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Abstract

The existing “quotidian equation state” model, based on Thomas-Fermi theory, is modified so as to improve the low
density region of phase diagram of metals. A scheme for estimating the critical parameters of liquid-vapor phase
transition is proposed. The new model reproduces experimental critical isotherms to a good degree of accuracy.
Furthermore, the proposed model is validated with thermodynamic data in the liquid-vapor co-existence region,
including results on isobaric expansion as well as released isentropes.
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1. INTRODUCTION

The first principle theoretical approaches, like quantum
mechanical self-consistent fields, Monte Carlo, and molec-
ular dynamics methods have led to significant progress in
constructing the equation of state (EOS) of solid, liquid, and
plasma states of matter (Elieser ef al., 1986; Bushmann &
Fortov, 1983; Ross, 1985). However, all these theories are
applicable only in limited ranges. No single theory is able to
provide an accurate theoretical estimate of the thermo-
dynamic properties of matter in the entire phase plane.
Nevertheless, there are attempts in constructing EOS mod-
els that can generate reasonably accurate numerical tables
over a wide range of temperature, density, and material
composition. Such tabulations are prerequisites for simula-
tions of various high-energy-density dynamic processes.
Several laboratories around the world have developed the so
called “global EOS models” for this purpose (Abdallah,
1984; Bushmann et al., 1993; Kerley, 1991; More et al.,
1988). The quotidian equation of state (QEOS), introduced
by More et al. (1988), is such a general-purpose model. It is
used in hydrodynamic simulations of high pressure phenom-
ena covering wide ranges of density and temperature.

The experimental data, particularly at high temperatures
and pressures, plays an important role since they serve as ref-
erence points for theories, as well as semi-empirical models.
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For most metals, barring a few in the alkali group, the liquid
region (upto critical temperature) is unattainable for exper-
imentation because of large cohesive energy, and high tem-
peratures and pressures involved. The traditional methods of
creating high energy density (HED) matter for experimental
investigations involve shock compression of matter. Among
the available experimental techniques, shock wave method
allows one to study a broad range of phase diagram, from
compressed hot dense solid to strongly coupled plasma and
two-phase regions (Elieser er al., 1986; Bushmann & Fortov,
1983).

There are recent reports of using intense heavy ion beams
along with powerful lasers for experimental study of high-
energy-density states of matter (Hoffmann ez al., 2002,
2005; Tahir et al., 2005b). Further, heavy ion beam driven
experiments allow one to access broad unexplored regions
of the phase diagram of many materials, particularly in the
states of hot liquid region. The detailed investigations of
strongly coupled plasmas, warm dense matter, and metallic
hydrogen have already been made (Tahir et al., 2005q;
Temporal et al., 2005).

In this paper, we present a modified QEOS model for
constructing wide range tables covering the liquid-vapor
co-existence region. A new scheme for estimating the criti-
cal constants of liquid metals is proposed. This scheme incor-
porates improvements in the models for thermal excitation
of the electrons and ions. Our scheme is applied to validate
the near-critical experimental isotherms for Mercury. For
further validation of our model, we make comparisons with
experimental data obtained by isobaric expansion and isen-
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tropic shock unloading. To the best of our knowledge, such
evaluations have not been published using QEOS model.

2. BRIEF REVIEW OF EARLIER WORK

Starting with Van der Waal’s theory (Novikov, 1965) of
inpenetrable hard spheres (HS), with a weak long ranged
attractive tail, various models have been used up to now to
estimate the critical constants of liquid metals. Though the
liquid-vapor co-existence curves for metals are nearly qua-
dratic like that of the Van der Waals gas, the theoretical
critical compressibility ratio (0.375) differs from experimen-
tal values found between 0.2-0.4. As a first step toward
improving the Van der Waal’s model, Young and Alder
(1971) replaced its repulsive component of pressure by a
more accurate formula for HS pressure (Carnahan & Star-
ling, 1969). The HS pressure is derived by using the Percus—
Yevic theory of dense fluids. The improved model provides
critical temperature of alkali metals in agreement with other
experiments, but is unable to predict accurate values for the
critical volume and pressure.

It was realized that the impenetrable HS theory can not be
used for liquid metals, which are known to be compressible.
Moreover, the large number of free electrons present in a
metal, and the configuration of ions have to be taken into
account in the EOS. Young (1977) then replaced the HS
model by the so called soft sphere (SS) model introduced by
Hoover et al. (1975). This model is based on computer
calculations for the “effective” free energy of particles in
the fluid. The modified SS pressure and energy, in standard
notation is given by Young (1977):
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In the above, C, p"/> represents the static lattice energy term
with C,, as the face-centered-cubic (FCC) Medulung con-
stant, and p = No3/ V2V. The first term of Eq. (1) refers to
the thermal pressure of the ions in the ideal gas approxima-
tion. Pressure generated due to thermal excitation of elec-
trons is described by the third term. The second and fourth
terms jointly describe the “cold pressure,” with p’/3 and p™
dependence arising from repulsion and attraction between
neighboring ions. Eq. (2) for energy also has similar inter-
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pretation. By adjusting five parameters (€, o, n, m, and Q),
Young (1977) then obtained the total energy and pressure of
a liquid metal at any density and temperature. The critical
constants of this model show significant improvements over
the HS model. However, there are still discrepancies between
SS estimates and the experimental values (Young, 1977).
The reason for this discrepancy has not been explained, one
possible reason could be that the thermal pressure due to the
large number of free electrons needs some further refine-
ments. Also, at this temperature the ions do not really
behave like an ideal gas.

3. GLOBAL EOS MODEL

In order to construct a more general and thermodynamically
complete multi-phase wide range EOS model, like QEOS,
one defines the thermodynamic free energy as:

F(p’T) :F(z)[d(p)+E(va)+Fe(va)s (3)

which consists of elastic contribution at zero temperature
(F.pa), and the thermal contributions by ions (F;) and
electrons (F,). The global QEOS uses this additivity prop-
erty of free energy. The electronic contributions in this
model has been adopted from Thomas—Fermi (TF) statisti-
cal model of Feynman et al. (1949). However, for density
(p) greater than solid density (p,), TF contribution to F,, is
supplemented by a semi-empirical bonding correction, orig-
inally proposed by Barnes (1967). The ion EOS of this
global model combines Debye, Gruneisen, and liquid scal-
ing laws based on the work of Cowan (More et al., 1988).
For density lower than solid density, F,;, is taken as the zero
temperature TF energy. As discussed by More ef al. (1988),
this model leads to over-estimation of the critical pressure
and temperature. Also, for some of the materials, the QEOS
estimates for the cohesive energy are negative, leading to
disappearance of the liquid-vapor region itself, which is
totally unphysical.

The problem of over estimation of critical temperature
and pressure in the original QEOS model has been addressed
by Young and Corey (1995). They replaced the TF cold
curve for low density region, p < p,, with Lennard-Jones
type of soft sphere function. According to this model, the
cold energy for p < p; is given by:

Ecold(p) = A(‘pn - Bc pm + E(‘D/l’ (4)

where E_,, is the experimental cohesive energy. The coeffi-
cients A, and B, are estimated by setting the energy and
pressure values at standard condition. The exponents m and
n are adjustable parameters. The results of this model for
critical temperature and pressure are not in very good agree-
ment with experimentally known values for metals (Young
& Corey, 1995). Morever, difficulties arise when one tries to
reproduce the critical isotherm for any metal using the
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reported values of m and n. It is also reported (Young &
Corey, 1995) that this model is not able to verify the liquid-
gas co-existence region with the experimental isobaric expan-
sion data (Gathers, 1986) for most of the metals.

One of the main aims of the present work is to show that,
for obtaining the correct set of critical constants and liquid-
gas phase boundary, it is necessary to model the electron and
the ion thermal pressure more appropriately.

4. PROPOSED SCHEME

Following the QEOS approach, we have constructed a glo-
bal theoretical EOS model assuming the additivity of elec-
tron, and ion free energies for all temperature and density.
Accordingly, we express the total energy for p < p; as:

Emr(va) = Eth(ps T) + Ewld(p)v (5)
where
E,(p.T) =E,(p.T) + E/(p,T), (6)

is the thermal energy of the electrons and ions, and E_,, is
the cold energy. The total pressure defined as:

) 0°E,,
pt()t(p’T) = p a 2 b (7)
P T
assumes the form:
Pror(PsT) = pu(p.T) + peoia(p), )

where p.,; refers to the cold pressure. p,, is the thermal
pressure arising due to electrons and ions, that is,

Pu(p.T) =p.(p,T) + p:(p,T). )

In this paper, we are proposing a scheme for determining
the EOS of metals in the liquid-vapor region, that compares
the experimental results. The new scheme is based on the
use of more experimental data for physical and thermo-
dynamic parameters, like melting temperature, electron spe-
cific heat, etc. We also propose a simple approach for
finding the parameters of SS function defining the cold part.
In the following subsections, we discuss the improvements
in electron and ion contribution to EOS, and cold part
separately.

4.1. Ion EOS

The ion thermal pressure in the QEOS model has been
estimated by the structural and phenomenological models of
Cowan. We also treat the ion contribution to EOS by Cowan’s
model, however, with some modifications. Depending on
the temperature of interest, Cowan’s model treats ions in
three distinct phases, namely, the low-temperature solid
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phase, followed by high temperature solid, and finally fluid
phase. The fluid phase is reached when temperature is
greater than the melting temperature of the solid. Since we
are interested in the liquid-vapor phase transition region, we
will consider the fluid region only, thatis 7> T,,. Following
More et al. (1988), we express the energy and the pressure
of the ions in this region as:

3 kT s
E(p,T) = > L (1+w'?), (10)
P
pi(p T)—p—kT(Hv w!’?) (1)
i\p, = F s
AM,

where, w = T,,,(p)/T and vy are the fluid phase. Gruneisen
(1912) parameter, which depends on density through the
relation

_ 3 010g(, (p))

2 dlog(p) (2

Yr

From Egs. (10) and (11), it can be easily seen that for very
high temperature, 7> T,,, or w < 1, ion internal energy and
pressure reduce to the ideal gas expressions, that is,

Epr) = 22D oy =2 (13)
ATy amy PP T A

As the temperature at which the liquid-gas phase transition
takes place is much higher than the melting temperature of
metals, the ideal gas treatment of Young (1977) in the SS
model was not in serious error. But this is not true in general.

We modify the ion model with the observation by More
et al. (1988) that there are important differences between
Cowan model melting temperatures with the corresponding
experimental values for transition metals, even at normal
density p,. This resulted in over-estimation of the critical
pressure in QEOS. To that end, we normalized Cowan’s
melting temperature at p; with the corresponding experimen-
tal value, and express it as:

T, (p,)

o, (14)
T"Ejovvan ( p&)

T:7(p) = T (p)

where 7,;°" refers to the corrected melting temperature. It
can be easily shown from Eq. (12) that the fluid phase
Gruneisen (1912) parameter, remains unaltered with this
correction. We find that this correction improves the critical
pressure for transition metals significantly.

4.2. Electron EOS

In all the global models, including QEOS, the electron
contribution has been treated by the TF theory. However, we
know that the TF theory gives an accurate representation of
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the free electron pressure for temperatures above ~10 eV.
The largest inaccuracy in the TF electron pressure occurs
near the solid density and 7' = 0. Since the critical temper-
ature for most of the elements are less than 2 eV, the TF
theory is not a very good candidate for treating the liquid-
gas region. Therefore, electron thermal pressure, in the
region p < p,, needs adjustment with some experimental
data .

In our model, we use McCloskey’s (1964) semi-empirical
formula for estimating the contribution to pressure from
thermal excitation of electrons. Therefore, the thermal energy
and pressure at any temperature are given by

o 2B(p)T
E,(n,T) = 28(p) log cosh< 3 ),
B r? L.B(p)T
r.(n.T) =np, ) log Cosh<f>. (15)

In these equations, 7'is in eV, Z is the atomic number of the
element, n = p/p, and B(p) is the coefficient of electronic
specific heat. The following fitting formulas are used for
other parameters in Eq. (15):

0.85x%%° 1
r—mZR, X—%T, I[,=05-0.6. (16)
Note that for very high temperature, the energy and the
pressure relations given in (15) reduce to that of ideal
electron gas, that is,

3
E,(n,T)= ERT’ p.(n.T) = pRT. (17)

On the other hand, for very low temperature, the electron
EOS given in (15) reduces to that of a degenerate electron
gas

1 |
E,(n.T) = EB(P)TZ, p.(n.T) = Epllﬁ(p)Tz- (18)

Thus, McCloskey’s (1964) formula interpolates the electron
EOS at any temperature appropriately. The coefficient of
electronic specific heat B(p) depends on the density by the
relation

D 2/3 4774 kzme N€1/3
B(p) =By ; > Bo= 7535 (19)

7(377_2)2/3 h? p3/3’

where, N, is the number of free electrons per unit mass, and
By is the theoretical estimate for B(p;). It is known that the
experimental values of 3 differ from this estimate for most
metals (Kittel, 1971).

On expanding the TF expression for electron energy at
very low temperature and keeping the terms up to 72 one
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obtains Eq. (18), with the theoretical 8. Even if one replaces
this theoretical estimate of B, with its experimental value,
the question whether the temperature is sufficiently low for
such expansion remains debatable. Both the facts cause TF
theory to estimate the electron pressure incorrectly. In this
regard, McCloskey (1964) formula seems to be a better
choice, as it finds the energy and pressure for any tempera-
ture by using proper fitting constants. We therefore used
McCloskey’s formula together with the measured value of
Bo- This approach provides the correct electron pressure and
energy upto about two to three times the critical tempera-
ture. Above this temperature, the TF theory is appropriate.

4.3. Cold Curve

Following Al’tshuler er al. (1980), we express the cold
energy as:

E(:n[zl'(p) = Ap;" - Bpf + E(:()h’ (20)

where E,,, is the experimental cohesive energy and p, =
p/ps. Hence, the cold pressure is

pcold(p) = p.\'[Amp;n+] - Bnp;l+l]' (21)

The parameters A and B are obtained by the requirements
that the total energy and pressure vanishes at p = p, and
T = 0. Thus we get

nEL'U’l mEL'uh

A=—2 p=—" (22)
m—n m—n

With the help of Eq. (22), we can now rewrite the expression
for the cold energy and pressure as:

E coh

Ecold(p) = [np:n - mp’n] + Ecoh (23)

m-—n

and
mn m+1 n+1
p(fold(p) = prcah - [pr - P ] (24)
m-—n
Thus, the total pressure of Eq. (8) reduces to
mn m+1 n+1
Pior(p:T) = pu(p:T) + ps o —— Lo = o] (25)

Using the expressions for thermal pressure of ions (Eq. (11))
and electrons (Eq. (15)), we obtain

PKT ’ LB(pT
PP, T) = —— (1 +y,w'3) + np, log cosh
AMI’ Feﬁ(p) r
mn
+ By —— (p = pith). (26)
m—n
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In next section, we present our approach for finding the
exponents m and .

5. FINDING CRITICAL CONSTANTS

Our formulation for total pressure can now be used to deter-
mine the critical constants for metals. Instead of adjusting
the parameters m and n arbitrarily, we find them explicitly
using a set of experimental values for certain thermo-
dynamic variables. First, we match the bulk modulus calcu-
lated by using Eq. (26) with it’s experimental value, By, at
solid density p;, that is,

Do
<p #> = B,. (27)
9/,

Since the thermal contribution to pressure p,, is zero at
T=0and p = p,, Eqs. (26) and (27) give

+ pyn’E o, = By, (28)

coh —

pynXE

coh
where we have introduced a new variable x defined as:

xX=m-—n. (29)
Eq. (28) is rewritten as:

By — p.n’E

coh
= 30
* psnE (30)

coh

From the definition of cold pressure, it is evident that m and
n are both positive and m > n. Hence, x is also positive. The
positivity of x demands that n is bounded above by:

By
Ps Ecoh

n< =y, (say). (31)

Next we follow the steps outlined below:

1. Choose the experimental value of B, at p = p,.

2. Estimate critical temperature T, either by the Partington

(1949) formula or Jing’s modification (1984), wherein

itis shown that the critical temperature is related to the

sum of melting and boiling temperatures. Now, choose

a temperature 7, close to this estimate.

Choose a value of n much smaller than y,.

4. Find x and hence, m using Egs. (30) and (29), and use
Eq. (26) to get total pressure at the chosen temperature
T,.

5. As we know that the first and second derivatives of
total pressure vanish at 7., determine densities p; and
p- using the relations:

bt
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P 9%p,,
(—p”> =0, (—’Z’) =0. (32)
ap Jr, ap” /1,

6. If p, and p, are equal to the required accuracy, then
accept this density as the critical density, that is, p. =
p1 = p>. Thus the chosen temperature is nothing but
the critical temperature, 7. = T,. Finally the critical
pressure is Pe= plot(pcv Tc)

7. If p; and p, are not the same, increase the value of n by
a small amount and repeat from step 3.

8. If necessary, repeat the procedure from step 2 by
increasing T, until the correct set of exponents (m and
n) are obtained for which p, and p, are the same.

9. If the above steps are not successful then change the
value of B and follow the steps 2—8. We find that the
value of B, that staisfies the condition given in step 5
happens for less than its experimental value at p,. This
is due to the fact that slopes of the pressure-density
curve at two sides of the solid density are slightly
different. The value of B, is further tuned so as to
match other experimental results described in the next
section.

We have applied the above described approach to predict
the critical constants for all metals. Table 1 presents the
values of the Lennard—Jones exponent m and n, and the
parameters of critical points for 10 metals obtained by our
method, along with other theoretical estimates and experi-
mental results, if available. For most of the metals, our
estimates of critical temperature are lower than the hard-
sphere model of Young and Alder (1971) and higher than the
soft-sphere model (Young, 1977).

For Mercury, our estimate of all the four parameters
including the critical compressibility ratio, Z. = p./Rp.T,,
are very close to experimental values. However, our pre-
dicted value of p,. for Lead is higher than other evaluation,
leading to larger Z...

6. VALIDATION OF THE PROPOSED MODEL

For validating our model, we first compared the predicted
and experimental data for the critical isotherm of Mercury
(Young & Alder, 1971). Figure 1 shows the density depen-
dence of pressure (both normalized to their respective crit-
ical values) for temperatures 7= 1.01 T, and T = 1.13 T,,
with solid lines corresponding to our results and points
refering to experimental values. The agreement is quite
satisfactory.

6.1. Isobaric Expansion

The thermodynamic properties of a metallic liquid are stud-
ied either by density measurements at normal pressure (Lang,
1995), or by isobaric expansion techniques (Gathers, 1986).
In the second technique, the metal is rapidly heated by a
powerful pulse of current and then allowed to expand in an


https://doi.org/10.1017/S0263034606060381

442

Table 1. Estimations of Lennard—Jones and critical parameters
for metals

Pe Pe
T.XK  (g/cc) (Kbar) Z. Ref.

Element m n
Na 5.4823 0.5898 2448 0.20 0.48 0.27 a
2573 0.21 0.28 0.15 v
2429 0.16 0.30 0.21 c
2573 0.22 0.55 0.27 e
2573 0.20 0.35 0.2 Ex
Al 1.9508 0.4531 5700 0.32 1.87 0.33 a
2.0 0.5 5520 — 1.68 — d
5726 0.42 1.82 0.24 c
7151 0.69 5.45 0.36 b
Fe 1.8988 0.6950 6900 1.77 8.82 0.48 a
9600 2.03 8.25 0.28 v
9340 1.71 8.03 0.34 e
9340 2.03 10.15 0.36 b
Cu 2.3857 0.6727 7800 2.31 8.94 0.38 a
7830 2.13 9.07 0.41 f
7625 2.32 8.3 0.36 b
8400 1.76 6.08 0.32 r
Mo 3.2131 0.4887 9500 2.82 9.64 0.41 a
16140 3.18 12.63 0.28 v
2.0 0.65 10500 — 8.8 — d
14300 3.03 5.68 0.15 h
8002 1.02 9.7 0.61 c
14588 2.61 11.8 0.36 b
Hg 4.6765 0.747 1755 5.99 1.65 0.38 a
34 1.05 1080 — 1.23 — d
2074 4.27 1.78 0.53 c
1563 3.97 0.92 0.35 b
1570 4.77 0.91 0.29 T
1753 5.73 1.52 0.367 Ex
Pb 1.4414 1.3008 5400 2.80 4.01 0.66 a
2.3 1.0 4660 — 2.97 — d
5530 3.12 2.37 0.34 f
5158 3.06 2.26 0.36 c
5500 2.52 2.08 0.37 e
4668 3.11 2.08 0.38 b
Ta 2.6315 0.5568 9900 4.19 10.6 0.56 a
3.0 0.5 10400 — 7.92 — d
9284 4.23 9.99 0.55 c
17329 4.27 12.2 0.36 b
w 2.6278 0.4635 12000 4.04 10.21 0.46 a
21010 5.78 15.83 0.28 v
13400 4.28 3.37 0.13 g
14100 5.88 5.09 0.14 h
18538 491 14.8 0.36 b
U 6.5917 0.3989 7000 8.11 7.11 0.36 a
11630 53 6.11 0.28 \
6618 4.11 4.16 0.43 c
13043 4.07 8.53 0.46 e
13043 5.18 8.48 0.36 b

(a) This work; (b) (Young & Alder, 1971); (c) (Young, 1977); (d) (Young
& Corey, 1995); (e) (Hornung, 1975); (f) (Al'tshuler er al., 1980); (v)
(Fortov & Yakubov, 1999); (h) (Seydel et al., 1979); (g) (Fucke & Seydel,
1980); (r) (Morris, 1964); (Ex) (Dillon ez al., 1966); (Young, 1977).

atmosphere of an inert gas maintaining a prescribed con-
stant pressure P;zy. The density, enthalpy at melting and the
sound velocity are then measured at different temperatures.
On extrapolation, these data embraces the critical density
p.. In order to compare these liquid metal expansion data,
we determine the densities p; and the corresponding temper-
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Normalised Pressure

T T
0.0 0.4 0.8 1.2 1.6 2.0
Normalised Density

Fig. 1. Comparison of experimental isotherm with our model for Mercury.

atures T; for which the total pressure given in (26) is equal to
Prx, by an interpolation method.

In Figure 2 we show comparisons for Aluminum, Tanta-
lum, and Lead, with solid lines and points refering to our
calculation and measured data, respectively.

Next, we find the total energy for the above values
of density and temperature, that is, E; = E,,(p;,T;) and
then calculate the enthalpy as H; = E,,,(p;, T;) + Pizx/p:.
We show the experimental and calculated values of
enthalpy for Aluminum, Tantalum, and Lead in Figure 3.
It is clear from these figures that the enthalpy data agrees
quite well for all the elements. The experimental data used
are taken from Gathers (1983a, 1983b) and Shaner et al.
(1977).

6.2. Release Isentrope

The study of release isentrope of strongly compressed mate-
rials provide another way to characterize the liquid-vapor
phase region. Release isentrope experiments to cover the
complete liquid-vapor region uses porous materials (Al’tshuler
et al., 1980), which has not been incorporated in the present
model. However, for the normal metals, the release isentrope
usually corresponds to the solid and partially melted regions,
which has been tested by our model.

The experimental data on release isentropes of shocked
solids, in the form of unloading pressure versus free-surface
velocity, give indirect information about the phases of the
material it passes through while shock unloading. A released
isentrope corresponds to specific values of initial shock
pressure P = P,; and particle velocity U, = U,;. As the shock
unloads at a free-surface, pressure decreases to zero and
free-surface velocity increases to two times U,;. This increase
is due to the isentropic conversion of internal energy to
kinetic energy.
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Fig. 2. The comparison of isobaric expansion data. Density versus tem-

perature for (a) Aluminum, (b) Tantalum, and (c) Lead. The experimental
values are shown by points whereas lines refer to our model result.
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Fig. 3. Comparison of isobaric expansion data. Enthalpy versus tempera-

ture for (a) Aluminum, (b) Tantalum, and (c¢) Lead. The experimental
values are shown by points whereas lines refer to our model result.
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Starting with given P = P,; and U, = U,;, we used the
following Hugoniot relations
U,=U(l=p,/p), P=pULU, (33)

to obtain the initial shock speed U, and the compressed
solid density, p,; as:

psPri

= 7. 34
Pri _p.vUr% ( )

Pri

From our model, we also find the entropy S,; of the com-
pressed state corresponding to p,; and P,. This entropy
identifies the unloading isentrope.

We then use the Riemann invariant condition to estimate
the isentropic flow, that is,

dp
U,+ | — = constant. (35)
pC,

where C; = Ndp/dp refers to the isentropic sound speed.
The free-surface velocity, U, corresponding to any lower
pressure P, is then obtained as:

P dp
UZ = Uri + > (36)
p, PG

which can also be expressed as:

Pri dp
L=U;+| C— 37)
p

P2

For p, very close to p,;, this can be approximated as:

pri
U,~ U, + C,log —. (38)
P2

where we have approximated C; inside the integral with
Cs(pri)~

Using an interpolation method, we first generate the
isentrope corresponding to S,;. Then eq. (38) is applied
successively, by replacing U,; and p,; with U, and p, respec-
tively. Thus we generate the free-surface velocity vs pres-
sure curve along the isentrope. In Figure 4 we show the
experimental (points) and calculated (lines) results for Cop-
per and Molybdenum. The experimental results are taken
from (Zhernokletov er al., 1984; Zhernokletov er al., 1995).
The good agreement observed in these figure validates our
model further.

7. SUMMARY AND CONCLUSIONS

In this paper, we have introduced certain improvements to
the QEOS model so as to generate wide range EOS database
in the liquid-vapor phase region.
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Fig. 4. Comparison of isentropic expansion data. The pressure versus
free-surface velocity for (a) Copper and (b) Molybdenum. The lines
correspond to our model and points refer to experimental data.

First of all, we have identified that the contributions to
thermal pressure by ions and electrons need certain improve-
ments. To that end, we have introduced a scaling of melting
temperature in the Cowan’s model, thereby adjusting it to
the experimental value at solid density. Thermal contribu-
tions to ion pressure and energy are, therefore, accounted
more accurately. In leiu of TF theory, we have introduced
McCloskey’s semi-empirical formula for the thermal part of
electron energy and pressure. This recipe was needed to
incorporate the experimental value of low temperature elec-
tronic specific heat into the model and to obtain accurate
electron EOS for temperatures less than about 3 eV. While
the Lennard—Jones soft sphere model for cold pressure is
retained, we have evolved a simple scheme to determine its
parameters, particularly the nonlinear exponents.

We have applied the modified QEOS model to analyze a
few sets of experimental data pertaining to the liquid-vapor
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region. These include two isotherms of Mercury, isobaric
expansion data for Aluminum, Tantalum and Lead and shock
unloading data for Copper and Molybdenum. Comparisons
of the model with experimental data show good agreement.
Critical point parameters of these materials are also pre-
dicted more accurately. Thus, our modifications have resulted
in an improved theoretical EOS model which can now be
used throughout the phase plane.
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