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On Some Generalized Rapoport-Zink
Spaces

Xu Shen

Abstract. We enlarge the class of Rapoport-Zink spaces of Hodge type by modifying the centers
of the associated p-adic reductive groups. Such obtained Rapoport-Zink spaces are said to be of
abelian type. The class of Rapoport-Zink spaces of abelian type is strictly larger than the class of
Rapoport-Zink spaces of Hodge type, but the two type spaces are closely related as having isomorphic
connected components. The rigid analytic generic fibers of Rapoport-Zink spaces of abelian type can
be viewed as moduli spaces of local G-shtukas in mixed characteristic in the sense of Scholze.

We prove that Shimura varieties of abelian type can be uniformized by the associated Rapoport-
Zink spaces of abelian type. We construct and study the Ekedahl-Oort stratifications for the special
fibers of Rapoport-Zink spaces of abelian type. As an application, we deduce a Rapoport-Zink type
uniformization for the supersingular locus of the moduli space of polarized K3 surfaces in mixed char-
acteristic. Moreover, we show that the Artin invariants of supersingular K3 surfaces are related to some
purely local invariants.

1 Introduction

The theory of Rapoport-Zink spaces finds its origin in the work of Drinfeld in [12].
Let E be a finite extension of @), and let Qg be the complement of all E-rational
hyperplanes in the p-adic projective space P4~! over E. In [12], Drinfeld interpreted
this rigid-analytic space Q4 as the generic fibre of a formal scheme over O parame-
trizing certain p-divisible groups. He used this formal moduli scheme to p-adically
uniformize certain Shimura curves and to construct étale coverings of Q¢. In their
foundational and seminal work [56], Rapoport and Zink greatly generalized
the construction of Drinfeld by introducing general formal moduli spaces of
p-divisible groups with EL/PEL structures, and proved these spaces M can be used to
uniformize certain pieces of general PEL type Shimura varieties. Moreover, Rapoport
and Zink constructed étale coverings My of the generic fibers of these formal mod-
uli spaces, and realized these rigid analytic spaces as étale coverings of more general
non-archimedean period domains. Besides their importance in arithmetic geometry
and p-adic Hodge theory, it was conjectured by Kottwitz that the £-adic cohomology
of these Rapoport-Zink spaces M realizes the local Langlands correspondence for
the related local reductive group G; cf. [52, Section 5].
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Recently, Kim [36] constructed more general formal moduli spaces of p-divisible
groups with additional structures. (Here and throughout the rest of this introduc-
tion, we assume p > 2.) These formal schemes M are called Rapoport-Zink spaces
of Hodge type, associated with unramified local Shimura data of Hodge type
(G, [b],{u}) (seebelow). The additional structures on p-divisible groups are given by
the so-called crystalline Tate tensors (cf. [36, Definition 4.6]) generalizing the EL/PEL
structures introduced by Rapoport-Zink (in the unramified case). Kim also con-
structed a tower (M )k of rigid analytic spaces (as usual, K ¢ G(Q,) runs through
open compact subgroups of G(Qj)), when passing to the generic fibers of these for-
mal moduli schemes. These Rapoport-Zink spaces of Hodge type appear as local
analogues of the recent work of Kisin [38] on integral canonical models of Shimura
varieties of Hodge type. Kim [37] has proved that his Rapoport-Zink spaces of Hodge
type can be used to uniformize certain pieces of Shimura varieties of Hodge type. If
the unramified local Shimura datum of Hodge type comes from a Shimura datum
of Hodge type, Howard and Pappas have given another (global) construction of the
associated Hodge type Rapoport-Zink spaces. We refer the reader to [32] for more
details.

In this note, we show that we can in fact go one step further: we will construct some
(slightly) more general formal and rigid analytic Rapoport-Zink spaces, and we will
show that these spaces can be used to uniformize (pieces of) Kisin’s integral canon-
ical models Shimura varieties of abelian type; ¢f. [38]. Moreover, we will give some
interesting applications to the moduli spaces of K3 surfaces in mixed characteristic.

There are several motivations for our work here. In our previous work [67], we con-
structed perfectoid Shimura varieties of abelian type. One of the main motivations for
this work is to study the local geometric structures of these perfectoid Shimura vari-
eties, and to study the local geometric structures of Kisin’s integral models of Shimura
varieties of abelian type [38]. Another motivation is the recent developments in the
theory of local Shimura varieties. In [57], Rapoport and Viehmann conjectured the
existence of a rigid analytic tower (Mg )k associated with a local Shimura datum

(G, [],{u}), where!

* G is a connected reductive group over Q;
« {u} is a conjugacy class of minuscule cocharacters y: G,, - G@p;

« [b] is a o-conjugacy class in the Kottwitz set B(G, u) (see [41, Section 6]).

These conjectural local Shimura varieties are intended to be generalizations of
Rapoport-Zink spaces, and there should be a theory in the local situation as good
as the classical theory of Shimura varieties [11]. Recently, using the theory of per-
fectoid spaces [60], and the developments in p-adic Hodge theory due to Fargues,
Fargues-Fontaine, and Kedlaya-Liu [15, 20, 35], Scholze has almost given a solution
for Rapoport and Viehmann’s conjecture by constructing moduli of local G-shtukas in
mixed characteristic (cf. [61]): (Shtx)x as some reasonable geometric objects. These
geometric objects are called diamonds there, a generalization of perfectoid spaces and
analytic adic spaces. Along the way of construction, we get an infinite level moduli

Here we have followed [57] to write a local Shimura datum as (G, [b], {u}).
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space Sht,, such that as diamonds we have

Sht., = lim Shtg.
<~
K

In fact, Scholze proved more: one can allow the conjugacy class of cocharacters {y }
non-minuscule, contrary to the original requirement of Rapoport and Viehmann in
[57], and, in fact, one can allow several { #}’s. Thus, this theory is the mixed character-
istic analogue of the theory of moduli of shtukas in the function fields case [28,42,70].
Despite its great success, the method of [61] is purely generic:? a priori, one has no
information on reduction mod p. In the case of EL/PEL Rapoport-Zink spaces Mg,
Scholze proved that the associated diamonds M, are isomorphic to his moduli spaces
of local G-shtukas Shtx. From the point of view of moduli, this means that one can
switch p-divisible groups with additional structures to local G-shtukas. Thus, in these
classical cases, one gets formal integral structures and can talk about reduction mod
p. From now on, we assume that G is unramified over @, and fix a reductive integral
model Gz, of G over Z,. Using Dieudonné theory, one can prove that the special
fibers of formal Rapoport-Zink spaces (of EL/PEL/Hodge type) are closely related to

the corresponding affine Deligne-Lusztig varieties

X (b) = {g € G(L)/G(W) | g"ba(g) € G(W)u(p)G(W)},

where W = W(F,),L = Wy, G(W) = Gz,(W), and o is the Frobenius. More pre-
cisely, in the above definition we have fixed a representative b € G(L) of the class
[b]. On Xg(b), we have an action of J,(Q,), where J, is the o-centralizer of b.
These objects are defined purely group theoretically, and thus make sense for arbi-
trary (G, [b], {u}) (asin the case of Scholze’s moduli of local G-shtukas). These affine
Deligne-Lusztig varieties play a crucial role in understanding the reduction mod p of
Shimura varieties; cf. [53].

In this paper, we introduce a class of local Shimura data, the so-called unrami-
fied local Shimura data of abelian type, and for each such datum (G, [b], {u}), we
construct a formal scheme M and a tower of rigid analytic spaces (M )k such that

+ the reduced special fiber is M,eq(F,) ~ Xg(b);

« the rigid analytic (adic) generic fiber is J{/Ezd =Mq(z,)

« the associated diamonds are My ~ Shtg.

Moreover, we can prove that there exists a preperfectoid space Mo, over L such that
Moo ~1limM K>
N3
where the meaning of ~ is as in [65, Definition 2.4.1]. This class of unramified lo-
cal Shimura data of abelian type is strictly larger than the class of unramified local
Shimura data of Hodge type. Thus, among all local Shimura data, we find a new and
larger class such that
« there exists a formal model M, such that Mfld’° ~ Shtg(z,)> Mred (Fp) =~ Xg(b);
« there exists a preperfectoid space Mo, such that M, ~ Sht.,.

2We have learnt very recently that Scholze’s method also produces integral models of local Shimura
varieties as v-sheaves; cf. [63,64].
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We remark that the analogues of the above two additional structures in the global
situation of Shimura varieties of abelian type are known by [38, 67]. They are not
known yet for general local Shimura data (or local shtuka data).

Alocal Shimura datum (G, [b], {}) is called of unramified Hodge type if G is un-
ramified and there exists an embedding (G, [b], {¢}) = (GL(V),[b'], {¢'}) oflocal
Shimura data such that {y'} corresponds to (1",0""") for some integral 1 < r < n =
dim V. Roughly, the class of local Shimura data of Hodge type is the largest class for
which the associated Rapoport-Zink spaces can be realized as moduli of p-divisible
groups with additional structures. In this paper we introduce the following notion. A
local Shimura datum (G, [b], {u}) is called of unramified abelian type if there exists
an unramified local Shimura datum of Hodge type (G, [b1], {¢1}) such that we have
an isomorphism of the associated adjoint local Shimura data (G4, [6*¢], {y*}) =
(G4, [b39], {u24}). This is the local analogue of a Shimura datum of abelian type.>
We remark that although, by definition, we only change the centers of the groups,
there no longer exists a local Hodge embedding for a general local Shimura datum of
abelian type (G, [b], {¢}) (as in the corresponding global situation of Shimura vari-
eties). This means that the class of local Shimura data of (unramified) abelian type is
strictly larger than the class of (unramified) Hodge type. By Serre’s classification [66],
the groups G in this larger class consist exactly of all classical groups; see Section 4.

Our first main theorem is as follows. See Theorem 4.6, Proposition 4.17, and
Corollary 5.22.

Theorem 1.1  Let (G, [b], {u}) be an unramified local Shimura datum of abelian type.
Fix a representative b € G(L) of [b]. Then there exists a formal scheme M(G, b, u),
which is formally smooth, formally locally of finite type over W, such that

NI erf G
M(G, b, )P = XS (b).

Here, M(G, b, )Pt is the perfection of the special fiber M(G, b, u), and Xf(b) is
the affine Deligne-Lusztig variety, considered as a perfect scheme by [1,78]. The formal
scheme M = N(G, b, u) is equipped with a transitive action of J;(Q,), compatible
with the action of J,(Q,) on Xg(b) Moreover, there exist a tower of rigid analytic
spaces (M )k and a preperfectoid space Mo, over L such that

() 36 =Mz

(i) Moo ~ l(iI_nK Mg;
(ili) M ~ Shtg;

(iv) there exists a compatible system of étale morphism mag: Mg - F 62(‘;‘}‘;;

(v) there exists a Hodge-Tate period morphism myr: Mo, — F €, 1.

Here & Q‘{‘;‘ is the admissible locus in the p-adic flag variety .# £, , associated
with (G, {u}) (cf. [54, Definition A.6] or [9, Definition 3.1]), and .7 £, is the p-adic
flag variety associated with (G, {y'}). In fact, we will see in Corollary 5.22 that 7y
also factors through a locally closed subspace % Zi’;)ﬂ_. c FlG .

3More precisely, our local Shimura data of abelian type are the local analogues of Shimura data of
preabelian type.
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The construction of M(G, b, u) associated with (G, [b], {u}) as above is based
on the following observations. Take any unramified local Shimura datum of Hodge
type (Gu.[1), {pn}) such that (G4, [6*¢], {*}) = (G}, [B34], {3}). We have
the associated formal Rapoport-Zink space M(Gy, by, p1) constructed by Kim [36],
by patching together Faltings’s construction of deformation ring for p-divisible groups
(with crystalline Tate tensors) with Artin’s criterion for algebraic spaces. By [78, Propo-
sition 3.11], M(Gy, by, i )P = Xﬁ‘ (by). For any local Shimura datum (G, [b], {¢}),
we have a J,(Q,)-equivariant surjective map

[(feR X‘g(b) — Cb)”ﬂl(G)r,

which factors through the set of connected components 7y (Xg (b)). Here m(G) is

the algebraic fundamental algebraic group of G and I' = Gal(@p /Q,). See Subsec-
tion 2.2 for the construction of this map and the element c;, , € ;(G). Moreover, by
[7, Theorem 1.2], J;(Q, ) acts transitively on 7o (XIS" (b)). For any local Shimura da-
tum (G, [b],{p}), by [7, Corollary 2.4.2], we have a cartesian diagram

G Gfd ad
X6 (b) ——— X% (429

| |

cp,um(G)' —— Chad”uadﬂl(Gad)r.

In particular, we apply the above diagram to (G, [b],{u}) and (G, [b1], {t1}), as
above. Let X' (b1)* ¢ X' (by) be a fixed choice of fiber of the map wg, : Xg! (by) -

¢y, (Gr)". This is isomorphic to the corresponding subset of XE (b). Let
J{/[(Gla bl: #1)+ c M(Gh bl: Ml)

be the open and closed subspace corresponding to Xg'(by)*. As X (b) =
]b(QP)XE(b)J’, we get the formal scheme M(G, b, u) whose special fiber satisfies
M(G, b, u)Pet ~ XE (b). By construction, this formal scheme does not depend on
the choice of the Hodge type local Shimura datum (G, [b;], {¢1}). The other prop-

erties can be proved similarly.
Let

(MG 2o 1)) e,y 204 (MGbi )k ey (q)

be the two towers associated with (G, [b],{u}) and (Gy, [b1], {p1}), as above. By
construction, the two towers are locally isomorphic in the sense that there exist

subtowers® (M(G, b, ‘u)}) and (M(Gl, by, 1“1)1+<1) KicGr(Qy) such that

KcG(Qp)
M(G,b, 1)t = M(Gy, by, )L,

where M(G, b, )%, is the preperfectoid space over L such that
M(G, b, u)& ~LimM(G, b, )k

K

4Here a subtower (Yk)k of a tower (X )k of inverse system of rigid analytic spaces is by definition
given by an inverse system of subspaces Yx c Xk with compatible transition maps.
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and similarly for M(G;, by, p1)%,. This implies in particular that .7 5‘&‘{2‘ =7 f‘é‘?i’w
The tower (M(G, b, 4) k) ke6(q,) can be recovered from (M(G, b, 4) )kec(q,) and
m1(G)" by the action of either G(Q,) or J,(Q,). We expect that such results hold
true for any local shtuka data (G, [b], {¢}) and (G, [b1], {1} ) with the same adjoint
data.

We note that the above construction is simpler than the corresponding global sit-
uation (cf. [38,67]), where one has to make a quotient on each geometric connected
component of Shimura varieties of Hodge type.

In Subsection 4.3 we will try to find a moduli interpretation for the formal scheme
M(G, b, u) associated with (G, [b], {u}) as above (cf. Proposition 4.9), which is a
priori non canonical, however. It is desirable to find a more canonical moduli inter-
pretation for M(G, b, ). After the first version of this paper appeared on line, Biiltel
and Pappas have recently found an intrinsic moduli interpretation for M(G, b, u)
with (G, [b], {u}) of Hodge type under a certain nilpotent condition; cf. [4]. They
use a notion of (G, u)-displays, which is purely group theoretical. We can natu-
rally extend Biiltel and Pappas’s moduli interpretation to certain abelian type case
M(G, b, ) studied in this paper; cf. Theorem 4.11. As mentioned above, the fur-
ther recent progress of [64] will give a canonical moduli interpretation for the formal
scheme M(G, b, i) in the general case, as moduli of local shtukas similar to that in
Section 5; ¢f. Remark 5.24(iii).

If the unramified local Shimura datum of abelian type (G, [b], {u}) comes from
a Shimura datum of abelian type (G, X), we can prove the following uniformization
theorem. Let K c G(A?) be a fixed sufficiently small open compact subgroup. Con-
sider Sk, the Kisin integral canonical model over W of the Shimura variety Shx with
K = G(Zy)KP. Let ¢: Q — & be a Langlands-Rapoport parameter with the as-
sociated reductive group I over Q, such that [b] = [b(¢)] (see [39, 3.3.6] for the
precise meaning of these objects, where a Langlands-Rapoport parameter is called
an admissible morphism between the Galois gerbs £ and &). Let M = M(G, b, u).
Fix a Langlands-Rapoport parameter ¢o: £ — & g.a for the adjoint group such that
¢* = ¢. In Section 6 we will construct a subspace Z,,x» C Sk, such that the formal
completion of Sk along Z, x» can be defined. The following theorem was proved
by Rapoport and Zink in the PEL type case ([56]), and by Kim in the Hodge type
case ([37]; see also [32]). It can be viewed as the geometric version of the Langlands-
Rapoport description for the underlying F ,-points; cf. [39]. In fact, it was pointed out
in the introduction of [57] that the works of Kisin [38,39] should yield new Rapoport-
Zink spaces (comp. [32]). Here, we construct these spaces locally, and show that they
admit global application (comp. [57, Remark 5.9]). See Theorems 6.7 and 6.13.

Theorem 1.2 We have an isomorphism of formal schemes over W,

@: I I4(Q)\Mx G(A?)/KP — 512/2,
[¢].0%4=¢0

60.KP’

where ¢o: Q = Bgaa is a fixed Langlands-Rapoport parameter for the adjoint group
G4, [¢] runs through the set of isomorphism classes of Langlands—Rapoport parameters

¢ for G such that ¢** = ¢, and [b] = [b($)]. When [b] is basic, we have 2y, k» = §,b<,
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which is the basic locus, and the above isomorphism reduces to

0: Iy(Q)\N x G(AR)/K? T .

Unsurprisingly, we apply the tricks of Kisin as in [39] to deduce the theorem from
the Hodge type case. One can also deduce rigid analytic and perfectoid versions of
the above uniformization theorem.

We consider the examples of basic GSpin and special orthogonal groups Rapoport-
Zink spaces. Let M; = M(GSpin, b, u), M = M(SO, b’, u') be the associated basic
Rapoport-Zink spaces, where GSpin = GSpin(V, Q), SO = SO(V, Q) are unrami-
fied GSpin and special orthogonal groups associated with a quadratic space (V, Q)
over Q,, with dim V' = n + 2 for some integer n > 1. By considering the G-zip associ-
ated with the universal p-divisible group with crystalline Tate tensors on the special
fiber M; of M;, we can define an Ekedahl-Oort stratification on M;, and thus on
Mi rea (the reduced special fiber), which is the local analogue of the Ekedahl-Oort
stratification for Shimura varieties of Hodge type (cf. [77]). The index set of this strat-
ification is a subset /W? of the absolute Weyl group of G,, which is thus finite. In
fact one can find by computation that, it is in bijection with some explicit finite set of
integers. For each w € /W?, we have the associated Ekedahl-Oort stratum Mj,, of
M red- On the other hand, Howard and Pappas [32]introduced another stratification
for the reduced special fiber M yeq:

o
ered = I_IMU\:
A

where A runs through the set of vertex lattices; see loc. cit. Section 5. By Corollary 8.2
M = M,/p?, we get the induced Ekedahl-Oort and Howard-Pappas stratifications
for Myeq. The following theorem is proved in Subsection 8.2: see Theorem 8.4 and
Corollary 8.5 for more precise statements.

Theorem 1.3  Each Ekedahl-Oort stratum My, of M req is some (disjoint) union of
Howard-Pappas strata. A similar result holds for M.eq.

For a similar result in the case of the basic unitary group GU(1, n — 1) Rapoport-
Zink space, see [69, Theorem D].

In fact, in Subsection 71, we construct the Ekedahl-Oort stratification for the spe-
cial fibers of arbitrary Rapoport-Zink spaces of abelian type, cf. Theorem 7.1. We can
compare our geometric construction with the Ekedahl-Oort stratification for affine
Deligne-Lusztig varieties (with hyperspecial levels) in [21]; cf. Proposition 7.2. In Sub-
section 7.2, we discuss a theorem of similar phenomena as Theorem 1.3 (¢f. Theo-
rem 7.5) for an unramified local Shimura datum of abelian type (G, [b], {u}), with
(G, {u}) fully Hodge-Newton decomposable in the sense of [22, Definition 2.1]. Our
discussion in this more general setting is indeed motivated by [22, Theorems 2.3 and
2.5], where a posteriori the classification there (for minuscule y) lies in our class of
local Shimura data of abelian type. The basic GSpin and special orthogonal groups
Rapoport-Zink spaces are just special cases where one can make things more explicit
(by the work of [32]).
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Specializing further to the case of K3 surfaces, we have some interesting applica-
tions. Take an integer d > 1 such that p + 2d. Let M, x be the moduli spaces of K3
surfaces f: X — § together with a primitive polarization & of degree 2d and a K-level
structure over W. Recall that by the global integral Torelli theorem (cf. [47, Corol-
lary 5.15]), the integral Kuga—Satake period map i: M4 x — Sk is an open immer-
sion, where Sk is the integral canonical model over W of the Shimura variety Shg for
G = SO(2,19); see Subsection 8.3 for more details. Here, we assume that K = K,K?
with K, = G(Z,) is the fixed hyperspecial subgroup. Let X be a supersingular K3
surface over I, then the discriminant of its Néron-Severi lattice is equal to — proeX)
for some integer 1 < go(X) < 10. The integer go(X) is called the Artin invariant of X.
The following corollary is a consequence of the above theorems. Note that the group
G is adjoint and thus ¢ = ¢,.

Corollary 1.4 (Corollaries 8.12 and 8.14 ) (i) Let ¢, [b] and Zy kv be as in The-

orem 1.2, and let ] be the pullback of Zy,x» under the open immersion Mag x = Sk of
special fibers. Then we have the identity

Mok, =11 N/,

where N ¢ M(G, b, u) is an open subspace, I is certain countable set, and for any j € I,
Ij c J,(Qp) is some discrete subgroup. If, moreover, [b] = [bo] is basic, then ] 4 = M;Sd,K
which is the supersingular locus in My, k, and the above disjoint union is finite.

(ii) Let x € M;;,K(Fp) be a point, and let X, be the associated supersingular K3
surface over F,. Then we have the identity between the Artin invariant oo(Xy ) and the
type t(Ay):

t(Ax)

UO(Xx) = 2 >

where A, is the vertex lattice attached to the special lattice associated with (X, &),
cf. Subsection 8.5.

We briefly describe the structure of this article. In Section 2, we review some basics
about affine Deligne-Lusztig varieties that will be used later. In Section 3, we first re-
call the Rapoport-Viehmann conjecture on the theory of local Shimura varieties; then
we concentrate on the case of unramified local Shimura datum of Hodge type, and re-
view the construction of Kim [36] on the associated Rapoport-Zink spaces of Hodge
type. In Section 4, we introduce unramified local Shimura datum of abelian type and
construct the associated formal and rigid analytic Rapoport-Zink spaces. Section 5 is
devoted to a review of the general framework of moduli of local G-shtukas in mixed
characteristic due to Scholze, to give a moduli interpretation of the generic fibers of
our Rapoport-Zink spaces of abelian type. In Section 6, we turn to the global situation
of Shimura varieties of abelian type, and prove a Rapoport-Zink type uniformization
theorem in this setting. In Section 7, motivated by the study of Artin invariants of K3
surfaces, we construct the Ekedahl-Oort stratification for special fibers of Rapoport-
Zink spaces. In Section 8, we discuss some applications of our theory. We work on the
examples of basic GSpin and special orthogonal groups Rapoport-Zink spaces, and
then more specially on the case of moduli spaces of K3 surfaces. These examples are
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just (related to) special cases of the fully Hodge-Newton decomposable Shimura vari-
eties introduced in [22] (see also [68]). Finally, we investigate p-adic period domains
in the basic orthogonal case in the appendix following Fargues.

2 Affine Deligne-Lusztig Varieties in Mixed Characteristic

In this section, we recall some basic facts about affine Deligne-Lusztig varieties in
mixed characteristic, which will be used later.

Fix a prime p. Let G be a connected reductive group over Q,, which we assume
to be unramified. Fix T c B a maximal torus inside a Borel subgroup of G. Let
W = W(F,) be the ring of Witt vectors, and let L = Wy. Denote o as the Frobenius on
L and W. In the sequel we want to fix a hyperspecial subgroup G(W) c G(L). To this
end, we fix a reductive model Gz, of G over Z, and set G(W) = Gz, (W ). Sometimes
by abuse of notation, we will also write G as the reductive group Gz, over Z,.

2.1 Affine Deligne-Lusztig Varieties

For b € G(L) and a conjugacy class {uy} of cocharacters y: G, - G@p, we define the
affine Deligne-Lusztig sets

X, (b) = {geG(L)/G(W) | g 'bo(g) e G(W)u(p)G(W)},
X2, (b) = {geG(L)/G(W) | g 'ba(g) € HILSJHG(W)y’(p)G(W)}.

Here, we assume p € X, (T), for the above choice of B, and for dominant elements
s 4’ € X, (T), we say that ¢’ < p if y — y’ is a non-negative integral linear combi-
nation of positive coroots. Let J;, be the reductive group over Q, such that for any
Qp—algebra R,

Jo(R) ={geG(L®g, R) | gb=0ba(g)}

Then J;(Q,) acts naturally on Xﬁ(b) and Xgﬂ(b). The isomorphism classes of
Xg(b), Xgﬂ (b) and J, depend only on the g-conjugacy class [b] of b. By [73], X;f (b)
and ng (b) are non-empty if and only if [b] € B(G, u). Here, B(G, p) is the Kottwitz
subset (cf. [41, Section 6]) inside B(G), the set of all o-conjugacy classes in G(L).
We assume [b] € B(G, u) from now on. The triple (G, [b], {}) will be called a
local shtuka datum in Section 5; cf Definition 5.9. By construction, we have
Xﬁ(b) c Xg”(b). When {u} is minuscule, we have XSG#(ZJ) = Xg(b)

By the recent work of Zhu [78] and Bhatt-Schoze [1], there exist perfect scheme
structures on the sets X (b) and X¢,(b). More precisely, X/ (b) and XZ, (b) are
the sets of I ,-points of some perfect schemes over IF,, which are locally closed sub-
schemes of the Witt vector affine Grassmannian Grg (cf. [1,78]). It will be useful to
briefly recall the related moduli interpretation. Denote € the trivial G-torsor on W.
For any perfect IF,-algebra R, we have (cf. [78, 1.2 and 3.1]) Grg(R) = {(&,B)}/~,
where

« & isa G-torsor over W(R),
» B:E&[1/p] ~ Ey[1/p] is a trivialization over W (R)[1/p],
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and

XS, (b)(R) = {(&,B) € Gr(R) | Inv,(B'ba(B)) < u, Vx € SpecR},
Xff(b)(R) = {(S,ﬁ) € Grg(R) | Inv, (B 'bo(B)) = 4, Vx € SpecR},

where Inv, is the relative position at x, and y is the dominant representative in the
conjugacy class {u}. By abuse of notation, we denote also by XSGM (b) and XE (b) the

. . G G .
associated perfect schemes. By construction, X,/ (b) c X¢, () is an open subscheme.

Lemma 2.1 Let (Gy,[b1],{t1}) = (Ga, [b2],{p2}) be a morphism (cf. Defini-
tion 3.3). It induces a natural map

XS (b)) — XE2, (by).

If Gi = Gy is a closed immersion, the above map is a closed immersion.

Proof The first statement is clear. For the second statement, see [36, Lemma 2.5.4
(1)] and [32, 2.4.4]. ]

2.2 Connected Components

In [7,8], Chen, Kisin, and Viehmann introduced a notion of connected components
for the affine Deligne-Lusztig sets XSGV (b) by some ad hoc methods, since the algebro-
geometric structure on ng(b) was not known at the time. We denote by 7 (Xgﬂ (b)
the set of connected components defined by Chen, Kisin, and Viehmann in such a
way. By resorting to the perfect scheme structure, we have a naturally defined notion
of connected components for XSG” (b). 1t is conjectured that the two definitions co-
incide; cf. [78, Remark 3.2] and [7, 2.3.5]. This was known in the case of unramified
EL/PEL Rapoport-Zink spaces; cf. [7, Theorem 5.1.5]. This was recently proved by He
and Zhou in the general case; cf. [31, Theorem A.4].

Let m;(G) be the quotient” of X, (T') by the coroot lattice of G. There is the Kottwitz
homomorphism wg: G(L) —> m1(G) for which an element g € G(W)u(p)G(W) c
G(L) is sent to the class of y. Recall that for our pair (b, y) we assume that [b] €
B(G, u). Then there is an element c;, , € 11(G) such that wg(b) —u = (1-0)(cp,u)-
The ,(G)"-coset of ¢, ,, is uniquely determined. Here and the sequel, I'= Gal(@p /Qp)
is the local Galois group. In particular, if b € G(W)u(p)G(W), then we can take
cpu = L. As wg is trivial on G(W), when restricting to Xgﬂ(b) c G(L)/G(W), by
[7, 2.3] (using the theory of Cartan decomposition in families of [7, 2.1]) we have a
J»(Q,)-equivariant morphism (of étale sheaves over )

wg: XgGﬂ(b) — Cb,yﬂl(G)r’

SWe note that 7 (G) is finite if G is semi-simple.
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which factors through 7 (Xgﬂ(b)) Thus, we get a commutative diagram

Xg, (b)

N

ﬂQ(XgM(b)) —_— cb,ym(G)r.

Therefore, the non-empty fibers of the map wg: XSG” (b) > ¢p,um(G)" are unions of
connected components of X SG” (). Recall the following main theorem of [7].

Theorem 2.2 ([7, Theorems 1.2 and 1.1]) Assume that y is minuscule.

(i) J»(Qp) acts transitively on no(Xg(b)).
(i) Assume that G*® is simple and (u,b) is Hodge-Newton indecomposable in G.
Then wg induces a bijection

ﬂo(XE(b)) ~ ¢y, m(G)"

unless [b] = [u(p)] with u central, in which case Xf(b) > G(Qp)/G(Zp) is
discrete.

Recently, Nie has obtained similar results as above on 7 (XSGH (b)) for general y
(not necessary minuscule). We refer the reader to [49, Theorems 1.1 and 1.2] for the
precise statements.

Assume that p is minuscule. By (i) of the above theorem, all non-empty fibers
of wg: Xgﬂ(b) —> ¢p,,m(G)" are isomorphic to each other under the transition
induced by the action of J,(Q,). Fix a point xo € Im(wg: Xf(b) - ¢p,,m(G)")
(soon we will show that wg is surjective). Let X (b)* c Xg (b) be the fiber of wg
over xg. By (i) of the above theorem, we have the equality Xg (b) = ]b(Qp)Xg(b)*.
In the sequel, we will not need to work on each connected component of X,? (b). The
subspace le (b)* and the equality above will be all that we need.

Now let u be arbitrary. Since we assume [b] € B(G, p), the set Xff(b) + @. This
means that there exists some g € G(L) such that b’ := g7'ba(g) € G(W)u(p)G(W).
Thus, after replacing b by b’, we can assume that c; , = 1. (We note that the element
cp,u can be defined for arbitrary u.)

Lemma 2.3 (i) Therestriction of wg: G(L) = m(G) to G(Q,) induces a surjec-
tive map wg: G(Qp) - m(G)".
(i) The map J,(Q,) - m(G)" is surjective.

Proof For (i), this is contained in [39, Lemma 1.2.3].

For (ii), in the case where (G, [b], {#}) comes from a Hodge type Shimura datum
(G, X) unramified at p (and Zg is a torus), see [39, Lemma 4.6.4]. The arguments
there also work in the general case. ]
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Proposition 2.4  The map
we: XSGy(b) — cpum(G)F
is surjective. In particular, we get a surjection

m0(XZ, (b)) » m(G)".

Proof By [7, Lemma 2.3.6], the map wg is compatible with the J;,(Q,)-actions on
both sides. By construction, J,(Q,) acts on 7;(G)" by left multiplication via the
map J,(Q,) — m(G)", which is surjective by Lemma 2.3(ii). Thus, wg: ng(b) -
cp,um(G)" is surjective. ]

We continue to assume that u can be arbitrary. For a reductive group G over Qy,
we write Zg as its center.

Proposition 2.5 Let (G, [b1],{¢1}) = (Ga,[b2], {p2}) be a morphism. If G, =
G/ Z for some central group Z c Zg,, we have the cartesian diagram

XS (b)) ——= X2 (by)

<th SH2

l WGy lwcz

Cbl,[llnl(Gl)r - Cbz,ﬂznl(GZ)r‘

Proof This is contained in [7, Corollary 2.4.2]. [ |

Let the notations be as in the above proposition. Combined with Proposition 2.4,
we get the following corollary.

Corollary 2.6 Let x; € cp, ,,m(G1)" be a point and let x; € cy,,,,m(G2)" be its
image under cy, ,, m(G1)" — cp,,,m(G2)". Let XSGI‘h(bl)+ and XSG;Z(bZ)+ be the
fibers of wg, and wg, at x; and x,, respectively, which are non-empty by Proposition 2.4.

Then the map Xg‘“(bl) - X% (b,) induces a bijection

<p2

X8 (b)" —> X (ba)".

We keep the above notation.

(b1) - X2, (b2)

<y2

Lemma 2.7 Ifm(G))" — m(G,)' is surjective, then the map Xg‘h
induces an isomorphism

Xstltl(bl)/Z(Qp) = chﬁz(bz)-

Proof 'This is implied by the proof of [7, Corollaries 2.4.2 and 2.4.3]. Under the
assumption that 7,(G;)" — m,(G,)" is surjective, all fibers of Xg;l(bl) - ngz(bz)
are torsors under X, (Z)". The group Z(Q,) acts on Xg;l(bl) via the natural map
2(Qp) » X.(2)". .
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3 Rapoport-Zink Spaces of Hodge Type

Following Rapoport and Viehmann, we first review the general conjecture on the the-
ory of local Shimura varieties in [57]. Then we concentrate on the Hodge type case;
of. [4,32,36].

3.1 Local Shimura Data and Local Shimura Varieties

Recall the following definition of Rapoport and Viehmann.

Definition 3.1 ([57, Definition 5.1]) A local Shimura datum over Q, is a triple
(G, [b], {u}), where

+ G is a connected reductive group over Q;

+ [b] € B(G) is a o-conjugacy class;

 {u} is a conjugacy class of cocharacters y: G,, - G@P,

such that the following conditions are satisfied:

(i) [b] € B(G,u),
(ii) {p} is minuscule.

Associated with a local Shimura datum, we have

» the reflex field E = E(G, {u}), which is the field of definition of {u} inside the
fixed algebraic closure @p;

« the flag variety .7 £ ,, considered as a rigid analytic space (or an adic space)
over E, the completion of the maximal unramified extension of E; here the asso-
ciated parabolic subgroup P, is given by P, = {g € G |lim, u(t) gu(t) " exists};

« the reductive group J;, over Q,, for b € [b], which up to isomorphism only
depends on [b]. The group J;,(Q, ) acts on .Z €g ,;

« the weakly admissible open subspace .% €eu © F LG, defined in [56, 1.35] and
(10, Definition 9.5.4]. The action of J;, (Q,) on . €, stabilizes ye‘g*}ﬂ.

In fact, if G is unramified, we also have (cf. the last section)

« the affine Deligne-Lusztig variety Xf (b) over F, (which will be expected to be
the special fiber of some formal model of the following local Shimura variety
M (z,); ¢f. Conjecture 3.2).
Let (G, [b], {u}) be alocal Shimura datum, with local reflex field E. We have the
following conjecture ([57] 5.1).

Conjecture 3.2 (Rapoport-Viehmann) There is a tower of rigid analytic spaces over
SpE, (Mx)k, where K runs through all open compact subgroups of G(Qp), with the
following properties:

(i) the group J,(Q,) acts on each space M;

(i) the group G(Q,) acts on the tower (M )k as Hecke correspondences;
(iii) the tower is equipped with a Weil descent datum over E;
(iv) there exists a compatible system of étale and partially proper period maps

ax: Mg = F ‘GV;,,

which is equivariant for the action of J;(Q,).
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In fact, in [57, 5.1] there is a more precise statement on the point (iv) of the con-
jecture. In particular, there should be an open subspace

a o7 pWa
ﬁﬁc,ﬂ c Flg,

which should be the image of the period maps 7k for all K. In fact, Rapoport and Zink
conjecture that there exists a Qp-local system with G-structure over .#¢¢, , that in-
terpolates the p-adic crystalline Galois representations attached to all classical points.
Moreover, the tower (Mx ) ke (q,) should be the geometric realization (i.e., spaces of
lattices with level structures) of this universal Q,-local system with G-structure over
f/"(f?;)ﬂ. We refer to [57, 5.1], [56, Section 1], [10, Conjecture 11.4.4], and [27, Con-
jecture 2.3] for more details. This conjecture is known for the local Shimura data
that arise from local EL/PEL data ([56]), and the unramified local Shimura datum of
Hodge type ([36]). In both cases, these spaces My are finite étale covers of the rigid
analytic generic fibers of some formal schemes M over SpfO ;, which are formal mod-
uli spaces of p-divisible groups with some additional structures. The special fibers of
these formal schemes M are the affine Deligne-Lusztig varieties that we introduced in
the last section. In Section 5 we will discuss a partial solution of the above conjecture
due to Scholze; cf. [61,64].
It will be useful to define morphisms of local Shimura data.

Definition 3.3 Let (Gy, [b1], {¢1}), (G2, [b2], {¢2}) be two local Shimura data. A
morphism

(G, [b1]: {m}) — (Ga, [b2], {2})

is a homomorphism of algebraic groups f: G; - G, sending ([b1],{p1}) to
([b2], {u2}).

If (G, [b1]), {p1}) = (G2, [b2], {¢2}) is a morphism of local Shimura data, then
it is conjectured ([57, Properties 5.3 (iv)]) that for any open compact subgroups K; c
G1(Qp),K; ¢ G2(Qp) with f(K;) c K, there exists a morphism of the associated
local Shimura varieties

M(Gla ba ,u)Kl - M(GZ) b2$ ,uZ)Kz X SPEI)

and when G; — G; is a closed immersion these are closed embeddings for K; = K, N

G1(Qp)-
3.2 Local Shimura Data of Hodge Type

Now we recall the definition of a special class of local Shimura data (cf. [57, Remark

5.4 (1)]).

Definition 3.4  Alocal Shimura datum (G, [b], {}) is called of Hodge type if there
exists an embedding f: G < GL(V') and a local Shimura datum (GL(V), [b'],{¢'})
with {y'} corresponding to (1",0"") for some integer 1 < r < n = dim V, such that

[b], {u} are mapped to [b'], {¢'} under f.
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If G is, moreover, unramified, by [38, Lemma 2.3.1], we can find some Z,-lattice
Vz, ¢ V such that G < GL(V) is induced by an embedding Gz, — GL(Vz, ), where
Gz, is a reductive model of G over Z,.

Definition 3.5 A local Shimura datum of Hodge type (G, [b], {u}) is called un-
ramified if G is unramified.

We note that for an unramified local Shimura datum of Hodge type (G, [b], {u}),
the local reflex field E is an unramified extension of Q,. Thus, E = L, Oy = O = W,
where as before, W = W(Fp), L= Wg. We will fixa reductive model Gz, of G over Z,.

Remark 3.6 The above definition of unramified local Shimura data of Hodge type
is more general than that in [32, Definition 2.3.3]. Moreover, for an unramified lo-
cal Shimura datum of Hodge type (G, [b], {¢}) in the sense of [32], one always has
ZG o] Gm.

We want to classify local Shimura data of Hodge type. Let (G, [b], {u}) be a given
local Shimura datum. Take any faithful representation V of G over Q,, so that we get
an embedding p: G = GL(V). Therefore we get a conjugacy class {u'} of cochar-
acters, ' = Pg, © ¥ Gm — GL(V)@P. Let N(G) be the set of Newton points of G;

cf. [55,1.7] (in [41, 4.1], it was denoted by E@). Recall that the maps
vg: B(G) — N(G), «¢:B(G) — m(G)r

are functorial in G, cf. [40, section 4], [41, 4.9 and 7.5], and [55, 1.9 and 1.15]. In par-
ticular, we get a map B(G,u) — B(GL(V),u’). Let [b'] € B(GL(V),u") be the
image of [b] under this map. The triple (GL(V),[b’], {¢'}) is a local Shimura da-
tum if and only if {4’} is minuscule and corresponds to (1",0""") for some integer
1< r < n=dimV, in which case (G, [b], {u}) is of Hodge type. As above, let G be
a reductive group over Q, and let {4} be a conjugacy class of minuscule cocharac-
ters y: G, — G@P. In [66] Serre classified the pair (G, {u}) for which there exists
a faithful representation V of G such that the induced class of cocharacters {y'} un-
der the embedding G = GL(V) corresponds to (1",0""") for some integer 1 < r <
n = dim V. It turn out the simple factors of G%d are groups of type A, B, C, or D;
of. (66, section 3]. ’
The following examples of local Shimura datum of Hodge type are standard.

Example 3.7 (i) Let(G,[b],{p}) bealocal Shimura datum which comes from
alocal EL/PEL datum (cf. [56, 1.38]), then it is of Hodge type (cf. [36, 4.7]).

(ii) Let (G, X) be a Shimura datum of Hodge type, i.e., there exists some embed-
ding into the Siegel Shimura datum (G, X) = (GSp,S*). Let u be the cocharac-
ter associated with X. Take any [b] € B(Gq,, ). Then the local Shimura datum

(Gq,»[b], {@}) is of Hodge type.

Here is an example of non-Hodge type local Shimura datum.
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Example 3.8 (See [57, Example 5.5]) Let G = PGL,, ¢ be any nontrivial minus-
cule cocharacter, and let [b] € B(G, y) be arbitrary. Then the local Shimura datum
(G, [b],{u}) is not of Hodge type.

3.3 Rapoport-Zink Spaces of Hodge Type

Throughout the rest of this section, we assume that p > 2. Let (G, [b],{u}) be an
unramified local Shimura datum of Hodge type. Fix a representative b € G(L) of
[b]. Kim ([36]) constructs a formal moduli scheme M = M(G, b, u) over Spf W
parametrizing p-divisible groups with crystalline Tate tensors. We briefly review the
related constructions in this subsection. By abuse of notation, we write also G as the
fixed associated reductive group scheme over Z,. Then there exists a faithful repre-
sentation p: G = GL(A), such that the induced cocharacter y’ = Pg, © ¥ G —

GL(A ® Q,) is minuscule. Let A" be the dual lattice, and let A® be the tensor al-
gebra of A @ AY. By [38, Proposition 1.3.2], there exists a finite collection of ten-
sors {s, € A®},er such that p : G ¢ GL(A) is the schematic stabilizer of (s,).
We fix a representative u. Let A ® W = A® @ A! be the decomposition of A @ W
according to the weights of y, which in turn induces a filtration Fil*A ® W with
FiI’A® W = A® W,Fil'A® W = A, We assume that rank A = n,rank A' = d.
We note that P, := Aut(A, s, Fil" A ® W) is a parabolic subgroup of Gy .

By our assumption and the classical Dieudonné theory, there exists a p-divisible
group X, of dimension d and height n over F,, together with an isomorphism
e : D(Xy) ~ (A ® W,bo), where D(Xj) is the contravariant Dieudonné module
of X,. The pair (Xy, €) is unique up to a unique isomorphism, and we fix it in the
sequel. Then we can regard s, ® 1 as tensors in D(X,)® via e. We note that bo
fixes (s, ®1) and (s, ® 1) lie in Fil' A ® W. Each s, ® 1 can be regarded as a map
1:=D(Q,/Zy) — D(X0)®, compatible with the filtrations, and such that the in-
duced map 1 — D(X0)®[ ] is Frobenius-invariant; i.e., s, ® 1 is a crystalline Tate
tensor of Xo; cf. [36, Deﬁnltlon 4.6].

Let Nilp,,, be the category of W-algebras on which p is locally nilpotent. Let
R € Nilp,, and let X be a p-divisible group on SpecR. Consider the contravariant
Dieudonné crystal D(X) attached to X. Then as usual there is a decreasing (Hodge)
filtration Fil*D(X ) on D(X)g with locally free graded pieces over R. Here D(X)g is

the value of D(X) at the trivial PD-thickening R YR Namely, Fil’D(X)g = D(X)g,
Fil'D(X)g = (LieX)" and Fil’'D(X)g = 0. As above, a crystalline Tate tensor of X
is a morphism t,: 1 - ID(X)® of crystals, such that t4g: 1g - ID(X)% is compatible
with the filtrations, and the induced map f,: 1 - D(X)® [ ] is Frobenius-invariant.

Denote by Nilpj,* the full subcategory of Nilp,,, c0n31st1ng of formally smooth for-
mally finitely generated W/p™-algebras for m > 1. We use the following version of
Rapoport-Zink functor (cf. [78, Definition 3.8]), which is equivalent to [36, Defini-
tion 4.6].

Definition 3.9  The Rapoport-Zink space associated with the unramified local
Shimura datum of Hodge type is the functor M on Nilp}" defined by M(R) =

{(X, (ta) aer> p) } /= where
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« X is a p-divisible group on SpecR;

e (ta)aqer is a collection of crystalline Tate tensors of X;

e p: Xo ® R/] » X ® R/] is a quasi-isogeny which sends s, ® 1 to t, for « € I,
where J is some ideal of definition of R,

such that the following condition holds: the R-scheme
Isom((D(X)r, (ta), Fil*(D(X)R)), (A ®R, (s« ® 1), Fil*A ® R))

that classifies the isomorphisms between locally free sheaves D(X)g and A ® R on
SpecR preserving the tensors and the filtrations is a P, ® R-torsor.

Theorem 3.10 ([36, Theorem 4.9.1]) The functor M is represented by a separated
formal scheme, formally smooth, and formally locally of finite type over W.

In the classical EL/PEL case (and with ramification), see [56, Theorem 3.25]. In
[36, 4.7], the unramified local EL/PEL data are explained as special examples of un-
ramified Hodge type data. See also [32, Theorem 3.2.1] for the case where (G, [b], {u})
comes from a Shimura datum of Hodge type. When p(b) has no slope 0, Biiltel and
Pappas have proved the above theorem by a different approach, see [4]. More pre-
cisely, they introduced notions of (G, u)-displays and quasi-isogenies between such,
and they proved that the similar moduli problem of (G, u)-displays together with
quasi-isogenies are representable. In the case G = GL,, the moduli problem of Biil-
tel and Pappas is equivalent to the moduli problem of Rapoport and Zink, by the
theorems of Zink [79] and Lau [43] that formal p-divisible groups over a p-adically
complete and separated algebra R are classified by the associated nilpotent displays.

We denote also by M the associated formal scheme and refer to it as the formal
Rapoport-Zink space of Hodge type attached to (G, [b],{¢}). Let M be the rigid
analytic generic fiber over L = Wy of the formal scheme M. In the rest of this pa-
per, we will use the following convention: if G is an unramified reductive group over
Qp, we will fix a reductive model over Z, and write G(Z,,) for the associated hyper-
special group. In [36, 7.4], Kim explained how to construct a tower of rigid analytic
spaces (Mx)kcg(z,) that satisfies the list of properties in Conjecture 3.2. Moreover,
Mq(z,) = M, and My — Mis finite étale for any open compact subgroup K ¢ G(Z, ).
In particular, for unramified local Shimura data of Hodge type, the Conjecture 3.2 is
true.

Let M be the special fiber over F, of M. Recall that in Section 2, attached to
(G, [b],{u}), we introduced the affine Deligne-Lusztig variety Xg(b) over F),

viewed as a perfect scheme. The relation between M and XE (b) is as follows.

— verf ——
Proposition 3.11 ([78, Proposition 3.11]) XE (D) is the perfection M of M.

If(G,[b],{p}) = (GL,,[b'],{y'}) is an embedding of unramified local Shimura
data of Hodge type, by construction, we have the following embeddings

M(G,b,u) > M(GL,, b, "), X7 (b) > X (b"),

which are compatible in the sense of the above proposition.
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3.4 Connected Components

Let the notations be as above. Recall from Subsection 2.2 that we have the map
weG: Xf(b) — ¢p,um(G)".
By Proposition 3.11, we get an induced map of étale sheaves over W:
wg: M — co,um(G)".

Let GY* ¢ G be the derived subgroup, and let G*® be the abelian quotient G/G9¢",
Consider the exact sequence

1—)Gder—)G—>Gab_)l,
which induces a map
co,um(G) — ¢p,m(G®) = ¢, X (G)T,

where X, (G®) is the cocharacter group of the torus G* over @P‘ Let X3, (G) be the
group of Q,-rational characters of G. Then we have

X5,(G) = X*(G*)".
The T-equivariant pairing X, (G*) x X*(G*) — Z then induces a map
cb,u X+ (G*)" — Hom(X*(G*)",Z) = Hom(X7, (G),Z).
In summary, we get a map by considering the composition
oy M —> cpum(G) — c;,,P,X*(Gab)r — Hom(Xg, (G),Z).

In the EL/PEL case, this is just the map constructed in [56, 3.52]. (See also [7, 5.1.3].)
If(G,[b],{u}) = (GL,, [b'],{¢'}) is an embedding of unramified local Shimura
data of Hodge type, we get the commutative diagram

X6 (b) ——— XS (")

| |

¢p,um(G)" —— cpr wm(GL)".

Moreover, we know 7 (GL, )" = m(GL,) ~ Z.
— perf —
Since by Proposition 3.11 Xf (D) is the perfection M of M, we have the isomor-
phism between the sets of connected components
f
o(Mrea) = 70" (X, (b))

Here, 72 (XS (b)) denotes the set of connected components of the perfect scheme
0 u p p

Xg (). On the other hand, we have also the set of connected components 7o (Xg (b))
defined in [7].

Proposition 3.12  With the above notation, there is a bijection

HO(Mred) = ﬂO(Xg(b)) .
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Proof See [78, Remark 3.2]. See also [31, Theorem A.4]. ]

Let (M) be the set of connected components of the formal scheme M, which
is the same as 77g(M;eq ). On the other hand, we have also the set of connected com-
ponents 7o (M) of the generic fiber M. As M is formally smooth and in particular
normal, by [34, Theorem 7.4.1], we have a bijection

TTo (Mred) ~ ﬂo(M).

One can also consider the set of connected components 7o (M ) for the finite étale
cover M of M. In [57], Rapoport and Viehmann made a conjecture on 779 (Mg xC, )
under the assumption that GI" is simply connected. We refer the reader to [57, Con-
jecture 4.26] for the precise statement on the existence of a determinant morphism
for the tower (Mg )k. This conjecture is known in the unramified simple EL/PEL
case; cf. [6, Theorem 6.3.1] (see also [7, Theorem 5.1.10 and Remark 5.1.11]). It will be
interesting to consider the more general Hodge type case studied here.

Fix a point xq € c;,,,,m(G)r. Let M,y ¢ M;eq be the fiber of wg over xo. Then
M, 4 is some union of connected components of M,eq. Let M* ¢ M be the asso-
ciated subformal scheme, with generic fiber M*. For any open compact subgroup
K c G(Qy), let My c M be the pullback of M c M. We get a tower (M5 ) keo(z,)-
We have the equalities

M=T,(Qp)MY, Mrea = Jo(Qp) My, M =J,(Q,)M*
and Mg = J(Q, ) Mx.

4 Rapoport-Zink Spaces of Abelian Type

We enlarge the class of Rapoport-Zink spaces of Hodge type in this section. They
are constructed locally from Rapoport-Zink spaces of Hodge type. Throughout this
section, we assume p > 2.

4.1 Local Shimura Data of Abelian Type

Let (G, [b], {4}) be a local Shimura datum. Consider the natural projection
G - G* from G to its associated adjoint group. We get induced [b*4], {u*},
so that (G, [b*4], {¢*}) is also a local Shimura datum and (G, [b], {u}) —
(G*4, [b*], {¢*?}) is a morphism of local Shimura data. We introduce the local
analogue of a Shimura datum of abelian type (more precisely, of preabelian type) as
follows.

Definition 4.1 A local Shimura datum (G, [b],{u}) is called of abelian type if
there exists a local Shimura datum of Hodge type (Gi, [b1], {¢1}) such that we have
an isomorphism of the associated adjoint local Shimura data (G4, [b*], {y*}) =

(G, [61], {ui®).

Thus, any local Shimura datum of Hodge type is also of abelian type. The later class
is strictly larger.
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Example 4.2 Let G = PGL,. Consider a nontrivial minuscule cocharacter y;:
G — GL, and [by] € B(GLy, ;). Take p = 24, [b] = [b34]. Then (G, [b], {u}) is
of abelian type, but not of Hodge type; ¢f. Example 3.8.

Recall that for a local Shimura datum (G, [b], {u}), if G; is a simple local factor
of G%d such that the component y2¢ of 44 is not trivial, then G; is a group of one
of typlés A, B,C, D, Es, E7; cf. [66, Annexe]. By Serre’s classification ([66, section 3])
and our definition, simple factors of G appearing in local Shimura data of abelian type
consists exactly of local reductive groups of types A, B, C, D. This is compatible with
Deligne’s classification of Shimura data of abelian type in [11]; ¢f. Example 4.4.

4.2 The Associated Rapoport-Zink Spaces
To construct Rapoport-Zink spaces, we need the following unramified assumption.

Definition 4.3 A local Shimura datum of abelian type (G, [b], {¢}) is called un-
ramified, if G is unramified, and there exists an unramified local Shimura datum of
Hodge type (Gy, [b1], {g1}) such that (G*¢, [b*'], {u*!}) = (G}, [b3], {4}}).

For an unramified local Shimura datum of abelian type, the local reflex field E
is an unramified extension of Q,. Thus, E=1,0 i = Op = W where, as before,
W =Ww(F,),L=Wg.

The following example is one of our main motivations.

Example 4.4 Let (G, X) be a Shimura datum of abelian type such that G is unram-
ified at p (cf. [11,38]). Take any [b] € B(G, u), the associated triple (Gg,, [b], {¢#}) is
an unramified local Shimura datum of abelian type.

Lemma 4.5 Let (G, [b], {u}) be an unramified local Shimura datum of abelian type.
Consider the associated adjoint local Shimura datum (G*4, [b*4], {u*9}). Fix a rep-
resentative b € G(L) of [b] with image b*! € G*(L), and identify Z¢ as a central
subgroup of J;,. We have the following isomorphism of reductive groups over Q,:

]b/ZG = Jpad.
Proof This follows from the definitions of J, and Jy.a. ]
Theorem 4.6 Let (G,[b],{u}) be an unramified local Shimura datum of abelian

type. Fix a representative b € G(L) of [b]. Then there exists a formal scheme M (G, b, ),
which is formally smooth, formally locally of finite type over W, such that

M(G, b, )P = X (b),
where M(G, b, u) is the special fiber of M(G, b, u). The formal scheme M (G, b, u) is

equipped with a transitive action of ], (Q,), compatible with the action of J;(Q,) on
XG(b).
14
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Proof Take any unramified local Shimura datum of Hodge type (G, [b1], {p1}) as
in Definition 4.3 and fix a representative b; € [b;]. Consider the associated formal
Rapoport-Zink space M (G, by, ) over Spf W. Then its special fiber M(Gy, by, 1)
satisfies

M(Gy, by, )P = Xfl‘ (by).

Recall that we have the cartesian diagram (cf. Proposition 2.5)

Gad
XG (b)) ———= X% (b1)

oM (G —— Cblad"ueladﬂl(G?d)r.

Let X/?f(bl)+ c Xfll(bl) be the fiber over ¢y, ,, under the map wg,: Xfll(bl) -
omm(Gr)'.  Let M(Gy, by, 41)* be the corresponding formal subscheme of
M(Gy, by, 1). On the other hand, we can also consider the fiber XE(b)* c Xf(b)
over ¢, under wg: Xg(b) - ¢p,,m(G)". Then by Corollary 2.6,
X1 ()" = X (b)"

We set

M(G, b, u)* = M(Gy, by, 1)
then MG, b, )P/ ~ XE (b)*. By Theorem 2.2(i), we have

X (b) = Jo(Qp) X (B)"
Therefore, there exists a formal scheme M(G, b, #), equipped with an action of
J»(Qj), such that
MG, b, 1) = Jo(Qp)M(G, b, 1)’
M(G, b, )P = X (b),

and the induced action of J;,(Q,) on M(G, b, §t)req is compatible with that on XE (b)
under the above identification. In fact, we can take

M(G, b, ) = [J6(Qp) x M(G, b, 1) "] /16(Qp)*
~ I M(G, b, u)",
Jo(Qp) /15 (Qp)*

where J,(Q,)* c J5(Q,) is the stabilizer ofXE(b)+ under the action of J;(Q,) on
Xy (b).

The above construction does not depend on the choice of the unramified local
Shimura datum of Hodge type (G, [b1], {p1}) as in the statement of the theorem,
since if (G, [b2], {p2}) is another such one, then we have a canonical isomorphism

M(Gl) b1, #1)+ ~ M(Gz, b,, [42)+-

This follows from the bijection X' (by)* =~ X{?(b,)*, the isomorphism of deforma-
tion rings Rg,,x, ~ RG,,x,» Where Xg:(bl)+ 35X = Xy € Xg;(bz)Jr, cf. [38, 1.5.4]
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(from the description there, R depends only on the adjoint group G*¢), and the con-
structions in [36, section 6]. ]

By construction, we have a map of étale sheaves M(G, b, u) — cp,,m(G)" over
W, lifting the map wg: XSG# (b) > ¢p,,m(G)". Asin [78, Corollary 3.12], we have the
following dimension formula for the special fibers by applying [78, Theorem 3.1].

Corollary 4.7  Let the notations be as in Theorem 4.6. We have dim Mieq = (p, —v[p])
— 2defg(b), where p is the half-sum of (absolute) positive roots of G, and def(b) =
rankg, G - rankg, Jp.

Let (G, [b], {u}) be an unramified local Shimura datum of abelian type. Take an
embedding G = GL,,. Then we get an induced triple (GL,, [b'], {¢'}). If (G, [b], {u})
is not of Hodge type, then { '} is not minuscule. In any case, we have the embedding

M(G, b, )P = X7 (b) > XSy (b").

Remark 4.8 In this paper we do not study the Weil descent data on Rapoport-
Zink spaces. To define the Weil descent datum on the abelian type Rapoport-Zink
space M(G, b, u), we just mention that it should be possible to develop a similar the-
ory as that in [11] by dividing the desired Weil descent datum into two parts, one
part for M(G, b, 4)* and one part for 7,(G)" so that the morphism M(G, b, u) —
c;,,,,ﬂl(G)r is equivariant for the Weil descent data on two sides. The part for
M(G, b, u)* is inherited from the Weil descent datum for any associated Hodge type
Rapoport-Zink space M(Gy, by, p1). For the spaces as in the following Proposi-
tion 4.9(i) or Theorem 4.11, the Weil descent datum can be defined quite easily: by
quotient from that for M(Gl, by, u1) or by moduli methods as in [56, 3.48].

4.3 A Moduli Interpretation

Let (G, [b],{u}) be as in Theorem 4.6. Then by construction, locally the formal
scheme M(G, b, u) admits a moduli interpretation. More precisely, take (G, [b;],
{t1}) as in Definition 4.3. Then the formal scheme M (G, by, ;) is a moduli space
of p-divisible groups with crystalline Tate tensors. In particular, M(G, b, u)* is a
moduli space of p-divisible groups with crystalline Tate tensors such that under the
map wg, the image is fixed.

Suppose now that there exists a triple (Gy, [b;], {1} ) as in Definition 4.3 such that
the map

m(G)" — m(Gi)"

is surjective. Then the formal scheme M (G, b, 4) admits a global moduli interpreta-
tion as follows.

Proposition 4.9  Under the above assumption,

(i) we have an isomorphism of formal schemes

MG}, b1, 1i?) = MG, b, i) [ X (Z6,)'s
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(i) M(G,b,u) is the pullback of M(Gy,by, 1)/ X.(Zg,)" under the morphism
7T1(G)r i ﬂl(Gad)r.

Proof We have the following cartesian diagrams (of morphisms between étale
sheaves over IF,):

Gl 1a
XG(br) ——— X (b34) =< XS (b)

| |

Cbl,ﬂlﬂl(Gl)r E—— va{\d’”?dﬂl(G?d)r e Cb,Mﬂl(G)r

inducing the corresponding cartesian diagrams for Rapoport-Zink spaces (as étale
sheaves over W). All the vertical maps in the above diagram are surjective by Proposi-
tion 2.4. The assertions follow by the assumption 7, (G;)" — 7, (G*)" is surjective. m

Example 4.10 Consider Example 4.2 again. As the exact sequence 1 - G, —
GL, - PGL, — 1induces a surjection

m(GL,)" = m(GL,) - m(PGL,)",

we have 5 .
M(PGLy, b, ) = M(GLy, by, )/ p”.

Another example will be given in Section 8.

By construction, both the above local moduli interpretation for M(G, b, 4)* and
the global moduli interpretation in Proposition 4.9 are not canonical. Moreover, the
formal scheme M (G, b, ) associated with a general unramified local Shimura datum
of abelian type does not admit a moduli interpretation by p-divisible groups with
additional structures. Nevertheless, we have the following theorem.

Theorem 4.11 Let (G,[b],{u}) be an unramified local Shimura datum of abelian
type. Assume that there exists an unramified local Shimura datum of Hodge type
(G1, [b1], {1 }) with a local Hodge embedding 1: G, — GL, such that 1(by) has no
slope 0, and such that (G2, [b24], {p29}) =~ (G*4, [b*4], {u®9}). Then the formal
scheme M(G, b, i) represents the moduli functor of (G, u)-displays RZg, b defined
in [4, 4.2].

Proof We just briefly sketch the arguments: by the proof of Proposition 4.9, we have
the cartesian diagrams of étale sheaves:

M(G, by, ) ——= M(G*, 6%, ) <—— M(G, b, p)

| | |

Cbl,m ﬂl(Gl)r —_— va{\d’luv{\dﬂ'l(G?d)r <~ Ch"uﬂl(G)r.

Consider the Biiltel-Pappas functors RZg, ,, », ,BZGTd, i pads RZG b as étale sheaves

over W. By construction, their restrictions over IF, are isomorphic to the étale sheaves
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given by the corresponding affine Deligne-Lusztig varieties, cf. [4, Proposition 4.2.5
and Remark 4.2.6]. Thus, we also have the cartesian diagrams of étale sheaves

RZGl’ﬂl)bl RZGad’Had’bad < RZG,ﬂ,b

| i i

o (G1) —— paa e (G <—— ¢4, m(G)".

By [4, Remark 5.2.7], M(Gy, by, 1) represents the functor RZg, yp,b,- Therefore,

M(G, b, u) represents RZg up- ]

When passing to the generic fibers, Rapoport-Zink spaces of abelian type are in-
deed canonical moduli spaces of some objects (local G-shtukas in the sense of
Scholze): see the next section.

4.4 Generic Fibers and Local Shimura Varieties of Abelian Type

Let (G, [b], {}) and M = M(G, b, ) be as in Theorem 4.6. We consider the rigid
analytic fiber M = M(G, b, u) over L, regarded as an adic space. For any open com-
pact subgroup K c G(Z,), we construct a finite étale cover My of M as follows. If
(G, [b],{u}) is of Hodge type, then this is known by [36, 7.4] (see also our subsec-
tion 3.3). Now consider the general case.

First, assume that K = K, for some n >1, where K, = ker(G(Z,) - G(Z,/p"Z,)).
On the component M* = (M(G, b, ‘u)*)f;d, we can construct a finite étale cover M},
by taking some unramified local Shimura datum of Hodge type (G, [b1], {p1}) as in
Definition 4.3 and using the moduli interpretation of M(Gj, by, ;). We can take

Mo = [J6(Qp) x MG 1175 (Qp) "
In this way, we get a tower (M, ), on which G(Z,) acts. Set My = M. The action of
G(Zp) on M, factors through G(Z,)/K, = G(Z,/p"Z,). Now let K c G(Z,) be
arbitrary. Take some sufficiently large n such that K,, ¢ K. Set Mg = M,,/K. Then
Mk is a finite étale cover of M, and it does not depend on the choice of n. When
K c G(Z,) is normal, M is a Galois cover of M, with Galois group G(Z,)/K. For
any g € G(Q,) and any open compact subgroup K c G(Z,), we have a natural

isomorphism

My — Mgggt.
As a result, the group G(Q,) acts on the tower (Mk)cg(z,) by Hecke correspon-
dences.

As before, for any open compact K ¢ G(Z,), let My c Mk be the pullback of
M* ¢ M. In this way, we get a sub-tower (My )k ¢ (Mk)k. Let G(Q,)" ¢ G(Q,)
be the subgroup which is the stabilizer of the subtower (M%) x ¢ (Mg )x. By Lemma
2.3(i) the map wg: G(Q,) — m(G)" is surjective. By construction, we have the
induced bijection

w6t G(Qp)/G(Qy)" — m(G)",

and moreover,

Mk =Jp(Qp) My, (Mk)x = G(Qp) (My)k-
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Let (G, [b], {¢}) be an unramified local Shimura datum of abelian type. In the
sequel we want to construct a period map mgr: M — .% £, on the generic fiber M
of the associated Rapoport-Zink space and study some of its properties. Take any
(G, [b1], {@1}) as in Definition 4.3. Then we have the canonical identification of the
associated p-adic flag varieties over L:

ngc)ﬂ = G/P‘u = 9861% = GI/PHI'
Sometimes we will simply write them as . ¢,,. By [36, 7.5], we have a period map
7G,,dR* M(Gb bl) ﬂ]) — ﬁeﬂ,

which is Jp, (Q,)-equivalent. If (G, [b], {¢}) = (GL,,[b"],{#'}) is an embedding
of unramified local Shimura data of Hodge type, we get an induced embedding of
flag varieties . €, ,,, > -7 €GL,,ur Over L. By construction, we have the commutative
diagram

M(Gy, by, 1)) —— M(GL,,, b', )

i”cl,dk i"GLn,dR

EEGI,‘M]% }YGLM/.

Let us briefly review the construction of 77, 4r. Let (s4) ¢ A® be a finite collection
of tensors (rank A = n) such that G; ¢ GL(A) is the schematic stabilizer of (s,).
Then the closed embedding .7 €g, ,, = F €L, classifies {y }-filtrations of A with
respect to (s4); ¢f. [36, Definition 2.2.3 and Lemma 2.2.8]. By [36, 7.5], the period
morphism 77, 4r: M(Gy, by, ph1) = F €g,,,, is given by (Fil'D(X“ni");;[gl, (%)) us-

ing the induced isomorphism p : D(X““i");;[g ~ Oy, ® A, which matches (#5¢) with
1 ® sq, where M; = M(Gy, by, w), My = M(Gy, by, 1), and (XU, (t,), p) is the
universal p-divisible group with crystalline Tate tensors and quasi-isogeny over Mj.
Thus, the above diagram is commutative.

Restricting the map 7, 4r to M(Gy, by, p1)* = M*, we get a map
T[gRZ M+ = M(Gl, b],[/ll)+ —> zngﬂ
Then applying the group action of J; (Q, ), we can define a J;, (Q, ) -equivariant period
map for M:
mar = 7mG,ar: M =M(G,b,u) - F¢,.

Let ¥ f"‘GCIf’;‘“ c .Z¢, be the open subspace defined by Hartl (using Robba rings)
in [27, section 6], which can be defined equivalently by using the crystalline period
ring Beis (cf. [14]). In [54, 65], the subspace .# K‘E"f‘ is described using the Fargues-

Fontaine curve, which applies to an arbitrary local Shimura datum (G, [b], {u}). See
also Proposition 5.13.
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Proposition 4.12 .7 K‘é‘ii“l is the image of ng, ar. And we have the commutative
diagram

M(Gla bla ”I)CH M(GLH) bl) !’t’)

iﬂcl,u iﬂmn,m

a7 padm g padm
JEGM“% JKGLM,.

Proof By the above construction, the composition

M(Gr, by pr) > M(GL, b, ') "5" Fegr,
factors through .% €, ,,,. By [27, Theorem 7.3] and [14, section 4], we have Im 77y, 4r=
F EEdL’:" e On the other hand, by [27, Proposition 6.2], we have
T = T 0 F G, -

Thus, the above diagram commutes. To show Immng, 4 = & Eﬁ;‘i";‘“, it suffices to

show that for any algebraically closed complete extension C|L, the induced map
on C-valued points is surjective. Let (x, (sxa)) € F€g, 4, (C, Oc) with image x €
F€ar,,u(C, Oc), such that there exists a point (X/Oc¢, p) € M(GL,, b", u")(C, O¢)
maps to x under 7, 4r. By definition, we have the isomorphism

P DXk ) = Oni(ao i) © A

and x = p(Fil'D(Xy.)o) considered as a filtration on the right-hand side. Via the
rigidification p, there exists an element g € G(Q,)/G(Z,) c GL,(Q,)/GL4(Z,)
such that D(Xy.) ~ (gA® W, g 'b'6(g) o). Therefore, each tensor s, on A induces a
crystalline Tate tensor #, on X. We geta point (X/Oc¢, (t4), p) e M(Gy, by, 41)(C, O¢),
which, by construction, mapsto (X/Oc, p) e M(GL,,, b’, ') (C,O¢) and (x, (sxq)) €
F€6,,,(C,0c) under the embedding M(Gy, by, p1) = M(GL,,b", u") and the
period map 7¢, 4r, respectively. [ ]

For any open compact subgroup K c G(Z,), we have the finite étale map My =
M(Gy, by, ) g = M* = M(Gy, by, 1) *; thus, we get a morphism My — F¢,,.
From this we can define a J;, (Q,)-equivalent period map for Mg g 4r: Mg —
Z¢,. When K varies, these period maps are compatible with the Hecke action of
G(Qp) on (Mk)k. Thus, we can think that there exists a G(Q,)-invariant map
(MK)K i yfﬂ.

Recall that we also have Z €53, and .7 € ,. By construction, we have .7 K“é}f?h c
F g, > and, similarly, 7 f‘g}‘; TG
Lemma 4.13 We have

arpwWa  _ grpwa arpadm  _ g padm
7 Gy — 7 G,u> ‘/fGl,[h - ‘jeG,M :

Proof The equality .7 €¢? w = F 5‘5‘,‘# follows by [10, Proposition 9.5.3(iv)]. The
second equality follows by the definition using G-bundles on the Fargues-Fontaine
curve. ]
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Corollary 4.14 % E“Gcf}‘j‘ c .F ¢, is the image of the above period map m¢ 4x.

Proof Let.% Q‘if‘;’: c F€g,,,,, be the image of 7j,.
Since
(MG, by, 1)) o = G1(Qp) (VUG by, 1)) o5

and the map M(Gy, by, 1)k — ﬂ@g‘if’;‘“ is G1(Qp)-invariant, we get

adm,
Im71G, 4r = 5‘761’#:’.
Wealso have (M(G, b, u)k)k = G(Q,)(M(G, b, ) %) k> and by our construction,

the map (M(G, b, u)x)x = -F ¢, is G(Q, )-invariant, we also get

geadmﬁ

Im ﬂG,dR = Gro *

Thus, Im 776, 4r = Im 71, 4r. By Proposition 4.12 and Lemma 4.13, we have

Im 716, ag = Im 71, ar = F o, = F . ]
Remark 4.15 We always have 98“&;‘; c ﬁf‘é",‘y. In [27, section 9] and [54, Ques-

tion A.20], Hartl and Rapoport asked: when is % L’aG‘!‘,f = Z¢5,? For G = GL,, Hartl
[27, Theorem 9.3 | gave a complete solution of this question. For arbitrary G and mi-
nuscule y, Fargues and Rapoport conjecture that this holds true with [b] basic if and
onlyif (G, {u}) is fully Hodge-Newton decomposable in the sense of [22, Definition
2.1 (2)]; ¢f [22, Conjecture 0.1]. In the appendix we will see that ffacd,';‘ = Fe5
in the case [b] is basic and G is the special orthogonal group. For a solution of the
Fargues—Rapoport conjecture, see [9].

Recall that by Lemma 2.3(i), the map wg : G(Q,)/G(Z,) — m(G)" is surjective.
Lemma 4.16 (i) The following diagram is cartesian:

G(Q,)/G(Zy) ——m(G)"

| |

GH(Qp)/G*(Zp) — m(GM)".
(ii) In particular, for G and G, as above we have G(Q,)* ~ G(Q,)".

Proof Note that non-empty fibers of both vertical maps are torsors under X, (Zg)".
By [39, Lemma 1.2.4], if g*! € G**(Q,)/G**(Z,) and wgaa (g**) lifts to an element of
m(G)", then g*! lies in the image of G(Q,)/G(Z,) —» G*(Q,)/G*(Z,). There-
fore, the above diagram is cartesian.

In particular, we have the bijection G(Q,)* ~ G(Q,)" from (i) for G and G, as
above. [ ]

Let X be a rigid analytic space over a local field k|Q,. By [33, section 5] and
(35, 8.4], we have the categories of Z,-local systems and Q,-local systems on X. De-
note them by Z, — Locx and Q, — Locy, respectively. Let G be a reductive group
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over Q,. Denote by RepG the category of rational representations of G. Recall that a
Qp-G-local system on X is an exact tensor functor RepG — Q, — Locx (see [26, 4.3],
for example). If G is, moreover, unramified, and we fix a reductive model Gz , of G
over Zp, then we can define similarly Z,-G-local systems (or better notion: Gz, -local
systems) on X. In the following we will take X = .% €*(‘;d,’; or X = M. By construction,
we have the following proposition.

Proposition 4.17  There exists a J,(Q, ) -equivariant Q,-G-local system 'V on 9"82‘1";1
such that for any affinoid algebra (R,R") over (L,Or), M(R, R") is the set of Gz,,-
local systems in Vp,(g,r+). In particular, there exists a J,(Q,)-equivariant Gz, -local
system I on M, and the tower (M ) ke (z,) is obtained by trivializing IL.

Proof Under the identity .# EaG‘if’;‘“ = EaG‘{’II‘, we have a Q, — G;-local system V; on
F 8*&‘1":‘. Indeed, let V, (X""") be the rational Tate module of the universal p-divisible
group X"V over M;. We have the étale Tate tensors t, ¢;: 1 —> Vp (XUMV)® corre-
sponding to each ¢, under the comparison theorem, cf. [36, Theorem 71.6]. Then
V,,(X"™V) descends to a Q,-local system V; on .F EaG‘E‘;, equipped with the induced
étale Tate tensors t,,.¢. Fix any geometric pointx — % Eg‘ij‘. Letpy, 5: m(F Q‘{‘;, X)
— GL,(Q,) be the p-adic representation of the (de Jongs) fundamental group
m(F Q‘{‘;,E) corresponding to V;, cf. [33, Theorem 4.2]. Then as t, ., is invariant

under nl(ﬁfﬁ;‘f‘;,f) (¢f. [36, Theorem 7.1.6]), we get a morphism
pvss m(F LG T) — Gi(Q)

which thus defines a @, — G;-local system V; on .% Egd";f. Moreover, as in the proof of
Proposition 4.12, M; (R, R") can be identified with the set of Z-lattices together with
tensors (t,) in Vigpa(r,r+)> OF equivalently, [Isomyeg;{'; (G, V1)/Gi(Zy)](R,RY),
where G, is the trivial Q,-G;-local system on .7 EaGd";‘. The tower (M) KeGi(Z,) 18
the geometric realization of Q,-G,-local system V; on .7 Ea(f‘;‘ in the sense that Mg ~
Isom 5 exim (G1, V1)/K. This identification preserves the Hecke actions of G, (Q,) and
the actions of J;, (Q,), cf. [27, Remark 2.7] and the proof of [27] Theorem 7.3 (c)
and (d).

The group nl(ﬂ\BaGd)"f,E) acts on G;(Q,) through py, %. The group J, (Q,) acts
on G(Q,) as the Q,-local system V, on ffacd,';‘ is Jp, (Qp)-equivariant.

Fix a point xo € 7;(G;)". Then we have the associated M; and (M) k. The tower
(M )k defines a subgroup G;(Q,)* c G;(Q,) and a morphism

Pzt m(F G T) — Gi(Qy)".

By Lemma 4.16(ii), we have G(Q,)" ~ G;(Q,)". Therefore, we can define an action
of m(F €§f‘;,§) on G(Q,) that commutes with the natural action of J,(Q, ). Thus,
we get a p-adic representation

pr: m(F gy %) — G(Qyp),
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which defines the desired Q,-G-local system V on .7 K‘é‘f‘lj‘. Moreover, for any
K c G(Z,), we have the identification

My = Isom g puam (G, V)/K,
N

where G is the trivial Q,-G-local system on .7 BE‘{L“. As above, this identification
preserves the Hecke actions of G(Q)) and the actions of J; (Q,). ]

We note that Corollary 4.14 and Proposition 4.17 generalize [27, Theorem 8.4]
(EL/PEL type case, but there one can allow ramification) to the abelian type case.

Let (G, [b], {u}) be an unramified local Shimura datum of abelian type. For each
open compact subgroup K c G(Z, ), we get the associated Rapoport-Zink space

MK ~ LI M;&
m(G)T

Let A be the image of 7,(G)" — 7;(G*?)". This is a finite group. We have an exact
sequence

1— X.(Zg)" — m(G) — Ag — 1.

We have the Hecke action of G(Q,) on the tower (Mx)k. The Hecke action of the
central subgroup Zs(Q,) c G(Q,) stabilizes each M. This action of Z; (Q, ) is the
same of that induced from J;,(Q,) when we view Z(Q,) c J;(Q,). This action on
Mg~ I Mg=I1 I Mg
m(G)T Ac X4 (Zg)T

is through the map Z¢(Q,) = X« (Zg)" and the injection X..(Z¢)" — m(G)".

In summary, the tower (Mg ) kcg( z,,) associated with an unramified local Shimura
datum of abelian type can be viewed as the local Shimura varieties thought of in Con-

jecture 3.2. In the next section, we will put these spaces in a more general framework
to get some moduli interpretation for each Mk.

4.5 Infinite Level and the Hodge-Tate Period Map

Let (G,[b],{¢#}) be an unramified local Shimura datum of abelian type, and let
(Mk )k be associated tower of Rapoport-Zink spaces of abelian type. Let .7 £ ,1
be the p-adic flag variety over L associated with (G, {u™'}).

Proposition 4.18  There exists a pre-perfectoid space Mo, over L such that
Moo ~ hm MK,
N3

cf. [65, Definition 2.4.1] for the precise meaning of such formula. Moreover, there exists
a Hodge-Tate period map nyr: Moo —> F€g 1 that agrees with the period map
previously defined in the EL/PEL cases in [5, 65].

Proof If (G,[b],{u}) is of Hodge type, the existence of the preperfectoid space
Moo over L such that Mo, ~ l(ir_nK Mk is proved in [36, Proposition 7.6.1]. Fix an
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embedding (G, [b],{u}) = (GL,, [b’], {¢'}) with {¢'} minuscule. We have the as-
sociated preperfectoid space M(GL,,b’, p') s over L such that M(GL,, V", ¢’ ) o ~
lim M(GL,, ', y') k. The Hodge-Tate period map

TTHT - M(GL,,, bl, ‘Ll,)oo —> fL’GLm(H,)ﬂ
is defined in [65, 7.1]. Arguing as [5, section 2], we get that the composition
Moo - M(GLn, bl, ,u,)oo —> yeGLn’(l/)—l

factors through .7 £ ,-1. In particular we get w7 Moo —> F €, ,-1. Now assume
that we are in the general case. As J,(Q,) acts on [M| := lim | Mk, it suffices to

prove that there exist a preperfectoid space M7, over L such that
ML, ~lim My,
i
K

and a Hodge-Tate period map
ﬂ;{T: M:o —_— yec,‘u—l.
This follows from the Hodge type case. [ ]

The following corollary is now clear.

Corollary 4.19  There exists a subpreperfectoid space MY, ¢ Mo, over L that is stable
under G(Q,)", such that

ML ~HmME, Moo = G(Q))ML.
K

5 Generic Fibers of Rapoport-Zink Spaces as Moduli of Local
G-shtukas

In this section, we work mainly on generic fibers. We want to explain that the generic
fibers of the formal schemes M (G, b, ), associated with unramified local Shimura
data of abelian type (G, [b], {u}), can be viewed as moduli spaces fo local G-shtukas
in mixed characteristic in the sense of Scholze®, cf. [61]. We will work in the more
general context of Conjecture 3.2. The first few subsections will be a brief review
of works of Fargues [17,20] and Scholze [61]. The reader familiar with these can go
directly to Subsection 5.5.

5.1 The Fargues—Fontaine Curve and G-bundles

The Fargues-Fontaine curve Xp g is associated with a datum (F, E), where E is a
local field with finite residue field Fy and F|F, is a perfectoid field of characteris-
tic p. For our purpose, we set E = Q, and denote simply Xr g, as X. It has several
incarnations.

6By [63,64], the same should be true even for the formal schemes M(G, b,u)!

https://doi.org/10.4153/50008414X19000269 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X19000269

On Some Generalized Rapoport-Zink Spaces 1141

5.1.1 The Adic Curve

The adic curve Xp admits the adic uniformization Xp = Yg/ </>Z, where Yg =
Spa(W(Op))\V(p[@F]), with @ € F satisfying 0 < |@p| < 1. The action of the
Frobenius ¢ on the Witt vectors is given by

(/)(%:[xn]p”) = %:[xg]p" for all %:[xn]p” e W(Op).

It induces a totally discontinuous action on Yg.

Suppose now that F is algebraically closed. Then there is a unique non-analytic
point x; € Spa(W(OF)). SetY = Y = Spa(W (Op))\{xx}. There exists a surjective
continuous map «: Y - Ry U {oo} defined by

K(x) _ 10g |[(DF:|A(/;5)| ,
log |p(%)]
where X is the unique maximal generalization of x; ¢f. [61,12.2]. Forany I c Ryou{co},
we denote Y; = x'(I). Then Y := Y§ = Y (¢,00)-

Let I c [0, oo] be an interval of the form [r, 00) or [, co]. Recall that a ¢-module
over Yy is a pair (&, ¢¢ ), where € is a vector bundle over Y; and ¢¢: ¢*Ely, - & is
an isomorphism; cf. [61, Definition 13.2.1]. It follows that ¢-modules over Y ¢,o0) are
the same as vector bundles over X := Xp.

5.1.2 The Algebraic Curve

There is a natural line bundle O(1) on X, corresponding to the ¢-module on Yo, c)
whose underlying line bundle is trivial and for which ¢ is p™'¢. Set O(n) = O(1)®"
and
P= @ H(X,0(n)).
nx0

We have

H(X,0(n)) = 0(Y)**".
Let X*h = Proj(P). By [20], this is a one dimensional noetherian regular scheme over
Q,. There exists a morphism of ringed spaces X — X*", and X can be viewed as the
analytification of X*" in some generalized sense.

Remark 5.1  Using the theory of diamond developed in [61], the curve admits yet
another version: the diamond curve

X = (Spa(F) x Spa(Q,)°) /¢”,

where ¢ = Froby x Id. We will not use this version in the sequel.

Let Buny. and Buny be the categories of vector bundles on X*" and X respec-
tively. The morphism X — X*" induces a GAGA functor

Bunysw — Buny.

Theorem 5.2 ([16,35]) The GAGA functor induces an equivalence of categories

Bunysa — Bung.
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There is another way to describe vector bundles on X. Consider the Robba ring

f}sz = li_r)nHo(y(O,r]’ O‘é(o,,—] )

r

The Frobenius ¢ induces an action on Rp. Recall a ¢-module over Rp is a finite free
Rp-module M equipped with a ¢-linear automorphism.

Theorem 5.3 ([35, Theorem 6.3.12])  There is an equivalence of categories

Buny = {¢ — modules over Ry }.

The idea for the proof is that any ¢-module over Ry is defined over
ﬁig = HO(H(OJ]’ o%(o,r])

for some r small enough. This can be spread to a ¢-module over Yr = Y(g,00) Via
pullback under Frobenius. Giving a ¢-module over Yo o) is the same as giving a
vector bundle over X by the uniformization Xr = Y(o,c0)/¢”.

Let ¢—Mod, be the category of F-isocrystals over IF ,, where as before L = W (F, )q.
For any (D, ¢) € ¢ — Mody, we can construct a vector bundle &(D, ¢) on X*" by

E(D, ) = Proj( @ (Do O(Y))**4").
0

nx

Theorem 5.4 ([20]) The functor E(=): ¢ —Mod; — Buny.a is essentially surjective.

Therefore, the composite £(-): ¢ — Mod; — Buny.» — Buny is also essentially
surjective.
Let G be a connected reductive group over Q,. We have the following equivalent
definitions of a G-bundle on X (or equivalently on X schy.
(1) an exact tensor functor RepG — Buny, where as before RepG is the category of
rational algebraic representations of G;
(2) a G-torsor on X locally trivial for the étale topology.

Recall that an F-isocrystal with G-structure over I, is an exact tensor functor
RepG — ¢ — Mod;.
If b € G(L), it then defines an F-isocystal with a G-structure
My: RepG — ¢ — Mod,
V — (V.,bo).
Its isomorphism class only depends on the o-conjugacy class [b] € B(G) of b. Con-
versely, by Steinberg’s theorem any F-isocrystal with G-structure arises in this way.
Thus B(G) is the set of isomorphism classes of F-isocrystals with G-structure; cf. [55,
Remarks 3.4 (i)]. For b € G(L), let &, be the composition of the above functor M,
and
&(-): ¢ —Mod; — Buny.s ~ Buny.

In this way, the set B(G) also classifies G-bundles on X. In fact, we have the following
theorem.

https://doi.org/10.4153/50008414X19000269 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X19000269

On Some Generalized Rapoport-Zink Spaces 1143

Theorem 5.5 ([17]) Assume that F is algebraically closed. Then there is a bijection of
sets

B(G) — H.,(X,G)
(6] — [Es].

We discuss briefly the relative version of the above theory. Let (R, R*) be a perfec-
toid affinoid IF,-algebra, and let S = Spa(R, R™) be the associated perfectoid space.
We have an adic space over Q,:

Xs = Ys/¢",
with YS = YR,R* = Spa(A, A+)\V(p[CDR]), where
A=W(R%) = {go[xn]p” | xpeR°}, A" ={ go[xn]p” €Al xoeR"},

and @p is a pseudo-uniformizer of R. The adic space X is the relative version of the
Fargues—Fontaine curve. We can also define the scheme

chh = Proj( @ HO(XS’ OXs(d))) N
d>0

Then there exists a map of locally ringed spaces X5 — Xi. We can define vector

bundles on Xg, X;Ch as above and the relative Robba ring Rr. Moreover, we have the
following theorem.

Theorem 5.6 ([16,35])

Buny.a ~ Buny, = {¢ — modules over Rp}.

Let S = Spa(R, R") be an affinoid perfectoid space over IF,, and let @ be a pseudo-
uniformizer of R. We denote

Y10.00) (R, R7) = SpaW (R")\V([@x]).
Then we have a continuous map
K: ‘j[o)m)(R, R+) — [0, oo),

the relative version of the map defined previously. With the same notation as there,
we have
Ys = 1j(o)w) (R,RY).

Let G be a connected reductive group over Q,. Then, as above, we can define
G-bundles on X, Ys = Y(9,0) (R, R"). If G is unramified over Q,, after fixing a re-
ductive model Gz, of G over Z,, we can further define G-bundles on Y[g o) (R, R").

If we start with a perfectoid space S over QQ,, then there exits a canonical closed
embedding xg: § < Y, which in turn induces a closed embedding xs: S < Xg;
of. [15,1.4]. Here S’ is the tilt of S over F, in the sense of [60]. Thus, we can view S as
a Cartier divisor on Xg:. If § = Spa(R, R") is perfectoid affinoid over Q,, by [17, 1.6]
we have a corresponding Cartier divisor D on X§;". The formal completion of X;fh
along D is SpfBgy s cf. [15, Proposition 1.33].

https://doi.org/10.4153/50008414X19000269 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X19000269

1144 X. Shen
5.2 Local G-shtukas in Mixed Characteristic

Let the notation be as above. From now on, we assume that G is unramified’” over
Q, and fix a reductive model Gz, of G over Z;. Let S = Spa(R,R") be an affinoid
perfectoid space over IF, with an untilt S ¥ of S. Then there exists a closed embedding
S* < Y10,00) (R, RT).

Definition 5.7 ([61, Definition11.4.1])  Alocal G-shtuka over S with one paw x: st -
Ylo,00) (R, R") is a pair (&, ¢e ), where
« & isa G-bundle over Yp o) (R, R");
« ¢e: ¢*E — & isan isomorphism over Y[¢,0) (R, R*)\Iy, such that along T it is
meromorphic. Here, Iy is the image of x.

One can then generalize the above notion to define a local G-shtuka over a general
perfectoid space over IF .

Let C be a complete algebraically closed extension of Q,. We have the associated de
Rham period ring B3, := Bgy . with a fixed uniformizer £ € B3,. Let Bar = B:{R[%]’
Ains = W(O¢»). We have the following various descriptions of local G-shtukas with
one paw at C, in the case G = GL,.

Theorem 5.8 ([61, Proposition 20.1.1]; see also [19]) The following categories are
equivalent:

(i) Shtukas over Spa(C®, O¢+) with one paw at C.
(i) Pairs (T, E), where T is a finite free Z.,-module, and E c T ® Bay is a Bjy-lattice.
(iii) Breuil-Kisin-Fargues modules over Ains.
(iv) Quadruples (F,3',B,T), where F and F' are vector bundles on the Fargues-
Fontaine curve X = X¢v , and B: F|x\ (oo} > 3";(\{00} is an isomorphism, where
F is trivial, and T ¢ H*(X, F) is a Z,-lattice.

If the paw is minuscule, i.e., we have
§(T ®z, Bjr) c Ec T ®z, Big,

then these categories are equivalent to the category of p-divisible groups over Oc.

Recall that a Breuil-Kisin-Fargues module over Aj,f is a pair (M, ¢y ), where M is
a finite free A;r-module and ¢y (¢* M)[E71] 5> M[£7] is an isomorphism; cf. [61,
Definition 11.4.2].

5.3 Moduli of Local G-shtukas in Mixed Characteristic
We have the following generalizations of Definitions 3.1 and 3.3.

Definition 5.9 (i) A local shtuka datum is a triple (G, [b], {¢}), where
G is a connected reductive group over Q,;

7This is not necessary by the methods of [61-64]. Here, we restrict to the unramified case to simplify
the exposition, which is also sufficient for our purpose.
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« {u} is a conjugacy class of cocharacters y: G,, > CﬁQP over @p;
* [b] € B(G,p) c B(G).
(ii) Let (G, [b1], {m1})> (G2, [b2], {¢2}) be two local shtuka data. A morphism

(G1, [1], {m}) — (G, [b2], {p2})

is a homomorphism f: G; - G, of algebraic groups sending ([b;], {¢1}) to
([b2], {u2})-

Remark 510 (i) By definition, a local Shimura datum (G, [b], {u}) is a local
shtuka datum with {} minuscule. For a local shtuka datum (G, [b], {u}), the
simple factors of G*¢ can be groups of arbitrary type.

(i) In[61], several {u}’s canbeallowed, asin the classical function field case; cf. [70].

(iii) In particular, if (G, [b],{p}) is a local shtuka datum, and G - G’ is a homo-
morphism of reductive groups over Q,, we get the induced [4'], { "} such that
(G',[b'],{u'}) is also a local shtuka datum.

(iv) We refer the reader to [28] for local function field case, where {u} is replaced
by a bound Z in the sense of [28] Definition 2.1(b).

Let (G, [b], {u}) be alocal shtuka datum. As before, we have the associated local
reflex field E, and the reductive group J; over Q,. Let F be an algebraically closed
perfectoid field of characteristic p. By Theorem 5.5, we have a G-bundle on Xp, which
is the same as a ¢-G-module (&, ¢p¢,) on Yr, well defined up to isomorphism. We
will use freely the notion of diamond in the following; ¢f. [61] for basic definitions and
properties. We define a functor on the category of perfectoid affinoid algebras over
F, as follows.

Definition 5.11 ([6], Definition 19.3.3]) Let (R,R*) be a perfectoid affinoid
IF,-algebra together with amap x: Spa(R,R*)° — %pa(E)Q (which is the same as
giving an untilt of R over E). Let Sht(G, b, ) — Spa(E)® be the functor such that for
any ((R,R"), x),

Sht(G, b, ) ((R,R*),x) = {((E, pe).1) }/=
where

* (&, ¢¢e) is a G-shtuka over Y[,y (R, R") with one paw at x, such that (&, ¢¢)
is bounded by {y};

e 12 (& ¢e)|poo) = (Eps0e,)l[p,0) is an isomorphism for some sufficiently
large p.

The following is the main theorem of [61].

Theorem 5.12 (Scholze [61, Theorem 20.3.1] )  The functor Sht(G, b, u) is represented
by a diamond over Spa(E)°.

(In [61] the theorem is proved for the case G = GL,, but one sees immediately that
the proof given there also works for the general case. See also [64].)
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We want to discuss period maps in this setting. Consider the B}, -affine Grass-

.
mannian Grg‘“‘ over Q,. This is the functor associating with any perfectoid affinoid
Qp-algebra (R, R") the set

Gre™ (R R") = {(&, )}~
where € is a G-torsor over SpecBgR’ r> and B is a trivialization of € ® Bin B4gr,r- One
can check that Grgr“‘ is the étale sheaf associated with the presheaf
(R,R") — G(Bar,r)/G(Bgg,z)-
Consider the case (C, C*) with C|Q, an algebraically closed perfectoid field. Then

we have the Cartan decomposition

G(Bar,c)= I G(BER,c)ﬂ(f)%G(BgR,C)’

peXo (T)+

where T' c B c G is a fixed choice of maximal torus inside a Borel subgroup B of G,
and X, (T), c X.(T) is the associated set of dominant cocharacters. Fix a conjugacy
class of cocharacters {u} with the dominant representative y. Let E be the field of

definition of {y}. Consider Grg‘fz uC Grg‘“‘ ® E the subfunctor such that

+
BdR

GrG’Sy(R,RJr) =
{(&,8) € Gria(R,R™) | Inv(&y, Eqy) < ™', Vax € Spa(R, RY)} .

This is the analogue of the classical Schubert variety associated with {y} in the set-

. + . B, . . B
ting of B -affine Grassmannian Gr**. There is an action of J,(Q,) on Grgie, By

abuse of notation, we still denote by Grg‘:;'s‘ s Spa(E)® the sheaf base changed over

Spa(E)°. By [61, Theorem 21.3.6], this is a diamond.
There exists an étale morphism of diamonds over Spa(E)° (cf. [61, 20.4])

ngr: Sht(G, b, p) — Grﬁ‘f‘zﬂ.
When G = GL,,, this morphism can be defined by using Theorem 5.8(iv). Let

+ +

Grois, ™" € Grak,
be the image of 74g. This is an open sub-diamond, and we call it the admissible locus.
We have the following description of the admissible locus.

Proposition 5.13 ([61,20.5], [35]) Let (&, B) € Gri®

G’SM(R, R*). Then

(£.B) € Grom™ ™ (R, R*)

if and only if one of the following equivalent conditions holds: for any representation
V € RepG such that the center of G is mapped into the center of GL(V'), with the
associated vector bundle (Ev, fv),

(i) Vx e Spa(R,R") the vector bundle €y , is semi-stable of slope 0;

(ii) ¢-module of v is trivial;
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(i) &y extends to a ¢-module over ﬁ}'{“, where .;Jéj{‘t = li_r)nr HO(H[O,,], Oy) is the
integral Robba ring.

B;R,adm Th

G,<p €

The action of J,(Q,) on Grg%z P stabilizes the open sub-diamond Gr
period morphism

Biz,adm
mar: Sht(G, b, u) — Grg't,
is then J;,(Q,)-equivariant.

We have the following definition of local systems with additional structures on the
+
qr-adm

o similar to the classical situation.

diamond Grg

Definition 5.14 Let X beadiamond, and let G be a reductive group over Q. Denote
by RepG the category of rational representations of G, and by Q, — Locx the category
of Q,-local systems on X. Then a Q,-G-local system on X is a tensor functor RepG —
Qp — Locx. If G is, moreover, unramified, and fix a reductive model (over Z;) Gz,
of G, then we can define similarly Z,-G-local systems (or better notion: Gz, -local
systems) on X.

By [35, Corollary 8.7.10], there exists a J; (Q,)-equivariant Q,-G-local system V

over Grg‘?g’:dm, which realizes Sht(G, b, ) as the functor of the set of Z,-G-local
systems in V. In particular, there exists a J,(Q,)-equivariant Z,-G-local system L
over Sht(G, b, u).

Scholze’s theorem above (Theorem 5.12) in fact gives us more information. More
precisely, we get a tower of diamonds

(Sht(G, b, )x) K<G(Z,)

indexed by open compact subgroups K c G(Z, ) with Sht(G, b, ) g(z,)= Sht(G, b, u),
and the group G(Qp) acts on this tower (Sht(G, b, ¢)x)kec(z,) by Hecke corre-
spondences. Let (R,R") be a perfectoid affinoid FF,-algebra together with a map
x: Spa(R, R*)® - Spa(E)°. Then

Sht(G,b,y)K((R,RJr),x) = {((8, gbg),t,oc) =,

where

* (&, ¢¢) is a G-shtuka over Y[, o) (R, R") with one paw at x, such that (&, ¢¢)
is bounded by {u};

e 12 (&,¢8)|peo) = (Eb>9e,)|[p,00) is an isomorphism for some sufficiently
large p;

» a is a K-orbit of an isomorphism L(&,¢e) ~ Loy, where L(&, d¢) is the
G-local system associated with (&, ¢¢), Lo is the trivial G-local system over
13[0,00) (R’ R+)‘

As J,(Qp) c Aut(Ey, de, ), (cf- [15, 2.5]), J5(Q, ) acts each Sht(G, b, ) x by modify-
ing 1, and these actions are compatible when K varies. When the context is clear, we
will simply denote Sht(G, b, u)k by Shtk. The cover

nix: Sht(G, b, u)x — Sht(G, b, )
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is obtained by trivializing K-level structures, which is finite étale. By trivializing all
of L, we get a pro-étale cover

oo : Sht(G, b, ) oo —> Sht(G, b, ).

We have the following moduli interpretation for Sht(G, b, ¢1) . Let (R, R™) be a per-
fectoid affinoid I, -algebra together with a map x: Spa(R, R*)° — Spa(E)°. Then

ShE(G. b, ) (R RY), ) = {((E0 90 )s 1)

where

* (&, ¢¢) is a G-shtuka over Y[, o) (R, R") with one paw at x, such that (&, ¢¢)
is bounded by {u};

e 1 (& ¢8)|po) = (Eb>9e,)|[p,00) is an isomorphism for some sufficiently
large p;

o a:L(&,¢e) ~ Ly is an isomorphism, where, as before, Ly is the trivial G-local
system over Ypo,00) (R, R").

By construction, we have an isomorphism of diamonds over Spa(E)°:

Sht(G, b, ) oo /K = Sht(G, b, )k, Sht(G, b, ) e =lim Sht(G, b, ).
K

For any open compact subgroup K c G(Q, ), we know that the fibers of

Sht(G, b, 1) (C, Oc) — Gren™(C,0¢)

are in bijection with G(Q, )/K. We remark that it should be possible to define a notion
of étale fundamental group for the diamond Grg‘fz’:dm as [33], so that the Q,-G-local
B:I'R,adm

system V on Grg'2,

can be described in term of a collection of representations
Bir.-adm —
m(Gre ™ %) — G(Qy),

"
Byr,adm

for the geometric point X runs through each connected component of Grg'g, ™

see [62].
At the infinite level, there exists a Hodge-Tate period map (cf. [15, p. 38]; see also
[26, Theorem 5.4])

.
Bir

THT: Sht(G, b, M)oo - GrG,S/r"

+ +
where Grg“iﬂ,l c Grg‘“‘ ® E is the Schubert diamond associated with {~'}. We can

be a little precise on the image of 7yy7. By [5, Corollary 3.5.2], there is a natural map

&: Grgg“(R, R") — Bung,x,, ,.,-
Take (R, R*) = (C, O¢) with C|Q, complete and algebraically closed. By Theorem 5.5,
we get a map b(-): GrgSR(C, Oc¢) — B(G). By [5, Proposition 3.5.3], when restrict-
ingtox € Gr?fzﬂ,l(c, Oc¢), one has b(x) € B(G, u). Then for any [b'] € B(G, u), we
get a locally closed sub-diamond

Bipb’
G,<p™!

+
BdR

Gr T Gieu-1>

cG
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Bypob' | .
GdR<[4_l| is the fiber over [b'] under the

above map b( - ). Consider [b'] = [b] as in the local shtuka datum. Then by construc-
tion, one has

such that the underling topological space |Gr

Bir.b

THT: Sht(G, b, [J)OO(C, Oc) — GrG,s,/r‘ (C, Oc),
for any (C,O¢) with C|Q, complete and algebraically closed. That is, myr factors

through GrB;“’h
g G,<u!*

In summary, we get two period morphisms

Sht(G, b, pt) oo

Bjz.adm Blr.b
GrG,Sy GrG,sy*“

and the period morphism 74y factors through Sht(G, b, ).

Remark 5.15 1In [15, 8.2.1], there is an alternative construction of the diamond
Sht(G, b, ) oo-

By construction, a morphism (Gy, [b1], {p1}) = (G2, [b2], {¢2}) of local shtuka
data induces a morphism of diamonds

Sht(Gl, b], ‘ul) — Sht(Gz, bz, ‘l/lz)
More generally, we have morphisms
Sht(Gb bh !’ll)Kl - Sht(GZs bZ) AuZ)Kz

if K; is mapped into K, under G; — G,.

The above functoriality enables us to apply the Tannakian formalism. As before,
we assume that G is unramified over Q,. Now consider an embedding G < GL,; then
([b], {p}) induces ([b'], {p'}), so that (GL,, [b'], {¢'}) forms alocal shtuka datum,
and we get a morphism of local shtuka data (G, [b],{u}) = (GL,,[b'],{¢'}). The
following proposition is the local analogue of Deligne’s theorem for Shimura varieties.

Proposition 5.16  In the above setting, for any K c G(Z,), there exists a K' c
GL,(Z,) such that there exists a natural closed embedding of diamonds

Sht(G, b, )k = Sht(GL,, b, 4’ ) k.
The induced embedding of diamonds
Sht(G, b, )0 = Sht(GLy, b, ') oo
is compatible with the de Rham and Hodge-Tate period morphisms on both sides.

Proof It suffices to prove that we have a closed embedding of diamonds

Sht(G, b, ) oo = Sht(GL,, b', ) oo
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This is clear from the construction above. Moreover, we have a closed embedding

B;R,adm BIR,adm
G G,<u g GrGLn,S[A' >

and the following diagram on de Rham period maps is commutative

Sht(G, b, ) e Sht(GL,, V', p)

\Lﬂdk \Lﬂdk

B:;R,adm BIR,adm
GrG’Sﬂ O GrGLmSH,.

We also have the following commutative diagram on Hodge-Tate period maps

Sht(G, b, ) oo Sht(GL,, b’, ¢ ) oo

\LT[HT iﬂHT

Bixb Bipb’
GrG’SM_,C—> GrGLmS(y,),l. [ |

5.4 Moduli of Local G-shtukas and Affine Deligne-Lusztig Varieties

Let (G, [b], {¢}) be alocal shtuka datum. Recall that we assume G is unramified.
We want to compare the moduli space of local G-shtukas Sht(G, b, p) and the affine
Deligne-Lusztig variety X2, (b) associated with (G, [b], {¢#}) as in Section 2.

Let (C,O¢) be an affinoid perfectoid field of characteristic p with an untilt C* of
C. Let k be the residue field of O¢. We have a J;, (Q, )-equivariant morphism of sets

SP = SP(G,p,0)° Sht(G, b, 4)(C,0¢) — XE,(b) (k).
Indeed, first consider the case G = GL,,; we have

Sht(G, b, u)(C,0c) = {((&,¢e),1) } /=
with ((&, ¢¢ ), 1) a shtuka over Spa(C, O¢) with one paw at C*. By Theorem 5.8, there
exists a Breuil-Kisin module (M, ¢) over Aijns = W(Oc¢). Let (M ®4,,, W(k), ¢) be
the associated Dieudonné module. This defines a point in XSGH (b) (k). This construc-
tion is compatible with the J;, (Q,) actions on both sides. For the general case, we ap-
ply the Tannakian formalism: take any embedding (G, [b], {u}) = (GL,, [b'], {¢'});
then we have a commutative diagram

Sht(G, b, u)(C, Oc)—— Sht(GL,, b", u’)(C,O¢)

lSPc,w lSPGLn,b’,y’

XE, (0) (k)= X (b") (k).

Recall that we have the map wg: G(L)/G(W) — m(G). In the rest of this sub-
section we will only consider XSGH (b) as a subset of G(L)/G(W). Restricting wg to

Xgﬂ(b),it gives
weg - XSG‘M(b) —_— Cb).uﬂl(G)r.
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Recall that as in Subsection 2.2, after replacing b by b’ we can assume c;, , = 1. On the
other hand, restricting wg to G(Q,)/G(Z,) we get

we: G(Qp)/G(Zy) — m(G)".

We can regard the quotient set G(Q,)/G(Z,) as a certain subset of Sht(G, b, )
(C,O¢); see below. The above two maps are related by the following reduction map.
Recall that we have the period map

mar: Sht(G, b, u) — Grgi,:dm,

which is J; (Q,)-equivariant. Take any point y € GrfiR’adm(C, Oc); then the fiber

nx () is in bijection with G(Q,)/G(Z,) once we fix a point x € mzx(y). For g €

J5(Qp), we take the point gx € m3 (gy) to identify 3} (gy) with G(Q,)/G(Z,). In
this way we can define an action of J,(Q,) on G(Q,)/G(Z,).

Lemma 5.17  There is a J,(Q,)-equivariant map
G(Q))/G(Zp) — XS, (),  g+— o
such that wg(g) = we(go)-

Proof Fix any point x € Sht(G, b, u)(C, O¢). Then we have an injection
G(Qp)/G(Zp) ~ Sht(G, b, u)(C,Oc)

that identifies G(Q,)/G(Z,) with the Hecke orbit 73y (mar(x)) of x. For any g ¢
J5(Q,), the choice of the point gx to identify G(Q,)/G(Z,) with w3 (mar(gx))
shows that the injection G(Q,)/G(Z;) - Sht(G, b, u)(C, O¢) is J; (Q, )-equivariant.
The composite

G(Qp)/G(Zy) ~ Sht(G, b, 4)(C, O¢) - X<, (b)

gives the desired map, which is J;, (Q,)-equivariant, since, by the above construc-
tion, the specialization map Sht(G, b, 4)(C,0O¢) — XSGH(b) is ], (Qp)-equivariant.
The second assertion follows by the same argument as that in the proof of
[39, Lemma 1.2.18], by applying Theorem 5.8 (and Tannakian formalism) instead of
[39, subsection 1.1]. ]

Remark 5.18 Consider the composite map G(Q,)/G(Z,) — Xgﬂ(b) - m(G)L.
Then this is surjective by Lemma 2.3(i). In [39, Proposition 1.2.23], Kisin proved a
stronger result: the map

G(Qp)/G(Zp) —> mo(XZ, (b))
is surjective if (G, [b], {¢}) is an unramified local Shimura datum of Hodge type.

The following is an analogue of [7, Lemma 2.4.1 and Corollary 2.4.2]; see also
Proposition 2.5.
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Proposition 519 Let Z c Zg be a central subgroup and G' = G/Z, with the in-
duced [b'] and {y'} such that (G, [b'],{u'}) is a local shtuka datum. Then we have
a cartesian diagram

Sht(G, b, 4)(C, O¢) —= Sht(G', b, u')(C, O¢)

| |

XS, (b) XE,(b").

In particular, the induced diagram

Sht(G, b, u)(C, O¢) —= Sht(G", b, u')(C, O¢)

| |

7T1(G)r ﬂ](Gl)r

is also cartesian.

d Bly,adm
Proof First, we have the natural identification GerR<: "= Gr G‘ER;L, , since,

adm

by construction, GrG“R depends only on the adjoint local shtuka datum

(G*4, [b*], {u4}). Now consider the commutative diagram

Sht(G, b, 4)(C, Oc) Sht(G',b', ') (C,0¢)

adm
Gre ™ (C, 0c).

+
BdR,adm

Giew (G, 0Oc), the above horizontal map induces a map on

For any point x € Gr
fibers

G(@p)/G(Zp) - G'(@p)/G,(Zp);

thus, it suffices to show that the following diagram is cartesian:

G(Qy)/G(Zp) — G'(Qy)/G'(Zy)

| |

X8, (b) ————= X, (b"),
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where the vertical maps are those constructed in Lemma 5.17. Consider the following
diagram:

G(Qp)/G(Zp) - G,(Qp)/G,(Zp)

| |

X8, (b) ———— XE,,(b")

ﬂl(G)r —_— ﬂl(G,)r.

We know that the lower square is cartesian (cf. Proposition 2.5), and by Lemma 4.16,

G(Qp)/G(Zp) - G,(@p)/G,(Zp)

| i

m(G)" ———m(G")"
is also cartesian. Therefore, the upper square is cartesian. [ ]

5.5 Local Shimura Varieties as Moduli of Local G-shtukas

We return to the setting of Definition 3.1. The following strengthened version of Theo-
rem 5.12, which can be viewed as a partial solution of Conjecture 3.2 (as we do not give
information on the desired Weil descent datum), is implied by the results in [5,61,62].
Seealso [64, Lecture 24] and [9, section 3]. Recall that by [61, Proposition 10.2.8], there
is a fully faithful functor X ~ X° from the category of normal rigid analytic spaces
over k to the category of diamonds over Spa(k)® for any non-archimedean field k of
characteristic 0.

Theorem 5.20 Let (G, [b],{u}) be a local Shimura datum. Assume that G is un-
ramified. Then there exists a tower of rigid analytic spaces over SpE, (M), where K
runs through all open compact subgroups of G(Z,), with the following properties:

(i) the group J,(Q,) acts on each space M;
(ii) the group G(Q),) acts on the tower (M )k as Hecke correspondences;
(iii) there exists a compatible system of étale and partially proper period maps

s MK g ﬁe%djl
that is equivariant for the action of ], (Q, ), where 3‘72‘{‘; c F g,y is the open
subspace defined in [54, A.6] (see also Proposition 513 and [9]);
(iv) for any K, we have an isomorphism of diamonds M$, ~ Shtk.

Proof Consider the Bialynicki-Birula morphism

B+
Gro™ — Tl s
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cf. [5, Proposition 3.4.3]. Since y is minuscule, it is an isomorphism, cf. [5, Theo-
rem 3.4.5] that induces an isomorphism

Bipadm  ~  ~ adm,o
GrG’# —></€G,H .

The tower (Shtg)k is constructed out of a J,(Q,)-equivariant Q, — G-local system
V over Grg‘i‘i’adm, which realizes Sht(G, b, ) as the functor of the set of Gz, -local

. : Bip.ad : .
systems in V. Since Grgy e 7 Q‘{Z"O, there exists a corresponding J;(Q,)-

equivariant Q,-G-local system over .7 E“G({’;‘, which we still denote by V. Here we use
the fact that the categories of étale Z,-local systems and Q,-local systems on an adic
space X are equivalent to the corresponding categories on the pro-étale site Xpro¢t;
¢f. [35, Lemma 9.1.11]. Therefore, we get a tower of rigid analytic spaces (Mg ) x with
the properties listed as in the theorem. [ ]

Remark 5.21 In the above situation it is natural to conjecture that there exists a
preperfectoid space Mo, over E such that M, ~ l(iLnK Mg and M, = Sht,,. We will
see that this is true if (G, [b], {u}) is unramified of abelian type; cf. Corollary 5.22.
This is the local analogue of the fact that Shimura varieties of abelian type with infinite
level at p are perfectoid; cf. [67].

Finally, we return to Rapoport-Zink spaces of abelian type. In particular, we as-
sume p > 2 in the rest of this section.

Corollary 5.22 Let (G,[b],{u}) be an unramified local Shimura datum of abelian
type. For any open compact subgroup K ¢ G(Zy,), let Mg and M, be the rigid analytic
spaces over E constructed in Subsection 4.4 and Theorem 5.20 respectively. Then we have
an isomorphism of rigid analytic spaces over E My = M.

In particular, we get isomorphisms of diamonds over Spa(E)°, M$ =~ Shty, and
Mg, =~ Shte,, with compatible period morphisms on both sides. In particular, the
Hodge-Tate period map myr in Proposition 4.18 factors through myr: Moo — ff%)ﬂ_..

Proof We first prove the case where (G, [b], {u}) is of Hodge type. This follows
exactly as the proof of [61, Theorem 19.4.5]. Moreover, we have the following cartesian
diagram:

M(G, b, u)s ——— Sht(G, b, u)k

M(GL,, V', p')% —= Sht(GL,, b, 4" ) k.

Now assume that (G, [b], {u}) is of abelian type. We can apply Propositions 4.17
and 5.19, and compare the construction of M(G, b, u)x with that of Sht(G, b, u)«.
Here, as above, we use the fact that the categories of étale Z,-local systems and Q,-
local systems on an adic space X are equivalent to the corresponding categories on
the pro-étale site X,o4, ¢f. [35, Lemma 9.111]. ]
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Let (G, [b], {u}) be alocal Shimura datum with G unramified. By Theorem 5.20,
there exists a tower of local Shimura varieties (M(G, b, 4)x )k over SpE as conjec-
tured by Rapoport and Viehmann. Take an embedding G — GL,. Then we get an
induced triple (GL,, [b'], {¢'}), which is a local shtuka datum. The following corol-
lary is now a consequence of Proposition 5.16 and Theorem 5.20.

Corollary 5.23 For any K c G(Z,), there exists a K' ¢ GL,(Zj) such that there
exists a natural closed embedding of diamonds

M(G, b, )y = Sht(GL,,, b, " ).

Remark 5.24 (i) Let (G,[b],{u}) be an unramified local Shimura datum of
Hodge type, with the associated Rapoport-Zink spaces Mg and the moduli spaces
of local G-shtukas Shty. The isomorphism M¢ = Shtx of diamonds over Spa(E)®
indicates the magic “switching p-divisible groups with additional structures to local
G-shtukas”

(i) If (G, [b],{u}) is a general local Shimura datum, e.g., an unramified local
Shimura datum of abelian type but not of Hodge type, then we do not have p-divisible
groups any more. However, via My =~ Shtg, the local Shimura varieties Mg can be
viewed as moduli of local G-shtukas.

(iif) Corollary 5.22 should be upgraded to the integral level as [64, Theorem 25.1.2
and Corollary 25.1.3]. Namely, we should get an isomorphisms of v-sheaves over
SpdW, M® =~ M™, where M™ is the moduli functor introduced in [64, Defini-
tion 25.1.1] for the unramified local Shimura datum (G, [b], {¢}). This could be done
similarly to the methods of [64, Lecture XXV], and we will leave the details to the
reader. Therefore, at the end we would have a canonical moduli interpretation for
general M, compared with Subsection 4.3.

Remark 5.25 We refer to [57, sections 6,7,8] and [15, section 8] for the discussions
on the conjectures on the realizations of local Langlands correspondences and local
Jacquet-Langlands correspondences in the £-adic cohomology of the tower (Mx )k
or (Sht K) K-

6 Rapoport-Zink Uniformization for Shimura Varieties of
Abelian Type

We discuss some global applications in this section. As [56, Chapter 6] and [37], we
apply our construction of the formal schemes M(G, b, u) to prove a uniformization
theorem for Kisin’s integral canonical models of Shimura varieties of abelian type [38].
Throughout this section, we assume p > 2.

6.1 Integral Canonical Models for Shimura Varieties of Abelian Type

Let (G, X) be a Shimura datum of abelian type, i.e., there exists a Shimura datum of
Hodge type (G, X ) together with a central isogeny, G{¢" — G4, such that it induces
an isomorphism of the associated adjoint Shimura data (G4, X29) ~ (G4, X*4). Fix
aprime p > 2. Assume that G is unramified at p from now on. By [38, Lemma 3.4.13],
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we can find a Shimura datum of Hodge type (G, X;) satisfying the above and G; is
unramified at p. Let E be the local reflex field of (G, X) for some place over p. In the
sequel, we will only consider the open compact subgroups K c¢ G(Ay) in the form
K = K,K? with K, = G(Z,).

Theorem 6.1 ([38, Theorem 3.4.10, Corollary 3.4.14])  With the above notation and
assumption, for any sufficiently small open compact subgroup K c G(A?), there exists
an integral canonical smooth model Sk (G, X) of Shx (G, X) over Op. When K? varies,
the prime to p Hecke action on (Shg (G, X))k extends to (Sk(G, X))«k.

It will be useful to review how these integral models are constructed; cf. [38, 2.3
and 3.4].

6.1.1 Case (G, X) of Hodge Type

Take an embedding of Shimura data (G, X) < (GSp,S*). Let K = K,K? c G(Ay)
be an open compact subgroup with K, = G(Z,). Take an open compact subgroup
K' = K;,K'P with K}, = GSp(Z,), such that K c K" and we have an closed immersion

ShK(G, X) > ShKr(GSp, Si)E,

where E is the local reflex field for (G, X). For Shx/(GSp, S*), we have the integral
canonical model Sx- (GSp, $*). Consider the Zariski closure Sx (G, X) of Shx (G, X)g
in Sk (GSp, $*)0,. Then Sk (G, X) is defined as the normalization of Sx(G, X). In
particular we have a finite morphism

Sk(G, X) — Sk(G, X) c Sk (GSp, $*) o,

It will be useful to review some further structures for the integral canonical model
Sk(G,X). Let T be a scheme over Op. Attached to each point x € Sk(G,X)(T)
we have a triple (A, Ay, si’K), where (A, A, ) is the polarized abelian scheme up to
prime to p isogeny coming from pullback of the universal polarized abelian scheme
over Sx:(GSp, §*), and

&b e I(T, ISOm(VA;> VP(A)Q)/KP)

is the (promoted) K-level structure coming from the K’-level structure efc' KON Ay

cf [38,3.4.2]. The triple (A, Ay, si)K,) can be viewed as the polarized abelian scheme
with level structure attached to the T-point of Sk/(GSp, S*) induced by x. Let (s,)
be a finite collection of tensors that cut off the inclusion G ¢ GL(V'). As explained in
[39,1.3.6], there exist de Rham tensors s, g x and £-adic étale tensors (54,5 )1+p ON
the first relative de Rham cohomology and the first £-adic cohomology of A, respec-
tively. The level si’K takes ¢ tO (Sa,1,x)1p-

If T = Spec k where k c F, is a subfield containing the residue field kg of O, then
there exists crystalline Tate tensors (sq,0,, ) on the first crystalline cohomology of A,
If x is the specialization of a point X over F with F|E an extension, then there exist
p-adic étale tensors (s, z) on the first p-adic étale cohomology of Az, and (s4,0,x)
and (s, 3) are related by the p-adic comparison theorem; cf. [39, Proposition 1.3.7].
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By [39, Corollary 1.3.11] the datum
(AJC) /\xa si,K’ (Su,O,x))

uniquely determines the point x € Sx(G, X) (k). Sometimes we will write s, o, as tq,x
to be compatible with our previous notation on crystalline Tate tensors on p-divisible
groups.

6.1.2 Case (G, X) of Abelian Type

Take a Shimura datum of Hodge type (G, X;) that is unramified at p, together with
a central isogeny GI¢* — G9¢T, such that it induces an isomorphism of the associated
adjoint Shimura datum (G, X?4) ~ (G*¢, X*9). Let K = K,K? c G(A) bean open
compact subgroup with K, = G(Z,,). The integral model Sx (G, X) is constructed as
the quotient
Sk, (G, X)/K?,
where Sk, (G, X) is an integral model over O of the pro-scheme
Shk, (G, X) = lim Shg, k¢ (G, X).
K?
The scheme Sk, (G, X) is constructed as follows. Fix a connected component X* c X.
We get the induced connected component Shg (G, X)¢ of the complex Shimura va-
riety as usual. By [38, Proposition 2.2.4], it is defined over L. Consider the connected
component
shK]P(Gl,X1)+ = l(iElShKlpKf(Gl’ ,le)+
Ky
of ShK]P(Gl,Xl) = 1<£le ShKu,Kf(Gl’Xl)’ where Klp = G](Zp) Let SK1P(G1>X1)+
be the Zariski closure of Shy,, (G1, X1)" in Sk,,(G1, X1) over W = W(F,). Write
Z = Zg. The above integral model Sk, (G, X) of Shk, (G, X) over W is given by
Sk, (G, X) = [M(GZ@) X SKIP(Gl’X1)+]/‘Q{(GIZ@)O’
where
A (Gzy) = GANZ(Z))™ #6210 12(200) G (L))"
and
o (Gry)* = G(Lp)) 2/ 2 (L) * G- t2) G (L)) s
similarly, we have %(Glz(m) and %(GIZ(P) )°; see [38, 3.3.2]. The scheme Sk, (G, X)

descends to Op and gives the integral canonical model of Shg,(G,X) =
lim  Shg,ke (G, X); see the proof of loc. cit. Theorem 3.4.10.

6.2 Newton Stratification of the Special Fibers

We keep the notations as above. We will work over I, in this subsection. By abuse
of notation, denote the special fiber of Sk = Sk (G, X) over F, by Sk for simplicity.
In this subsection, we will write an element of B(Gg,) simply by b, and B(G, u) =
B(Gg,, ), as usual. In [68], we proved the following results.
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Theorem 6.2 (i) For any b € B(G, p), there exists a non-empty locally closed

b _ _
subset Sy ¢ Sk, which we view as a subscheme of Sk with its reduced structure such

that set theoretically, we have
- —b
Sk= I Sk
beB(G,u)

(ii) Forany b € B(G, p), the Zariski closure ofEIb( in Sk is 11 E;b(.
b

'<b

For b € B(G, u), we call the subschemes g; as the Newton strata of Sk. If (G, X)
is of Hodge type, then the existence of the Newton stratification is implied by [55]; see
also [25, 2.3] and (74, 5.2].

For later use, we briefly review the construction of the Newton stratification. If
(G, X) is of Hodge type, it is constructed by the associated p-divisible groups with
crystalline Tate tensors. We now assume that (G, X) is of abelian type. In this case,
let (G, X;) be an unramified Shimura datum of Hodge type (Gi, X)), together with
a central isogeny GU¢* — G9¢', such that it induces an isomorphism of the associated
adjoint Shimura data (G2, X2) ~ (G, X*4). Then we have a canonical bijection
B(Gy, 1) = B(G, ). Consider the Newton stratification at level K7,

gK“,KP(C;I’}(I) = H §K1PKP(G1’X1)b’
' beB(Groun) 1

When the level K varies, the Newton stratifications are compatible. Therefore, we
get a Newton stratification

gKl],(Gth) = 1 §1<1,,(G1,X1)b
beB(Gi,u1)

by taking inverse limit over Kf . As [39, 3.5.8], consider
1(Gr) = Gi(Q):\Gi(Af)[GI(Zp) = GI(Z (1))} \Gi(A),
which is the set of geometric connected components of S,, (G1, X1). By [68],
Sk, (G, X1)" © Sk, (G, X1)

is stable under the action of @/(Giz,, ), and we have a surjective </ (Giz,)-
equivariant map

EKIP(Gl,Xl)b —> 7T(G1).
Lethlp (G, X,)%* be the pullback onglp (Gy, X,)? under the inclusion §K1,, (G, X1)*
< Sk, ,(G1, X1). In other words, we consider the following commutative diagrams:

gKlp(Gl’ )(l)b"*—cH gKl},(c;la X1)+
§K1P(G1> Xl)h(—> §K1P(G1, Xl)

i |

n(G) —=—=1(Gy),
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where the upper square is cartesian. The stabilizer of Sk, , (G, X1)b* ¢ Sk, , (G, X;)?
is o/ (Giz,,,)°> and we have the identity

Sk, (G, X1)? = [#(Guz,,,) % Sk, (G1, X1)"" ]/ (Giz,,))°.
For more details, we refer the reader to [68]. Now, as
Sk, (G, X) = [#(Gz,,)) x Sk, (G1. X1) "]/ (Guz ) )°,
we get the Newton stratification

EK,,(G,X): 1 EK,,(G,X)b,
beB(G,u)

where for any b € B(G, p), the associated stratum
EKP (G, X)b = [%(GZ(},) ) X EKIP (Gl, Xl)b’Jr] /Qf(G]Z(P) )O > EKP (G, X)
For any sufficiently small open compact subgroup K? c G(A?), we define

Sk,kr (G, X)" = Sk, (G, X)" /K.
Therefore, we get the Newton stratification at the finite level

gKI,KP(G>X): H EKPKP(G,X)b.
beB(G,u)

6.3 Rapoport-Zink Uniformization

The notation will be the same as in the previous subsection. We will work over W in
the rest of this section. For simplicity, denote the base change of Sk = Sx(G, X) over
W by the same notation. Let b € B(G, ) (the same convention as the last subsec-
tion). We get an unramified local Shimura datum of abelian type (Gg,, b, {¢#}), thus

a formal scheme M = M(G, b, u) over W. Fix a point x € E; (Fp).

6.3.1 Case (G, X) of Hodge Type

We want to construct a morphism of formal schemes over Spf W:
©® = 0,: M x G(AF)/K? — Sk,

where S is the formal completion of Sk along its special fiber. The morphism ©
is constructed in [37, Proposition 4.3 and Corollary 4.3.2]. Let (A, Ay, 55,1@ (tax))
be the abelian variety with additional structures attached to x, and let I4(Q) be the
group of quasi-isogenies of A, preserving (tq,x ). Then I4(Q) is the group of Q-points
of a reductive group Iy over Q (cf. [39, Corollary 2.3.1]), which depends only on the
isogeny class of x ([39, 1.4.14]). In this case, ® factors through the quotient by I (Q),

©: 15(Q)\M x G(AF)/K? —> Sx,

b
and the image Z4 x» is contained in the stratum Sy.
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6.3.2 Case (G, X) of Abelian Type

We first work on the level of sets. By [39, Theorem 4.6.7], we have the bijection
Sk, (GX)'(Fp) — 1 S(G.¢),
[¢1.b(¢)=b

where ¢: 9 — & runs through the set of admissible morphisms of Galois gerbs, [¢]
is the associated equivalence class (cf. [39, 3.3]), and

S(G,¢) = lim I4(Q)\Mrea(F,) x G(AT)/K?,

where M.q is the reduced special fiber of the Rapoport-Zink space M associated
with (Gg,, b(¢), {#}).

Remark 6.3 1n [39,3.3], in fact, one considers the set

(G, ¢) =lim I, (Q)\X,(¢) x XP(¢)/K?,

where X,(¢) and X?(¢) are certain sets canonically associated with ¢, such that
(cf [39, Lemma 3.3.4])

XP((/)) = X/?(b) = Mred(Fp)
and X?(¢) isa G(A?)-torsor.

Take an unramified Shimura datum of Hodge type (G, X; ), together with a central
isogeny G&¢* — GY¢r, such that it induces an isomorphism of the associated adjoint
Shimura data (G4, X39) ~ (G*4, X29). Let ¢,: Q — &, be an admissible morphism
of Galois gerbs. We note that

S(Gr, ¢) = lim I, (Q)\Murea (Fp ) x Gi(AD) /KT
K/
= Iy, (Q)\Mirea(F) x Gi(AF),

where M| oq is the reduced special fiber of the Rapoport-Zink space M, associated

with (Gig,, b(¢1), {#1})-
Fix an admissible morphism ¢¢: Q — & .. Consider

$(Gg0)= 1 S(G.9)

],¢d=

= LI I(LHLP(Q)\Mred(Fp) x G(Ai)/K‘D
[¢].¢*I=¢0 Kk»

By [39, Lemmas 3.7.2 and 3.7.4], there is an action of &7 (Gz,,, ) on S(G, ¢o), together
with an &7 (G, ,, )-equivariant surjective map

cg: S(G, ¢o) — 7(G).

Recall that we have fixed a point x € Sk, (G, X)"(F,). We choose ¢, such that x €
S(G, ¢o) under the bijection

Sk, (G X)!(F,) — 1 S(G.¢).
[¢].b(¢)=b
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For the identity class e € 7(G), consider the fiber

$(G,0)" = cg'(e).
Let (Gy, X1) be the unramified Shimura datum of Hodge type as above. Similarly, we
have S(Gl, (po) = H[¢1]>¢Td:¢0 S(Gl, (/51) and S(Gl, ¢Q)+.

Proposition 6.4  We have the following isomorphism of sets with </ (Gz,,, ) x (®)-
action:

S(G, ¢o) = [ (Gz,,,) x S(G1, $0) "] [ (Giz,, )°-
Proof This follows from of [39, Corollary 3.8.12]. [ |

Now we come back to Rapoport-Zink spaces. If K? ‘c K7 is another open compact
subgroup of Gl(A)’i), then we have the following commutative diagram:

I, (Q)\V x Gy (AR /K —— 1, (Q)\Wy x Gy (AD) /K]

\L@)m{” l(au(f’

S (G X)) ——————= 5 s (G1, X))

with horizontal maps finite. Therefore, if we set
S(Gi, 1) = leanﬁl (Q)\M; x GI(AI;)/KP>
KY
then we get
0, =1lim @,y S(Gi.¢1) — l(h_ngkl,,Kf'(Gl) X1),
K{ K

where both limits are taken in the category of formal schemes.

Lemma 6.5 Let §K1p (G, X,) be the formal completion of Sk,, (G, X1) along its spe-
cial fiber. Then we have a canonical isomorphism of formal schemes

llngxlpr(Gl)Xl) = §K1P(G1)X1)-

K{
Proof This follows from the definition of inverse limit of formal schemes. ]

We have thus ©;: §(G1, ¢1) — §K1p (G1, X1). On the other hand, we have a sur-
jective map

CGl: SKll,(Gle) — 7T(G1).
Consider the fiber over e of this map cg,, Sk,,(G1,X1)" c Sk, (G1, X1), and let
Sk, ,(G1, X1)" be formal completion of Sk,,(G1, X1)* along its special fiber. Let

0+ (G, ¢1)" = (1im I (Q\N % Gu(A)/KT) " — S, (G XD)*

K
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be the pullback of
©,:S(G1, ¢1) =lim I, (Q)\Mi x Gy (AF) /K] — Sk, (G1, X1)
K}

under the inclusion EKI ,(GLX))" = S\Kl ,(G1, X1). The morphism @/ can be written
+_ T + :
as O = 1(£an ®1K{,, with

(16, (@\NE x G (A)/KT) T —— L, (@\N, x Gy (AF)/K!

.
i(ale le)mf

Kf(Gl,X1)+ e gKlpKf (G1, X1).

S Kip
Define formal schemes

S(Guhgo) = LI S(Gué¢)*
[$1],¢34=¢o

o +
= 1 (lim I, (@G x Gi(AR)/KT)
[¢1],6}=¢0 K?

and

—

$(G.go)= L LmIg(Q\MxG(A})/KP.
[¢].¢24=¢o ke

Proposition 6.6 In the above situation, we have

§(G’ ¢0) = [‘d(GZ(p)) x §(G1, ¢0)+] /’Q{(GIZ(P) )O'

Proof This is identical to the proof of Proposition 6.4. [ ]

+

IK? ). This exists a geometric

LetZ, o (resp. Z;b K? ) be the image of ®, kr (resp. ©

structure on Z, ¢1,KP A8 follows. We can write
L |

Zoxr = U 7z

P>
el P1.K

where Jyr is the I 4, (Q)-orbits of irreducible components of M, x Gl(A;i) /K?, and
Zil,K{’ is the image of the irreducible components under O? corresponding to

J € Jp- For each j € Jir, there exists only finitely many j' € J k such that

7/ 7' .
é1.KP n 1KY *9

Thus, we get an induced geometric structure on Z.:b Kb a8
1LY
+ Jo+
P = U Z P>
1, K] jel ¢1.K}
1
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where Z] K is the pullback on] , to §K1pKf (G1, X1)*. When K? varies, Tes Zg, k>
and Z; . form inverse systems and we set
LK 1
Loy =M 2y, ps 2y, =HmZg
K? K?
Let J; be the I, (Q)-orbits of irreducible components of M; x GI(A ). Forany j € J;,

let Z ]¢1 be the image of the irreducible components under ®; corresponding to j; then
we can write

- J
_ngZ(m and Z —llmZ¢1K,,,

Kl

where Z i v is the image of the irreducible components corresponding to j under the
15

composition
Ml X Gl(A ) —> Ml X G](AP)/KP —_—> SK KP(GDXI)

This is similar for 25 . By the proof of [39, Proposition 4.6.2], we have (@) x Z; (Q, ) x
of (GlZ(p) )41 -equivariant bijection of sets (cf. Remark 6.8)

26,(Fp) = S(Gri, 1), 24, (Fp) = S(Gr, )"
We have (cf. [38, 3.4.11])
[M(GZ(,,)) X §K1p (Gl’ X1)+]/M(Glz(p) )O = ng (G’ X)
Recall that we fixed an admissible morphism ¢g: Q — G aa. Set

+ +
G = L 2y,
[¢1].61%=¢0

Applying the functor [%(Gz(p)) x =]/ (Giz,,)° to Zg, 4,» We get a subset
Zpy(=26,4,) C SK = SKP(G X). Let Zy, k» be the image of Zy, under the pro-

jection S, K, Sk =S, k,kr- Then we can define the formal completion of Sk along
Z.g,Kp AS [56 Chapter 6] and [37, Definition 4.6].

Theorem 6.7 We have an isomorphism of formal schemes over W,

®: : U Is(Q)\M x G(AD)/KP — Sz

J¢24=¢o

$o.KP "

Proof If (G, X) is of Hodge type, this is proved in [37, Theorem 4.7]. Assume that
we are in the general case. By the above notation, it suffices to prove that

[¢]«I§[ . lim 15 (Q)\M x G(AD)/K? = [/(Gz,,,) x S(G, $0) "1/ (Guz,,)°.

This is given by Proposition 6.6. [ ]

Remark 6.8 Denote by Gi4(Z,))"'» the kernel of the composite of
GIZ(,))* = G(Z(p) ~ H(Q. Z1) » H'(Q, Iy,),
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where Z, is the center of G;. Similarly, we define Gad(Z(p) )14 Following [39, 4.3.4],
we define

A (Giz,,) ) = Gl(Ag)/ZI(Z(p))- *GuZip)s T2y Gie (L)) P,

A (Gizg,y )" = GU(Z(p)) 71 20(Zip) ™ *GuiEigy)+ (2 Gre (Zpy) 100
Similarly, we define %(GZ@))I‘Z’ and ,;zf(GZ(p))IW’. The group %(Glz(m)”’l acts
on S(Gy, ¢1), of. [39, Lemma 4.5.9]. By construction, we have an M(Glz(p))lff’l—
equivariant map cg,: S(Gy, ¢1) —> 7m(Gy), which is surjective, since GI(A?) (and
thus .7 (Giz,,, )" ) acts transitively on 77(G,). For the identity class e € 7(G), con-
sider the fiber S(Gy, ¢1)* = ¢! (e). Then we have S(Gy, ¢o)* = Uigi1.p0=9, S(G1> 1) "
The stabilizer of S(Gy, ¢1)* c S(Gy, ¢1) is

M(Glz(})) )I¢1 ° c W(Glz(” )I'pl .
We have
S(Gr, ¢1) = [ (Giz,)) "™ x S(Gr, 1) "] [ (Grz ) 0.
Take any ¢;: Q — B,, such that
¢* =919 Q — Bga.

It should be possible that the strategy of [39, 3.8] enables us to prove the following
refinement of Proposition 6.4:

S(G’ (p) = [M(GIZ(,,))I% X S(Gl’ ¢1)+]/JZ{(GZ(,,))I¢)O'

Once this is done, the same argument as above shows that there is an isomorphism of
formal schemes over W,

Ty (Q\VEx G(AD)[KP 5 Sz

KP?
where Z4 k» is the image under the projection §K,, - §Kp x» of

Zg = [ (Giz,,) )" x 25 1/ (Gg,) ) "*°.

Remark 6.9 In the special cases of Shimura curves associated with quaternion al-
gebras over a totally real field, see [3] for a construction of the uniformization by
Drinfeld spaces.

Let Shg(¢g) = (§E/Z¢O - )f?d. We get a natural morphism of adic spaces Shx (¢y) —
Sh3d. For any open compact subgroup K » € G(Qp), let Shis o (o) — Sh}d; x» be the

pullback of Shx(¢o) — Shi under the projection Shai ke = Sh}i xe- We get the
following corollary from Theorem 6.7.

Corollary 6.10  With the above notations, ® induces an isomorphism of rigid analytic
spaces over L,

©: " gd_¢ Is(Q)\Mx;, x G(A)/KP —> Shi ks (¢o)-
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We fix a morphism 7: M — Sh}d coming from the above uniformization iso-
morphism, which factors through the good reduction locus (§K)f1d c Sh}d. By [46],
the universal Q, — G-local system Lk on Sh3 is de Rham (which can be proved di-
rectly for the abelian type case; moreover we assume that G = G° for the notation G°
of [46]). When restricting to (S K)Zd, it is even crystalline. Recall by Proposition 4.17,
we have the universal Q,-G-local system V on M. We have the natural local-global
compatibility identity V = 7% L.

Recall that in [67] we have proved that there exists a perfectoid space Sg» over C,
such that

8xr ~ lim Shgs ke (G, X)*.
K
On the other hand, by Proposition 4.18, we get a perfectoid space Mo, over C » such
that
Moo ~ lim My ¢,
K
From Corollary 6.10 we get the following corollary.

Corollary 6.11  There exists a perfectoid space Skr(do) together with a map
Sxr (¢o) = Sk, such that

Skr(¢o) > I Is(Q)\ M x G(A;)/K‘D.
[¢1.6*4=¢0

Remark 6.12 For the b € B(G, u) we fixed in this subsection, we can define the
Newton stratum S?O, c Skr, which is a locally closed subspace; cf. [5, subsection 4.3].
Then we have Sk»(¢o) — Sk» factors through 8%,. In the case where b is basic, we
will have 8x»(¢9) = 8%,; ¢f the next subsection. In the general case, the image of
Skr(¢o) — 8%, is a strict subspace, and to understand the whole stratum 8%,, one
should introduce Igusa varieties; cf. [5, section 4] in the PEL case.

6.4 The Case of Basic Strata

Let the notations be as in the last subsection. Assume now that b = by is the basic
element. Note that up to equivalence there is only one ¢ such that b(¢) = by.

—b
Theorem 6.13  In the setting above, Z.4, x» = Sg. Thus, we have an isomorphism of
formal schemes over W

0: I4(Q)\M x G(A‘;)/K" = §;/§Z'
Proof Inthe casewhere (G, X) is of Hodge type, this is proved in [37, Theorem 4.11].

We note that by [75, Lemma 7.2.14], I is an inner form of G with I , = J;,. The general
case follows from the Hodge type case by construction. [ ]

Corresponding to Corollaries 6.10 and 6.11, we have the following corollary.
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Corollary 6.14  For any open compact subgroup Kj, ¢ G(Q, ), ® induces an isomor-
phism of rigid analytic spaces over L,

©: I(Q)\Mx, x G(AL)/KP — Shb;KP,
and an isomorphism of perfectoid spaces over C,,

©: I4(Q)\ Mo x G(AF)/KP — sb,.

7 Ekedahl-Oort Stratifications for Good Reductions of Rapoport-
Zink Spaces

In this section, we will construct and study Ekedahl-Oort stratifications for the special
fibers of our Rapoport-Zink spaces of abelian type, motivated by the study of Artin
invariants of K3 surfaces. Then we will discuss some special interesting cases, namely,
the fully Hodge-Newton decomposable cases; cf. [22]. In the next section we will
further specialize to orthogonal groups. As before, we assume p > 2 in this section.

7.1 Ekedahl-Oort Stratifications for Special Fibers of Rapoport-Zink Spaces

Let (G, [b],{¢}) be an unramified local Shimura datum of abelian type, b € G(L)
be a representative of [b], and let M = M(G, b, u) be the associated Rapoport-Zink
space by Theorem 4.6. Consider the special fiber M over F, of M and the associated
reduced special fiber M.q of M, which is by definition the reduced subscheme of M.

Since our local Shimura datum is unramified, we can consider G-Zip*, the stack
of G-zips of type p over Fp (we refer the reader to [51] and [77,1.2] for some basic facts
about G-zips and the stack G-Zip"). The underling set of geometric points of G-Zip*
is in canonical bijection with a subset /W of the Weyl group W of G (for a fixed choice
of maximal torus). More precisely, let ] be the type of the parabolic subgroup of G
attached to {} in the usual way, and let W; be the associated subgroup of W; then
JW c ‘W is the set of elements w € W that are of minimal length in their coset Wyw.
There is a partial order < on /W making it into a topological space; cf. [77, 3.1] or
[74, 5.3]. In fact we have isomorphisms of topological spaces

|G-Zip#| ~ TW;
¢f. [77, Theorem 3.1.5] and [74, Proposition 5.12].

Theorem 7.1  There exists a formally smooth morphism
{: M — G-Zip¥,
which induces a decomposition

ﬁ: ]_I MW’

wel W

where M,, ¢ M is locally closed (could be empty).

Proof Assume firstthat (G, [b], {u}) is of Hodge type. Then the universal p-divisible
group with crystalline Tate tensors gives rise to a G-zip of type (I, I, I_, 1) on M: the
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arguments of [77, Theorem 2.4.1] apply to our local setting. Thus, we get a morphism
{: M — G-Zip*.

This morphism is J; (Q, )-invariant. To show this morphism is formally smooth, one

can apply the arguments for the proof of [77, Theorem 3.1.2]. More precisely, from

the datum (I, I_, 1) one can construct an Eg,,-torsor ﬁ" over M, which sits in the
following cartesian diagram:

— (]
M ¢ G-

]

X P
MH[EG,H\GE] = G-Zip*.

Here the algebraic group Eg , is as that in [51, section 3] (see also [77, subsection 1.2]),
considered as a group over F,. It suffices to show that (! is formally smooth. By [24,
Prop. 17.1.6], formal smoothness is local in both the sources and targets; thus, we can
reduce to the algebra side: taking any affine subschemes SpecB c Mu, SpecA ¢ Gy,

over F, with induced {*: SpecB — SpecA, we need to prove that B is formally smooth
over A. Since M is formally smooth (and formally locally of finite type) over F, G,

is smooth over E,. By [48, Theorems 65 and 66], the fact that B is formally smooth
over A is equivalent to the map

‘QA/E, ®AB/]—> QB/F}, ®B/]

being left invertible, where J ¢ B is an ideal of definition. Note that Q F, ® B[] is
a projective B/J-module. By [23, Cor. 19.1.12], the last statement is equivalent to the
following: for any closed points x € SpecB, y = (*(x) € SpecA, the induced maps
on the tangent spaces T,SpecB — T,SpecA are surjective. One can then show the
surjectivity on tangent spaces by the arguments in the proof of [77, Theorem 3.1.2].
Now assume that (G, [b], {}) is unramified of abelian type. Take any unramified
local Shimura datum of Hodge type (G, [b1], {u1}) such that (G4, [624], {u*4}) =~
(G2, [b24], {429}). Let M and M, be the special fibers of Rapoport-Zink spaces at-
tached to (G, [b],{p}) and (Gy, [b1], {p1}), respectively. By construction, after fix-
ing xo € m(G;)", we have M = ﬁ: Consider the restriction (; : ﬁ: - G—Zip".
As |G1—Zip"'| ~ |G-Zip¥|, we get a formally smooth morphism {*: M > G-Zip*.
Applying the J; (Q, )-action, we get a formally smooth J; (Q, )-invariant morphism

{: M — G-Zip",
as desired. ]

We note that in the EL/PEL cases, Wedhorn and Lau proved the above proposition;
¢f. [72], [51, Example 9.21], and [69, Theorem 3.2]. If (G, [b], {¢}) = (GL,, [b'], {¢'})
is an embedding of unramified local Shimura data of Hodge type, by construction we
have the commutative diagram
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M(G, b, u)—— M(GL,, b", )

l((} i(GLn

G-Zip! ——> GL,-Zip" .

_ Let/W" c /W be the subset defined by the image of {. For each w € JW", we call
M,, the Ekedahl-Oort stratum of M attached to w. We get a stratification

M= I M,.

wel Wb
We also get an induced stratification
Mred = H Mws
wel Wb
where M,, c M,q is a locally closed subscheme of M4, which we call the Ekedahl-
Oort stratum of M,.q associated with w. For a locally closed subscheme X c Y,
we write X¢! the (Zariski) closure of X in Y. By construction, we have the closure

relations l
M; = I_[ ﬁwr and M;}l = H MW/.
w!<w,w’e] Wb w!<w,w/e] Wb
In [22, 1.4] (and [21, 3.4]), there exists a decomposition
X, (b) = O Xew(b),
weAdm(pu)nKW

where in our case K = G(Z,) is the fixed hyperspecial group. Here are some expla-
nations about the notation: W is the Iwahori Weyl group of G; Adm(u) c W is the
(finite) subset defined as [30, (2.1)]; KW ¢ W is the set of minimal length elements in
the coset W\ W, with Wx ¢ W the subgroup corresponding to K = G(Zy), our fixed
hyperspecial group. The above decomposition holds in the general setting of arbitrary
local Shimura data. On the other hand, if we set Adm* (u) = Wx Adm(g) Wk, then
we have
Adm(y) n KW = Adm" () n KW S Tw,

where the first equality follows from [30, Theorem 6.10], and the second bijection is
induced by the projection W—>W by [71, Theorem 1.1 (1)]. Moreover, this bijection
preserves the order <k, on Ky (cf. [30, 6.5] and [21, 3.3]) and the order < on /W.
Therefore, we can rewrite the above decomposition in the hyperspecial level as

X() = I Xin().

Recall that by Theorem 4.6, we have
—perf . vG
M =X p (b).

Proposition 7.2  For w € 'W, the strata Xg,,,(b) # @ if and only if w € TW?, in

which case, we have

M o X (B).

In particular, M,, is of dimension dim X, (b) if it is non-empty.
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—perf
Proof It suffices to prove Mier ~ Xk (b) for any w € /W. We first consider
the Hodge type case. By the proof of [78, Proposition 3.11], we have two morphisms

f: M S X7 (b) and f': X7 (b) - M, inverse to each other, by using

Dieudonné theory over perfect rings. It suffices to check that f (resp. f™') induces

f: ﬁl:verf = Xiw(b) (resp. f': Xg,(b) — ﬁierf). This follows from [71, Theo-

rem 1.1] (see [71] Section 7 for some discussion in the global setting of Shimura va-
rieties), see also [30, Remark 6.5 (2)]. Indeed, the above decomposition Xf(b) =
Woyeadm(uynx v XKxw (b) is given by truncations of level 1 of elements in the Witt loop

group. Since G is unramified, by [71, Theorem 1.1], the set of o — K-conjugacy classes
in K;\Ku(p)K/K, (together with the partial order <x ,) is identified with the under-
lying topological space of the algebraic stack G-Zip*. Here, K; is the kernel of the
projection K = G(W) — G(F,). Thus, the above decomposition is equivalent to a
morphism of algebraic stacks

G s G-7i ,perf
X$(b) — G-zip*F*r!,

which is given by (P*f o f~1, since by construction f and f~! preserve the universal
G-Zips.

Now assume that (G, [b], {}) is unramified of abelian type. Take any unramified
local Shimura datum of Hodge type (G, [b1], {u1}) such that (G4, [624], {u*4}) ~
(G24,[b39], {p29}). Let M and M, be the special fibers of Rapoport-Zink spaces
attached to (G, [b], {¢}) and (Gy, [b1], {u1}), respectively. As always, after fixing a

—+  —t
point xo € 71;(G;)" we have M = M, . The restriction of f induces an isomorphism

fit: ﬁ;f“f ~ Xk,w(b1)". Applying the J,(Q,) action, we get Mierf ~ Xgw(b), as

desired. ]

Remark 7.3 Let (G,[b], {u}) bealocal Shimura datum such that G is unramified.
Fix a representative b € G(L) of [b].

(i) The closure relation for the decomposition Xf (b) = H,yow Xk,w(b) can be
proved similarly as [30] Theorem 6.15. See also [22, 4.11] and [2, section 7].

(ii) If we were working in the equal characteristic setting, then a formula for
dim Xk,,,(b) is known by combining [21, Theorem 4.1.2 (2)] and [29, Theorem 6.1].
In our mixed characteristic setting, it should be possible to prove that the same for-
mula holds by applying [30, Proposition 6.20], the Witt vector affine flag varieties in
[78, 1.4], and the method in 3.1 of [78].

7.2 Rapoport-Zink Spaces for a Fully Hodge—-Newton
Decomposable Pair (G, {u})

We discuss some special Rapoport-Zink spaces in this subsection. Our motivation
here is the observation that the list in the classification of [22, Theorem 2.5] (a poste-
riori) lies in our class of local abelian type (for minuscule y).

Let G be a connected reductive group over Q, and let {4} be a conjugacy class
of cocharacters y: G, — G@P. Assume that G is quasi-split. Recall the following

definition.

https://doi.org/10.4153/50008414X19000269 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X19000269

1170 X. Shen

Definition 7.4 ([22, Definition 2.1], [9, Lemma 4.11]) The pair (G, {u}) (or the
set B(G, p)) is called fully Hodge-Newton decomposable if for any non-basic [b'] €
B(G, p), the pair ([b'],{p}) is Hodge-Newton decomposable, i.e., there exists a
proper Levi subgroup G 2 M > My such that «(b") = u! in 71 (M)r.

Recall that My = M,,, is the Levi subgroup of G defined as the centralizer of v(;/].
In [22, Theorem 2.5] there is a purely group theoretical classification of all the fully
Hodge-Newton decomposable pairs (G, {¢}), and in loc. cit. Theorem 2.3 one can
find further equivalent conditions (those in (ii)-(vi) of the statement of the theorem)
for (G, {}) being fully Hodge-Newton decomposable.

Theorem 7.5 Let (G, [b],{p}) be an unramified local Shimura datum of abelian type
and let Meq be the reduced Rapoport-Zink space associated to (G, [b],{u}). Suppose
that (G,{p}) is fully Hodge-Newton decomposable.

(i) If[b] is non-basic, then dim M,eq = 0.
(i) If[b] is basic, then the perfection of each Ekedahl-Oort stratum M,, ¢ M is a
disjoint union of perfections of classical Deligne-Lusztig varieties.
(iii) For each w € W, there exists a unique [b'] € B(G, u) such that M,, # @, where
M,, is an Ekedahl-Oort stratum of My, the reduced Rapoport-Zink space asso-

ciated with (G, [b'], {u}). In particular, we get a decomposition

JW = 11 ]Wb,.
[b1B(Gon)

Conversely, if (G, {u}) is part of any unramified local Shimura datum of abelian type

with one of the above three conditions holds, then (G,{u}) is fully Hodge-Newton
decomposable.

Proof This follows from [22, Theorem 2.3] (in the hyperspecial level case), our The-
orem 4.6, and Proposition 7.2. ]

Remark 7.6 Let (G,[b],{u}) be an unramified local Shimura datum of abelian
type, with M the special fiber of the associated Rapoport-Zink space. Suppose that
[b] is non-basic and the pair (b, {u}) is Hodge-Newton decomposable. With our
Theorem 4.6 at hand, we refer the reader to [22, Theorems 3.16 and 6.2] (in the unram-
ified case) to write down an isomorphism between M and M(M, by, par)PeE, the
perfection of the special fiber of some Rapoport-Zink space of abelian type attached
to a Levi subgroup M of G.

8 Applications to Moduli Spaces of K3 Surfaces in
Mixed Characteristic

In this section, we discuss some applications to K3 surfaces and their moduli in mixed
characteristic. We will first discuss some examples of Rapoport-Zink spaces of or-
thogonal type, following the line of the previous section. Then we will move to orthog-
onal Shimura varieties and moduli spaces of K3 surfaces. Finally, we will apply our
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constructions of Rapoport-Zink uniformization and Ekedahl-Oort stratifications to
moduli spaces of K3 surfaces. Again, we assume that p > 2 in this section.

8.1 Rapoport-Zink Spaces of Orthogonal Type

In this and the next subsection, we will discuss an example of Rapoport-Zink space
for a fully Hodge-Newton decomposable pair (G, {y}).

Let (L, Q) be a non-degenerate self dual quadratic lattice of rank n + 2 over Zj,
where n > 1is an integer. We write (V, Q) as the induced quadratic space over Q. Let
G = SO(V,Q),G; = GSpin(V, Q) be the associated special orthogonal and spinor
similitudes groups over QQ,. By our assumption that L is self dual, both G and G, are
unramified. We have an exact sequence of groups

1— G, — G —G—1,

which is, in fact, defined over Z,.

As in [32, subsection 4.2], there is a natural choice of minuscule cocharacter y;
of Gj. Take any [b;] € B(Gy, p1). Then (Gy, [b1], {p1}) is a local Shimura datum of
Hodge type. We get a local Shimura datum (G, [b], {¢}) by taking [b], {u} as the
image of [b;], {41} under the map G; — G. By construction (G, [b], {¢}) is unrami-
fied of abelian type. We get the associated Rapoport-Zink spaces M; = M(Gy, by, 1)
and M = M(G, b, ). The pairs (Gy, {1 }) and (G, {u}) are fully Hodge-Newton de-
composable by [22, Theorem 2.5] (or one can compute the sets B(Gy, y;) and B(G, u)
directly to see they are fully Hodge-Newton decomposable).

Let X, be the p-divisible group over F, with contravariant Dieudonné module
(C(V)¥ ® W,by0), where C(V) is the Clifford algebra attached to V and C(V)" is
its dual. Fixany & € C(V)* with 6* = § where = is the canonical involution on C(V).
Then y4(cy1, c2) = Tr(c10c; ) is a perfect symplectic form on C(V'). Here Tr: C(V) —
Z, is the reduced trace map. The perfect symplectic form s on C(V) induces a prin-
cipal polarization Ag: Xy — X{. There exists a finite collection tensors (s )qe; that
includes s, such that G, ¢ GL(C(V)) is cut out by (s, )ses. Recall that M has the
following moduli interpretation. For any R € Nilp},", M;(R) = {(X, (to)aer )}/,
where

+ X is a p-divisible group on SpecR;

* (tq)aqer is a collection of crystalline Tate tensors of X;

e p: Xo®R/] — X®R/] is a quasi-isogeny that sends s, ® 1 to ¢, for « € I, where
J is some ideal of definition of R,

such that the following condition holds: the R-scheme
Isom((D(X)r, (ta), Fil*(D(X)z)), (A® R, (s¢ ®1), FiI"’A®R) )

that classifies the isomorphisms between locally free sheaves D(X)g and A ® R on
SpecR preserving the tensors and the filtrations is a P,; ® R-torsor.

The exact sequence 1 - G,, - G; - G — 1 induces a long exact sequence
(c¢f [2, Lemma 1.5])

1— m(Gw)" — m(G)" — m(G) — HY(,m(Gw)) — -+
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We have the following isomorphisms:
1(Gp)" = m(Gp) = X, (G,) = Z.
Since G¢* = Spin( V') is simply connected, and we have the exact sequence
1— Spin(V) — GSpin(V) — G,, — 1,

we get ([2,1.6])

m(G)' = m(G,)' = Z.
On the other hand, since

1— py = Spin(V) — SO(V) — 1

is exact, we get

m(G) = ua(-1) = Z/2Z.
Lemma 8.1 We have m(G)" ~ Z/2Z, and the map m(G,)" — m(G)" is surjective.
Proof As y; ¢ G, and T acts trivially on the latter, we get m,(G)" = py(-1)" =
p2(-1) = Z/27Z. For the second assertion, note that

m(G1)" [2m(Gi)" = Z/2Z c Im(m(Gy)" — m(G)").

Thus, the image is 7, (G)". ]
Corollary 8.2  We have an isomorphism of formal schemes M = M, /p”.

Proof By the above lemma 7,(G;)" — 7,(G)" is surjective.Thus, M ~ M, /p” as in
the proof of Proposition 4.9(i). [ ]

As the pairs (G, {p1}) and (G, {u}) are fully Hodge-Newton decomposable, by
Theorem 7.5 we get the following corollary.

Corollary 8.3 Assume that [b;] (and hence [b]) is non-basic. Then we have dim M4 =
dim Ml red = 0.

8.2 Ekedahl-Oort and Howard-Pappas Stratifications for Basic Rapoport-Zink
Spaces of Orthogonal Type

Let the notations be as in the previous subsection. Now assume that [b;] (thus [b]) is
basic.

In [32], Howard and Pappas introduced a stratification® for the reduced special
fiber M req of M;:

o]
ered = UMU\)
A

where A runs through the set of vertex lattices. By definition (cf. [32, section 5]), a
vertex A lattice is a Z,-lattice in V;* such that pA ¢ AY ¢ A ¢ V;*. Here, L =
W(F,)qg, ® = bo is the Frobenius and V;> admits a quadratic form induced from Vz,
so that this quadratic space V;” has the same dimension and determinant as V, but

8In [32, 6.5], it is called the Bruhat-Tits stratification, and our M7, is denoted there by BT 4.
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has Hasse invariant —1. Associated with a vertex, we have the type t(A) := dim A/AY,
which is an even integer with 2 < #(A) < i, Where

n+1, nodd,
tmax ={n+2, neven,detV #(-1)2,
n, neven, det V = (-1)%.

Recall that we have the inclusion V;” ¢ End(X)q, so each vertex lattice A ¢ V;®
can be viewed as a set of self quasi-isogenies of X,. For each vertex lattice A, the
associated Howard-Pappas stratum’ M, c© M, eq is the locus (X, (t4), p), where
p o AY op c End(X) and this does not hold for any smaller vertex lattice A’ ¢ A.
Let Mjs © M eq be its Zariski closure. In [32, 4.3.3 and 6.4.1], Howard and Pappas
proved that there exists a decomposition

ered = H Mf])’
je€z

such that each ij ) is a connected component of M eq. Accordingly, we get a de-
composition for each stratum:

TA =1 MS\)’O‘
JEZ

By [32, Theorem 6.5.6], each connected stratum Mflf;)’o is isomorphic to a Deligne-
Lusztig variety Xz (w) for the group SO(Aw/Aj},).
As

M = M, /p” ~ MO 11 MO,
we get an induced Howard-Pappas stratification for M.q:

Mred = I_[ M?\
A

In fact, in [32, sections 5 and 6], Howard and Pappas studied the geometric structures
of M req by passing to the quotient space Meq = M red/ pZ first.

Recall that W = W(F,), L = Wg. Following [32], we can describe the sets
Meea(Fp), Ma(F,), and M3 (F,) in terms of special lattices of V7, as follows. By def-
inition ([32, Definition 5.2.1]) a special lattice £ c Vy is a self-dual W-lattice such that
(L +D.(L))/L ~ W/pW, where ©, (L) is the W-submodule generated by ®(L).
By [32, Proposition 6.2.2], we have a bijection Mea(F,) ~ {special lattices £ c V; }.
By loc. cit. 5.3.1 and Theorem 6.3.1, we have bijections

Ma(F,) ~ {Lagrangians £ ¢ Q : dim(£ + (L)) =d + 1}
~ {special lattices £ c V; : A}, ¢ £L c Ay}
= {special lattices L c V : A(L) c A},

9We refer the reader to [44, Definition 2.9.1 and Theorem 4.2.11] for a variant.
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where Q = Ay /AYy, A(L) = (£)®,d = 8 and £ = L+ D(L) +---+DI(L).
Under the above description, we have the bijection
M5 (F,) = {special lattices £ c Vg : £ = Ay}
= {special lattices L c V : A(L) = A}.

In fact, the above descriptions are true for any finitely generated field extension k'|F,
(of [32)). )

Let G,-Zip"' be the stack of G,-zips of type y; over IF,. The universal p-divisible
group with crystalline Tate tensors on M; defines a morphism

(1 Ml — Gl—Zipm.

The underlying set of geometric points of G;—Zip*! is in canonical bijection with the
subset /W of the Weyl group of G;. In fact, we have isomorphisms of topological
spaces

|G ~Zip"!| ~ |G-Zip*| ~ TW.
Let /WP c /W be the subset defined by the image of {. For each w € 7W?, recall we
have the Ekedahl-Oort stratum of M ;.q associated with w:

My, = (_I(W)red'
We get the Ekedahl-Oort stratification
Mirea= 1 M.
wel Wb

We get also the induced Ekedahl-Oort stratification for M;eq.
Let m > 1be such that 2m = n +1if nis odd, and 2m = n + 2 if n is even. Then
there is a bijection (cf. [77, subsection 4.4])

W {0,1,...,2m -1}, n=2m-1odd,
—
{0,,,....m-2,m-1,m-1,m,...,2m -2}, n=2m-2even,

induced by the length function w — £(w), where we use the symbols m —1',m —1to
distinguish the two elements with the same length m — 1. Under the above bijection,
the subset /W’ c /W can be described as

{m,...,2m -1}, n=2m-1odd,
Twt = 3 m,...,.2m -2}, n=2m-2even,detV = (-1)2,
{m-1,m-1,m,....,2m—-2}, n=2m-2even,detV # (—1)%.
For each i # m — 1" on the right-hand side, we denote the corresponding element of
the left-hand side as w;. The element corresponding to m —1" will be denoted by w/,_;.

We can describe the map i — w; in more detail. Assume first that n is odd. The
simple reflections are

si=(hi+)(2m+1-i2m+2-1i), 1<i<m-1,
Sm=(m,m+2), i=m,
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and we have

S1°°+Si, 0<i<m,
wi = .
S1 " Sm-1SmSm—1"""Sam—i>» M+1<i<2m—1.

Now assume that # is even. The simple reflections are
si=(,i+1)2m-i,2m+1-i), 1<i<m-1,
Sm=(m-1,m+1)(m,m+2), i=m,

and we have

S1: Sy 0<i<m,
wi = .
S1 SmSm-2"""S2m-1-i> m+1<i<2m-2,

and
W =1 Sm_aSme

Let V = Ly ® F, be the quadratic space over F,. For each w; € /W, we will attach
to it an orthogonal F-zip (also called a SO(V')-zip) as follows. Fix a basis ey, .. ., €,42
of L such that the quadratic form Q has the form x;x,2 + X2%,41 + *+* + X X2 +
x2,., (cf. the proof of [77, Proposition 4.4.1]). By abuse of notation, we still denote by
€ls s €2 the induced basis of (V, Q). For each w € W, let M,, be the orthogonal
F-zip (V,Q, C®, D., ¢o) where

« C° is the descending filtration V o (es3,...,en42) O (€442) 2 0, denoted by

C'>Cl'> (%o 3,
* D, is the ascending filtration
0c(w(e))c(w(e),w(es),...,w(ens1))cV,

denoted by Dy c Dy c D, c D3,
* . is the collections of isomorphisms

po: (C°/CHYP 5Dy, g1 (CY/CHP) 5Dy /Dy, @i (C2/CP)P) 5 Dy D,

We remark that the above construction is not the standard isomorphism /W =~
|G - Zip*| of Pink, Wedhorn, and Ziegler (for example as in [77, Theorem 3.1.5]).
The standard association is the twist w — M,,,,, of ours, where wj is the maximal
length element of /W. In particular, £(wow) = n — £(w).

Theorem 8.4  Each stratum My, is some union of Howard-Pappas strata of Mj req.
Proof By the methods of [32], it suffices to prove the following assertion first. — ®
Corollary 8.5 Each stratum M,, is some union of Howard—-Pappas strata of Meq.

Proof We first prove the equalities for the sets of k-points, where k is an algebraically
closed field of characteristic p. This follows from [32, Theorem 6.5.6] and [21, Corol-
lary 4.1.3].

Indeed, by [32, Theorem 6.5.6], we have an isomorphism

M3 = Xp(w") LI Xp(w™),
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where Xp(w*) and Xp(w™) are the Deligne-Lusztig varieties associated with the el-
ements w* and w™ of W, the Weyl group of SO(Q), where as before, Q = Ay /AY,.
As in [32, 6.5.4], w* are Coxeter elements. Write w(A) = w*, and consider it as an
element in W under the inclusion Wqo < W. Then by [21, Corollary 4.1.3], we have

My(k)= 11 MZ(k).
A,w(A)=w
To prove the identities on the level of schemes, we argue as in the proof of
[69, Corollary 4.10]. That is, it suffices to show that M is open and closed in M,,.
This follows from the facts that MY is open in My, My nM,, = MY, and the above
identities on the level of points. [ ]

Consider the case k = F,,. For any vertex lattice A and any point x € M5 (F,), we
have the associated special lattice £. By reduction modulo p, we get an orthogonal
F-zip M,, which we write it as M,,,,,, attached to wow, € JW? for some w, € /WP,
Then by definition, x € M,,,,.. By the above corollary, we have the equality d - 1 =
2(wowy ), where d = % The following corollaries are coarser versions of Theorem
8.4 and Corollary 8.5. However, they are more explicit in terms of types.

Corollary 8.6 (i) Ifnisodd, or n is even with det(V') = (=1)3, then we have the
identity

lei = ]—[ ?A'
At(A)=2(n—i+1)

(i) Ifn is even with det(V) # (=1)%, then
(@) ifm<i<2m-1,

le,— = ]_[ M?AQ
A t(A)=2(n—i+1)
(b) ifi=m-1,
lem_l I_[ lefn_l = ]_I M?{y
A t(A)=2m

Corollary 8.7 (i) Ifnisodd, or nis even with det(V') = (_1)§) then we have the
identity
My, M3.
AH(A)=2(n—i+1)

(i) Ifnis even with det(V) # (-1)%, then
(@) ifm<i<2m-],

MW{ = ]_[ ?\;

A t(A)=2(n—i+1)
(b) ifi=m-1,
My, UM, = 11 M.

" AH(A)=2m
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8.3 Moduli Spaces of Polarized K3 Surfaces with Level Structures and the Integral
Kuga—Satake Map

In this and the next subsection, we will turn to moduli spaces of polarized K3 surfaces,
with the involved Shimura varieties; ¢f. [47, Sections 2 and 4], [58, Section 6].

Let U be the hyperbolic lattice over Z of rank 2, and let Eg be the positive quadratic
lattice associated with the Dynkin diagram of type Es. Set N = U®* & E®?, which is
a self-dual lattice. Let d > 1 be an integer. Choose a basis e, f for the first copy of U
in N and set Ly = (e —df)* c N. This is a quadratic lattice over Z of discriminant 2d
and rank 21 (in [58] it is denoted by L,; ). Let V; = Ly ® Q and L ¢ V; be the dual
lattice. Set G = SO(V;), which is isomorphic to the special orthogonal group over Q
of signature (2,19). Let K ¢ G(Ay) be an open compact subgroup that stabilizes L,
and acts trivially on LY /L,. Such compact opens are called admissible. We fix a prime
p > 2suchthat p 4 d from now on. Then as L is self dual at p, the local reductive group
Gq, is unramified. Let K, = G(Z,) be the hyperspecial group. We only consider
open compact subgroups K? c G(AI;) that are contained in the discriminant kernel
of L, 7, with finite index. In particular, K = K,K? is admissible; cf. [58, 5.3]. For
the reductive group G, we have the associated Shimura varieties Shg,x», which are
defined over Q. By [38], there exists an integral smooth canonical model Sk,x» of
ShKPKP over Zp.

Let M,y (resp. M) be the moduli spaces of K3 surfaces f: X — S together
with a primitive polarization & (resp. quasi-polarization) of degree 2d over Z, (in
[47, Section 2], these spaces are denoted by M3, and M,, respectively). These are
Deligne-Mumford stacks of finite type over Z,. The natural map M,; — M, is an
open immersion. Moreover, M, is separated and smooth of dimension 19 over Zp;
cf. [58, Theorem 4.3.3, Proposition 4.3.11], and [47, Proposition 2.2].

Let (f: X = My, &) be the universal object over M,,. For any prime £, we con-
sider the second relative étale cohomology Hj of X over M,,. This is a lisse Z,-sheaf
of rank 22 equipped with a perfect symmetric Poincaré pairing (-, - ): Hz x H2 —
Z¢(-2). The £-adic Chern class chy (&) of & is a global section of the Tate twist H;(1)
that satisfies (ch, (&), ch,(&)) = 2d. The product

H%:];[Hﬁ

is a lisse Z-sheaf, and the Chern classes of £ can be put together to get the Chern class
ch5(&) in H%(l). Recall that we have the quadratic lattice N of rank 22 over Z.

Definition 8.8 Consider the étale sheaf over M,; whose sections over any scheme
T — M,  are given by

I(T) = {11: N®Z> H% (1) isometries, with (e - df) = chz(f)}.
Let K = K,K? c K, be an admissible open compact subgroup. Then I admits a

natural action by the constant sheaf of groups K. A section 77 € H*(T, I/K) is called
a K-level structure over T (in [58, 5.3] it is called a full K-level structure).
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Let Mg,k (resp. M3, i) be the relative moduli problem over M, (resp. M3,;) that
parametrizes K-level structures. For K? (thus K) small enough, these are smooth
algebraic spaces. Moreover, the maps

* *
Magxk — Mag and My, x — My,

are finite étale. For another admissible K’ = K pKP’ c K= KPKP , we have natural
finite étale projections

M,; g — Masx and M

*
2d,K’ ” Mzd,K

as algebraic spaces over M,4, M3, respectively. When K?" is a normal subgroup of
KP?, these projections are Galois with Galois group K? /K?".
For any prime ¢, we have the primitive cohomology sheaf
Py = {ch¢(§))* < Hy.

Let Hj and H3; be the second relative Betti and de Rham cohomology respectively
of the universal K3 surface X — M, ;- . We have also the primitive cohomology
sheaves

Py = <ChB(€)>l c H]23, Pyr = (ChdR(f))l c H(ZlR
Consider M} 4.k~ M3, x> the two-fold finite étale cover parameterizing isometric

trivializations det(Ly) ® Z, - det(P,) of the determinant of the primitive 2-adic
cohomology of the universal quasi-polarized K3 surface. We can identify M7, , with

the the space of isometric trivializations det(L;) — det(Pg) of the determinant of
the primitive Betti cohomology. There is a Hodge-de Rham filtration F*®P4g on Pgg,
and we have a natural isometric trivialization #: disc(L4) — disc(Pg) and the the
tautological trivialization 8: det(Ly) — det(Pg). The tuple (Pg, F*Pyr, 7, B) gives
rise to a natural period map

My xc — Shics

¢f. [47, Propositions 4.2 and 3.3]. There is a section map Mysx,c © My xc —
M; 4.x,c> Whose composition with the above period map gives us the Kuga-Satake
period map

ic: Mag,x,c — Shic.
It follows from [59, Theorem 3.9.1], this map is defined over Q. Therefore we get the
map over Q:
1Q,: MZd,K,QI, — ShK,QP-

As Sk is the integral canonical model of Shg, by extension property of Sk, the Kuga-
Satake map extends to a map over Z,:

L Mzd,K —> SK.

Theorem 8.9 ([47, Corollary 5.15])  The integral Kuga-Satake period map
1: Mg,k —> Sk

is an open immersion.
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When K? c KP? is another open compact subgroup, we note that the following
diagram is cartesian:

Mgk, — Sk,

L

Mgk — Sk.

As a corollary, we see that for K? small enough, M, k is a scheme.
8.4 Newton and Ekedahl-Oort Stratifications of the Moduli Spaces of K3 Surfaces

In the rest of this section we will work over W. As before, we simply denote by the
same notation for an object base changed to W. Let M4 x be the special fiber of
M, x> which can be viewed as an open subspace of the special fiber Sk of Sk by
Theorem 8.9. For the good reduction of Shimura varieties of abelian type, in [68] we
have introduced the Newton and Ekedahl-Oort stratifications for the special fibers.
In Subsection 6.2, we have seen the Newton stratification. In the cases of GSpin and
SO Shimura varieties, we can compare the Newton and Ekedahl-Oort stratifications
as follows. These are in the list of Shimura varieties of coxeter type studied in [21]
(comp. [22]).

Theorem 8.10 ([68]) Assume that n is 0dd."’

(i) We have
— —b — —w
Sk= U Sk, Sk= U Sg
beB(G,u) we/ W
with each stratum in the two stratifications non-empty.
(ii) Let by be the unique basic element in B(G, u).
b —
o For b # by, there exists a unique wy, € /W such that Sy = Szb;

750 —_w
o For bo, SK = ]—IWGIWbO SK'

Note that the subset /W? = {w}} for any b # by. In fact these statements are just
the global analogue of Theorem 7.5 in the setting of Shimura varieties of abelian type;
cf. [68, Section 7] (see also [22, Section 6], where the authors there assume that the
axioms of [32] are verified).

We return to the case n = 19. Consider the Kuga-Satake map 7: My x = Sk
which is an open immersion by Theorem 8.9. The above stratifications of Sk in turn
induce stratifications of M4 k:

— —b — —w
Magk= I Myrx, Mugx= I Mk
beB(G,u) welW

—b — —b _
where M, x and M;vd) x are the pullbacks of the corresponding strata Sy and S ; under
the open immersion 1: M,y x < Sk. We have the similar relation

10When 1 is even, we have a similar but more delicate statement that each Newton stratum is a disjoint
union of some Ekedahl-Oort strata; cf. [68].
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« for b # by, there exists a unique w;, € /W such that Mzd K= Mzd e

M o
o for bo, Myy x = L yerweo MZd,K' We will also write Mzd,K as Mzd,K to indicate
that it is the supersingular locus of M, .

We will investigate these stratifications in some more classical terms, which appeared
in the literature; see [50], for example.

8.4.1 Newton Stratification vs. Height Stratification

Let X be a K3 surface over a field k of characteristic p. Consider the functor on local
Artinian k-algebras with residue field k defined by

(1>§(/k: (Art/k) — (Abelian groups)
R+— ker (H.,(X x SpecR, G,,) - H.,(X,G,)).

It is pro-representable by a one-dimensional formal group Br(X), the so-called formal
Brauer group. The height h of this formal Brauer group of the K3 surface X satisfies
1<h<10orh = oo.

The Newton slopes of the F-crystal H;(X/W) are equal to (1- 1,1,1+ 7). Thus,
the set B(G, p) is in bijection with the set {1, .. .,10, oo }. The basic element b, corre-
sponds to co. We write B(G, u) = {b1,..., b1, bu1 = by }. The Newton stratification
of M,y i is just the classical height stratification. By [13], for each b € B(G, p), the

—b
Newton stratum M, ; i is non-empty.

8.4.2 Ekedahl-Oort Stratification vs. Artin Invariant Stratification

Thanks to the recent proof of the Tate conjecture for K3 surfaces, we know that for
a K3 surface X over F, h = oo if and only if its Picard rank p = 22; i.e., it is Artin
supersingular if and only if it is Shioda supersingular; cf. [45, Theorem 2.3]. We sim-
ply call X supersingular in this case. Let X be a supersingular K3 surface over F;
then the discriminant of its Néron-Severi lattice is equal to —p??(X) for some integer
1< 09(X) <10. The integer g¢(X) is called the Artin invariant of X.

By [13], we have an explicit description of the set /W as {wy, ..., wa}, with w;
corresponds to b; for 1 < i <10, and for 11 < i < 20, the elements w; are basic. The
K3 surfaces in the stratum Mg& x have Artin invariant 21 — i. In particular, we note
that the index i in the description of the set /W in subsection 8.2 (where 0 < i <19 in
our case) is shifted to i + 1 here. By [13], for each w € /W, the Ekedahl-Oort stratum
M, x is non-empty.

8.5 Rapoport-Zink Type Uniformization and Artin Invariants

In this final subsection, we make the link between Rapoport-Zink spaces and moduli
spaces of K3 surfaces.

Let MM « and Sg be the formal completion of M, x and let Sk along their special
fibers respectively. Then the integral Kuga—Satake perlod map in Theorem 8.9 induces
an open immersion of formal schemes: 7 Mzd K — Sxk.
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Let xo € My k be any point in the special fiber M, x of My, k, and x = 7(x,) be
its image in Sk. Let b € B(G, u) be the Newton point associated with x and consider
the corresponding formal Rapoport-Zink space M = M, for the group SO(V'). The
choice of the point x determines a morphism of formal schemes: ©,: M — Sk.
Denote by N the pullback of M under T f\\/[zd, x — Sk. In other words, we get a
cartesian diagram

N—M

— T —
Mg x — Sk

with the upper horizontal map N — M is an open immersion. By the moduli descrip-
tion of M, we get the following description of N. For any R € Nilp},”,

N(R) = {(X, (ta) ) € M(R)},
where the following hold:

« (X, (ta),p) € My(R), with X = KS(Y)[p*], where Y is a K3 surface over R,
KS(Y) is the Kuga—Satake abelian scheme attached to Y (cf. Theorem 8.9 and
[47, section 5]);

« p is the pZ-orbit of p.

In particular, N is stable under the action of J,(Q,) on M.

Remark 8.11 By construction, we have an open subspace N; ¢ Mj, such that for
any R € Nilp},”,
Ni(R) ={(X, (ta), )}
with (X, (4), p) € M;(R) as above. The space N is given by N = N;/p”. On the level
of affine Deligne-Lusztig varieties, we get subsets
Nrea(Fp) € Mrea(Fp) = X7 (b)  and  Niyea(Fp) € Mirea(Fp) = X' (by).

In the case that b is basic, it will be interesting to describe the above subsets by special
lattices as in [32, Section 5].

We can apply the Rapoport-Zink uniformization theorem for Sk to deduce a sim-
ilar uniformization for M, k. Recall that as dim V' = 21is odd, the group G = SO(V)
is adjoint.

Corollary 8.12  Let ] 4 be the pullback of Z¢ x» under the open immersion1: Mpg x
Sk. Then we have the identity

M2d,K = LI N r‘)

e jel /

where I is certain countable set, and for each j € I, T; c ], (Q,) is some discrete subgroup
(constructed as usual from the uniformization theorem of the last section). If, moreover,

b = by is basic, then J4 = My, g, which is the supersingular locus in My k, and the
above disjoint union is finite.
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Recently there has been a definition of isogeny between two K3 surfaces in char-
acteristic p; cf. [76]. One can cheek that the locus J4 parametrizes an isogeny class of
polarized K3 surfaces.

Remark 8.13 If the open compact subgroup K = K,K? ¢ G(A¢) (K, = G(Z,)) is
the image of some open compact subgroup K; = KlpKf c Gi(Ay) (Kip = Gi(Zp)),
then it will be much easier to prove the uniformization theorem for Sx. One can
work directly on the finite level and take a finite étale quotient from the corresponding
Rapoport-Zink uniformization for Gy; cf. [67, section 4], for example.

Assume that b = by is basic. Let Nyeq be the reduced special fiber of N. Then the
Howard-Pappas stratification of the reduced special fiber M,.q of M induces a similar
stratification of the open subspace Nyeq:

Nred = I_INO >
A

where N§ c Nyeq is the pullback of the stratum M} c M,q. For each w; € Twe,
consider the corresponding Ekedahl-Oort stratum

M, = My, and N, = I NL.
At(A)=2(21-i) At(A)=2(21-i)
For each 11 < i < 20, the image of N,,, under the uniformization morphism gives us
the corresponding Ekedahl-Oort stratum M;Vd x in supersingular locus.
For (X, £) € Myy x(F,), consider £ = (cheris(§))* ¢ H2;(X/W). This is a spe-
cial lattice in the sense of [32, Definition 5.2.1]. Then we can apply Proposition 5.2.2
of loc. cit. to produce a vertex lattice A(L). For any integer r > 0, define

LO=L4+D(L)+-+D(L).
Then there is a unique integer 1 < d < 10 such that
L= EL(I) G- Q £ = pld+)

The vertex lattice A(L) is defined by A(£) = (£(9))®. Tt has type t(A(L)) = 2d and
A(L)Y = L£2. The following corollary follows from the above uniformization and
Corollary 8.5.

Corollary 8.14  Under the uniformization identity

M;:IK = L[INred/r"
]€

the Ekedahl-Oort stratum M;;)Kfor each 11 < i < 20 is the image of N,,,,. In particular,

ifx e Mszsd «(Fp), let X, be the associated supersingular K3 surface over F, then we
have the identity between the Artin invariant oy(X, ) and the type t(A,):
t(Ax)

GO(XX) = 2 >

where A, = A(L,) is the vertex lattice attached to the special lattice associated with
(X, &) as above.
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A Admissibility and Weakly Admissibility in the Basic Orthogonal
Case

In this appendix, we investigate the p-adic period domains .7 L’aGd,‘;‘ and .7 £, in the
case b is basic and G = SO. Although Theorem A.2 appears as a special case of our
more recent work [9], we present it here, since it provides some concrete computa-
tions, which can serve as a good example-based introduction to our proof for [9, The-
orem 6.1] in the direction (i)= (ii). All the following material is taken from [18]. We
thank Fargues sincerely for kindly allowing us to include it here.

Let V = Q} equipped with the quadratic form Q with matrix

1
1

Let G = SO(V, Q) and consider the minuscule cocharacter y: G,, - Gz given
by u(z) = diag(z,1,...,1,z™"). Then the basic class in B(G, u) is [b] = [1] and thus
J» = G. One checks easily that any non-basic Newton polygon has a nontrivial contact
point with the Hodge polygon, i.e., (G, {u}) is fully Hodge-Newton decomposable
in the sense of [22, Definition 2.1].

For simplicity, we write ¢ = 7 €g,, as the p-adic flag variety, 7 ¢"* = F g7,
and Z¢4m = 7 EE‘{‘;’. We first describe the weakly admissible locus . €**. The asso-

ciated isocrystal is (@Z with Frobenius 0®”. The sub-isocrystals are in bijection with
the sub-Q,-vector space of V. Let C be a complete and algebraically closed extension
of QP. Then we have

F€(C,O¢) = {Lagrangian lines D c V¢ }.
It follows that . % € c P(a is the quadric defined by the equation >}, x;x,_;4; = 0. Let
P

QE] @ (0) c V be a Lagrangian subspace with associated parabolic subgroup P c G.
We attach to it the Hodge filtration

0cFil'=DcFil’=D*cFil' =V,
to any line D € #¢(C, O¢). Then
ﬁewa(c, Oc) = {D € fﬁ(C,Oc) | Dn WC = O,
for each totally isotropic subspace W c V'}.
Therefore, we get the following proposition.
Proposition A.1
T = F0\G(Q,)$™,
where S is the adic space associated with the Schubert variety attached to P (S is de-
fined by the locus x{n1,y = -+ = x, = 0 inside F¢).

Now we look at the admissible locus .7 £24™ (cf. [54, Definition A.6 ] or [9, Defi-
nition 3.1]). We have the following theorem.
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Theorem A.2 Fe2dm = Zpve,

Proof For any point x € .Z£"*(C,Oc¢), let €, be the associated modification of

O such that the relative position of (B%;)" and €, . is bounded by . Here X

is the Fargues-Fontaine curve over Q, associated with the perfectoid field C", and

oo = x¢ € X is the point defined by C. We need to show that this weakly admissible

modification is in fact an admissible modification (i.e., € is semi-stable of slope 0).
By [54, Proposition A.9], we have either

~ 1 n=2r _ 1
Ey OX(r) o0y @ OX( r)
for some integer 1 < r < [5], or €, =~ O%. The second case is admissible. We have
to show this is always the case. Suppose that we are in the first case; we will find a
contradiction. The perfect quadratic form on &, is such that for any A € QQ, we have
(&21)* = €274, where £} c €, is a step in the Harder-Narasimhan filtration of &,.
Therefore, we get

on() -on(2) sor

and Ox(1) is totally isotropic. It follows that there exists a unique subvector bundle

n

Z c O thatis alocally direct summand, such that the modification &, |x\ o 50 X\o0

induces a modification
1 -
Ox(;) IX\oo = F [ X\ 00"

In particular, .# is totally isotropic in O%. Such a modification is necessarily of one
of the following types:

1 (-L0,...,0),

2 (o,...,0,1),

3) (0,...,0).

Indeed, it suffices to look at the relative positions of the lattices E n (B};)" and E n
(ter, ea,...,en1,t 'ey,) for all the sub-Byg-vector spaces E of Bl where ey, ..., e,
is a basis of V. As 0% is semi-stable, we have deg(.#) < 0. By looking at the above
three cases, we get that .7 is a degree —1 modification of Ox(1). Thus,

F ~0%;
that is, # = W ® Ox for some totally isotropic subspace W c Q} of dimension r.

This implies that our modification € ;|x\co 5 0%\ 18 not weakly admissible. Thus,
we get a contradiction. [
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