a manufacturing feature oc-
curring at the transition between two adjacent surfaces and in-
cludes Chamfer (truncation, sloped edges), Fillet (concave
rounded edges) and Edge_round (convex rounded edges)
subtypes (Fig. 1b).

2. LINKING COMPUTER-AIDED DESIGN (CAD)
AND COMPUTER-AIDED PROCESS
PLANNING (CAPP) SYSTEMS BASED
ON FEATURES

One of the basic functions that modern generative CAPP sys-
tems must provide is enabling efficient translation of geomet-
ric information on some part, defined with a CAD system
(lower level entities, such as points, lines) into technological
information required for process planning and computer-
aided manufacturing (higher level entities, such as holes, slots,
pockets). Three strategies are generally applied for enabling
these functions. They are based on the concept of manufactur-
ing features and differ in the way they are defined:

1. design by feature (DBF),
2. AFR, and
3. interactive feature definition and other hybrid methods.

Design by (manufacturing) features assumes the existence
of a library of manufacturing features adapted to the needs of
part manufacturing and not its functions. A product model is
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formed only using features from this library. In general, there
are two methods for model design using manufacturing fea-
tures (Lee & Kim, 1998):

† decomposition using manufacturing features, where fol-
lowing the logic of the handling process the model is de-
signed by retracting manufacturing (machining) features
from the blank volume, and

† synthesis using geometrical forms, in which the model is
generated by adding protrusions and subtracting intru-
sions, where manufacturing features are complementary
to protrusions and equal to intrusions.

In addition to model construction using manufacturing fea-
tures, these systems usually have mechanisms for topological
and technological validation of features and identification of
interactions between manufacturing features.

Even though in the last decade of the previous century a
great number of researchers analyzed application of the
DBF approach for preparation of input data for CAPP sys-
tems, they lost the battle with systems for AFR because of
their disadvantages. The greatest of these are the following:

† It is impossible to predict all manufacturing features that
can appear in practice and build them into a CAD modeler.

† The designer has to think only from the technology
viewpoint for which he usually does not have enough
knowledge or experience; this influences a reduction
of part functionality, whose provision is the primary
task of the designer.

† Manufacturing features obtained in this way cannot be
used for any other subsystem in the production system
as they present a feature with very domain specific infor-
mation content.

† Due to feature interactions and the need for feature con-
version because features are application specific, DBFs
do not totally eliminate the need for feature recognition
(Gindy et al., 1998; Yue et al., 2002).

AFR represents searching for a part presentation feature with
the purpose of finding information that characterizes individual
types of manufacturing features. All approaches in this field set
a unique goal: formation of algorithms capable of recognizing
any possible type of manufacturing feature without participa-
tion of a manufacturing engineer in this process.

Interactive feature definition assumes a system in which
the user selects a set of manufacturing features, defines their
recognition parameters, and then according to those instruc-
tions the system performs AFR directly into a CAD model
or another structure derived from it. The systems described
in Lee and Kim (1998) and Tseng (1999) are based on this
and similar hybrid methods.

3. CLASSIFICATION OF SYSTEMS FOR AFR

The subjects of analysis in this paper are different systems for
AFR. Their role is to link CAD and CAPP systems, that is, to
prepare and preprocess input information for CAPP. The tasks
set before these systems will be explained first. Their classifi-
cation will be performed based on how they solve these tasks.

Systems for AFR should enable solution of the following
interconnected tasks (Babić et al., 2008):

1. extraction of geometrical features of a part from the
CAD model needed for the formation of a part presen-
tation suitable for recognizing manufacturing features;

2. forming a part representation suitable for identification
of manufacturing features; and

Fig. 1. Entity subtypes: (a) Replicate_ feature and (b) Transition_ feature.
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3. matching manufacturing features recognized in part pre-
sentation obtained as a solution of the previous task with
features in the library of manufacturing features and
in more advanced systems based on, forexample, ANNs,
knowledge acquisition in the form of creation of new
patterns in the library, consisting of unrecognized fea-
tures.

Studies analyzing developed AFR methods can be found in
numerous literature sources. Babić et al. (2008) give a more
detailed classification, taking into account individual diverse
approaches for each of the three tasks in AFR as illustrated
in Table 1.

4. ANN FEATURE RECOGNITION

ANNs represents a set of simple processing elements: neu-
rons that are interconnected into a parallel distributed struc-
ture simulating functions of a biological neural system, which
is information processing and learning. Especially this sec-
ond property recommends application of ANNs in AFR sys-
tems. The number of different manufacturing features is un-
limited in practice, and the static approach to rule-based
manufacturing feature recognition can never give good enough
results as they do not enable knowledge acquisition in the fea-
ture pattern database. Functionality of AFR systems based on
ANN depends on (a) the characteristics of the ANN input,
(b) the applied ANN architecture and learning method, and
(c) the characteristics of the ANN output. ANN output is in
a numerical form so it can easily be input into other CAPP sub-

systems. Special attention will be paid here to ANN architec-
tures and their input.

5. CHARACTERISTICS OF INPUT DATA
FOR ANNs IN SYSTEMS FOR AFR

One problem that occurs in the application of ANNs in feature
recognition is how to perform conversion of CAD models into
a format suited for ANN input, for example, into a series of
numerical values or similar. The methods used most often
for formation of a suitable set of ANN input data are graph-
based methods, face coding, contour–syntactic methods, and
volume decomposition.

5.1. Graph-based methods

An ANN is a highly connected graph, so part representation
using graphs is suited for formation of ANN input data (rep-
resentation vector). The basic principle of applying ANNs to
a graph is to map the graph to some models of neural net-
works to make the best solution corresponding to the mini-
mum value point of model of the neural network selected,
namely, minimum value point of energy (Xu & Bao, 2002).
More discussion related can be found in relevant references.
The basic shortcoming of graph application is related to the
long time needed for their processing and limited possibilities
for treating problems of interacting features. All these methods
are based on the attributed adjacency graph (AAG).

Nezis and Vosniakos (1997) use the attributed adjacency
matrix (AAM) in their AFR system. AAM is a 2-D square ma-
trix with two triangular regions: top one, representing convex
regions and bottom one, representing concave regions in the
feature subgraph. Each element of the matrix AAM[*i, j*] de-
fines the link between faces i and j of the part. AAM is then
converted into a 20-dimension binary representation vector
suited for ANN input. The representation vector is formed as
follows (Yue et al., 2002):

† the AAG is broken into subgraphs that are converted
into an adjacency matrix using a heuristic method,

† each matrix is convert into a representation vector by in-
terrogating a set of 12 questions about the adjacency ma-
trix layout and the number of faces in the subgraph, and

† a binary vector is formed combining the 12 positive an-
swers and the other 8 elements corresponding to the
number of external faces linked to the subgraph.

The basic limitation of the work was the heuristics used that
prerecognized the features to a certain extent (Sunil & Pande,
2009). This method can recognize planar and simple curved
faces but not features related to secondary feature faces, such as
T-slots (Yue et al., 2002).

Li et al. (2000) used enhanced AAG for the formation of
part representations using face loops (F-loops), which are are
singularly defined subgraphs as a hinted existence of some
manufacturing features. This significantly reduced the graph

Table 1. Classification of automatic feature recognition
approaches

Manufacturing Feature Extraction

Geometric Feature
Extraction

Manufacturing Feature
Identification

Pattern
Recognition

1. External approach 1. Syntactic pattern
recognition

Logic rules

2. Internal approach 2. State transition diagrams
and automata

3. Logic rules and expert
systems

4. Graph-based approach
5. Hint-based approach
6. Convex-hull volumetric

decomposition
7. Cell-based volumetric

decomposition
8. Hybrid approach

1. Graph-based approach Artificial neural
networks2. Face coding approach

3. Contour–syntactic
approach

4. Volume decomposition
approach
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search time as each loop type occurs only in some manufactur-
ing features. An F-loop subgraph is a very definite indicator of
the presence of a certain feature that is either confirmed by ad-
ditional ANN analysis or a new class is formed. In order to en-
able an input form suitable for ANN the F-loop subgraph is
converted into a square matrix whose diagonal contains charac-
teristics of a certain face and the other values represent charac-
teristics of links between two faces.

5.2. Face coding methods

These methods are also based on graphs, but additional pro-
cessing based on face coding is introduced. The first example
of this method was given in Prabhakar and Henderson (1992)
and called face adjacency matrix (FAM) code. The adjacency
matrix is 2-D array of integer vectors. Consequently, each en-
try of the array is a vector of integers. Each of these vectors
gives information about a face and its relationship to another
face. In Prabhakar and Henderson’s work (1992), the vector
has eight integers indicating characteristics such as edge
type, face type, and face angle type. This method had a limited
application for features that could be defined with a base face
and a set of adjacent ones and did not separate features with
the same topological but different geometric characteristics.

The limitations of AAG and FAM code can be overcome
by input representation with two matrices called F-adjacency
matrix and V-adjacency matrix. This concept is proposed by
Ding and Yue (2004). The input scheme is based on the topo-
logical and geometrical information of a feature as a spatial
virtual entity (SVE), which is an equivalent to the volume re-
moved from the initial material stock in order to obtain the fi-
nal boundary of the feature.

The F-adjacency matrix is defined as IF ¼ [aij]i�j, where
1 � i � 5 and 1 � j � 5. The middle elements aii of the matrix

show the type of ith face. For example, a cylindrical face is
denoted by 1, conical face by 3, planar face by 6, and so forth.
Other elements of aij are where i = j indicate a connection be-
tween the ith and jth face of the object. A numerical value be-
tween 0 and 9 is allocated according to the relationship between
the two faces. For example, if the angle between faces is a
90-degree value, 3 is allocated, and if the angle is a 180-degree
value, 5 is allocated (Ding & Matthews, 2009). The example of
creating an input vector for ANN based on the F-adjacency ma-
trix is provided in Figure 2.

The V-adjacency matrix is defined as binary IV ¼ [bij]6�6,
showing the relationships between virtual faces (VFs) in
SVE. VF refers to a face that forms the boundary of its
SVE, but it does not physically constitute the basic shape
of the feature. Each row and column of IV represents six direc-
tions: þx, 2x, þy, 2y, þz, 2z. The middle element, bii,
shows whether there is a VF in the corresponding direction
(i.e., 1 or 0). Other elements, bij (i = j), describe whether
the two VFs, corresponding to the direction i and direction
j, are connected or not (i.e., 1 or 0; Ding & Matthews,
2009). Figure 3 shows an example of creating an input vector
for ANN based on the V-adjacency matrix.

The face score vector (FSV) was promoted in Hwang and
Henderson (1992) and represents one of the approaches most
often used for ANN input formation in AFRs. Each face is
rated depending on characteristics of its faces, edges, and ver-
tices and adjacency relationships between them. A high score
indicated that the face was part of a feature. All adjacent faces
that had a large score difference formed some manufacturing
feature type. An improved version of this approach is pre-
sented in Chen and Lee (1998).

A typical example of FSV can also be found in Lankalapalli
et al. (1997). Points depending on convexity/concavity of edges
(þ0.5/20.5), visibility/nonvisibility of inner loops (þ1/21),

Fig. 2. Creating an input vector for an artificial neural network (ANN) based on the F-adjacency matrix.

Fig. 3. Creating an input vector for an artificial neural network (ANN) based on the V-adjacency matrix.
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and straight/convex/concave faces (0/þ2/22) are summed up
for each face. The FSV has nine elements, of which five are
related to the score for the analyzed face, and the others are ob-
tained in the following way: elements 4 and 6 are related to im-
mediately adjacent faces with the highest score, elements 3 and
7 to the next two highest scores of the faces with lowest adja-
cency rank, and so on until the end. If a part has less than eight
adjacent faces then the remaining elements are set at the score
of 1.5. This procedure with the example of a slot is illustrated
in Figure 4. Examples of FSV application are described in On-
wubolu (1992) and Öztürk and Öztürk (2001).

5.3. Contour–syntactic methods

Contour–syntactic methods are mainly applied to AFR in
CAPP systems for sheet metal stamping, machining on wire
electrical discharge machining, and 2-D milling; but they can
also be the result of postprocessing some volumetric form of
part representation. These methods produce a syntactic string
representing the analyzed feature as suitable ANN input.

Fu and Yan (1997) defined a curve bend function whose
change during movement along the contour of some plane

feature singularly defines this feature (Fig. 5) and can be
used as an ANN input.

Chuang et al. (1999) created a vector based on partitioned
view contours. Orthographic projections (views) from six di-
rections, with no nonvisible edges, are partitioned into con-
tours. Contours obtained by partitioning views from three
more directions taking into account nonvisible edges are
added to them. Regions obtained in this way (taking into ac-
count adjacency relationships between them) are converted
into a graph with a representative ring code. Regions represent
graph nodes and links are adjacency relationships between
them. The representative ring code is a cyclic numerical string
formed for each region using a two-layer octal coding system.
Weight values for each region are calculated based on this
code, and they define the place of each region in the relation-
ship tree that is finally transformed into an ANN input vector.

5.4. Methods based on volume decomposition

These methods have the following purpose: to identify the
volume that represents the difference between the blank and
finished part and characterize this volume as a sum of partial

Fig. 4. An illustration of the face score vector method.

Fig. 5. A feature presentation using the curve bend function.
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volumes that represent space parts bordered by other manu-
facturing features. In systems based on ANN they are mainly
used in combination with other methods. An interesting ex-
ample was described in Zulkifli and Meeran (1999b). The
method called the cross-sectional layer method combined
volume decomposition with contour methods. Cross-section
layers are obtained in the following way: in the direction of
the tool axis a virtual layer is placed for each cross section
configuration change. The resulting surface between two
such layers is determined as the difference between the top
and bottom layer, and structures are identified in that layer
that can be compared with manufacturing features in the
knowledge base. Each structure is represented with a 3� 3
matrix in which each element is given a certain value depend-
ing on structure elements (e.g., value of the element 2,2 in the
matrix depends on the convexity/concavity of the structure).
This gives a suitable ANN input. This method produces
good results for determining features that have a prismatic
shape with a vertical derivative and base with maximally
four vertices; but not outside this narrow application field.

6. ANN ARCHITECTURES APPLIED MOST
OFTEN IN SYSTEMS FOR AFR

ANN architectures most often used in AFR systems are feed-
forward networks [perceptron and backpropagation (BP)],
Hopfield’s ANNs, Kohonen’s self-organizing maps, and
adaptive resonance theory (ART) neural networks.

6.1. Perceptrons

A perceptron is the earliest model of an ANN. The perceptron
architecture is simple and uses signal feedforward in one di-
rection. It has one or several neuron layers between the input
and output neurons and functions based on supervised train-
ing. In supervised training the input and output states can
be established in any situation as relations have been deter-
mined between them. A schematic representation is given in
Figure 6.

The perceptron structure consists of a set of input neurons,
a set of hidden neurons, and one output neuron. The link
strength between the input layer and the hidden layer is chosen
by chance, according to some probability law, and its value is
fixed during the complete learning process. The learning algo-

rithm then adjusts components of the weight vector between
the hidden neuron layer and the only output neuron. If there
are enough different neuron types in the hidden layer repre-
senting different logic expressions from the input neuron layer
then the learning process from the hidden neuron layer to the
output neuron is able to realize complex logic reasoning.

The main shortcoming of perceptrons (limiting their appli-
cation) is connected with the linear discrimination function in
the sample space because of the limited number of iterations.
This means that correct classification can be done only for lin-
early separated sample classes. Multiple layer perceptrons ex-
pand classification possibilities to wider sets of possible class
relations depending on the number of layers.

One of the more popular algorithms for perceptron training
is the so-called Widrow–Hoff delta rule. This algorithm is
also known as the least mean square algorithm (Freeman,
1994; Bose & Liang, 1996). In order to avoid nonlinearity
of the activation function, instead of minimizing the differ-
ence between the real and desired response, this algorithm
minimizes the difference between the activation signal and
the desired response through an error function 1¼ 0.5(ok – xk)
(it can have other analytical forms) that quantifies the current
difference between the required output value (ok) and the ac-
tivation signal (xk). This algorithm gives better results than
the perceptron algorithm for inseparable input forms, because
under certain conditions (but not always) it converges toward
a solution that minimizes the mean square error even for input
classes that are not linearly separable.

The first reports analyzing ANN application in AFR sys-
tems were made in the work of Mark Henderson in 1992.
Prabhakar and Henderson (1992) applied a five-layer system
perceptron, whose input vector, FAM, was formed for 3-D
part models with B-rep. The system was successful in recog-
nizing a great number of manufacturing features, but it had
two serious limitations: it did not have a formalized learning
procedure and because of limited geometric information the
FAM carries it could not differentiate between all features
with equal topological and different geometrical characteris-
tics. Hwang and Henderson (1992) applied the same ANN to-
pology but with a different input making an FSV. This system
retained the training possibility and is very significant be-
cause of FSV introduction. However, it had limited applica-
tion: the possibility of recognizing only simple intrusions,
like pockets, slots, and holes, but protrusions and complex
forms remained outside its scope.

Chen and Lee (1998) proposed a methodology for recog-
nizing 2-D features on sheet metal parts, based on an improved
coded feature vector and triple-layer perceptron, with 35 neu-
rons in the input layer, 50 in the hidden layer, and 6 in the out-
put layer. Training is performed using the Widrow–Hoffman
rule where the following error function is minimized (the
same is also used in Nezis & Vosniakos, 1997): RMS¼ [SpSj

(tjp 2 ojp)2n21
p n21

o ]1=2, where RMS is the root mean square, tjp
is the desired value of the jth output, ojp is the obtained value
for the jth output after being excited with input p, np is the num-
ber of input features, and no is the number of neurons in theFig. 6. The elementary perceptron structure.
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output layer. For the selected training parameter value of 0.2 a
success rate of 98% was obtained for recognizing six simple
contours, with three or four edges: a rectangle, a rectangle
with curved vertexes, a trapezoid, a parallelogram, and a del-
toid with curved vertexes and triangle. For the purposes of
coding, some restrictions for part models were introduced
(such as one that line segments must form closed loops), sig-
nificantly limiting the application area of the system.

6.2. BP neural network

As mentioned above, a perceptron as a linear separator is very
limited from the viewpoint of nonlinear translations. This
means that the problem of its application is connected with
nonlinear class separation, as it uses the binary activation
function, which leads to discontinuities in the neural network.
The BP neural network was developed with the purpose of
successfully solving the problem of nonlinear translation
from the input space to the output space, where differing
from perceptrons, modification of weight factors between
the input and hidden neuron layer is realized. BP, like the per-
ceptron, is a feedforward neural network realizing supervised
training with different activation functions and learning algo-
rithms. The BP network uses the gradient procedure for train-
ing that is analogue to the error minimization procedure. This
means that it learns translations from the input sample space
into the output space through the error minimization process
between the current output realized by the network and de-
sired output, based on a set of training pairs, that is, examples.
The learning process starts with presentation of the input sam-
ple set (training set) to the BP network that realizes its output
form by moving through the network. The BP network then
applies the generalized delta rule (Bose & Liang, 1996) to es-
tablish the output error, which by moving back through the
hidden layer is used for gentle modification of each neuron
weight. This is repeated with every new sample. The general-
ized delta rule enables convergence of the learning process un-
til a set accuracy level through an iterative process of weight
vector adaptations.

The elementary BP network architecture has three totally
connected layers, although quite often a structure with more
than one hidden layer is used. The number of neurons in each
layer is different, depending on the application field and also
the number of hidden layers. The number of neurons in the in-
put and output layer is conditioned by the representative input
and output vectors in agreement with the application for which
the BP network was designed. Most often there is only one hid-
den layer as the BP network with such a structure can enable
reproduction of the set of requested output forms for all trained
pairs. Figure 7 shows that the network can have an extra input: a
neuron that is always active and has an output state of 1 (con-
stant activation) known in literature as the “bias” neuron. It is
connected with all neurons in the hidden and output layer. In
the network it behaves as any other neuron; but its task is to
participate in the learning process so that the weight factor be-
tween the bias neuron and any other neuron in the following

layer forms an activation that must be overridden with the re-
maining input into each neuron, making their activation con-
trolled. The bias neuron provides a constant member in weight
sums of the following layer that results in improved convergent
characteristics of the BP network.

The BP network uses the generalized delta rule for modifi-
cation of weights between neurons (connecting weights, synap-
tic weights), thus realizing basic network characteristics: gener-
alization and nonlinear separation (Gao et al., 2004). Transfer
functions of neurons must be differentiable.

The learning parameter h determines the learning speed. It is
most often between 0.25 and 0.75, where higher values corre-
spond to faster training but also higher network instability.
There is a danger that in some cases the BP network finds itself
in a local minimum during convergence toward a desired mini-
mal error. In order to satisfy stability and speed requirements
sometimes the variable parameter method is used. At the be-
ginning of training h is higher, but it is reduced during training
and enables better learning characteristics for the network. The
method of BP with momentum is also known, where weight
changes in the current moment depend on changes in the pre-
vious moment. That is quantified with a momentum coefficient
0 , a , 1. This introduces certain inertia during movement in
the weight space that will increase the learning speed, espe-
cially when the error function has a gentle slope, which is often
the case in the proximity of the global minimum.

The BP neural network obtains satisfactory results at the mo-
ment when the error Ep is small enough and when the network
gives the desired output values. Weight factors of links between
neurons remain unchanged after that and the network can only
be used for what it was trained for.

Nezis and Vozniakos (1997) created an algorithm for de-
composing complex manufacturing features into simple ones
based on a four-layer BP network (Fig. 8). The system input
is an AAM. The system can recognize isolated nonorthogonal
features (features whose faces are not all under straight angles)
but not their interactions. The topology of the applied ANN

Fig. 7. The elementary architecture of the backpropagation neural
network.
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consisted of the following: input layer of 20 neurons, where
each corresponds to an appropriate element (subgraph repre-
sentative) from the input vector. The hidden layer contained
10 neurons and the output one 8, of which each corresponds
to one class of manufacturing features. After processing of
the input vector, the feature will be recognized only if one of
the 8 output neurons is activated (has a value .0.5). If not,
then it is a new manufacturing feature class. The input layer
uses a linear activation function, whereas the output and hid-
den layers use the hyperbolic–tangent one. After the training
process is over, according to the Widrow–Hoff rule, another
layer of 10 neurons (the so-called threshold) is added with a
binary activation function, whose neurons have the value 0
or 1 depending on whether appropriate neurons in the output
layer have values lower or higher than 0.5. Experiments
with more than one hidden layer did not give improved results,
but they slowed down the learning process. Thus, the four-
layer architecture was adopted as final.

Three-layer BP neural networks are the most often applied
ANN topology for AFR. Onwubulu (1992) used FSV as the
input into a three-layer recurrent network. The learning algo-
rithm was BP with momentum. The number of neurons in the
input, hidden, and output layer was 9, 5, and 3, respectively,
with a learning parameter h of 0.01 and a coefficient a of
0.01. The system can recognize nine simpler features (tab,
slot, rectangular, and cylindrical protrusions and intrusions,
hole, step, and cross-slot) with an error of 1%.

Chuang et al. (1999) developed a system for automatic sort-
ing of prismatic parts based on their 2-D projections. The neural
network is trained in order to recognize 3-D components based
on contour-graphic projections of parts decomposed into con-
tours. The so-called cascaded structure of three-layer BP net-
works was applied (Fig. 9), in which inputs successively enter
into one network at a time and all can be trained individually,
which reduces the required time. The advantage of such a struc-
ture is also the smaller size of individual BP networks.

Wong and Lam (2000) developed an AFR system based on
a three-layered BP network with a so-called feature edge se-
quence as the input. This approach combines advantages of
graphs for forming an appropriate part representation, volume

methods for clustering subgraphs into manufacturing features
that can be treated with one tool pass, and ANNs for treating
arbitrary and interacting features (Fig. 10). Nonorthogonal
edges (edges that in both vertices have an angle different
from 90 degrees) are transformed into orthogonal by taking
away virtual blocks with a triangular base and height equal
to the pocket depth (protrusion height and similar), so recog-
nition can be performed using a feature edge sequence graph.
The task of the ANN is to minimize the volumes of triangular
blocks and the number of new B-rep elements these blocks
bring.

Li et al. (2000) developed a system for automatic recogni-
tion of orthogonal interacting features based on a three-layer
BP network, whose input was obtained by a combination of
approaches based on graphs and hints. The training set con-
sisted of 65 samples. The ANN had 20 neurons in the input
layer, 11 neurons in the hidden one, and 6 in the output layer
that were activated any time one of the following six features
was recognized: cylindrical intrusions (the system did not sep-
arate blind and through holes), pockets, rectangular openings,
slots, steps, or corner steps, which can be isolated or part of a
complex feature.

Jun et al. (2001) designed a system for reverse engineering
with feature recognition based on a three-layer BP network.
Three groups of parameters that have been formed semiauto-
matically based on 3-D scanned parts arrive on the input net-
work layer of 9 neurons. Elements of a seven-dimension vector
(seven digit code) arrive on neurons 1 to 7 indicating which

Fig. 9. A cascaded backpropagation (BP) network.

Fig. 8. An automatic feature recognition system (Nezis & Vosniakos 1997). AAG, attributed adjacency graph; ANN, artificial neural
network.
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edges are linked (forming contours). The convexity/concavity
parameter arrives on input neuron 8, whereas the parameter of
circularity/linearity arrives on neuron 9. The hidden layer con-
sisted of 15 neurons, whereas the output one consisted of 6 that
corresponded to recognitions of pockets, steps, protrusions,
slots, holes, and blocks. The network was trained with the fol-
lowing parameters:h¼ 0.9,a¼ 0.5, and permitted error 1024.
The error value obtained fell below the permitted one after
70,000 input samples that completed the network training.

Ding and Yue (2004) developed a system of three-layer BP
networks with three recognition levels. It is used only for new
classes of interacting features. The network input is a FAM or
a vertex adjacency matrix. Different input forms are treated
with networks with different characteristics connected with
the number of neurons in individual layers. Data exchange
and classification principles were taken from the application
protocol of the ISO 10303-224 STEP standard (ISO, 2001).

The final example of BP networks for AFR is related to the
work of Öztürk and Öztürk (2001). In the early stages of the
development of their system for AFR they used improved
FSV as input into a four-layer BP network (Öztürk & Öztürk,
2001). After a series of experiments with different topologies
and parameters they obtained good results for simple and
some more complex manufacturing features. However, the
robust ANN structure required quite a lengthy and unstable
network training process for new feature classes. In more re-
cent work, Öztürk and Öztürk (2004) used the hybrid ap-
proach, which combined application of genetic algorithms
for optimization of the input vector enabling a simpler archi-
tecture of the applied ANN for AFR: a three-layer BP net-
work with seven neurons in the input and hidden layer and
eight neurons in the output layer, whereas the training process
is shorter and more stable.

The ANN-based feature recognition discussed in the litera-
ture review (Sunil & Pande, 2009) have various limitations.
Most of the systems target a limited set of simple features
such as rectangular pocket, blind/through step, and blind/
through slot, which can be defined by four rectangular verti-
ces or features with a fixed number of faces and so forth, and
do not consider feature topology and geometry variations.
Other systems use feature-specific representation schemes
that have limitations such as ambiguity, nonuniqueness, and

the need to have more networks for recognition, thus increas-
ing the time and effort in training and testing the networks.
Possible solution is related to the work of Sunil and Pande
(2009) based on an intelligent system for recognizing pris-
matic part machining features from B-rep CAD models using
a BP neural network.

6.3. Hopfield’s ANNs

Associative memory is a system enabling translation from the
input space into the output space in a way that would tolerate
errors, both in the degree of completeness and in acceptable
noise levels in any possible input set form (Bose & Liang,
1996). One of the main components of an intelligent system
is the possibility of association of new forms of input data to
those in the knowledge base and such memories are called au-
toassociative. One ANN that has such a property is Hopfield’s.

A Hopfield network is a completely connected recurrent
ANN whose topology is based on the following rule: output
signals from all process elements act as input to one neuron,
that means that there are no layers. They can be discrete and
continual. Discrete use neurons with a linear input interaction
function (the same applies to continual) and an impulse acti-
vation function (for discrete it is sigmoid). A discrete Hop-
field network functions in the following way: in discrete
time intervals t ¼ 1, 2, . . . , one neuron is selected heuristi-
cally and its new output state is calculated.

The large number of reverse links opens the questions of
stability conditions of these networks, that is, determining
points in the state space to which trajectories vj(t) aim for
(equilibrium points). Determination of connection weights
can be performed by learning using Hebb’s rules; but math-
ematical optimization is applied much more often, where
the function of getting the system into equilibrium is set.

The time needed to get the system into a stable state is sig-
nificant for practical implementation of these networks. Fu
and Yan (1997) showed that the so-called Hopfield–Amari
network reaches a stable state through maximally 40 itera-
tions. It is an ANN with synchronous changes of state. The
network input is defined with the contour bending function.
Based on the value of this function by optimization the simi-
larity coefficient 0 � R � 1 is determined for a model contour

Fig. 10. The hybrid automatic feature recognition system approach (Wong & Lam, 2000). 3-D, three-dimensional; FES, feature edge
sequence; ANN, artificial neural network.
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from the database and the investigated contour. Its values in-
dicate whether the investigated contour and the model belong
to the same class of contours. The system can recognize a
great number of plane figures.

6.4. Kohonen’s self-organizing maps (KSOMs)

Kohonen’s ANNs use unsupervised learning. This type of
learning is applied when input data is grouped into subgroups
(clusters) according to an unknown criterion, so the error func-
tion cannot be formed. Thus, training cannot be supervised.

Kohonen’s neural network together with the weight mod-
ification function makes a so-called KSOM shown in Fig-
ure 11.

The input layer of this network consists of n neurons vð0Þi
with a linear activation function. Outputs from this layer are
taken to the input of a competing layer consisting of m neurons
also with a linear activation function. Depending on the prob-
lem modeled by the network they are organized into 1-D, 2-D,
or multidimensional fields. Response of the competing layer
further acts as input to the so-called winner takes all network
(Bose & Liang, 1996) that has the same number of inputs and
outputs as Kohonen’s network. When in a trained KSOM the
competing layer is excited, one neuron, a representative of the
cluster the impulse belongs to, reacts the best (has the highest
output signal). In the process of Kohonen’s unsupervised
learning the network is successively presented with training
samples. Based on the index of the winning neuron, connec-
tion weights are modified.

Introduction of certain modifications into this procedure
related to removing the need for normalization of the weight
and excite vectors, method of selection of the winning neuron,
and changing weights of all neurons spatially close to the win-
ner, practical applicability of this network is attained and the
training time is significantly reduced.

In Meeran and Zulkifli’s (2002) system, a KSOM was ap-
plied for recognition of interacting nonorthogonal features.
An xy graph in the form of a set of points, representing the re-

sulting face obtained using the cross-sectional layer method is
the ANN input. The recognition procedure is applied itera-
tively and each iteration assumes the following steps: (a) gen-
eration of maximal convex regions, (b) decomposition of the
resulting surface into nonorthogonal regions (primitives), and
(c) determining the remaining region. The resulting surfaces
(resulting area) can be isolated primitives that do not need to
be further decomposed, and graphs representing them are input
into a three-layer BP network (Zulkifli& Meeran, 1999a). In the
case of the occurrence of interacting features the graph is input
to the KSOM that has eight competing layers with two neu-
rons. The number of iterations using KSOM depends on the
feature complexity. Figure 12 illustrates recognition of a simple
interacting feature, for which only one iteration was needed.

6.5. ART neural networks

In networks with supervised learning, such as nonrecurrent,
network retraining must be performed for every new input
form that reduces their efficiency. ART ANNs, whose devel-
opment started practically three decades ago, can store old in-
puts (sample forms) when learning new ones. Two types of
these ANNs have been practically applied: ART-1 using
the binary vector input form and ART-2 that processes anal-
ogous input forms.

The capability of input classification into different categories
is built into the ART-1 network. The shortcoming of these net-
works is possible classification process instability if the input
vector is not selected well enough that is reduced by selection
of an appropriate learning algorithm. ART-1 networks, like
Kohonen’s are trained by unsupervised (competitive) learning,
so the mechanism with the return links between the competitive
and input layer is used for storing old, when new information is
learned. Information between the input and competitive layer is
sent forward or back until the network reaches a resonance state
without which the learning process is not finished. The reso-
nance state is realized very fast for previously learned input
forms, and the memorized form is successfully updated. If
the input form is not recognized at once the remaining memo-
rized forms are searched fast and compared with it, so if it is not
recognized the network goes into a resonance state in order to
memorize that form as a new sample. The time relapsed until
the resonance state is reached is much lower than the time
needed to update connection weights between neurons of the
input and competitive layer.

ART-1 has a two-layer structure (F1 and F2) and its neurons
are interconnected via weight functions from bottom to top
and top to bottom, as shown in Figure 13. In the competitive
layer (layer F2) neurons compete for the chance to respond to
the input form and the winning neuron represents a classifica-
tion category of the input form. Competition takes place ac-
cording to an algorithm that selects the winner, taking into ac-
count certain criterion or via prevention: inhibition of neurons
of the competitive layer when the competitive layer is brought
to a state where only the winning neuron is active. ART-1 has
two subsystems: a learning subsystem and a subsystem for

Fig. 11. The Kohonen artificial neural network architecture. WTA, winner
takes all.
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determining similarities. The learning subsystem contains an
input and competitive neuron layer making up layers F1 and
F2. Neurons in both layers are completely connected with
neurons of the second level, and the learning subsystem estab-
lishes whether the input vector form is in association with the
previously memorized forms.

The subsystem for determining similarities is needed by the
ART-1 network in order to determine the similarity of the in-
put vector with the one that is known and successfully pre-
sented as part of the long-term memory or to form a new class
of samples. The criterion for determining the similarity degree
is represented with the so-called similarity parameter r, for
which r � 1. Selection of the value of this parameter is very
important as it determined the “porosity” for classification
of input vectors in the ART-1 neural network. This, for the
given samples that need to be classified higher values of pa-
rameter r result in a finer discrimination between classes in re-
lation to lower values of parameter r.

Differences between ART-2 and ART-1 reflect the changes
necessary to adjust the network to continual input vectors.
Level F1 of the ART-2 network is more complex as it includes
normalization of the input vector and noise reduction. The sys-
tem given in (Lankalapalli e al., 1997) is an example of the
application of the ART-2 network for recognizing manufac-
turing features. Based on B-rep CAD models an FSV is
formed. During training the similarity parameter value was be-
tween 0.9 and 0.99999 and complete separation of nine man-
ufacturing features (tab, slot, rectangular protrusion, pocket,
through hole, blind hole, cylindrical protrusion, cross-slot,

step) was obtained for different levels of noise reduction and
several combinations of these parameters.

7. CHARACTERISTICS OF OUTPUT DATA
FROM ANNs IN SYSTEMS FOR AFR

The ANN output is the result of many operations performed
over input data and weights and is a vector variable. Depend-
ing on the structure of the information carried by the output
vector, three basic ANN output variants exist:

1. each neuron corresponds to one class of manufacturing
features,

2. neurons carry more detailed information on the recog-
nized form, and

3. matrix containing the code of the recognized manufac-
turing feature and machining direction.

An example of an output vector for which each neuron corre-
sponds tooneclassof manufacturing features is found in the pre-
viously mentionedsystemsof Nezis and Vozniakos (1997;eight
feature types, eight neurons in the output layer) and Chen and
Lee (1998; six feature types, six neurons in the output layer).

The second variant of output data where the neuron carries
detailed information on the recognized feature is found in the
system of Hwang and Henderson (1992). They used six neu-
rons as output and these neurons represent the class, name, re-
liability factor, name of the primary page, list of adjacent
faces of the recognized feature, and total searching time.

Fig. 12. An example of Kohonen self-organizing map (SOM) application for automatic feature recognition (Meeran & Zulkifli, 2002).
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An example for the last variant where the output vector is
formed as a matrix containing the code of the recognized man-
ufacturing feature and machining direction is found in the sys-
tem of Zulkifli and Meeran (2002). The matrix is binary, with
2�5 dimensions. The first row in this matrix is kept for the
code of the manufacturing feature in the shape of a five-digit
binary number that enables in total 31 class of manufacturing
features (11111ð2Þ ¼ 31ð10Þ). The second row in the matrix is
intended for the code for the tool approach direction during
feature machining (þx, 2x, þy, 2y, 2z). The digit “1” will
appear on places corresponding to the approach direction,
and the other places will be filled with “0.”

8. ADVANTAGES OF THE APPLICATION
OF ANNs IN SYSTEMS FOR AFR

Compared to methods based on logic rules, application of
ANNs in systems for automatic recognition of manufacturing
features brings many advantages of which the following are
the most important (Yue et al., 2002; Ding & Mattews, 2009):

† ANNs tolerate slight errors in input data during the pro-
cesses of problem training and solution.

† The recognition process is faster because it does not re-
quest long-term searching of the part representation struc-
ture or complex logical operations for obtaining necessary
information, but instead requests simple mathematic cal-
culations.

† They are capable of knowledge acquisition through the
process of learning via examples that enable treatment
of identified features for which there are no previously
defined patterns in the knowledge base.

ANN techniques can eliminate a few drawbacks of conven-
tional feature recognition methods (Yue et al., 2002): the in-
ability to recognize inexact or incomplete features, slow ex-
ecution speed, and the inability to learn.

9. CONCLUSION

AFR is the first and most important step in translation of in-
formation defined by the CAD model into technologically ap-
plicable instructions. Elimination of the need for a manufac-
turing engineer for this task is essential for the development
of a completely automatic CAPP system. Advantages of auto-
matic recognition of manufacturing features in relation to
DBFs are a significant saving of time and human resources
by exchanging the human expert with a computer, and provi-
sion of the desired functionality of the designed part without
limiting the creativity of design process with library availabil-
ity of predefined manufacturing features. However, regard-
less of great scientific efforts this approach still suffers from
numerous shortcomings (Lam & Wong, 1999):

1. The complexity of recognition algorithms, especially in
the case of interacting features: It is a huge problem to

Fig. 13. The structure of the adaptive resonance theory using the binary vector input form (ART-1) artificial neural network. LTM,
long-term memory.

AFR using ANNs 301

https://doi.org/10.1017/S0890060410000545 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060410000545


determine which features will be explicitly made and
for which process plans are to be formed and which fea-
tures will be implicitly made while machining some
others.

2. The number of manufacturing feature types that can be
efficiently recognized: A very small amount of research
has been performed in the domain of nonorthogonal
and arbitrary features.

3. Technological information carried by the recognized
feature: This information is not enough for singular de-
termination of the treatment type for its machining.

4. An all-inclusive algorithm: This type of algorithm that
would provide complete automation of the process of
manufacturing feature recognition does not exist.

This paper provided an extensive analysis of ANN-based
feature recognition systems. The results are summarized in Ta-
ble 2. ANN techniques have certain advantages over rule-
based feature recognition methods:

1. ANN systems have the ability to learn and dynamically
improve their performance.

2. A system with a trained network has significantly faster
execution speed than a rule-based system that per-
forms exhaustive searching for matching patterns each
time.

3. An ANN-based feature recognition system has the abil-
ity to recognize and classify similar features, and there
is no need to predefine all possible instances of features
as in most rule-based systems.

However, there are certain limitations:

1. Systems developed up till now are suitable for different
individual applications, and they are far from a general
AFR algorithm. Therefore, a limited range of features
and feature intersections can be recognized.

2. Most ANN-based AFR systems employ supervised
training. The weakness of such systems is, when an ad-

Table 2. Overview of ANN-based AFR systems

Approach ANN Architecture Training of ANN Application Area Advantages/Disadvantages

AAM: Nezis &
Vosniakos (1997)

BP ANN with input layer of 20
elements, hidden layer of 10
elements, outer layer of 8
elements, and threshold layer
of 8 elements

Supervised training with
16 examples for each of
5 groups of features
recognized

Slots, blind slots and corner
pockets, steps, protrusions,
pockets passages and holes

The recognizer handles only planar
faces and simple curved faces in
certain cases. It cannot handle
feature types that involve
relationships between secondary
feature faces.

EAAG: Li et al.
(2000)

Three-layer BP multilayer
perceptron

Supervised training for 65
sample features with
various overlapping
positions and cases

Holes, pockets, passages,
slots, steps and corners

Applicable for the recognition of
complex overlapping machining
features

FSV: Hvang &
Henderson,
(1992),
Lankalapalli et al.
(1997)

Self-organizing ART-2 neural
network

Unsupervised learning Tabs, slots, protrusions,
pockets, through holes,
blind holes, bosses, steps,
cross-slots

Applicable for nondifficult 3-D
feature recognition, compound
features could not be recognized

F-adjacency and
V-adjacency
matrices: Ding &
Vue (2004)

Multilayer feedforward
network

Training based on
conjugate gradient
algorithms

Standard 3-D features and
holes including interacting
features

Four interacting relationships can be
detected and handled including
parent–child, connection,
nonconnection, and overlap–hiding
relationships.

CBF: Fu & Yan
(1997)

Hopfield–Amari network Associative memory Planar shapes (contours) Reliable in classifying planar shapes
composed of several simple curve
segments

Partitioned view
contours

Three-layer BP neural network Supervised training based
on vectors derived from
part’s portioned view
contours

Grouping parts into families
by the level of similarity

System can handle only simple
prismatic parts without curved
features

CSLM: Zulkifli &
Meeran (1999a)

Kohonen self-organizing neural
network

Unsupervised learning Features that can be defined
by 4 rectangular vertices
and circular features that
can be defined by a scheme
of 8 vertices

The system can deal with interacting
features that can be decomposed
into primitive features that are
orthogonal to the principal axes.

Note: ANN, artificial neural networks; AAM, attributed adjacency matrix; BP, backpropagation; EAAG, enhanced attributed adjacency graph; FSV, face
score vector; ART-2, type of adaptive resonance theory that processes analogous input form; 3-D, three-dimensional; CBF, curve bend function; CSLM, cross-
sectional layer method.

B.R. Babić et al.302

https://doi.org/10.1017/S0890060410000545 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060410000545


ditional feature is presented to the network, the network
has to be completely retrained with all training features.

3. Networks that have unsupervised training have plastic-
ity (ability to learn new feature) and stability (ability for
new learning not to be affected by previous learning;
Lankalapalli et al., 1997). In contrast, AFR systems
based on self-organizing ANNs have more limited ap-
plications than systems that use supervised training.

4. The knowledge base created by an ANN is not directly
observable, so the basis for the output in response to
any given input cannot be verified or examined directly.

Nevertheless, there are many advanced approaches, for ex-
ample, Nezis and Vosniakos (1997), Jun et al. (2001), and
Ding and Yue (2004) using the STEP AP224 standard for
data exchange and feature definition (ISO 10303-224; ISO,
2001). Encouraging results dealing with input representation
and handling feature interactions can be found in Ding and
Yue (2004) and Sunil and Pande (2009). The potential of
ANN techniques for feature recognition is clear. However,
there is a need for further work. Newer research in the AFR
field is thus directed toward the following:

† determination of more efficient algorithms for separa-
tion of necessary geometric information from CAD
models and, of more significance, knowledge acquisi-
tion in the feature pattern library by applying ANNs
and other advanced artificial intelligence techniques;

† incorporating new training methods;
† extending the range of the sectional geometry of features

from rectangles and circles to more general shapes; and
† extending feature recognition abilities on lightweight

representations (Ding & Matthews, 2009).
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Amaitik, S., & Kiliç, S.E. (2004). Step feature-based intelligent process plan-
ning system for prismatic parts. Proc. 11th Int. Conf. Machine Design
and Production.
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has authored more than 80 papers in international journals
and conference proceedings. His research interests include dis-
crete event simulation, CAPP and computer-aided manufactur-
ing, and intelligent manufacturing systems.
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