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On Some Generalized Rapoport–Zink
Spaces

Xu Shen

Abstract. We enlarge the class of Rapoport–Zink spaces of Hodge type by modifying the centers
of the associated p-adic reductive groups. Such obtained Rapoport–Zink spaces are said to be of
abelian type. he class of Rapoport–Zink spaces of abelian type is strictly larger than the class of
Rapoport–Zink spaces ofHodge type, but the two type spaces are closely related as having isomorphic
connected components. he rigid analytic generic ûbers of Rapoport–Zink spaces of abelian type can
be viewed as moduli spaces of local G-shtukas in mixed characteristic in the sense of Scholze.

We prove that Shimura varieties of abelian type can be uniformized by the associated Rapoport–
Zink spaces of abelian type. We construct and study the Ekedahl–Oort stratiûcations for the special
ûbers of Rapoport–Zink spaces of abelian type. As an application, we deduce a Rapoport–Zink type
uniformization for the supersingular locus of themoduli space of polarizedK3 surfaces inmixed char-
acteristic. Moreover,we show that the Artin invariants of supersingularK3 surfaces are related to some
purely local invariants.

1 Introduction

he theory of Rapoport–Zink spaces ûnds its origin in the work of Drinfeld in [12].
Let E be a ûnite extension of Qp , and let Ωd

E be the complement of all E-rational
hyperplanes in the p-adic projective space Pd−1 over E. In [12], Drinfeld interpreted
this rigid-analytic space Ωd

E as the generic ûbre of a formal scheme over OE parame-
trizing certain p-divisible groups. He used this formal moduli scheme to p-adically
uniformize certain Shimura curves and to construct étale coverings of Ωd

E . In their
foundational and seminal work [56], Rapoport and Zink greatly generalized
the construction of Drinfeld by introducing general formal moduli spaces of
p-divisible groupswith EL/PEL structures, and proved these spaces M̆ can be used to
uniformize certain pieces of general PEL type Shimura varieties. Moreover, Rapoport
and Zink constructed étale coverings MK of the generic ûbers of these formal mod-
uli spaces, and realized these rigid analytic spaces as étale coverings ofmore general
non-archimedean period domains. Besides their importance in arithmetic geometry
and p-adicHodge theory, it was conjectured by Kottwitz that the ℓ-adic cohomology
of these Rapoport–Zink spaces MK realizes the local Langlands correspondence for
the related local reductive group G; cf. [52, Section 5].
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1112 X. Shen

Recently, Kim [36] constructedmore general formal moduli spaces of p-divisible
groups with additional structures. (Here and throughout the rest of this introduc-
tion, we assume p > 2.) hese formal schemes M̆ are called Rapoport–Zink spaces
of Hodge type, associated with unramiûed local Shimura data of Hodge type
(G , [b], {µ}) (see below). he additional structures on p-divisible groups are given by
the so-called crystallineTate tensors (cf. [36, Deûnition 4.6]) generalizing the EL/PEL
structures introduced by Rapoport–Zink (in the unramiûed case). Kim also con-
structed a tower (MK)K of rigid analytic spaces (as usual, K ⊂ G(Qp) runs through
open compact subgroups of G(Qp)), when passing to the generic ûbers of these for-
mal moduli schemes. hese Rapoport–Zink spaces of Hodge type appear as local
analogues of the recent work of Kisin [38] on integral canonical models of Shimura
varieties ofHodge type. Kim [37] has proved that his Rapoport–Zink spaces ofHodge
type can be used to uniformize certain pieces of Shimura varieties of Hodge type. If
the unramiûed local Shimura datum of Hodge type comes from a Shimura datum
of Hodge type, Howard and Pappas have given another (global) construction of the
associated Hodge type Rapoport–Zink spaces. We refer the reader to [32] for more
details.

In this note,we show thatwe can in fact go one step further: wewill construct some
(slightly) more general formal and rigid analytic Rapoport–Zink spaces, and we will
show that these spaces can be used to uniformize (pieces of) Kisin’s integral canon-
ical models Shimura varieties of abelian type; cf. [38]. Moreover, we will give some
interesting applications to themoduli spaces of K3 surfaces in mixed characteristic.

here are severalmotivations for ourwork here. In ourpreviouswork [67],we con-
structed perfectoid Shimura varieties of abelian type. One of themainmotivations for
this work is to study the local geometric structures of these perfectoid Shimura vari-
eties, and to study the local geometric structures ofKisin’s integral models of Shimura
varieties of abelian type [38]. Another motivation is the recent developments in the
theory of local Shimura varieties. In [57], Rapoport and Viehmann conjectured the
existence of a rigid analytic tower (MK)K associated with a local Shimura datum
(G , [b], {µ}), where1

● G is a connected reductive group over Qp ;
● {µ} is a conjugacy class ofminuscule cocharacters µ ∶ Gm → GQp

;
● [b] is a σ-conjugacy class in the Kottwitz set B(G , µ) (see [41, Section 6]).

hese conjectural local Shimura varieties are intended to be generalizations of
Rapoport–Zink spaces, and there should be a theory in the local situation as good
as the classical theory of Shimura varieties [11]. Recently, using the theory of per-
fectoid spaces [60], and the developments in p-adic Hodge theory due to Fargues,
Fargues–Fontaine, and Kedlaya–Liu [15, 20, 35], Scholze has almost given a solution
for Rapoport andViehmann’s conjecture by constructingmoduli of localG-shtukas in
mixed characteristic (cf. [61]): (ShtK)K as some reasonable geometric objects. hese
geometric objects are called diamonds there, a generalization of perfectoid spaces and
analytic adic spaces. Along the way of construction, we get an inûnite level moduli

1Here we have followed [57] to write a local Shimura datum as (G , [b], {µ}).
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space Sht∞, such that as diamonds we have

Sht∞ = lim
←Ð
K

ShtK .

In fact, Scholzeprovedmore: one can allow the conjugacy class of cocharacters {µ}
non-minuscule, contrary to the original requirement of Rapoport and Viehmann in
[57], and, in fact, one can allow several {µ}’s. hus, this theory is themixed character-
istic analogue of the theory ofmoduli of shtukas in the function ûelds case [28,42,70].
Despite its great success, themethod of [61] is purely generic:2 a priori, one has no

information on reduction mod p. In the case of EL/PEL Rapoport–Zink spaces MK ,
Scholze proved that the associated diamondsM◇

K are isomorphic to hismoduli spaces
of local G-shtukas ShtK . From the point of view of moduli, this means that one can
switch p-divisible groupswith additional structures to localG-shtukas. hus, in these
classical cases, one gets formal integral structures and can talk about reduction mod
p. From now on, we assume that G is unramiûed overQp and ûx a reductive integral
model GZp of G over Zp . Using Dieudonné theory, one can prove that the special
ûbers of formal Rapoport–Zink spaces (of EL/PEL/Hodge type) are closely related to
the corresponding aõne Deligne–Lusztig varieties

XG
µ (b) ∶= {g ∈ G(L)/G(W) ∣ g−1bσ(g) ∈ G(W)µ(p)G(W)} ,

whereW = W(Fp), L = WQ ,G(W) = GZp(W), and σ is the Frobenius. More pre-
cisely, in the above deûnition we have ûxed a representative b ∈ G(L) of the class
[b]. On XG

µ (b), we have an action of Jb(Qp), where Jb is the σ-centralizer of b.
hese objects are deûned purely group theoretically, and thus make sense for arbi-
trary (G , [b], {µ}) (as in the case of Scholze’smoduli of localG-shtukas). hese aõne
Deligne–Lusztig varieties play a crucial role in understanding the reduction mod p of
Shimura varieties; cf. [53].

In this paper, we introduce a class of local Shimura data, the so-called unrami-
ûed local Shimura data of abelian type, and for each such datum (G , [b], {µ}), we
construct a formal scheme M̆ and a tower of rigid analytic spaces (MK)K such that

● the reduced special ûber is Mred(Fp) ≃ XG
µ (b);

● the rigid analytic (adic) generic ûber is M̆ad
η =MG(Zp);

● the associated diamonds areM◇
K ≃ ShtK .

Moreover, we can prove that there exists a preperfectoid spaceM∞ over L such that

M∞ ∼ lim
←Ð
K

MK ,

where the meaning of ∼ is as in [65, Deûnition 2.4.1]. his class of unramiûed lo-
cal Shimura data of abelian type is strictly larger than the class of unramiûed local
Shimura data of Hodge type. hus, among all local Shimura data, we ûnd a new and
larger class such that

● there exists a formal model M̆, such that M̆ad ,◇
η ≃ ShtG(Zp) ,Mred(Fp) ≃ XG

µ (b);
● there exists a preperfectoid spaceM∞, such that M◇

∞ ≃ Sht∞.

2We have learnt very recently that Scholze’s method also produces integral models of local Shimura
varieties as v-sheaves; cf. [63,64].
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We remark that the analogues of the above two additional structures in the global
situation of Shimura varieties of abelian type are known by [38, 67]. hey are not
known yet for general local Shimura data (or local shtuka data).
A local Shimura datum (G , [b], {µ}) is called of unramiûedHodge type ifG is un-

ramiûed and there exists an embedding (G , [b], {µ})↪ (GL(V), [b′], {µ′}) of local
Shimura data such that {µ′} corresponds to (1r , 0n−r) for some integral 1 ≤ r ≤ n =
dimV . Roughly, the class of local Shimura data of Hodge type is the largest class for
which the associated Rapoport–Zink spaces can be realized as moduli of p-divisible
groupswith additional structures. In this paperwe introduce the following notion. A
local Shimura datum (G , [b], {µ}) is called of unramiûed abelian type if there exists
an unramiûed local Shimura datum ofHodge type (G1 , [b1], {µ1}) such thatwe have
an isomorphism of the associated adjoint local Shimura data (Gad , [bad], {µad}) ≃
(Gad

1 , [bad1 ], {µad1 }). his is the local analogue of a Shimura datum of abelian type.3
We remark that although, by deûnition, we only change the centers of the groups,
there no longer exists a local Hodge embedding for a general local Shimura datum of
abelian type (G , [b], {µ}) (as in the corresponding global situation of Shimura vari-
eties). his means that the class of local Shimura data of (unramiûed) abelian type is
strictly larger than the class of (unramiûed) Hodge type. By Serre’s classiûcation [66],
the groups G in this larger class consist exactly of all classical groups; see Section 4.

Our ûrst main theorem is as follows. See heorem 4.6, Proposition 4.17, and
Corollary 5.22.

heorem 1.1 Let (G , [b], {µ}) be an unramiûed local Shimura datumof abelian type.
Fix a representative b ∈ G(L) of [b]. hen there exists a formal scheme M̆(G , b, µ),
which is formally smooth, formally locally of ûnite type over W , such that

M(G , b, µ)perf ≃ XG
µ (b).

Here, M(G , b, µ)perf is the perfection of the special ûber M(G , b, µ), and XG
µ (b) is

the aõne Deligne–Lusztig variety, considered as a perfect scheme by [1,78]. he formal
scheme M̆ ∶= M̆(G , b, µ) is equipped with a transitive action of Jb(Qp), compatible
with the action of Jb(Qp) on XG

µ (b). Moreover, there exist a tower of rigid analytic
spaces (MK)K and a preperfectoid spaceM∞ over L such that
(i) M̆ad

η =MG(Zp);
(ii) M∞ ∼ lim

←ÐK
MK ;

(iii) M◇
K ≃ ShtK ;

(iv) there exists a compatible system of étalemorphism πdR ∶ MK →F ℓadmG ,µ ;
(v) there exists a Hodge–Tate periodmorphism πHT ∶ M∞ →F ℓG ,µ−1 .

Here F ℓadmG ,µ is the admissible locus in the p-adic �ag variety F ℓG ,µ associated
with (G , {µ}) (cf. [54, DeûnitionA.6] or [9, Deûnition 3.1]), andF ℓG ,µ−1 is the p-adic
�ag variety associated with (G , {µ−1}). In fact, we will see in Corollary 5.22 that πHT
also factors through a locally closed subspaceF ℓbG ,µ−1 ⊂ F ℓG ,µ−1 .

3More precisely, our local Shimura data of abelian type are the local analogues of Shimura data of
preabelian type.
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he construction of M̆(G , b, µ) associated with (G , [b], {µ}) as above is based
on the following observations. Take any unramiûed local Shimura datum of Hodge
type (G1 , [b1], {µ1}) such that (Gad , [bad], {µad}) ≃ (Gad

1 , [bad1 ], {µad1 }). We have
the associated formal Rapoport–Zink space M̆(G1 , b1 , µ1) constructed by Kim [36],
bypatching togetherFaltings’s construction of deformation ring for p-divisible groups
(with crystallineTate tensors)withArtin’s criterion for algebraic spaces. By [78,Propo-
sition 3.11],M(G1 , b1 , µ1)

perf ≃ XG1
µ1
(b1). For any local Shimura datum (G , [b], {µ}),

we have a Jb(Qp)-equivariant surjectivemap

ωG ∶ XG
µ (b)Ð→ cb ,µπ1(G)Γ ,

which factors through the set of connected components π0(XG
µ (b)). Here π1(G) is

the algebraic fundamental algebraic group of G and Γ = Gal(Qp/Qp). See Subsec-
tion 2.2 for the construction of this map and the element cb ,µ ∈ π1(G). Moreover, by
[7, heorem 1.2], Jb(Qp) acts transitively on π0(XG

µ (b)). For any local Shimura da-
tum (G , [b], {µ}), by [7, Corollary 2.4.2], we have a cartesian diagram

XG
µ (b) //

��

XGad
1

µad (b
ad)

��
cb ,µπ1(G)Γ // cbad ,µadπ1(Gad)Γ .

In particular, we apply the above diagram to (G , [b], {µ}) and (G1 , [b1], {µ1}), as
above. Let XG1

µ1
(b1)+ ⊂ XG1

µ1
(b1) be a ûxed choice of ûber of themap ωG1 ∶ XG1

µ1
(b1) →

cb1 ,µ1π1(G1)
Γ . his is isomorphic to the corresponding subset of XG

µ (b). Let

M̆(G1 , b1 , µ1)
+ ⊂ M̆(G1 , b1 , µ1)

be the open and closed subspace corresponding to XG1
µ1
(b1)+. As XG

µ (b) =

Jb(Qp)XG
µ (b)+, we get the formal scheme M̆(G , b, µ) whose special ûber satisûes

M(G , b, µ)perf ≃ XG
µ (b). By construction, this formal scheme does not depend on

the choice of the Hodge type local Shimura datum (G1 , [b1], {µ1}). he other prop-
erties can be proved similarly.

Let
(M(G , b, µ)K) K⊂G(Qp)

and (M(G1 , b1 , µ1)K1) K1⊂G1(Qp)

be the two towers associated with (G , [b], {µ}) and (G1 , [b1], {µ1}), as above. By
construction, the two towers are locally isomorphic in the sense that there exist
subtowers4 (M(G , b, µ)+K) K⊂G(Qp)

and (M(G1 , b1 , µ1)
+
K1
)

K1⊂G1(Qp)
such that

M(G , b, µ)+∞ =M(G1 , b1 , µ1)
+
∞ ,

whereM(G , b, µ)+∞ is the preperfectoid space over L such that

M(G , b, µ)+∞ ∼ lim
←Ð
K

M(G , b, µ)+K ,

4Here a subtower (YK)K of a tower (XK)K of inverse system of rigid analytic spaces is by deûnition
given by an inverse system of subspaces YK ⊂ XK with compatible transition maps.
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and similarly for M(G1 , b1 , µ1)
+
∞. his implies in particular that F ℓadmG ,µ = F ℓadmG1 ,µ1

.
he tower (M(G , b, µ)K)K⊂G(Qp) can be recovered from (M(G , b, µ)+K)K⊂G(Qp) and
π1(G)Γ by the action of either G(Qp) or Jb(Qp). We expect that such results hold
true for any local shtuka data (G , [b], {µ}) and (G1 , [b1], {µ1})with the same adjoint
data.

We note that the above construction is simpler than the corresponding global sit-
uation (cf. [38,67]), where one has to make a quotient on each geometric connected
component of Shimura varieties ofHodge type.

In Subsection 4.3wewill try to ûnd amoduli interpretation for the formal scheme
M̆(G , b, µ) associated with (G , [b], {µ}) as above (cf. Proposition 4.9), which is a
priori non canonical, however. It is desirable to ûnd a more canonical moduli inter-
pretation for M̆(G , b, µ). A�er the ûrst version of this paper appeared on line, Bültel
and Pappas have recently found an intrinsic moduli interpretation for M̆(G , b, µ)
with (G , [b], {µ}) of Hodge type under a certain nilpotent condition; cf. [4]. hey
use a notion of (G , µ)-displays, which is purely group theoretical. We can natu-
rally extend Bültel and Pappas’s moduli interpretation to certain abelian type case
M̆(G , b, µ) studied in this paper; cf. heorem 4.11. As mentioned above, the fur-
ther recent progress of [64] will give a canonical moduli interpretation for the formal
scheme M̆(G , b, µ) in the general case, as moduli of local shtukas similar to that in
Section 5; cf. Remark 5.24(iii).

If the unramiûed local Shimura datum of abelian type (G , [b], {µ}) comes from
a Shimura datum of abelian type (G , X), we can prove the following uniformization
theorem. Let K p ⊂ G(Ap

f ) be a ûxed suõciently small open compact subgroup. Con-
sider SK , the Kisin integral canonical model over W of the Shimura variety ShK with
K = G(Zp)K p . Let ϕ ∶ Q → GG be a Langlands–Rapoport parameter with the as-
sociated reductive group Iϕ over Q, such that [b] = [b(ϕ)] (see [39, 3.3.6] for the
precise meaning of these objects, where a Langlands–Rapoport parameter is called
an admissiblemorphism between the Galois gerbs Q andGG). Let M̆ = M̆(G , b, µ).
Fix a Langlands–Rapoport parameter ϕ0 ∶ Q → GGad for the adjoint group such that
ϕad = ϕ0. In Section 6 we will construct a subspace Zϕ0 ,K p ⊂ SK , such that the formal
completion of SK along Zϕ0 ,K p can be deûned. he following theorem was proved
by Rapoport and Zink in the PEL type case ([56]), and by Kim in the Hodge type
case ([37]; see also [32]). It can be viewed as the geometric version of the Langlands–
Rapoport description for the underlying Fp-points; cf. [39]. In fact, itwas pointed out
in the introduction of [57] that theworks ofKisin [38,39] should yield newRapoport–
Zink spaces (comp. [32]). Here, we construct these spaces locally, and show that they
admit global application (comp. [57, Remark 5.9]). Seeheorems 6.7 and 6.13.

heorem 1.2 We have an isomorphism of formal schemes over W ,

Θ ∶ ∐
[ϕ],ϕad=ϕ0

Iϕ(Q)/M̆ ×G(Ap
f )/K

p ∼
Ð→ ŜK/Zϕ0 ,Kp ,

where ϕ0 ∶ Q → GGad is a ûxed Langlands–Rapoport parameter for the adjoint group
Gad, [ϕ] runs through the set of isomorphism classes of Langlands–Rapoport parameters
ϕ for G such that ϕad = ϕ0, and [b] = [b(ϕ)]. When [b] is basic, we have Zϕ0 ,K p = S

b
K ,
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which is the basic locus, and the above isomorphism reduces to

Θ ∶ Iϕ(Q)/M̆ ×G(Ap
f )/K

p ∼
Ð→ ŜK/SbK

.

Unsurprisingly, we apply the tricks of Kisin as in [39] to deduce the theorem from
the Hodge type case. One can also deduce rigid analytic and perfectoid versions of
the above uniformization theorem.

We consider the examples of basicGSpin and special orthogonal groups Rapoport–
Zink spaces. Let M̆1 = M̆(GSpin, b, µ), M̆ = M̆(SO, b′ , µ′) be the associated basic
Rapoport–Zink spaces, where GSpin = GSpin(V ,Q), SO = SO(V ,Q) are unrami-
ûed GSpin and special orthogonal groups associated with a quadratic space (V ,Q)
over Qp , with dimV = n + 2 for some integer n ≥ 1. By considering the G-zip associ-
ated with the universal p-divisible group with crystalline Tate tensors on the special
ûber M1 of M̆1, we can deûne an Ekedahl–Oort stratiûcation on M1, and thus on
M1 red (the reduced special ûber), which is the local analogue of the Ekedahl–Oort
stratiûcation for Shimura varieties ofHodge type (cf. [77]). he index set of this strat-
iûcation is a subset JWb of the absolute Weyl group of G1, which is thus ûnite. In
fact one can ûnd by computation that, it is in bijection with some explicit ûnite set of
integers. For each w ∈ JWb , we have the associated Ekedahl–Oort stratum M1w of
M1 red. On the other hand,Howard and Pappas [32]introduced another stratiûcation
for the reduced special ûber M1 red:

M1 red =∐
Λ
M○

1Λ ,

where Λ runs through the set of vertex lattices; see loc. cit. Section 5. ByCorollary 8.2
M̆ ≃ M̆1/pZ, we get the induced Ekedahl–Oort and Howard–Pappas stratiûcations
for Mred. he following theorem is proved in Subsection 8.2: see heorem 8.4 and
Corollary 8.5 for more precise statements.

heorem 1.3 Each Ekedahl–Oort stratum M1w ofM1 red is some (disjoint) union of
Howard–Pappas strata. A similar result holds for Mred.

For a similar result in the case of the basic unitary group GU(1, n − 1) Rapoport–
Zink space, see [69,heorem D].

In fact, in Subsection 7.1, we construct the Ekedahl–Oort stratiûcation for the spe-
cial ûbers of arbitrary Rapoport–Zink spaces of abelian type, cf. heorem 7.1. We can
compare our geometric construction with the Ekedahl–Oort stratiûcation for aõne
Deligne–Lusztig varieties (with hyperspecial levels) in [21]; cf. Proposition 7.2. In Sub-
section 7.2, we discuss a theorem of similar phenomena as heorem 1.3 (cf. heo-
rem 7.5) for an unramiûed local Shimura datum of abelian type (G , [b], {µ}), with
(G , {µ}) fullyHodge–Newton decomposable in the sense of [22, Deûnition 2.1]. Our
discussion in this more general setting is indeedmotivated by [22,heorems 2.3 and
2.5], where a posteriori the classiûcation there (for minuscule µ) lies in our class of
local Shimura data of abelian type. he basic GSpin and special orthogonal groups
Rapoport–Zink spaces are just special caseswhere one canmake things more explicit
(by the work of [32]).
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Specializing further to the case of K3 surfaces, we have some interesting applica-
tions. Take an integer d ≥ 1 such that p ∤ 2d. Let M2d ,K be the moduli spaces of K3
surfaces f ∶ X → S together with a primitive polarization ξ of degree 2d and a K-level
structure over W . Recall that by the global integral Torelli theorem (cf. [47, Corol-
lary 5.15]), the integral Kuga–Satake periodmap ι ∶ M2d ,K Ð→ SK is an open immer-
sion, where SK is the integral canonical model overW of the Shimura variety ShK for
G = SO(2, 19); see Subsection 8.3 for more details. Here, we assume that K = KpK p

with Kp = G(Zp) is the ûxed hyperspecial subgroup. Let X be a supersingular K3
surface over Fp , then the discriminant of its Néron–Severi lattice is equal to −p2σ0(X)

for some integer 1 ≤ σ0(X) ≤ 10. he integer σ0(X) is called the Artin invariant of X.
he following corollary is a consequence of the above theorems. Note that the group
G is adjoint and thus ϕ = ϕ0.

Corollary 1.4 (Corollaries 8.12 and 8.14 ) (i) Let ϕ, [b] and Zϕ ,K p be as in he-
orem 1.2, and let Jϕ be the pullback of Zϕ ,K p under the open immersion M2d ,K ↪ SK of
special ûbers. hen we have the identity

M̂2d ,K/Jϕ = ∐j∈I
N̆/Γj ,

where N̆ ⊂ M̆(G , b, µ) is an open subspace, I is certain countable set, and for any j ∈ I,
Γj ⊂ Jb(Qp) is some discrete subgroup. If,moreover, [b] = [b0] is basic, then Jϕ = Mss

2d ,K
which is the supersingular locus in M2d ,K , and the above disjoint union is ûnite.

(ii) Let x ∈ Mss
2d ,K(Fp) be a point, and let Xx be the associated supersingular K3

surface over Fp . hen we have the identity between the Artin invariant σ0(Xx) and the
type t(Λx):

σ0(Xx) =
t(Λx)

2
,

where Λx is the vertex lattice attached to the special lattice associated with (Xx , ξx),
cf. Subsection 8.5.

We brie�y describe the structure of this article. In Section 2,we review some basics
about aõne Deligne–Lusztig varieties that will be used later. In Section 3, we ûrst re-
call theRapoport–Viehmann conjecture on the theory of local Shimura varieties; then
we concentrate on the case of unramiûed local Shimura datumofHodge type, and re-
view the construction of Kim [36] on the associated Rapoport–Zink spaces ofHodge
type. In Section 4, we introduce unramiûed local Shimura datum of abelian type and
construct the associated formal and rigid analytic Rapoport–Zink spaces. Section 5 is
devoted to a review of the general framework ofmoduli of local G-shtukas in mixed
characteristic due to Scholze, to give a moduli interpretation of the generic ûbers of
ourRapoport–Zink spaces of abelian type. In Section 6,we turn to the global situation
of Shimura varieties of abelian type, and prove a Rapoport–Zink type uniformization
theorem in this setting. In Section 7,motivated by the study of Artin invariants of K3
surfaces, we construct the Ekedahl–Oort stratiûcation for special ûbers of Rapoport–
Zink spaces. In Section 8,we discuss some applications of our theory. Wework on the
examples of basic GSpin and special orthogonal groups Rapoport–Zink spaces, and
then more specially on the case ofmoduli spaces of K3 surfaces. hese examples are
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just (related to) special cases of the fullyHodge–Newton decomposable Shimura vari-
eties introduced in [22] (see also [68]). Finally, we investigate p-adic period domains
in the basic orthogonal case in the appendix following Fargues.

2 Affine Deligne–Lusztig Varieties in Mixed Characteristic

In this section, we recall some basic facts about aõne Deligne–Lusztig varieties in
mixed characteristic, which will be used later.
Fix a prime p. Let G be a connected reductive group over Qp , which we assume

to be unramiûed. Fix T ⊂ B a maximal torus inside a Borel subgroup of G. Let
W =W(Fp) be the ring ofWitt vectors, and let L =WQ. Denote σ as the Frobenius on
L andW . In the sequelwewant to ûx a hyperspecial subgroupG(W) ⊂ G(L). To this
end,we ûx a reductivemodelGZp ofG overZp and setG(W) = GZp(W). Sometimes
by abuse of notation, we will also write G as the reductive group GZp over Zp .

2.1 Affine Deligne–Lusztig Varieties

For b ∈ G(L) and a conjugacy class {µ} of cocharacters µ ∶ Gm → GQp
, we deûne the

aõne Deligne–Lusztig sets

XG
µ (b) = {g ∈ G(L)/G(W) ∣ g−1bσ(g) ∈ G(W)µ(p)G(W)} ,

XG
≤µ(b) = {g ∈ G(L)/G(W) ∣ g−1bσ(g) ∈ ⋃

µ′≤µ
G(W)µ′(p)G(W)} .

Here, we assume µ ∈ X∗(T)+ for the above choice of B, and for dominant elements
µ, µ′ ∈ X∗(T), we say that µ′ ≤ µ if µ − µ′ is a non-negative integral linear combi-
nation of positive coroots. Let Jb be the reductive group over Qp such that for any
Qp−algebra R,

Jb(R) = {g ∈ G(L ⊗Qp R) ∣ gb = bσ(g)}.

hen Jb(Qp) acts naturally on XG
µ (b) and XG

≤µ(b). he isomorphism classes of
XG

µ (b), XG
≤µ(b) and Jb depend only on the σ-conjugacy class [b] of b. By [73], XG

µ (b)
and XG

≤µ(b) are non-empty if and only if [b] ∈ B(G , µ). Here, B(G , µ) is theKottwitz
subset (cf. [41, Section 6]) inside B(G), the set of all σ-conjugacy classes in G(L).
We assume [b] ∈ B(G , µ) from now on. he triple (G , [b], {µ}) will be called a
local shtuka datum in Section 5; cf. Deûnition 5.9. By construction, we have
XG

µ (b) ⊂ XG
≤µ(b). When {µ} is minuscule, we have XG

≤µ(b) = XG
µ (b).

By the recent work of Zhu [78] and Bhatt–Schoze [1], there exist perfect scheme
structures on the sets XG

µ (b) and XG
≤µ(b). More precisely, XG

µ (b) and XG
≤µ(b) are

the sets of Fp-points of some perfect schemes over Fp , which are locally closed sub-
schemes of theWitt vector aõne Grassmannian GrG (cf. [1, 78]). It will be useful to
brie�y recall the relatedmoduli interpretation. Denote E0 the trivial G-torsor on W .
For any perfect Fp-algebra R, we have (cf. [78, 1.2 and 3.1]) GrG(R) = {(E, β)}/≃,
where

● E is a G-torsor over W(R),
● β ∶ E[1/p] ≃ E0[1/p] is a trivialization over W(R)[1/p],
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and

XG
≤µ(b)(R) = {(E, β) ∈ GrG(R) ∣ Invx(β−1bσ(β)) ≤ µ,∀x ∈ SpecR} ,

XG
µ (b)(R) = {(E, β) ∈ GrG(R) ∣ Invx(β−1bσ(β)) = µ,∀x ∈ SpecR} ,

where Invx is the relative position at x, and µ is the dominant representative in the
conjugacy class {µ}. By abuse of notation, we denote also by XG

≤µ(b) and XG
µ (b) the

associated perfect schemes. By construction, XG
µ (b) ⊂ XG

≤µ(b) is an open subscheme.

Lemma 2.1 Let (G1 , [b1], {µ1}) → (G2 , [b2], {µ2}) be a morphism (cf. Deûni-
tion 3.3). It induces a natural map

XG1
≤µ1

(b1)Ð→ XG2
≤µ2

(b2).

If G1 → G2 is a closed immersion, the abovemap is a closed immersion.

Proof he ûrst statement is clear. For the second statement, see [36, Lemma 2.5.4
(1)] and [32, 2.4.4]. ∎

2.2 Connected Components

In [7, 8], Chen, Kisin, and Viehmann introduced a notion of connected components
for the aõneDeligne–Lusztig sets XG

≤µ(b) by some ad hocmethods, since the algebro-
geometric structure on XG

≤µ(b) was not known at the time. We denote by π0(XG
≤µ(b)

the set of connected components deûned by Chen, Kisin, and Viehmann in such a
way. By resorting to the perfect scheme structure, we have a naturally deûned notion
of connected components for XG

≤µ(b). It is conjectured that the two deûnitions co-
incide; cf. [78, Remark 3.2] and [7, 2.3.5]. his was known in the case of unramiûed
EL/PEL Rapoport–Zink spaces; cf. [7,heorem 5.1.5]. hiswas recently proved byHe
and Zhou in the general case; cf. [31,heorem A.4].

Let π1(G) be the quotient5 of X∗(T) by the coroot lattice ofG. here is theKottwitz
homomorphism ωG ∶ G(L)Ð→ π1(G) forwhich an element g ∈ G(W)µ(p)G(W) ⊂
G(L) is sent to the class of µ. Recall that for our pair (b, µ) we assume that [b] ∈
B(G , µ). hen there is an element cb ,µ ∈ π1(G) such that ωG(b) − µ = (1 − σ)(cb ,µ).
he π1(G)Γ-cosetof cb ,µ is uniquelydetermined. Here and the sequel, Γ=Gal(Qp/Qp)

is the local Galois group. In particular, if b ∈ G(W)µ(p)G(W), then we can take
cb ,µ = 1. As ωG is trivial on G(W), when restricting to XG

≤µ(b) ⊂ G(L)/G(W), by
[7, 2.3] (using the theory of Cartan decomposition in families of [7, 2.1]) we have a
Jb(Qp)-equivariant morphism (of étale sheaves over Fp)

ωG ∶ XG
≤µ(b)Ð→ cb ,µπ1(G)Γ ,

5We note that π1(G) is ûnite if G is semi-simple.
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which factors through π0(XG
≤µ(b)). hus, we get a commutative diagram

XG
≤µ(b)

����

ωG

&&
π0(XG

≤µ(b)) // cb ,µπ1(G)Γ .

herefore, the non-empty ûbers of themap ωG ∶ XG
≤µ(b)→ cb ,µπ1(G)Γ are unions of

connected components of XG
≤µ(b). Recall the following main theorem of [7].

heorem 2.2 ([7,heorems 1.2 and 1.1]) Assume that µ is minuscule.

(i) Jb(Qp) acts transitively on π0(XG
µ (b)).

(ii) Assume that Gad is simple and (µ, b) is Hodge–Newton indecomposable in G.
hen ωG induces a bijection

π0(XG
µ (b)) ≃ cb ,µπ1(G)Γ

unless [b] = [µ(p)] with µ central, in which case XG
µ (b) ≃ G(Qp)/G(Zp) is

discrete.

Recently, Nie has obtained similar results as above on π0(XG
≤µ(b)) for general µ

(not necessary minuscule). We refer the reader to [49, heorems 1.1 and 1.2] for the
precise statements.
Assume that µ is minuscule. By (i) of the above theorem, all non-empty ûbers

of ωG ∶ XG
≤µ(b) Ð→ cb ,µπ1(G)Γ are isomorphic to each other under the transition

induced by the action of Jb(Qp). Fix a point x0 ∈ Im(ωG ∶ XG
µ (b) → cb ,µπ1(G)Γ)

(soon we will show that ωG is surjective). Let XG
µ (b)+ ⊂ XG

µ (b) be the ûber of ωG

over x0. By (i) of the above theorem, we have the equality XG
µ (b) = Jb(Qp)XG

µ (b)+.
In the sequel, we will not need to work on each connected component of XG

µ (b). he
subspace XG

µ (b)+ and the equality above will be all that we need.
Now let µ be arbitrary. Since we assume [b] ∈ B(G , µ), the set XG

µ (b) ≠ ∅. his
means that there exists some g ∈ G(L) such that b′ ∶= g−1bσ(g) ∈ G(W)µ(p)G(W).
hus, a�er replacing b by b′, we can assume that cb ,µ = 1. (We note that the element
cb ,µ can be deûned for arbitrary µ.)

Lemma 2.3 (i) he restriction of ωG ∶ G(L) → π1(G) to G(Qp) induces a surjec-
tivemap ωG ∶ G(Qp)→ π1(G)Γ .

(ii) hemap Jb(Qp)→ π1(G)Γ is surjective.

Proof For (i), this is contained in [39, Lemma 1.2.3].
For (ii), in the casewhere (G , [b], {µ}) comes from aHodge type Shimura datum

(G, X) unramiûed at p (and ZG is a torus), see [39, Lemma 4.6.4]. he arguments
there also work in the general case. ∎
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Proposition 2.4 hemap

ωG ∶ XG
≤µ(b)Ð→ cb ,µπ1(G)Γ

is surjective. In particular, we get a surjection

π0(XG
≤µ(b))↠ π1(G)Γ .

Proof By [7, Lemma 2.3.6], the map ωG is compatible with the Jb(Qp)-actions on
both sides. By construction, Jb(Qp) acts on π1(G)Γ by le� multiplication via the
map Jb(Qp) → π1(G)Γ , which is surjective by Lemma 2.3(ii). hus, ωG ∶ XG

≤µ(b) →
cb ,µπ1(G)Γ is surjective. ∎

We continue to assume that µ can be arbitrary. For a reductive group G over Qp ,
we write ZG as its center.

Proposition 2.5 Let (G1 , [b1], {µ1}) → (G2 , [b2], {µ2}) be a morphism. If G2 =
G1/Z for some central group Z ⊂ ZG1 , we have the cartesian diagram

XG1
≤µ1(b1) //

ωG1

��

XG2
≤µ2(b2)

ωG2

��
cb1 ,µ1π1(G1)

Γ // cb2 ,µ2π1(G2)
Γ .

Proof his is contained in [7, Corollary 2.4.2]. ∎

Let the notations be as in the above proposition. Combined with Proposition 2.4,
we get the following corollary.

Corollary 2.6 Let x1 ∈ cb1 ,µ1π1(G1)
Γ be a point and let x2 ∈ cb2 ,µ2π1(G2)

Γ be its
image under cb1 ,µ1π1(G1)

Γ → cb2 ,µ2π1(G2)
Γ . Let XG1

≤µ1(b1)
+ and XG2

≤µ2(b2)
+ be the

ûbers of ωG1 and ωG2 at x1 and x2, respectively,which are non-empty by Proposition 2.4.
hen themap XG1

≤µ1(b1)→ XG2
≤µ2(b2) induces a bijection

XG1
≤µ1

(b1)+
∼
Ð→ XG2

≤µ2
(b2)

+ .

We keep the above notation.

Lemma 2.7 If π1(G1)
Γ → π1(G2)

Γ is surjective, then themap XG1
≤µ1(b1)→ XG2

≤µ2(b2)
induces an isomorphism

XG1
≤µ1

(b1)/Z(Qp) ≃ XG2
≤µ2

(b2).

Proof his is implied by the proof of [7, Corollaries 2.4.2 and 2.4.3]. Under the
assumption that π1(G1)

Γ → π1(G2)
Γ is surjective, all ûbers of XG1

≤µ1(b1) → XG2
≤µ2(b2)

are torsors under X∗(Z)Γ . he group Z(Qp) acts on XG1
≤µ1(b1) via the natural map

Z(Qp)→ X∗(Z)Γ . ∎
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3 Rapoport–Zink Spaces of Hodge Type

FollowingRapoport andViehmann,we ûrst review the general conjecture on the the-
ory of local Shimura varieties in [57]. hen we concentrate on the Hodge type case;
cf. [4,32,36].

3.1 Local Shimura Data and Local Shimura Varieties

Recall the following deûnition of Rapoport and Viehmann.

Deûnition 3.1 ([57, Deûnition 5.1]) A local Shimura datum over Qp is a triple
(G , [b], {µ}), where

● G is a connected reductive group over Qp ;
● [b] ∈ B(G) is a σ-conjugacy class;
● {µ} is a conjugacy class of cocharacters µ ∶ Gm → GQp

,
such that the following conditions are satisûed:
(i) [b] ∈ B(G , µ),
(ii) {µ} is minuscule.

Associated with a local Shimura datum, we have
● the re�ex ûeld E = E(G , {µ}), which is the ûeld of deûnition of {µ} inside the
ûxed algebraic closureQp ;

● the �ag variety F ℓG ,µ , considered as a rigid analytic space (or an adic space)
over Ĕ, the completion of themaximal unramiûed extension of E; here the asso-
ciatedparabolic subgroup Pµ is givenby Pµ ={g ∈G ∣ limt→0 µ(t)gµ(t)−1 exists};

● the reductive group Jb over Qp , for b ∈ [b], which up to isomorphism only
depends on [b]. he group Jb(Qp) acts on F ℓG ,µ ;

● the weakly admissible open subspaceF ℓwaG ,µ ⊂ F ℓG ,µ deûned in [56, 1.35] and
[10, Deûnition 9.5.4]. he action of Jb(Qp) on F ℓG ,µ stabilizes F ℓwaG ,µ .

In fact, if G is unramiûed, we also have (cf. the last section)
● the aõne Deligne–Lusztig variety XG

µ (b) over Fp (which will be expected to be
the special ûber of some formal model of the following local Shimura variety
MG(Zp); cf. Conjecture 3.2).

Let (G , [b], {µ}) be a local Shimura datum, with local re�ex ûeld E. We have the
following conjecture ([57] 5.1).

Conjecture 3.2 (Rapoport–Viehmann) here is a tower of rigid analytic spaces over
SpĔ, (MK)K , where K runs through all open compact subgroups of G(Qp), with the
following properties:
(i) the group Jb(Qp) acts on each spaceMK ;
(ii) the group G(Qp) acts on the tower (MK)K as Hecke correspondences;
(iii) the tower is equipped with aWeil descent datum over E;
(iv) there exists a compatible system of étale and partially proper periodmaps

πK ∶ MK →F ℓwaG ,µ ,

which is equivariant for the action of Jb(Qp).
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In fact, in [57, 5.1] there is a more precise statement on the point (iv) of the con-
jecture. In particular, there should be an open subspace

F ℓaG ,µ ⊂ F ℓwaG ,µ ,

which should be the image of the periodmaps πK for allK. In fact,Rapoport andZink
conjecture that there exists a Qp-local system with G-structure over F ℓaG ,µ that in-
terpolates the p-adic crystallineGalois representations attached to all classical points.
Moreover, the tower (MK)K⊂G(Qp) should be the geometric realization (i.e., spaces of
lattices with level structures) of this universalQp-local system with G-structure over
F ℓaG ,µ . We refer to [57, 5.1], [56, Section 1], [10, Conjecture 11.4.4], and [27, Con-
jecture 2.3] for more details. his conjecture is known for the local Shimura data
that arise from local EL/PEL data ([56]), and the unramiûed local Shimura datum of
Hodge type ([36]). In both cases, these spaces MK are ûnite étale covers of the rigid
analytic generic ûbers of some formal schemes M̆ over SpfOĔ ,which are formal mod-
uli spaces of p-divisible groups with some additional structures. he special ûbers of
these formal schemes M̆ are the aõneDeligne–Lusztig varieties thatwe introduced in
the last section. In Section 5 we will discuss a partial solution of the above conjecture
due to Scholze; cf. [61,64].

It will be useful to deûnemorphisms of local Shimura data.

Deûnition 3.3 Let (G1 , [b1], {µ1}), (G2 , [b2], {µ2}) be two local Shimura data. A
morphism

(G1 , [b1], {µ1}) Ð→ (G2 , [b2], {µ2})

is a homomorphism of algebraic groups f ∶ G1 → G2 sending ([b1], {µ1}) to
([b2], {µ2}).

If (G1 , [b1], {µ1}) → (G2 , [b2], {µ2}) is a morphism of local Shimura data, then
it is conjectured ([57, Properties 5.3 (iv)]) that for any open compact subgroups K1 ⊂
G1(Qp),K2 ⊂ G2(Qp) with f (K1) ⊂ K2, there exists a morphism of the associated
local Shimura varieties

M(G1 , b, µ)K1 Ð→M(G2 , b2 , µ2)K2 × SpĔ1 ,

and when G1 → G2 is a closed immersion these are closed embeddings for K1 = K2 ∩
G1(Qp).

3.2 Local Shimura Data of Hodge Type

Now we recall the deûnition of a special class of local Shimura data (cf. [57, Remark
5.4 (i)]).

Deûnition 3.4 A local Shimura datum (G , [b], {µ}) is called ofHodge type if there
exists an embedding f ∶ G ↪ GL(V) and a local Shimura datum (GL(V), [b′], {µ′})
with {µ′} corresponding to (1r , 0n−r) for some integer 1 ≤ r ≤ n = dimV , such that
[b], {µ} aremapped to [b′], {µ′} under f .
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If G is, moreover, unramiûed, by [38, Lemma 2.3.1], we can ûnd some Zp-lattice
VZp ⊂ V such that G ↪ GL(V) is induced by an embedding GZp ↪ GL(VZp), where
GZp is a reductivemodel of G over Zp .

Deûnition 3.5 A local Shimura datum of Hodge type (G , [b], {µ}) is called un-
ramiûed if G is unramiûed.

We note that for an unramiûed local Shimura datum ofHodge type (G , [b], {µ}),
the local re�ex ûeld E is an unramiûed extension of Qp . hus, Ĕ = L, OĔ = OL = W ,
where as before,W =W(Fp), L =WQ. Wewill ûx a reductivemodelGZp ofG overZp .

Remark 3.6 he above deûnition of unramiûed local Shimura data ofHodge type
is more general than that in [32, Deûnition 2.3.3]. Moreover, for an unramiûed lo-
cal Shimura datum of Hodge type (G , [b], {µ}) in the sense of [32], one always has
ZG ⊃ Gm .

Wewant to classify local Shimura data ofHodge type. Let (G , [b], {µ}) be a given
local Shimura datum. Take any faithful representation V of G overQp , so that we get
an embedding ρ ∶ G ↪ GL(V). herefore we get a conjugacy class {µ′} of cochar-
acters, µ′ = ρQp

○ µ ∶ Gm → GL(V)Qp
. Let N(G) be the set of Newton points of G;

cf. [55, 1.7] (in [41, 4.1], it was denoted by CQ). Recall that themaps

νG ∶ B(G)Ð→ N(G), κG ∶ B(G)Ð→ π1(G)Γ

are functorial in G, cf. [40, section 4], [41, 4.9 and 7.5], and [55, 1.9 and 1.15]. In par-
ticular, we get a map B(G , µ) → B(GL(V), µ′). Let [b′] ∈ B(GL(V), µ′) be the
image of [b] under this map. he triple (GL(V), [b′], {µ′}) is a local Shimura da-
tum if and only if {µ′} is minuscule and corresponds to (1r , 0n−r) for some integer
1 ≤ r ≤ n = dimV , in which case (G , [b], {µ}) is of Hodge type. As above, let G be
a reductive group over Qp and let {µ} be a conjugacy class of minuscule cocharac-
ters µ ∶ Gm → GQp

. In [66] Serre classiûed the pair (G , {µ}) for which there exists
a faithful representation V of G such that the induced class of cocharacters {µ′} un-
der the embedding G ↪ GL(V) corresponds to (1r , 0n−r) for some integer 1 ≤ r ≤
n = dimV . It turn out the simple factors of Gad

Qp
are groups of type A, B,C, or D;

cf. [66, section 3].
he following examples of local Shimura datum ofHodge type are standard.

Example 3.7 (i) Let (G , [b], {µ}) be a local Shimura datumwhich comes from
a local EL/PEL datum (cf. [56, 1.38]), then it is ofHodge type (cf. [36, 4.7]).

(ii) Let (G , X) be a Shimura datum of Hodge type, i.e., there exists some embed-
ding into the Siegel Shimura datum (G , X) ↪ (GSp, S±). Let µ be the cocharac-
ter associated with X. Take any [b] ∈ B(GQp , µ). hen the local Shimura datum
(GQp , [b], {µ}) is ofHodge type.

Here is an example of non-Hodge type local Shimura datum.
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Example 3.8 (See [57, Example 5.5]) Let G = PGLn , µ be any nontrivial minus-
cule cocharacter, and let [b] ∈ B(G , µ) be arbitrary. hen the local Shimura datum
(G , [b], {µ}) is not ofHodge type.

3.3 Rapoport–Zink Spaces of Hodge Type

hroughout the rest of this section, we assume that p > 2. Let (G , [b], {µ}) be an
unramiûed local Shimura datum of Hodge type. Fix a representative b ∈ G(L) of
[b]. Kim ([36]) constructs a formal moduli scheme M̆ = M̆(G , b, µ) over SpfW
parametrizing p-divisible groups with crystalline Tate tensors. We brie�y review the
related constructions in this subsection. By abuse of notation, we write also G as the
ûxed associated reductive group scheme over Zp . hen there exists a faithful repre-
sentation ρ ∶ G ↪ GL(Λ), such that the induced cocharacter µ′ = ρQp

○ µ ∶ Gm →

GL(Λ ⊗ Qp) is minuscule. Let Λ∨ be the dual lattice, and let Λ⊗ be the tensor al-
gebra of Λ ⊕ Λ∨. By [38, Proposition 1.3.2], there exists a ûnite collection of ten-
sors {sα ∈ Λ⊗}α∈I such that ρ ∶ G ⊂ GL(Λ) is the schematic stabilizer of (sα).
We ûx a representative µ. Let Λ ⊗W = Λ0 ⊕ Λ1 be the decomposition of Λ ⊗W
according to the weights of µ, which in turn induces a ûltration Fil●Λ ⊗ W with
Fil0Λ ⊗W = Λ ⊗W , Fil1Λ ⊗W = Λ1. We assume that rank Λ = n, rank Λ1 = d.
We note that Pµ ∶= Aut(Λ, sα , Fil●Λ ⊗W) is a parabolic subgroup of GW .
By our assumption and the classical Dieudonné theory, there exists a p-divisible

group X0 of dimension d and height n over Fp , together with an isomorphism
ε ∶ D(X0) ≃ (Λ ⊗ W , bσ), where D(X0) is the contravariant Dieudonné module
of X0. he pair (X0 , ε) is unique up to a unique isomorphism, and we ûx it in the
sequel. hen we can regard sα ⊗ 1 as tensors in D(X0)

⊗ via ε. We note that bσ
ûxes (sα ⊗ 1) and (sα ⊗ 1) lie in Fil1Λ ⊗W . Each sα ⊗ 1 can be regarded as a map
1 ∶= D(Qp/Zp) → D(X0)

⊗, compatible with the ûltrations, and such that the in-
duced map 1 → D(X0)

⊗[ 1
p ] is Frobenius-invariant; i.e., sα ⊗ 1 is a crystalline Tate

tensor of X0; cf. [36, Deûnition 4.6].
Let NilpW be the category of W-algebras on which p is locally nilpotent. Let

R ∈ NilpW and let X be a p-divisible group on SpecR. Consider the contravariant
Dieudonné crystal D(X) attached to X. hen as usual there is a decreasing (Hodge)
ûltration Fil●D(X)R onD(X)R with locally free graded pieces over R. HereD(X)R is
the value ofD(X) at the trivial PD-thickening R id

→ R. Namely, Fil0D(X)R = D(X)R ,
Fil1D(X)R = (LieX)∨ and Fil2D(X)R = 0. As above, a crystalline Tate tensor of X
is amorphism tα ∶ 1 → D(X)⊗ of crystals, such that tαR ∶ 1R → D(X)⊗R is compatible
with the ûltrations, and the inducedmap tα ∶ 1→ D(X)⊗[ 1

p ] is Frobenius-invariant.
Denote byNilps m

W the full subcategory ofNilpW consisting of formally smooth for-
mally ûnitely generated W/pm-algebras for m ≥ 1. We use the following version of
Rapoport–Zink functor (cf. [78, Deûnition 3.8]), which is equivalent to [36, Deûni-
tion 4.6].

Deûnition 3.9 he Rapoport–Zink space associated with the unramiûed local
Shimura datum of Hodge type is the functor M̆ on Nilps m

W deûned by M̆(R) =
{(X , (tα)α∈I , ρ)}/≃ where
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● X is a p-divisible group on SpecR;
● (tα)α∈I is a collection of crystalline Tate tensors of X;
● ρ ∶ X0 ⊗ R/J → X ⊗ R/J is a quasi-isogeny which sends sα ⊗ 1 to tα for α ∈ I,
where J is some ideal of deûnition of R,

such that the following condition holds: the R-scheme

Isom((D(X)R , (tα), Fil●(D(X)R)) , (Λ ⊗ R, (sα ⊗ 1), Fil●Λ ⊗ R))

that classiûes the isomorphisms between locally free sheaves D(X)R and Λ ⊗ R on
SpecR preserving the tensors and the ûltrations is a Pµ ⊗ R-torsor.

heorem 3.10 ([36, heorem 4.9.1]) he functor M̆ is represented by a separated
formal scheme, formally smooth, and formally locally of ûnite type over W .

In the classical EL/PEL case (and with ramiûcation), see [56, heorem 3.25]. In
[36, 4.7], the unramiûed local EL/PEL data are explained as special examples of un-
ramiûedHodge type data. See also [32,heorem 3.2.1] for the casewhere (G , [b], {µ})
comes from a Shimura datum of Hodge type. When ρ(b) has no slope 0, Bültel and
Pappas have proved the above theorem by a diòerent approach, see [4]. More pre-
cisely, they introduced notions of (G , µ)-displays and quasi-isogenies between such,
and they proved that the similar moduli problem of (G , µ)-displays together with
quasi-isogenies are representable. In the case G = GLn , the moduli problem of Bül-
tel and Pappas is equivalent to the moduli problem of Rapoport and Zink, by the
theorems of Zink [79] and Lau [43] that formal p-divisible groups over a p-adically
complete and separated algebra R are classiûed by the associated nilpotent displays.

We denote also by M̆ the associated formal scheme and refer to it as the formal
Rapoport–Zink space of Hodge type attached to (G , [b], {µ}). Let M be the rigid
analytic generic ûber over L = WQ of the formal scheme M̆. In the rest of this pa-
per, we will use the following convention: if G is an unramiûed reductive group over
Qp , we will ûx a reductivemodel over Zp and write G(Zp) for the associated hyper-
special group. In [36, 7.4], Kim explained how to construct a tower of rigid analytic
spaces (MK)K⊂G(Zp) that satisûes the list of properties in Conjecture 3.2. Moreover,
MG(Zp) =M, andMK →M isûnite étale for any open compact subgroupK ⊂ G(Zp).
In particular, for unramiûed local Shimura data of Hodge type, the Conjecture 3.2 is
true.

Let M be the special ûber over Fp of M̆. Recall that in Section 2, attached to
(G , [b], {µ}), we introduced the aõne Deligne–Lusztig variety XG

µ (b) over Fp ,
viewed as a perfect scheme. he relation between M̆ and XG

µ (b) is as follows.

Proposition 3.11 ([78, Proposition 3.11]) XG
µ (b) is the perfection M

perf
ofM.

If (G , [b], {µ})↪ (GLn , [b′], {µ′}) is an embedding of unramiûed local Shimura
data ofHodge type, by construction, we have the following embeddings

M̆(G , b, µ)↪ M̆(GLn , b′ , µ′), XG
µ (b)↪ XGLn

µ′ (b′),

which are compatible in the sense of the above proposition.

https://doi.org/10.4153/S0008414X19000269 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X19000269


1128 X. Shen

3.4 Connected Components

Let the notations be as above. Recall from Subsection 2.2 that we have themap

ωG ∶ XG
µ (b)Ð→ cb ,µπ1(G)Γ .

By Proposition 3.11, we get an inducedmap of étale sheaves over W :

ωG ∶ M̆Ð→ cb ,µπ1(G)Γ .

Let Gder ⊂ G be the derived subgroup, and let Gab be the abelian quotient G/Gder.
Consider the exact sequence

1Ð→ Gder Ð→ G Ð→ Gab Ð→ 1,

which induces amap

cb ,µπ1(G)Γ Ð→ cb ,µπ1(Gab)Γ = cb ,µX∗(Gab)Γ ,

where X∗(Gab) is the cocharacter group of the torus Gab overQp . Let X∗
Qp

(G) be the
group ofQp-rational characters of G. hen we have

X∗
Qp

(G) = X∗(Gab)Γ .

he Γ-equivariant pairing X∗(Gab) × X∗(Gab)→ Z then induces amap

cb ,µX∗(Gab)Γ Ð→ Hom(X∗(Gab)Γ ,Z) = Hom(X∗
Qp

(G),Z).

In summary, we get amap by considering the composition

ϰM̆ ∶ M̆Ð→ cb ,µπ1(G)Γ Ð→ cb ,µX∗(Gab)Γ Ð→ Hom(X∗
Qp

(G),Z).

In the EL/PEL case, this is just themap constructed in [56, 3.52]. (See also [7, 5.1.3].)
If (G , [b], {µ})↪ (GLn , [b′], {µ′}) is an embedding of unramiûed local Shimura

data ofHodge type, we get the commutative diagram

XG
µ (b) //

��

XGLn
µ′ (b′)

��
cb ,µπ1(G)Γ // cb′ ,µ′π1(GLn)

Γ .

Moreover, we know π1(GLn)
Γ = π1(GLn) ≃ Z.

Since by Proposition 3.11 XG
µ (b) is the perfectionM

perf
ofM,we have the isomor-

phism between the sets of connected components

π0(Mred) ≃ πperf
0 (XG

µ (b)).

Here, πperf
0 (XG

µ (b)) denotes the set of connected components of the perfect scheme
XG

µ (b). On the other hand,we have also the set of connected components π0(XG
µ (b))

deûned in [7].

Proposition 3.12 With the above notation, there is a bijection

π0(Mred) ≃ π0(XG
µ (b)) .
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Proof See [78, Remark 3.2]. See also [31,heorem A.4]. ∎

Let π0(M̆) be the set of connected components of the formal scheme M̆, which
is the same as π0(Mred). On the other hand, we have also the set of connected com-
ponents π0(M) of the generic ûber M. As M̆ is formally smooth and in particular
normal, by [34,heorem 7.4.1], we have a bijection

π0(Mred) ≃ π0(M).

One can also consider the set of connected components π0(MK) for the ûnite étale
coverMK ofM. In [57],Rapoport andViehmannmade a conjecture on π0(MK×Cp)

under the assumption that Gder is simply connected. We refer the reader to [57, Con-
jecture 4.26] for the precise statement on the existence of a determinant morphism
for the tower (MK)K . his conjecture is known in the unramiûed simple EL/PEL
case; cf. [6,heorem 6.3.1] (see also [7,heorem 5.1.10 and Remark 5.1.11]). It will be
interesting to consider themore general Hodge type case studied here.
Fix a point x0 ∈ cb ,µπ1(G)Γ . Let M+

red ⊂ Mred be the ûber of ωG over x0. hen
M+

red is some union of connected components of Mred. Let M̆+ ⊂ M̆ be the asso-
ciated subformal scheme, with generic ûber M+. For any open compact subgroup
K ⊂ G(Qp), letM+

K ⊂MK be the pullback ofM+ ⊂M. We get a tower (M+
K)K⊂G(Zp) .

We have the equalities

M̆ = Jb(Qp)M̆
+ , Mred = Jb(Qp)M

+
red , M = Jb(Qp)M

+

andMK = Jb(Qp)M
+
K .

4 Rapoport–Zink Spaces of Abelian Type

We enlarge the class of Rapoport–Zink spaces of Hodge type in this section. hey
are constructed locally from Rapoport–Zink spaces of Hodge type. hroughout this
section, we assume p > 2.

4.1 Local Shimura Data of Abelian Type

Let (G , [b], {µ}) be a local Shimura datum. Consider the natural projection
G → Gad from G to its associated adjoint group. We get induced [bad], {µad},
so that (Gad , [bad], {µad}) is also a local Shimura datum and (G , [b], {µ}) →
(Gad , [bad], {µad}) is a morphism of local Shimura data. We introduce the local
analogue of a Shimura datum of abelian type (more precisely, of preabelian type) as
follows.

Deûnition 4.1 A local Shimura datum (G , [b], {µ}) is called of abelian type if
there exists a local Shimura datum of Hodge type (G1 , [b1], {µ1}) such that we have
an isomorphism of the associated adjoint local Shimura data (Gad , [bad], {µad}) ≃
(Gad

1 , [bad1 ], {µad1 }).

hus, any local Shimura datumofHodge type is also of abelian type. he later class
is strictly larger.

https://doi.org/10.4153/S0008414X19000269 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X19000269


1130 X. Shen

Example 4.2 Let G = PGLn . Consider a nontrivial minuscule cocharacter µ1 ∶
Gm → GLn and [b1] ∈ B(GLn , µ1). Take µ = µad1 , [b] = [bad1 ]. hen (G , [b], {µ}) is
of abelian type, but not ofHodge type; cf. Example 3.8.

Recall that for a local Shimura datum (G , [b], {µ}), if G i is a simple local factor
of Gad

Qp
such that the component µadi of µad is not trivial, then G i is a group of one

of types A, B,C ,D, E6 , E7; cf. [66, Annexe]. By Serre’s classiûcation ([66, section 3])
and our deûnition, simple factors ofG appearing in local Shimura data of abelian type
consists exactly of local reductive groups of types A, B,C ,D. his is compatible with
Deligne’s classiûcation of Shimura data of abelian type in [11]; cf. Example 4.4.

4.2 The Associated Rapoport–Zink Spaces

To construct Rapoport–Zink spaces, we need the following unramiûed assumption.

Deûnition 4.3 A local Shimura datum of abelian type (G , [b], {µ}) is called un-
ramiûed, if G is unramiûed, and there exists an unramiûed local Shimura datum of
Hodge type (G1 , [b1], {µ1}) such that (Gad , [bad], {µad}) ≃ (Gad

1 , [bad1 ], {µad1 }).

For an unramiûed local Shimura datum of abelian type, the local re�ex ûeld E
is an unramiûed extension of Qp . hus, Ĕ = L,OĔ = OL = W where, as before,
W =W(Fp), L =WQ.

he following example is one of our main motivations.

Example 4.4 Let (G , X) be a Shimura datumof abelian type such that G is unram-
iûed at p (cf. [11,38]). Take any [b] ∈ B(G , µ), the associated triple (GQp , [b], {µ}) is
an unramiûed local Shimura datum of abelian type.

Lemma 4.5 Let (G , [b], {µ}) be an unramiûed local Shimura datumof abelian type.
Consider the associated adjoint local Shimura datum (Gad , [bad], {µad}). Fix a rep-
resentative b ∈ G(L) of [b] with image bad ∈ Gad(L), and identify ZG as a central
subgroup of Jb . We have the following isomorphism of reductive groups over Qp :

Jb/ZG ≃ Jbad .

Proof his follows from the deûnitions of Jb and Jbad . ∎

heorem 4.6 Let (G , [b], {µ}) be an unramiûed local Shimura datum of abelian
type. Fix a representative b ∈ G(L) of [b]. hen there exists a formal scheme M̆(G , b, µ),
which is formally smooth, formally locally of ûnite type over W , such that

M(G , b, µ)perf ≃ XG
µ (b),

whereM(G , b, µ) is the special ûber of M̆(G , b, µ). he formal scheme M̆(G , b, µ) is
equipped with a transitive action of Jb(Qp), compatible with the action of Jb(Qp) on
XG

µ (b).
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Proof Take any unramiûed local Shimura datum of Hodge type (G1 , [b1], {µ1}) as
in Deûnition 4.3 and ûx a representative b1 ∈ [b1]. Consider the associated formal
Rapoport–Zink space M̆(G1 , b1 , µ1) over SpfW . hen its special ûber M(G1 , b1 , µ1)
satisûes

M(G1 , b1 , µ1)
perf ≃ XG1

µ1
(b1).

Recall that we have the cartesian diagram (cf. Proposition 2.5)

XG1
µ1
(b1) //

ωG1

��

XGad
1

µad1
(bad1 )

ωGad1

��
cb1 ,µ1π1(G1)

Γ // cbad1 ,µad1
π1(Gad

1 )Γ .

Let XG1
µ1
(b1)+ ⊂ XG1

µ1
(b1) be the ûber over cb1 ,µ1 under the map ωG1 ∶ XG1

µ1
(b1) →

cb1 ,µ1π1(G1)
Γ . Let M̆(G1 , b1 , µ1)

+ be the corresponding formal subscheme of
M̆(G1 , b1 , µ1). On the other hand, we can also consider the ûber XG

µ (b)+ ⊂ XG
µ (b)

over cb ,µ under ωG ∶ XG
µ (b)→ cb ,µπ1(G)Γ . hen by Corollary 2.6,

XG1
µ1
(b1)+ ≃ XG

µ (b)
+ .

We set
M̆(G , b, µ)+ ∶= M̆(G1 , b1 , µ1)

+;
then MG , b, µ)+,per f ≃ XG

µ (b)+. By heorem 2.2(i), we have

XG
µ (b) = Jb(Qp)XG

µ (b)
+ .

herefore, there exists a formal scheme M̆(G , b, µ), equipped with an action of
Jb(Qp), such that

M̆(G , b, µ) = Jb(Qp)M̆(G , b, µ)+ ,

M(G , b, µ)perf ≃ XG
µ (b),

and the induced action of Jb(Qp) onM(G , b, µ)red is compatiblewith that on XG
µ (b)

under the above identiûcation. In fact, we can take
M̆(G , b, µ) = [Jb(Qp) × M̆(G , b, µ)+]/Jb(Qp)

+

≃ ∐
Jb(Qp)/Jb(Qp)+

M̆(G , b, µ)+ ,

where Jb(Qp)
+ ⊂ Jb(Qp) is the stabilizer of XG

µ (b)+ under the action of Jb(Qp) on
XG

µ (b).
he above construction does not depend on the choice of the unramiûed local

Shimura datum of Hodge type (G1 , [b1], {µ1}) as in the statement of the theorem,
since if (G2 , [b2], {µ2}) is another such one, then we have a canonical isomorphism

M̆(G1 , b1 , µ1)
+ ≃ M̆(G2 , b2 , µ2)

+ .

his follows from the bijection XG1
µ1
(b1)+ ≃ XG2

µ2
(b2)

+, the isomorphism of deforma-
tion rings RG1 ,x1 ≃ RG2 ,x2 , where XG1

µ1
(b1)+ ∋ x1 ↦ x2 ∈ XG2

µ2
(b2)

+, cf. [38, 1.5.4]
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(from the description there, RG depends only on the adjoint groupGad), and the con-
structions in [36, section 6]. ∎

By construction, we have a map of étale sheaves M̆(G , b, µ) → cb ,µπ1(G)Γ over
W , li�ing themap ωG ∶ XG

≤µ(b)→ cb ,µπ1(G)Γ . As in [78, Corollary 3.12],we have the
following dimension formula for the special ûbers by applying [78,heorem 3.1].

Corollary 4.7 Let thenotations be as inheorem 4.6. We havedimMred = ⟨ρ, µ−ν[b]⟩
− 1

2defG(b), where ρ is the half-sum of (absolute) positive roots of G, and defG(b) =
rankQp G − rankQp Jb .

Let (G , [b], {µ}) be an unramiûed local Shimura datum of abelian type. Take an
embeddingG↪GLn . henwe get an induced triple (GLn , [b′], {µ′}). If (G , [b], {µ})
is not ofHodge type, then {µ′} is not minuscule. In any case,we have the embedding

M(G , b, µ)perf ≃ XG
µ (b)↪ XGLn

≤µ′ (b
′).

Remark 4.8 In this paper we do not study the Weil descent data on Rapoport–
Zink spaces. To deûne the Weil descent datum on the abelian type Rapoport–Zink
space M̆(G , b, µ), we just mention that it should be possible to develop a similar the-
ory as that in [11] by dividing the desired Weil descent datum into two parts, one
part for M̆(G , b, µ)+ and one part for π1(G)Γ so that the morphism M̆(G , b, µ) →
cb ,µπ1(G)Γ is equivariant for the Weil descent data on two sides. he part for
M̆(G , b, µ)+ is inherited from theWeil descent datum for any associatedHodge type
Rapoport–Zink space M̆(G1 , b1 , µ1). For the spaces as in the following Proposi-
tion 4.9(i) or heorem 4.11, the Weil descent datum can be deûned quite easily: by
quotient from that for M̆(G1 , b1 , µ1) or by moduli methods as in [56, 3.48].

4.3 A Moduli Interpretation

Let (G , [b], {µ}) be as in heorem 4.6. hen by construction, locally the formal
scheme M̆(G , b, µ) admits a moduli interpretation. More precisely, take (G1 , [b1],
{µ1}) as in Deûnition 4.3. hen the formal scheme M̆(G1 , b1 , µ1) is a moduli space
of p-divisible groups with crystalline Tate tensors. In particular, M̆(G , b, µ)+ is a
moduli space of p-divisible groups with crystalline Tate tensors such that under the
map ωG1 the image is ûxed.

Suppose now that there exists a triple (G1 , [b1], {µ1}) as inDeûnition 4.3 such that
themap

π1(G1)
Γ Ð→ π1(Gad

1 )Γ

is surjective. hen the formal scheme M̆(G , b, µ) admits a global moduli interpreta-
tion as follows.

Proposition 4.9 Under the above assumption,
(i) we have an isomorphism of formal schemes

M̆(Gad
1 , b

ad
1 , µ

ad
1 ) ≃ M̆(G1 , b1 , µ1)/X∗(ZG1)

Γ ;
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(ii) M̆(G , b, µ) is the pullback of M̆(G1 , b1 , µ1)/X∗(ZG1)
Γ under the morphism

π1(G)Γ → π1(Gad)Γ .

Proof We have the following cartesian diagrams (of morphisms between étale
sheaves over Fp):

XG1
µ1
(b1) //

��

XGad
1

µad1
(bad1 )

��

XG
µ (b)oo

��
cb1 ,µ1π1(G1)

Γ // cbad1 ,µad1
π1(Gad

1 )Γ cb ,µπ1(G)Γoo

inducing the corresponding cartesian diagrams for Rapoport–Zink spaces (as étale
sheaves overW). All the vertical maps in the above diagram are surjective by Proposi-
tion 2.4. he assertions follow by the assumption π1(G1)

Γ → π1(Gad
1 )Γ is surjective.∎

Example 4.10 Consider Example 4.2 again. As the exact sequence 1 → Gm →
GLn → PGLn → 1 induces a surjection

π1(GLn)
Γ = π1(GLn)→ π1(PGLn)

Γ ,
we have

M̆(PGLn , b, µ) ≃ M̆(GLn , b1 , µ1)/pZ .

Another example will be given in Section 8.
By construction, both the above local moduli interpretation for M̆(G , b, µ)+ and

the global moduli interpretation in Proposition 4.9 are not canonical. Moreover, the
formal scheme M̆(G , b, µ) associatedwith a general unramiûed local Shimura datum
of abelian type does not admit a moduli interpretation by p-divisible groups with
additional structures. Nevertheless, we have the following theorem.

heorem 4.11 Let (G , [b], {µ}) be an unramiûed local Shimura datum of abelian
type. Assume that there exists an unramiûed local Shimura datum of Hodge type
(G1 , [b1], {µ1}) with a local Hodge embedding ι ∶ G1 ↪ GLn such that ι(b1) has no
slope 0, and such that (Gad

1 , [bad1 ], {µad1 }) ≃ (Gad , [bad], {µad}). hen the formal
scheme M̆(G , b, µ) represents the moduli functor of (G , µ)-displays RZG ,µ ,b deûned
in [4, 4.2].

Proof We just brie�y sketch the arguments: by the proof of Proposition 4.9,we have
the cartesian diagrams of étale sheaves:

M̆(G1 , b1 , µ1) //

��

M̆(Gad , bad , µad)

��

M̆(G , b, µ)oo

��
cb1 ,µ1π1(G1)

Γ // cbad1 ,µad1
π1(Gad

1 )Γ cb ,µπ1(G)Γ .oo

Consider the Bültel–Pappas functors RZG1 ,µ1 ,b1 ,RZGad
1 ,µad1 ,bad1

,RZG ,µ ,b as étale sheaves
overW . By construction, their restrictions overFp are isomorphic to the étale sheaves
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given by the corresponding aõne Deligne–Lusztig varieties, cf. [4, Proposition 4.2.5
and Remark 4.2.6]. hus, we also have the cartesian diagrams of étale sheaves

RZG1 ,µ1 ,b1
//

��

RZGad ,µad ,bad

��

RZG ,µ ,boo

��
cb1 ,µ1π1(G1)

Γ // cbad1 ,µad1
π1(Gad

1 )Γ cb ,µπ1(G)Γ .oo

By [4, Remark 5.2.7], M̆(G1 , b1 , µ1) represents the functor RZG1 ,µ1 ,b1 . herefore,
M̆(G , b, µ) represents RZG ,µ ,b . ∎

When passing to the generic ûbers, Rapoport–Zink spaces of abelian type are in-
deed canonical moduli spaces of some objects (local G-shtukas in the sense of
Scholze): see the next section.

4.4 Generic Fibers and Local Shimura Varieties of Abelian Type

Let (G , [b], {µ}) and M̆ = M̆(G , b, µ) be as in heorem 4.6. We consider the rigid
analytic ûber M = M(G , b, µ) over L, regarded as an adic space. For any open com-
pact subgroup K ⊂ G(Zp), we construct a ûnite étale cover MK ofM as follows. If
(G , [b], {µ}) is of Hodge type, then this is known by [36, 7.4] (see also our subsec-
tion 3.3). Now consider the general case.
First, assume that K =Kn for some n ≥ 1,where Kn = ker(G(Zp)→G(Zp/pnZp)).

On the component M+ = (M̆(G , b, µ)+)adη , we can construct a ûnite étale cover M+
n

by taking some unramiûed local Shimura datum ofHodge type (G1 , [b1], {µ1}) as in
Deûnition 4.3 and using themoduli interpretation ofM(G1 , b1 , µ1). We can take

Mn = [Jb(Qp) ×M+
n]/Jb(Qp)

+ .
In this way, we get a tower (Mn)n on which G(Zp) acts. Set M0 = M. he action of
G(Zp) on Mn factors through G(Zp)/Kn = G(Zp/pnZp). Now let K ⊂ G(Zp) be
arbitrary. Take some suõciently large n such that Kn ⊂ K. Set MK = Mn/K . hen
MK is a ûnite étale cover of M, and it does not depend on the choice of n. When
K ⊂ G(Zp) is normal,MK is a Galois cover ofM, with Galois group G(Zp)/K. For
any g ∈ G(Qp) and any open compact subgroup K ⊂ G(Zp), we have a natural
isomorphism

MK
∼
Ð→MgKg−1 .

As a result, the group G(Qp) acts on the tower (MK)K⊂G(Zp) by Hecke correspon-
dences.
As before, for any open compact K ⊂ G(Zp), let M+

K ⊂ MK be the pullback of
M+ ⊂ M. In this way, we get a sub-tower (M+

K)K ⊂ (MK)K . Let G(Qp)
+ ⊂ G(Qp)

be the subgroupwhich is the stabilizer of the subtower (M+
K)K ⊂ (MK)K . By Lemma

2.3(i) the map ωG ∶ G(Qp) Ð→ π1(G)Γ is surjective. By construction, we have the
induced bijection

ωG ∶ G(Qp)/G(Qp)
+ ∼
Ð→ π1(G)Γ ,

andmoreover,
MK = Jb(Qp)M

+
K , (MK)K = G(Qp)(M

+
K)K .
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Let (G , [b], {µ}) be an unramiûed local Shimura datum of abelian type. In the
sequel we want to construct a period map πdR ∶ M → F ℓG ,µ on the generic ûber M
of the associated Rapoport–Zink space and study some of its properties. Take any
(G1 , [b1], {µ1}) as in Deûnition 4.3. hen we have the canonical identiûcation of the
associated p-adic �ag varieties over L:

F ℓG ,µ = G/Pµ = F ℓG1 ,µ1 = G1/Pµ1 .

Sometimes we will simply write them as F ℓµ . By [36, 7.5], we have a periodmap

πG1 ,dR ∶ M(G1 , b1 , µ1)Ð→F ℓµ ,

which is Jb1(Qp)-equivalent. If (G , [b], {µ}) ↪ (GLn , [b′], {µ′}) is an embedding
of unramiûed local Shimura data of Hodge type, we get an induced embedding of
�ag varieties F ℓG1 ,µ1 ↪F ℓGLn ,µ′ over L. By construction, we have the commutative
diagram

M(G1 , b1 , µ1)

πG1 ,dR

��

� � // M(GLn , b′ , µ′)

πGLn ,dR

��
F ℓG1 ,µ1

� � // F ℓGLn ,µ′ .

Let us brie�y review the construction of πG1 ,dR . Let (sα) ⊂ Λ⊗ be a ûnite collection
of tensors (rank Λ = n) such that G1 ⊂ GL(Λ) is the schematic stabilizer of (sα).
hen the closed embedding F ℓG1 ,µ1 ↪F ℓGLn ,µ′ classiûes {µ1}-ûltrations of Λ with
respect to (sα); cf. [36, Deûnition 2.2.3 and Lemma 2.2.8]. By [36, 7.5], the period
morphism πG1 ,dR ∶ M(G1 , b1 , µ1)→F ℓG1 ,µ1 is given by (Fil●D(Xuniv)

r i g
M̆1
, (tr i gα )) us-

ing the induced isomorphism ρ ∶ D(Xuniv)
r i g
M̆1

≃ OM1 ⊗Λ, which matches (tr i gα ) with
1 ⊗ sα , where M̆1 = M̆(G1 , b1 , µ1), M1 = M(G1 , b1 , µ1), and (Xuniv , (tα), ρ) is the
universal p-divisible group with crystalline Tate tensors and quasi-isogeny over M̆1.
hus, the above diagram is commutative.

Restricting themap πG1 ,dR to M(G1 , b1 , µ1)
+ =M+, we get amap

π+dR ∶ M
+ =M(G1 , b1 , µ1)

+ Ð→F ℓµ .

hen applying the group action of Jb(Qp),we can deûne a Jb(Qp)-equivariant period
map for M:

πdR = πG ,dR ∶ M =M(G , b, µ)→F ℓµ .

Let F ℓadmG1 ,µ1
⊂ F ℓµ be the open subspace deûned by Hartl (using Robba rings)

in [27, section 6], which can be deûned equivalently by using the crystalline period
ring Bcris (cf. [14]). In [54, 65], the subspace F ℓadmG ,µ is described using the Fargues–
Fontaine curve,which applies to an arbitrary local Shimura datum (G , [b], {µ}). See
also Proposition 5.13.
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Proposition 4.12 F ℓadmG1 ,µ1
is the image of πG1 ,dR . And we have the commutative

diagram
M(G1 , b1 , µ1)

πG1 ,dR
����

� � // M(GLn , b′ , µ′)

πGLn ,dR
����

F ℓadmG1 ,µ1

� � // F ℓadmGLn ,µ′ .

Proof By the above construction, the composition

M(G1 , b1 , µ1)↪M(GLn , b′ , µ′)
πGLn ,dR
Ð→ F ℓGLn ,µ′

factors throughF ℓG1 ,µ1 . By [27,heorem 7.3] and [14, section 4],wehave Im πGLn ,dR=

F ℓadmGLn ,µ′ . On the other hand, by [27, Proposition 6.2], we have

F ℓadmG1 ,µ1
= F ℓadmGLn ,µ′ ∩F ℓG1 ,µ1 .

hus, the above diagram commutes. To show ImπG1 ,dR = F ℓadmG1 ,µ1
, it suõces to

show that for any algebraically closed complete extension C∣L, the induced map
on C-valued points is surjective. Let (x , (sxα)) ∈ F ℓG1 ,µ1(C ,OC) with image x ∈
F ℓGLn ,µ′(C ,OC), such that there exists a point (X/OC , ρ) ∈M(GLn , b′ , µ′)(C ,OC)
maps to x under πGLn ,dR . By deûnition, we have the isomorphism

ρ ∶ D(XkC )Q ≃ OM(GLn ,b′ ,µ′) ⊗ Λ,

and x = ρ(Fil1D(XkC )Q) considered as a ûltration on the right-hand side. Via the
rigidiûcation ρ, there exists an element g ∈ G(Qp)/G(Zp) ⊂ GLn(Qp)/GLn(Zp)

such thatD(XkC ) ≃ (gΛ⊗W , g−1b′σ(g)σ). herefore, each tensor sα on Λ induces a
crystallineTate tensor tα on X. We get apoint (X/OC , (tα), ρ) ∈M(G1 , b1 , µ1)(C ,OC),
which, by construction,maps to (X/OC , ρ) ∈M(GLn , b′ , µ′)(C ,OC) and (x , (sxα)) ∈
F ℓG1 ,µ1(C ,OC) under the embedding M(G1 , b1 , µ1) ↪ M(GLn , b′ , µ′) and the
periodmap πG1 ,dR , respectively. ∎

For any open compact subgroup K ⊂ G(Zp), we have the ûnite étale map M+
K =

M(G1 , b1 , µ1)
+
K → M+ = M(G1 , b1 , µ1)

+; thus, we get a morphism M+
K Ð→ F ℓµ .

From this we can deûne a Jb(Qp)-equivalent period map for MK πG ,dR ∶ MK Ð→
F ℓµ . When K varies, these period maps are compatible with the Hecke action of
G(Qp) on (MK)K . hus, we can think that there exists a G(Qp)-invariant map
(MK)K →F ℓµ .

Recall that we also haveF ℓwaG1 ,µ1
andF ℓwaG ,µ . By construction, we haveF ℓadmG1 ,µ1

⊂

F ℓwaG1 ,µ1
, and, similarly,F ℓadmG ,µ ⊂ F ℓwaG ,µ .

Lemma 4.13 We have

F ℓwaG1 ,µ1
= F ℓwaG ,µ , F ℓadmG1 ,µ1

= F ℓadmG ,µ .

Proof he equality F ℓwaG1 ,µ1
= F ℓwaG ,µ follows by [10, Proposition 9.5.3(iv)]. he

second equality follows by the deûnition using G-bundles on the Fargues–Fontaine
curve. ∎
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Corollary 4.14 F ℓadmG ,µ ⊂ F ℓµ is the image of the above periodmap πG ,dR .

Proof Let F ℓadm,+G1 ,µ1
⊂ F ℓG1 ,µ1 be the image of π+dR.

Since
(M(G1 , b1 , µ1)K) K = G1(Qp)(M(G1 , b1 , µ1)

+
K) K ,

and themap M(G1 , b1 , µ1)K →F ℓadmG1 ,µ1
is G1(Qp)-invariant, we get

Im πG1 ,dR = F ℓadm,+G1 ,µ1
.

We also have (M(G , b, µ)K)K = G(Qp)(M(G , b, µ)+K)K , and by our construction,
themap (M(G , b, µ)K)K →F ℓµ is G(Qp)-invariant, we also get

Im πG ,dR = F ℓadm,+G1 ,µ1
.

hus, Im πG1 ,dR = Im πG ,dR . By Proposition 4.12 and Lemma 4.13, we have

Im πG ,dR = Im πG1 ,dR = F ℓadmG1 ,µ1
= F ℓadmG ,µ . ∎

Remark 4.15 We always have F ℓadmG ,µ ⊂ F ℓwaG ,µ . In [27, section 9] and [54, Ques-
tion A.20],Hartl and Rapoport asked: when is F ℓadmG ,µ = F ℓwaG ,µ? For G = GLn ,Hartl
[27,heorem 9.3 ] gave a complete solution of this question. For arbitrary G andmi-
nuscule µ, Fargues and Rapoport conjecture that this holds true with [b] basic if and
only if (G , {µ}) is fullyHodge–Newton decomposable in the sense of [22, Deûnition
2.1 (2)]; cf. [22, Conjecture 0.1]. In the appendix we will see that F ℓadmG ,µ = F ℓwaG ,µ
in the case [b] is basic and G is the special orthogonal group. For a solution of the
Fargues–Rapoport conjecture, see [9].

Recall that byLemma 2.3(i), themapωG ∶ G(Qp)/G(Zp)Ð→ π1(G)Γ is surjective.

Lemma 4.16 (i) he following diagram is cartesian:

G(Qp)/G(Zp)
ωG //

��

π1(G)Γ

��
Gad(Qp)/Gad(Zp)

ωGad // π1(Gad)Γ .

(ii) In particular, for G and G1 as above we have G(Qp)
+ ≃ G1(Qp)

+.

Proof Note that non-empty ûbers of both vertical maps are torsors under X∗(ZG)
Γ .

By [39, Lemma 1.2.4], if gad ∈ Gad(Qp)/Gad(Zp) and ωGad(gad) li�s to an element of
π1(G)Γ , then gad lies in the image of G(Qp)/G(Zp) → Gad(Qp)/Gad(Zp). here-
fore, the above diagram is cartesian.

In particular, we have the bijection G(Qp)
+ ≃ G1(Qp)

+ from (i) for G and G1 as
above. ∎

Let X be a rigid analytic space over a local ûeld k∣Qp . By [33, section 5] and
[35, 8.4], we have the categories of Zp-local systems andQp-local systems on X. De-
note them by Zp − LocX and Qp − LocX , respectively. Let G be a reductive group
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over Qp . Denote by RepG the category of rational representations of G. Recall that a
Qp-G-local system on X is an exact tensor functor RepG → Qp − LocX (see [26, 4.3],
for example). If G is, moreover, unramiûed, and we ûx a reductive model GZp of G
overZp , thenwe can deûne similarlyZp-G-local systems (or better notion: GZp -local
systems) on X. In the following we will take X = F ℓadmG ,µ or X =M. By construction,
we have the following proposition.

Proposition 4.17 here exists a Jb(Qp)-equivariantQp-G-local systemV on F ℓadmG ,µ
such that for any aõnoid algebra (R, R+) over (L,OL), M(R, R+) is the set of GZp -
local systems in VSpa(R ,R+). In particular, there exists a Jb(Qp)-equivariant GZp -local
system L on M, and the tower (MK)K⊂G(Zp) is obtained by trivializing L.

Proof Under the identity F ℓadmG1 ,µ1
= F ℓadmG ,µ , we have aQp −G1-local system V1 on

F ℓadmG ,µ . Indeed, letVp(Xuniv) be the rational Tatemodule of the universal p-divisible
group Xuniv over M1. We have the étale Tate tensors tα ,e t ∶ 1 Ð→ Vp(Xuniv)⊗ corre-
sponding to each tα under the comparison theorem, cf. [36, heorem 7.1.6]. hen
Vp(Xuniv) descends to a Qp-local system V1 on F ℓadmG ,µ , equipped with the induced
étaleTate tensors tα ,e t . Fix any geometric point x →F ℓadmG ,µ . Let ρV1 ,x ∶ π1(F ℓadmG ,µ , x)
→ GLn(Qp) be the p-adic representation of the (de Jong’s) fundamental group
π1(F ℓadmG ,µ , x) corresponding to V1, cf. [33, heorem 4.2]. hen as tα ,e t is invariant
under π1(F ℓadmG ,µ , x) (cf. [36,heorem 7.1.6]), we get amorphism

ρV1 ,x ∶ π1(F ℓadmG ,µ , x)Ð→ G1(Qp)

which thus deûnes aQp −G1-local systemV1 on F ℓadmG ,µ . Moreover, as in the proof of
Proposition 4.12,M1(R, R+) can be identiûedwith the set ofZp-lattices togetherwith
tensors (tα) in V1Spa(R ,R+), or equivalently, [IsomF ℓadmG ,µ

(G1 ,V1)/G1(Zp)](R, R+),
where G1 is the trivial Qp-G1-local system on F ℓadmG ,µ . he tower (M1K)K⊂G1(Zp) is
the geometric realization ofQp-G1-local systemV1 onF ℓadmG ,µ in the sense thatM1K ≃

IsomF ℓadmG ,µ
(G1 ,V1)/K. his identiûcation preserves theHecke actions ofG1(Qp) and

the actions of Jb1(Qp), cf. [27, Remark 2.7] and the proof of [27] heorem 7.3 (c)
and (d).

he group π1(F ℓadmG ,µ , x) acts on G1(Qp) through ρV1 ,x . he group Jb1(Qp) acts
on G1(Qp) as theQp-local system V1 on F ℓadmG ,µ is Jb1(Qp)-equivariant.
Fix a point x0 ∈ π1(G1)

Γ . henwe have the associated M̆+
1 and (M+

1K)K . he tower
(M+

1K)K deûnes a subgroup G1(Qp)
+ ⊂ G1(Qp) and amorphism

ρ+V1 ,x ∶ π1(F ℓadmG ,µ , x)Ð→ G1(Qp)
+ .

By Lemma 4.16(ii), we have G(Qp)
+ ≃ G1(Qp)

+. herefore, we can deûne an action
of π1(F ℓadmG ,µ , x) on G(Qp) that commutes with the natural action of Jb(Qp). hus,
we get a p-adic representation

ρx ∶ π1(F ℓadmG ,µ , x)Ð→ G(Qp),
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which deûnes the desired Qp-G-local system V on F ℓadmG ,µ . Moreover, for any
K ⊂ G(Zp), we have the identiûcation

MK ≃ IsomF ℓadmG ,µ
(G ,V)/K ,

where G is the trivial Qp-G-local system on F ℓadmG ,µ . As above, this identiûcation
preserves theHecke actions of G(Qp) and the actions of Jb(Qp). ∎

We note that Corollary 4.14 and Proposition 4.17 generalize [27, heorem 8.4]
(EL/PEL type case, but there one can allow ramiûcation) to the abelian type case.

Let (G , [b], {µ}) be an unramiûed local Shimura datum of abelian type. For each
open compact subgroup K ⊂ G(Zp), we get the associated Rapoport–Zink space

MK ≃ ∐
π1(G)Γ

M+
K .

Let ∆G be the image of π1(G)Γ → π1(Gad)Γ . his is a ûnite group. We have an exact
sequence

1Ð→ X∗(ZG)
Γ Ð→ π1(G)Γ Ð→ ∆G Ð→ 1.

We have the Hecke action of G(Qp) on the tower (MK)K . he Hecke action of the
central subgroup ZG(Qp) ⊂ G(Qp) stabilizes eachMK . his action of ZG(Qp) is the
same of that induced from Jb(Qp) when we view ZG(Qp) ⊂ Jb(Qp). his action on

MK ≃ ∐
π1(G)Γ

M+
K = ∐

∆G

∐
X∗(ZG)Γ

M+
K

is through themap ZG(Qp)→ X∗(ZG)
Γ and the injection X∗(ZG)

Γ → π1(G)Γ .
In summary, the tower (MK)K⊂G(Zp) associatedwith an unramiûed local Shimura

datumof abelian type can be viewed as the local Shimura varieties thought of inCon-
jecture 3.2. In the next section, we will put these spaces in amore general framework
to get somemoduli interpretation for each MK .

4.5 Infinite Level and the Hodge–Tate Period Map

Let (G , [b], {µ}) be an unramiûed local Shimura datum of abelian type, and let
(MK)K be associated tower of Rapoport–Zink spaces of abelian type. Let F ℓG ,µ−1

be the p-adic �ag variety over L associated with (G , {µ−1}).

Proposition 4.18 here exists a pre-perfectoid spaceM∞ over L such that

M∞ ∼ lim
←Ð
K

MK ,

cf. [65, Deûnition 2.4.1] for the precisemeaning of such formula. Moreover, there exists
a Hodge–Tate period map πHT ∶ M∞ Ð→ F ℓG ,µ−1 that agrees with the period map
previously deûned in the EL/PEL cases in [5,65].

Proof If (G , [b], {µ}) is of Hodge type, the existence of the preperfectoid space
M∞ over L such that M∞ ∼ lim

←ÐK
MK is proved in [36, Proposition 7.6.1]. Fix an
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embedding (G , [b], {µ})↪ (GLn , [b′], {µ′}) with {µ′} minuscule. We have the as-
sociated preperfectoid space M(GLn , b′ , µ′)∞ over L such that M(GLn , b′ , µ′)∞ ∼
lim
←ÐK′

M(GLn , b′ , µ′)K′ . heHodge–Tate periodmap

πHT ∶ M(GLn , b′ , µ′)∞ Ð→F ℓGLn ,(µ′)−1

is deûned in [65, 7.1]. Arguing as [5, section 2], we get that the composition

M∞ ↪M(GLn , b′ , µ′)∞ →F ℓGLn ,(µ′)−1

factors through F ℓG ,µ−1 . In particular we get πHT ∶ M∞ Ð→ F ℓG ,µ−1 . Now assume
that we are in the general case. As Jb(Qp) acts on ∣M∞∣ ∶= lim

←ÐK
∣MK ∣, it suõces to

prove that there exist a preperfectoid spaceM+
∞ over L such that

M+
∞ ∼ lim

←Ð
K

M+
K ,

and aHodge–Tate periodmap

π+HT ∶ M
+
∞ Ð→F ℓG ,µ−1 .

his follows from theHodge type case. ∎

he following corollary is now clear.

Corollary 4.19 here exists a subpreperfectoid spaceM+
∞ ⊂M∞ over L that is stable

under G(Qp)
+, such that

M+
∞ ∼ lim

←Ð
K

M+
K , M∞ = G(Qp)M

+
∞ .

5 Generic Fibers of Rapoport–Zink Spaces as Moduli of Local
G-shtukas

In this section, wework mainly on generic ûbers. Wewant to explain that the generic
ûbers of the formal schemes M̆(G , b, µ), associated with unramiûed local Shimura
data of abelian type (G , [b], {µ}), can be viewed as moduli spaces fo local G-shtukas
in mixed characteristic in the sense of Scholze6, cf. [61]. We will work in the more
general context of Conjecture 3.2. he ûrst few subsections will be a brief review
of works of Fargues [17, 20] and Scholze [61]. he reader familiar with these can go
directly to Subsection 5.5.

5.1 The Fargues–Fontaine Curve and G-bundles

he Fargues–Fontaine curve XF ,E is associated with a datum (F , E), where E is a
local ûeld with ûnite residue ûeld Fq and F∣Fq is a perfectoid ûeld of characteris-
tic p. For our purpose, we set E = Qp and denote simply XF ,Qp as XF . It has several
incarnations.

6By [63,64], the same should be true even for the formal schemes M̆(G , b, µ)!
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5.1.1 The Adic Curve

he adic curve XF admits the adic uniformization XF = YF/ϕZ, where YF =
Spa(W(OF))/V(p[ϖF]), with ϖF ∈ F satisfying 0 < ∣ϖF ∣ < 1. he action of the
Frobenius ϕ on theWitt vectors is given by

ϕ(∑
n
[xn]pn) = ∑

n
[x p

n]pn for all ∑
n
[xn]pn ∈W(OF).

It induces a totally discontinuous action on YF .
Suppose now that F is algebraically closed. hen there is a unique non-analytic

point xk ∈ Spa(W(OF)). Set Y = YF = Spa(W(OF))/{xk}. here exists a surjective
continuous map κ ∶ Y→ R≥0 ∪ {∞} deûned by

κ(x) =
log ∣[ϖF](x̃)∣
log ∣p(x̃)∣

,

where x̃ is theuniquemaximal generalization of x; cf. [61, 12.2]. For any I ⊂ R≥0∪{∞},
we denote YI = κ−1(I). hen Y ∶= YF = Y(0,∞).

Let I ⊂ [0,∞] be an interval of the form [r,∞) or [r,∞]. Recall that a ϕ-module
over YI is a pair (E, ϕE), where E is a vector bundle over YI and ϕE ∶ ϕ∗E∣YI → E is
an isomorphism; cf. [61, Deûnition 13.2.1]. It follows that ϕ-modules over Y(0,∞) are
the same as vector bundles over X ∶= XF .

5.1.2 The Algebraic Curve

here is a natural line bundle O(1) on X, corresponding to the ϕ-module on Y(0,∞)

whose underlying line bundle is trivial and for which ϕ is p−1ϕ. Set O(n) = O(1)⊗n

and
P = ⊕

n≥0
H0(X ,O(n)).

We have
H0(X ,O(n)) = O(Y)ϕ=pn

.
Let Xsch = Proj(P). By [20], this is a one dimensional noetherian regular scheme over
Qp . here exists amorphism of ringed spaces X → Xsch , and X can be viewed as the
analytiûcation of Xsch in some generalized sense.

Remark 5.1 Using the theory of diamond developed in [61], the curve admits yet
another version: the diamond curve

X◇ = (Spa(F) × Spa(Qp)
◇)/ϕZ ,

where ϕ = FrobF × Id. We will not use this version in the sequel.

Let BunXsch and BunX be the categories of vector bundles on Xsch and X respec-
tively. hemorphism X → Xsch induces a GAGA functor

BunXsch Ð→ BunX .

heorem 5.2 ([16,35]) he GAGA functor induces an equivalence of categories

BunXsch
∼
Ð→ BunX .
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here is another way to describe vector bundles on X. Consider the Robba ring

R̃F = lim
Ð→
r

H0(Y(0,r] ,OY(0,r]).

he Frobenius ϕ induces an action on R̃F . Recall a ϕ-module over R̃F is a ûnite free
R̃F-module M equipped with a ϕ-linear automorphism.

heorem 5.3 ([35,heorem 6.3.12]) here is an equivalence of categories

BunX ≃ {ϕ −modules over R̃F}.

he idea for the proof is that any ϕ-module over R̃F is deûned over

R̃r
F ∶= H0(Y(0,r] ,OY(0,r])

for some r small enough. his can be spread to a ϕ-module over YF = Y(0,∞) via
pullback under Frobenius. Giving a ϕ-module over Y(0,∞) is the same as giving a
vector bundle over XF by the uniformization XF = Y(0,∞)/ϕZ.

Let ϕ−ModL be the categoryof F-isocrystalsoverFp ,where asbefore L =W(Fp)Q.
For any (D, ϕ) ∈ ϕ −ModL , we can construct a vector bundle E(D, ϕ) on Xsch by

E(D, ϕ) = Proj( ⊕
n≥0

(D ⊗L O(Y))ϕ⊗ϕ=pn
) .

heorem 5.4 ([20]) he functor E(−) ∶ ϕ−ModL → BunXsch is essentially surjective.

herefore, the composite E(−) ∶ ϕ −ModL → BunXsch → BunX is also essentially
surjective.

Let G be a connected reductive group over Qp . We have the following equivalent
deûnitions of a G-bundle on X (or equivalently on Xsch):
(1) an exact tensor functor RepG → BunX , where as before RepG is the category of

rational algebraic representations of G;
(2) a G-torsor on X locally trivial for the étale topology.

Recall that an F-isocrystal with G-structure over Fp is an exact tensor functor

RepG Ð→ ϕ −ModL .

If b ∈ G(L), it then deûnes an F-isocystal with a G-structure
Mb ∶ RepG Ð→ ϕ −ModL

V z→ (VL , bσ).

Its isomorphism class only depends on the σ-conjugacy class [b] ∈ B(G) of b. Con-
versely, by Steinberg’s theorem any F-isocrystal with G-structure arises in this way.
hus B(G) is the set of isomorphism classes of F-isocrystalswith G-structure; cf. [55,
Remarks 3.4 (i)]. For b ∈ G(L), let Eb be the composition of the above functor Mb
and

E(−) ∶ ϕ −ModL Ð→ BunXsch ≃ BunX .
In thisway, the set B(G) also classiûesG-bundles on X. In fact,we have the following
theorem.
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heorem 5.5 ([17]) Assume that F is algebraically closed. hen there is a bijection of
sets

B(G)
∼
Ð→ H1

e t(X ,G)

[b]z→ [Eb].

We discuss brie�y the relative version of the above theory. Let (R, R+) be a perfec-
toid aõnoid Fp-algebra, and let S = Spa(R, R+) be the associated perfectoid space.
We have an adic space over Qp :

XS = YS/ϕZ ,

with YS = YR ,R+ = Spa(A,A+)/V(p[ϖR]), where

A =W(R○) = {∑
n≥0

[xn]pn ∣ xn ∈ R○} , A+ = {∑
n≥0

[xn]pn ∈ A ∣ x0 ∈ R+} ,

and ϖR is a pseudo-uniformizer of R. he adic space XS is the relative version of the
Fargues–Fontaine curve. We can also deûne the scheme

Xsch
S = Proj( ⊕

d≥0
H0(XS ,OXS (d))) .

hen there exists a map of locally ringed spaces XS → Xsch
S . We can deûne vector

bundles on XS , Xsch
S as above and the relative Robba ring R̃R . Moreover, we have the

following theorem.

heorem 5.6 ([16,35])

BunXsch
S
≃ BunXS ≃ {ϕ −modules over R̃R}.

Let S = Spa(R, R+) be an aõnoid perfectoid space overFp , and letϖR be a pseudo-
uniformizer of R. We denote

Y[0,∞)(R, R+) = SpaW(R+)/V([ϖR]).

hen we have a continuous map

κ ∶ Y[0,∞)(R, R+)Ð→ [0,∞),

the relative version of the map deûned previously. With the same notation as there,
we have

YS = Y(0,∞)(R, R+).
Let G be a connected reductive group over Qp . hen, as above, we can deûne
G-bundles on XS , YS = Y(0,∞)(R, R+). If G is unramiûed over Qp , a�er ûxing a re-
ductivemodel GZp of G over Zp , we can further deûne G-bundles on Y[0,∞)(R, R+).

If we start with a perfectoid space S over Qp , then there exits a canonical closed
embedding xS ∶ S ↪ YS♭ , which in turn induces a closed embedding xS ∶ S ↪ XS♭ ;
cf. [15, 1.4]. Here S♭ is the tilt of S over Fp in the sense of [60]. hus, we can view S as
a Cartier divisor on XS♭ . If S = Spa(R, R+) is perfectoid aõnoid over Qp , by [17, 1.6]
we have a corresponding Cartier divisor D on Xsch

S♭ . he formal completion of Xsch
S♭

along D is SpfB+dR,R ; cf. [15, Proposition 1.33].
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5.2 Local G-shtukas in Mixed Characteristic

Let the notation be as above. From now on, we assume that G is unramiûed7 over
Qp and ûx a reductive model GZp of G over Zp . Let S = Spa(R, R+) be an aõnoid
perfectoid space over Fp , with an untilt S♯ of S. hen there exists a closed embedding
S♯ ↪ Y[0,∞)(R, R+).

Deûnition 5.7 ([61, Deûnition 11.4.1]) A localG-shtukaover Swithonepaw x ∶ S♯ →
Y[0,∞)(R, R+) is a pair (E, ϕE), where

● E is a G-bundle over Y[0,∞)(R, R+);
● ϕE ∶ ϕ∗E→ E is an isomorphism over Y[0,∞)(R, R+)/Γx , such that along Γx it is

meromorphic. Here, Γx is the image of x.

One can then generalize the above notion to deûne a localG-shtuka over a general
perfectoid space over Fp .

LetC be a complete algebraically closed extension ofQp . We have the associated de
Rham period ring B+dR ∶= B+dR,C with a ûxed uniformizer ξ ∈ B+dR. Let BdR = B+dR[

1
ξ ],

Ainf = W(OC♭). We have the following various descriptions of local G-shtukas with
one paw at C, in the case G = GLn .

heorem 5.8 ([61, Proposition 20.1.1]; see also [19]) he following categories are
equivalent:
(i) Shtukas over Spa(C♭ ,OC♭) with one paw at C.
(ii) Pairs (T , Ξ),where T is a ûnite freeZp-module, and Ξ ⊂ T⊗BdR is a B+dR-lattice.
(iii) Breuil–Kisin–Fargues modules over Ainf .
(iv) Quadruples (F,F′ , β, T), where F and F′ are vector bundles on the Fargues–

Fontaine curve X = XC♭ , and β ∶ F∣X/{∞}

∼
→ F′X/{∞}

is an isomorphism, where
F is trivial, and T ⊂ H0(X ,F) is a Zp-lattice.

If the paw is minuscule, i.e., we have

ξ(T ⊗Zp B
+
dR) ⊂ Ξ ⊂ T ⊗Zp B

+
dR ,

then these categories are equivalent to the category of p-divisible groups over OC .

Recall that a Breuil–Kisin–Farguesmodule over Ainf is a pair (M , ϕM),whereM is
a ûnite free Ainf -module and ϕM ∶ (ϕ∗M)[ξ−1]

∼
→ M[ξ−1] is an isomorphism; cf. [61,

Deûnition 11.4.2].

5.3 Moduli of Local G-shtukas in Mixed Characteristic

We have the following generalizations of Deûnitions 3.1 and 3.3.

Deûnition 5.9 (i) A local shtuka datum is a triple (G , [b], {µ}), where
● G is a connected reductive group over Qp ;

7his is not necessary by themethods of [61–64]. Here, we restrict to the unramiûed case to simplify
the exposition, which is also suõcient for our purpose.

https://doi.org/10.4153/S0008414X19000269 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X19000269


On Some Generalized Rapoport–Zink Spaces 1145

● {µ} is a conjugacy class of cocharacters µ ∶ Gm → GQp
over Qp ;

● [b] ∈ B(G , µ) ⊂ B(G).
(ii) Let (G1 , [b1], {µ1}), (G2 , [b2], {µ2}) be two local shtuka data. Amorphism

(G1 , [b1], {µ1})Ð→ (G2 , [b2], {µ2})

is a homomorphism f ∶ G1 → G2 of algebraic groups sending ([b1], {µ1}) to
([b2], {µ2}).

Remark 5.10 (i) By deûnition, a local Shimura datum (G , [b], {µ}) is a local
shtuka datum with {µ} minuscule. For a local shtuka datum (G , [b], {µ}), the
simple factors of Gad can be groups of arbitrary type.

(ii) In [61], several {µ}’s canbe allowed, as in the classical functionûeld case; cf. [70].
(iii) In particular, if (G , [b], {µ}) is a local shtuka datum, and G → G′ is a homo-

morphism of reductive groups overQp , we get the induced [b′], {µ′} such that
(G′ , [b′], {µ′}) is also a local shtuka datum.

(iv) We refer the reader to [28] for local function ûeld case, where {µ} is replaced
by a bound Ẑ in the sense of [28] Deûnition 2.1(b).

Let (G , [b], {µ}) be a local shtuka datum. As before, we have the associated local
re�ex ûeld E, and the reductive group Jb over Qp . Let F be an algebraically closed
perfectoid ûeld of characteristic p. Byheorem 5.5,we have aG-bundle on XF ,which
is the same as a ϕ-G-module (Eb , ϕEb) on YF , well deûned up to isomorphism. We
will use freely the notion of diamond in the following; cf. [61] for basic deûnitions and
properties. We deûne a functor on the category of perfectoid aõnoid algebras over
Fp as follows.

Deûnition 5.11 ([61, Deûnition 19.3.3]) Let (R, R+) be a perfectoid aõnoid
Fp-algebra together with a map x ∶ Spa(R, R+)◇ → Spa(Ĕ)◇ (which is the same as
giving an untilt of R over Ĕ). Let Sht(G , b, µ)→ Spa(Ĕ)◇ be the functor such that for
any ((R, R+), x),

Sht(G , b, µ)((R, R+), x) = {((E, ϕE), ι)}/≃,

where
● (E, ϕE) is a G-shtuka over Y[0,∞)(R, R+) with one paw at x, such that (E, ϕE)

is bounded by {µ};
● ι ∶ (E, ϕE)∣[ρ ,∞)

∼
→ (Eb , ϕEb)∣[ρ ,∞) is an isomorphism for some suõciently

large ρ.

he following is themain theorem of [61].

heorem 5.12 (Scholze [61,heorem 20.3.1] ) he functor Sht(G , b, µ) is represented
by a diamond over Spa(Ĕ)◇.

(In [61] the theorem is proved for the caseG = GLn , but one sees immediately that
the proof given there also works for the general case. See also [64].)
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We want to discuss period maps in this setting. Consider the B+dR-aõne Grass-
mannian GrB

+
dR

G over Qp . his is the functor associating with any perfectoid aõnoid
Qp-algebra (R, R+) the set

GrB
+
dR

G (R, R+) = {(E, β)}/≃,

where E is a G-torsor over SpecB+dR,R , and β is a trivialization of E⊗B+dR,R BdR,R . One

can check that GrB
+
dR

G is the étale sheaf associated with the presheaf

(R, R+)z→ G(BdR,R)/G(B+dR,R).

Consider the case (C ,C+) with C∣Qp an algebraically closed perfectoid ûeld. hen
we have the Cartan decomposition

G(BdR,C) = ∐
µ∈X∗(T)+

G(B+dR,C)µ(ξ)
−1G(B+dR,C),

where T ⊂ B ⊂ G is a ûxed choice of maximal torus inside a Borel subgroup B of G,
and X∗(T)+ ⊂ X∗(T) is the associated set of dominant cocharacters. Fix a conjugacy
class of cocharacters {µ} with the dominant representative µ. Let E be the ûeld of
deûnition of {µ}. Consider GrB

+
dR

G ,≤µ ⊂ GrB
+
dR

G ⊗ E the subfunctor such that

GrB
+
dR

G ,≤µ(R, R
+) =

{(E, ξ) ∈ GrB
+
dR

G (R, R+) ∣ Inv(Ex ,E0x) ≤ µ−1 , ∀x ∈ Spa(R, R+)} .

his is the analogue of the classical Schubert variety associated with {µ} in the set-
ting of B+dR-aõne Grassmannian GrB

+
dR

G . here is an action of Jb(Qp) on GrB
+
dR

G ,≤µ . By

abuse of notation, we still denote by GrB
+
dR

G ,≤µ → Spa(Ĕ)◇ the sheaf base changed over
Spa(Ĕ)◇. By [61,heorem 21.3.6], this is a diamond.

here exists an étalemorphism of diamonds over Spa(Ĕ)◇ (cf. [61, 20.4])

πdR ∶ Sht(G , b, µ)Ð→ GrB
+
dR

G ,≤µ .

When G = GLn , this morphism can be deûned by using heorem 5.8(iv). Let

GrB
+
dR ,adm

G ,≤µ ⊂ GrB
+
dR

G ,≤µ

be the image of πdR. his is an open sub-diamond, andwe call it the admissible locus.
We have the following description of the admissible locus.

Proposition 5.13 ([61, 20.5], [35] ) Let (E, β) ∈ GrB
+
dR

G ,≤µ(R, R
+). hen

(E, β) ∈ GrB
+
dR ,adm

G ,≤µ (R, R+)

if and only if one of the following equivalent conditions holds: for any representation
V ∈ RepG such that the center of G is mapped into the center of GL(V), with the
associated vector bundle (EV , βV),
(i) ∀x ∈ Spa(R, R+) the vector bundle EV ,x is semi-stable of slope 0;
(ii) ϕ-module of EV is trivial;
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(iii) EV extends to a ϕ-module over R̃int
R , where R̃int

R = lim
Ð→r

H0(Y[0,r] ,OY) is the
integral Robba ring.

he action of Jb(Qp) on GrB
+
dR

G ,≤µ stabilizes the open sub-diamond GrB
+
dR ,adm

G ,≤µ . he
periodmorphism

πdR ∶ Sht(G , b, µ)Ð→ GrB
+
dR ,adm

G ,≤µ

is then Jb(Qp)-equivariant.
We have the following deûnition of local systemswith additional structures on the

diamond GrB
+
dR ,adm

G ,≤µ , similar to the classical situation.

Deûnition 5.14 Let X be a diamond, and letG be a reductive group overQp . Denote
by RepG the category of rational representations ofG, and byQp −LocX the category
ofQp-local systems on X. hen aQp-G-local systemon X is a tensor functor RepG →
Qp − LocX . If G is, moreover, unramiûed, and ûx a reductive model (over Zp) GZp

of G, then we can deûne similarly Zp-G-local systems (or better notion: GZp -local
systems) on X.

By [35, Corollary 8.7.10], there exists a Jb(Qp)-equivariant Qp-G-local system V
over GrB

+
dR ,adm

G ,≤µ , which realizes Sht(G , b, µ) as the functor of the set of Zp-G-local
systems in V. In particular, there exists a Jb(Qp)-equivariant Zp-G-local system L
over Sht(G , b, µ).

Scholze’s theorem above (heorem 5.12) in fact gives us more information. More
precisely, we get a tower of diamonds

(Sht(G , b, µ)K) K⊂G(Zp)

indexed byopen compact subgroupsK ⊂G(Zp)with Sht(G , b, µ)G(Zp)= Sht(G , b, µ),
and the group G(Qp) acts on this tower (Sht(G , b, µ)K)K⊂G(Zp) by Hecke corre-
spondences. Let (R, R+) be a perfectoid aõnoid Fp-algebra together with a map
x ∶ Spa(R, R+)◇ → Spa(Ĕ)◇. hen

Sht(G , b, µ)K((R, R+), x) = {((E, ϕE), ι, α)}/≃,

where
● (E, ϕE) is a G-shtuka over Y[0,∞)(R, R+) with one paw at x, such that (E, ϕE)

is bounded by {µ};
● ι ∶ (E, ϕE)∣[ρ ,∞)

∼
→ (Eb , ϕEb)∣[ρ ,∞) is an isomorphism for some suõciently

large ρ;
● α is a K-orbit of an isomorphism L(E, ϕE) ≃ L0, where L(E, ϕE) is the

G-local system associated with (E, ϕE), L0 is the trivial G-local system over
Y[0,∞)(R, R+).

As Jb(Qp) ⊂ Aut(Eb , ϕEb), (cf. [15, 2.5]), Jb(Qp) acts each Sht(G , b, µ)K by modify-
ing ι, and these actions are compatible when K varies. When the context is clear, we
will simply denote Sht(G , b, µ)K by ShtK . he cover

πK ∶ Sht(G , b, µ)K Ð→ Sht(G , b, µ)
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is obtained by trivializing K-level structures, which is ûnite étale. By trivializing all
of L, we get a pro-étale cover

π∞ ∶ Sht(G , b, µ)∞ Ð→ Sht(G , b, µ).

We have the following moduli interpretation for Sht(G , b, µ)∞. Let (R, R+) be a per-
fectoid aõnoid Fp-algebra together with amap x ∶ Spa(R, R+)◇ → Spa(Ĕ)◇. hen

Sht(G , b, µ)∞((R, R+), x) = {((E, ϕE), ι, α)}/≃,

where
● (E, ϕE) is a G-shtuka over Y[0,∞)(R, R+) with one paw at x, such that (E, ϕE)

is bounded by {µ};
● ι ∶ (E, ϕE)∣[ρ ,∞)

∼
→ (Eb , ϕEb)∣[ρ ,∞) is an isomorphism for some suõciently

large ρ;
● α ∶ L(E, ϕE) ≃ L0 is an isomorphism, where, as before, L0 is the trivial G-local

system over Y[0,∞)(R, R+).
By construction, we have an isomorphism of diamonds over Spa(Ĕ)◇:

Sht(G , b, µ)∞/K ≃ Sht(G , b, µ)K , Sht(G , b, µ)∞ = lim
←Ð
K

Sht(G , b, µ)K .

For any open compact subgroup K ⊂ G(Qp), we know that the ûbers of

Sht(G , b, µ)K(C ,OC)Ð→ GrB
+
dR ,adm

G ,≤µ (C ,OC)

are in bijectionwithG(Qp)/K. We remark that it should be possible todeûne anotion
of étale fundamental group for the diamondGrB

+
dR ,adm

G ,≤µ as [33], so that theQp-G-local
system V on GrB

+
dR ,adm

G ,≤µ can be described in term of a collection of representations

π1(GrB
+
dR ,adm

G ,≤µ , x) Ð→ G(Qp),

for the geometric point x runs through each connected component of GrB
+
dR ,adm

G ,≤µ ;
see [62].
At the inûnite level, there exists a Hodge–Tate periodmap (cf. [15, p. 38]; see also

[26,heorem 5.4])
πHT ∶ Sht(G , b, µ)∞ Ð→ GrB

+
dR

G ,≤µ−1 ,

where GrB
+
dR

G ,≤µ−1 ⊂ GrB
+
dR

G ⊗ E is the Schubert diamond associated with {µ−1}. We can
be a little precise on the image of πHT . By [5, Corollary 3.5.2], there is a natural map

E ∶ GrB
+
dR

G (R, R+)Ð→ BunG ,XR♭ ,R+ ♭ .

Take (R, R+)= (C ,OC)withC∣Qp complete and algebraically closed. Byheorem 5.5,
we get amap b(−) ∶ GrB

+
dR

G (C ,OC) → B(G). By [5, Proposition 3.5.3], when restrict-
ing to x ∈ GrB

+
dR

G ,≤µ−1(C ,OC), one has b(x) ∈ B(G , µ). hen for any [b′] ∈ B(G , µ), we
get a locally closed sub-diamond

GrB
+
dR ,b

′

G ,≤µ−1 ⊂ GrB
+
dR

G ,≤µ−1 ,
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such that the underling topological space ∣GrB
+
dR ,b

′

G ,≤µ−1 ∣ is the ûber over [b′] under the
abovemap b( ⋅ ). Consider [b′] = [b] as in the local shtuka datum. hen by construc-
tion, one has

πHT ∶ Sht(G , b, µ)∞(C ,OC)Ð→ GrB
+
dR ,b

G ,≤µ−1(C ,OC),

for any (C ,OC) with C∣Qp complete and algebraically closed. hat is, πHT factors
through GrB

+
dR ,b

G ,≤µ−1 .
In summary, we get two periodmorphisms

Sht(G , b, µ)∞
πdR

xx

πHT

&&

GrB
+
dR ,adm

G ,≤µ GrB
+
dR ,b

G ,≤µ−1 ,

and the periodmorphism πdR factors through Sht(G , b, µ).

Remark 5.15 In [15, 8.2.1], there is an alternative construction of the diamond
Sht(G , b, µ)∞.

By construction, a morphism (G1 , [b1], {µ1}) → (G2 , [b2], {µ2}) of local shtuka
data induces amorphism of diamonds

Sht(G1 , b1 , µ1)Ð→ Sht(G2 , b2 , µ2).

More generally, we havemorphisms

Sht(G1 , b1 , µ1)K1 Ð→ Sht(G2 , b2 , µ2)K2

if K1 is mapped into K2 under G1 → G2.
he above functoriality enables us to apply the Tannakian formalism. As before,

we assume thatG is unramiûed overQp . Now consider an embeddingG ↪ GLn ; then
([b], {µ}) induces ([b′], {µ′}), so that (GLn , [b′], {µ′}) forms a local shtuka datum,
and we get a morphism of local shtuka data (G , [b], {µ}) → (GLn , [b′], {µ′}). he
following proposition is the local analogue of Deligne’s theorem for Shimura varieties.

Proposition 5.16 In the above setting, for any K ⊂ G(Zp), there exists a K′ ⊂
GLn(Zp) such that there exists a natural closed embedding of diamonds

Sht(G , b, µ)K ↪ Sht(GLn , b′ , µ′)K′ .

he induced embedding of diamonds

Sht(G , b, µ)∞ ↪ Sht(GLn , b′ , µ′)∞

is compatible with the de Rham and Hodge–Tate periodmorphisms on both sides.

Proof It suõces to prove that we have a closed embedding of diamonds

Sht(G , b, µ)∞ ↪ Sht(GLn , b′ , µ′)∞ .
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his is clear from the construction above. Moreover, we have a closed embedding

GrB
+
dR ,adm

G ,≤µ ↪ GrB
+
dR ,adm

GLn ,≤µ′ ,

and the following diagram on de Rham periodmaps is commutative

Sht(G , b, µ)∞

πdR
��

� � // Sht(GLn , b′ , µ′)∞

πdR
��

GrB
+
dR ,adm

G ,≤µ
� � // GrB

+
dR ,adm

GLn ,≤µ′ .

We also have the following commutative diagram on Hodge–Tate periodmaps

Sht(G , b, µ)∞

πHT
��

� � // Sht(GLn , b′ , µ′)∞

πHT
��

GrB
+
dR ,b

G ,≤µ−1
� � // GrB

+
dR ,b

′

GLn ,≤(µ′)−1 . ∎

5.4 Moduli of Local G-shtukas and Affine Deligne–Lusztig Varieties

Let (G , [b], {µ}) be a local shtuka datum. Recall that we assume G is unramiûed.
We want to compare themoduli space of local G-shtukas Sht(G , b, µ) and the aõne
Deligne–Lusztig variety XG

≤µ(b) associated with (G , [b], {µ}) as in Section 2.
Let (C ,OC) be an aõnoid perfectoid ûeld of characteristic p with an untilt C♯ of

C. Let k be the residue ûeld of OC . We have a Jb(Qp)-equivariant morphism of sets

sp = sp(G ,b ,µ) ∶ Sht(G , b, µ)(C ,OC)Ð→ XG
≤µ(b)(k).

Indeed, ûrst consider the case G = GLn ; we have

Sht(G , b, µ)(C ,OC) = {((E, ϕE), ι)}/≃

with ((E, ϕE), ι) a shtuka over Spa(C ,OC)with one paw atC♯. Byheorem 5.8, there
exists a Breuil–Kisin module (M , ϕ) over Ainf =W(OC). Let (M ⊗Ainf W(k), ϕ) be
the associated Dieudonnémodule. his deûnes a point in XG

≤µ(b)(k). his construc-
tion is compatiblewith the Jb(Qp) actions on both sides. For the general case, we ap-
ply theTannakian formalism: take any embedding (G , [b], {µ})→ (GLn , [b′], {µ′});
then we have a commutative diagram

Sht(G , b, µ)(C ,OC)

spG ,b .µ

��

� � // Sht(GLn , b′ , µ′)(C ,OC)

spGLn ,b′ ,µ′
��

XG
≤µ(b)(k)

� � // XGLn
≤µ′ (b

′)(k).

Recall that we have the map ωG ∶ G(L)/G(W) → π1(G). In the rest of this sub-
section we will only consider XG

≤µ(b) as a subset of G(L)/G(W). Restricting ωG to
XG
≤µ(b), it gives

ωG ∶ XG
≤µ(b)Ð→ cb ,µπ1(G)Γ .
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Recall that as in Subsection 2.2, a�er replacing b by b′ we can assume cb ,µ = 1. On the
other hand, restricting ωG to G(Qp)/G(Zp) we get

ωG ∶ G(Qp)/G(Zp)Ð→ π1(G)Γ .

We can regard the quotient set G(Qp)/G(Zp) as a certain subset of Sht(G , b, µ)
(C ,OC); see below. he above two maps are related by the following reduction map.
Recall that we have the periodmap

πdR ∶ Sht(G , b, µ)→ GrB
+
dR ,adm

G ,≤µ ,

which is Jb(Qp)-equivariant. Take any point y ∈ GrB
+
dR ,adm

≤µ (C ,OC); then the ûber
π−1
dR(y) is in bijection with G(Qp)/G(Zp) once we ûx a point x ∈ π−1

dR(y). For g ∈

Jb(Qp), we take the point gx ∈ π−1
dR(g y) to identify π−1

dR(g y) with G(Qp)/G(Zp). In
this way we can deûne an action of Jb(Qp) on G(Qp)/G(Zp).

Lemma 5.17 here is a Jb(Qp)-equivariant map

G(Qp)/G(Zp)Ð→ XG
≤µ(b), g z→ g0 ,

such that ωG(g) = ωG(g0).

Proof Fix any point x ∈ Sht(G , b, µ)(C ,OC). hen we have an injection

G(Qp)/G(Zp)→ Sht(G , b, µ)(C ,OC)

that identiûes G(Qp)/G(Zp) with the Hecke orbit π−1
dR(πdR(x)) of x. For any g ∈

Jb(Qp), the choice of the point gx to identify G(Qp)/G(Zp) with π−1
dR(πdR(gx))

shows that the injectionG(Qp)/G(Zp)→ Sht(G , b, µ)(C ,OC) is Jb(Qp)-equivariant.
he composite

G(Qp)/G(Zp)→ Sht(G , b, µ)(C ,OC)→ XG
≤µ(b)

gives the desired map, which is Jb(Qp)-equivariant, since, by the above construc-
tion, the specialization map Sht(G , b, µ)(C ,OC) → XG

≤µ(b) is Jb(Qp)-equivariant.
he second assertion follows by the same argument as that in the proof of
[39, Lemma 1.2.18], by applying heorem 5.8 (and Tannakian formalism) instead of
[39, subsection 1.1]. ∎

Remark 5.18 Consider the composite map G(Qp)/G(Zp) → XG
≤µ(b) → π1(G)Γ .

hen this is surjective by Lemma 2.3(i). In [39, Proposition 1.2.23], Kisin proved a
stronger result: themap

G(Qp)/G(Zp)Ð→ π0(XG
≤µ(b))

is surjective if (G , [b], {µ}) is an unramiûed local Shimura datum ofHodge type.

he following is an analogue of [7, Lemma 2.4.1 and Corollary 2.4.2]; see also
Proposition 2.5.
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Proposition 5.19 Let Z ⊂ ZG be a central subgroup and G′ = G/Z, with the in-
duced [b′] and {µ′} such that (G′ , [b′], {µ′}) is a local shtuka datum. hen we have
a cartesian diagram

Sht(G , b, µ)(C ,OC) //

��

Sht(G′ , b′ , µ′)(C ,OC)

��
XG
≤µ(b) // XG′

≤µ′(b′).

In particular, the induced diagram

Sht(G , b, µ)(C ,OC) //

��

Sht(G′ , b′ , µ′)(C ,OC)

��
π1(G)Γ // π1(G′)Γ

is also cartesian.

Proof First, we have the natural identiûcation GrB
+
dR , adm

G , ≤µ = GrB
+
dR , adm

G′ , ≤µ′ , since,

by construction, GrB
+
dR , adm

G , ≤µ depends only on the adjoint local shtuka datum
(Gad , [bad], {µad}). Now consider the commutative diagram

Sht(G , b, µ)(C ,OC) //

πG ,dR ))

Sht(G′ , b′ , µ′)(C ,OC)

πG′ ,dRuu

GrB
+
dR ,adm

G ,≤µ (C ,OC).

For any point x ∈ GrB
+
dR ,adm

G ,≤µ (C ,OC), the above horizontal map induces a map on
ûbers

G(Qp)/G(Zp)Ð→ G′(Qp)/G′(Zp);

thus, it suõces to show that the following diagram is cartesian:

G(Qp)/G(Zp) //

��

G′(Qp)/G′(Zp)

��
XG
≤µ(b) // XG′

≤µ′(b′),
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where the vertical maps are those constructed in Lemma 5.17. Consider the following
diagram:

G(Qp)/G(Zp) //

��

G′(Qp)/G′(Zp)

��
XG
≤µ(b) //

ωG

��

XG′
≤µ′(b′)

ωG′

��
π1(G)Γ // π1(G′)Γ .

We know that the lower square is cartesian (cf. Proposition 2.5), and by Lemma 4.16 ,

G(Qp)/G(Zp) //

��

G′(Qp)/G′(Zp)

��
π1(G)Γ // π1(G′)Γ

is also cartesian. herefore, the upper square is cartesian. ∎

5.5 Local Shimura Varieties as Moduli of Local G-shtukas

We return to the setting of Deûnition 3.1. he following strengthened version ofheo-
rem 5.12,which can be viewed as a partial solution of Conjecture 3.2 (aswe do not give
information on the desiredWeil descent datum), is implied by the results in [5,61,62].
See also [64,Lecture 24] and [9, section 3]. Recall that by [61,Proposition 10.2.8], there
is a fully faithful functor X ↦ X◇ from the category of normal rigid analytic spaces
over k to the category of diamonds over Spa(k)◇ for any non-archimedean ûeld k of
characteristic 0.

heorem 5.20 Let (G , [b], {µ}) be a local Shimura datum. Assume that G is un-
ramiûed. hen there exists a tower of rigid analytic spaces over SpĔ, (MK)K , where K
runs through all open compact subgroups of G(Zp), with the following properties:
(i) the group Jb(Qp) acts on each spaceMK ;
(ii) the group G(Qp) acts on the tower (MK)K as Hecke correspondences;
(iii) there exists a compatible system of étale and partially proper periodmaps

πK ∶ MK →F ℓadmG ,µ

that is equivariant for the action of Jb(Qp), where F ℓadmG ,µ ⊂ F ℓG ,µ is the open
subspace deûned in [54, A.6] (see also Proposition 5.13 and [9]);

(iv) for any K, we have an isomorphism of diamonds M◇
K ≃ ShtK .

Proof Consider the Bialynicki–Birulamorphism

GrB
+
dR

G ,µ Ð→F ℓG ,µ ;

https://doi.org/10.4153/S0008414X19000269 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X19000269


1154 X. Shen

cf. [5, Proposition 3.4.3]. Since µ is minuscule, it is an isomorphism, cf. [5, heo-
rem 3.4.5] that induces an isomorphism

GrB
+
dR ,adm

G ,µ
∼
Ð→F ℓadm,◇G ,µ .

he tower (ShtK)K is constructed out of a Jb(Qp)-equivariant Qp − G-local system
V over GrB

+
dR ,adm

G ,µ , which realizes Sht(G , b, µ) as the functor of the set of GZp -local

systems in V. Since GrB
+
dR ,adm

G ,µ ≃ F ℓadm,◇G ,µ , there exists a corresponding Jb(Qp)-
equivariant Qp-G-local system over F ℓadmG ,µ , which we still denote by V. Here we use
the fact that the categories of étale Zp-local systems andQp-local systems on an adic
space X are equivalent to the corresponding categories on the pro-étale site Xproét;
cf. [35, Lemma 9.1.11]. herefore, we get a tower of rigid analytic spaces (MK)K with
the properties listed as in the theorem. ∎

Remark 5.21 In the above situation it is natural to conjecture that there exists a
preperfectoid spaceM∞ over Ĕ such that M∞ ∼ lim

←ÐK
MK andM◇

∞ = Sht∞. We will
see that this is true if (G , [b], {µ}) is unramiûed of abelian type; cf. Corollary 5.22.
his is the local analogue of the fact that Shimura varieties of abelian typewith inûnite
level at p are perfectoid; cf. [67].

Finally, we return to Rapoport–Zink spaces of abelian type. In particular, we as-
sume p > 2 in the rest of this section.

Corollary 5.22 Let (G , [b], {µ}) be an unramiûed local Shimura datum of abelian
type. For any open compact subgroup K ⊂ G(Zp), letMK andM′

K be the rigid analytic
spaces over Ĕ constructed in Subsection 4.4 andheorem 5.20 respectively. henwe have
an isomorphism of rigid analytic spaces over ĔMK ≃M′

K .
In particular, we get isomorphisms of diamonds over Spa(Ĕ)◇, M◇

K ≃ ShtK , and
M◇

∞ ≃ Sht∞, with compatible period morphisms on both sides. In particular, the
Hodge–Tate periodmap πHT in Proposition 4.18 factors through πHT ∶ M∞ →F ℓbG ,µ−1 .

Proof We ûrst prove the case where (G , [b], {µ}) is of Hodge type. his follows
exactly as the proof of [61,heorem 19.4.5]. Moreover,we have the following cartesian
diagram:

M(G , b, µ)◇K� _

��

∼ // Sht(G , b, µ)K� _

��
M(GLn , b′ , µ′)◇K′

∼ // Sht(GLn , b′ , µ′)K′ .

Now assume that (G , [b], {µ}) is of abelian type. We can apply Propositions 4.17
and 5.19, and compare the construction of M(G , b, µ)K with that of Sht(G , b, µ)K .
Here, as above, we use the fact that the categories of étale Zp-local systems and Qp-
local systems on an adic space X are equivalent to the corresponding categories on
the pro-étale site Xproét, cf. [35, Lemma 9.1.11]. ∎
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Let (G , [b], {µ}) be a local Shimura datum with G unramiûed. By heorem 5.20,
there exists a tower of local Shimura varieties (M(G , b, µ)K)K over SpĔ as conjec-
tured by Rapoport and Viehmann. Take an embedding G ↪ GLn . hen we get an
induced triple (GLn , [b′], {µ′}), which is a local shtuka datum. he following corol-
lary is now a consequence of Proposition 5.16 andheorem 5.20.

Corollary 5.23 For any K ⊂ G(Zp), there exists a K′ ⊂ GLn(Zp) such that there
exists a natural closed embedding of diamonds

M(G , b, µ)◇K ↪ Sht(GLn , b′ , µ′)K′ .

Remark 5.24 (i) Let (G , [b], {µ}) be an unramiûed local Shimura datum of
Hodge type, with the associated Rapoport–Zink spaces MK and the moduli spaces
of local G-shtukas ShtK . he isomorphism M◇

K ≃ ShtK of diamonds over Spa(Ĕ)◇
indicates the magic “switching p-divisible groups with additional structures to local
G-shtukas”.

(ii) If (G , [b], {µ}) is a general local Shimura datum, e.g., an unramiûed local
Shimura datumof abelian type but not ofHodge type, thenwe do not have p-divisible
groups any more. However, viaM◇

K ≃ ShtK , the local Shimura varieties MK can be
viewed as moduli of local G-shtukas.

(iii) Corollary 5.22 should be upgraded to the integral level as [64,heorem 25.1.2
and Corollary 25.1.3]. Namely, we should get an isomorphisms of v-sheaves over
SpdW , M̆◇ ≃ Mint, where Mint is the moduli functor introduced in [64, Deûni-
tion 25.1.1] for the unramiûed local Shimura datum (G , [b], {µ}). his could be done
similarly to the methods of [64, Lecture XXV], and we will leave the details to the
reader. herefore, at the end we would have a canonical moduli interpretation for
general M̆, compared with Subsection 4.3.

Remark 5.25 We refer to [57, sections 6,7,8] and [15, section 8] for the discussions
on the conjectures on the realizations of local Langlands correspondences and local
Jacquet–Langlands correspondences in the ℓ-adic cohomology of the tower (MK)K
or (ShtK)K .

6 Rapoport–Zink Uniformization for Shimura Varieties of
Abelian Type

We discuss some global applications in this section. As [56, Chapter 6] and [37], we
apply our construction of the formal schemes M̆(G , b, µ) to prove a uniformization
theorem forKisin’s integral canonical models of Shimura varieties of abelian type [38].
hroughout this section, we assume p > 2.

6.1 Integral Canonical Models for Shimura Varieties of Abelian Type

Let (G , X) be a Shimura datum of abelian type, i.e., there exists a Shimura datum of
Hodge type (G1 , X1) togetherwith a central isogeny,Gder

1 → Gder, such that it induces
an isomorphism of the associated adjoint Shimura data (Gad

1 , Xad
1 ) ≃ (Gad , Xad). Fix

a prime p > 2. Assume that G is unramiûed at p from now on. By [38, Lemma 3.4.13],

https://doi.org/10.4153/S0008414X19000269 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X19000269


1156 X. Shen

we can ûnd a Shimura datum of Hodge type (G1 , X1) satisfying the above and G1 is
unramiûed at p. Let E be the local re�ex ûeld of (G , X) for some place over p. In the
sequel, we will only consider the open compact subgroups K ⊂ G(A f ) in the form
K = KpK p with Kp = G(Zp).

heorem 6.1 ([38, heorem 3.4.10, Corollary 3.4.14]) With the above notation and
assumption, for any suõciently small open compact subgroup K p ⊂ G(Ap

f ), there exists
an integral canonical smooth model SK(G , X) of ShK(G , X) overOE . When K p varies,
the prime to p Hecke action on (ShK(G , X))K extends to (SK(G , X))K .

It will be useful to review how these integral models are constructed; cf. [38, 2.3
and 3.4].

6.1.1 Case (G , X) of Hodge Type

Take an embedding of Shimura data (G , X) ↪ (GSp, S±). Let K = KpK p ⊂ G(A f )
be an open compact subgroup with Kp = G(Zp). Take an open compact subgroup
K′ = K′

pK
′ p with K′

p = GSp(Zp), such that K ⊂ K′ and we have an closed immersion

ShK(G , X)↪ ShK′(GSp, S±)E ,

where E is the local re�ex ûeld for (G , X). For ShK′(GSp, S±), we have the integral
canonicalmodel SK′(GSp, S±). Consider theZariski closure S−K(G , X)of ShK(G , X)E
in SK′(GSp, S±)OE . hen SK(G , X) is deûned as the normalization of S−K(G , X). In
particular we have a ûnitemorphism

SK(G , X)Ð→ S−K(G , X) ⊂ SK′(GSp, S±)OE .

It will be useful to review some further structures for the integral canonical model
SK(G , X). Let T be a scheme over OE . Attached to each point x ∈ SK(G , X)(T)
we have a triple (Ax , λx , εpx ,K), where (Ax , λx) is the polarized abelian scheme up to
prime to p isogeny coming from pullback of the universal polarized abelian scheme
over SK′(GSp, S±), and

εpx ,K ∈ Γ(T , Isom(VAp
f
, V̂ p(Ax)Q)/K p)

is the (promoted) K-level structure coming from the K′-level structure εpx ,K′ on Ax ;
cf. [38, 3.4.2]. he triple (Ax , λx , εpx ,K′) can be viewed as the polarized abelian scheme
with level structure attached to the T-point of SK′(GSp, S±) induced by x. Let (sα)
be a ûnite collection of tensors that cut oò the inclusion G ⊂ GL(V). As explained in
[39, 1.3.6], there exist de Rham tensors sα ,dR ,x and ℓ-adic étale tensors (sα , l ,x)l≠p on
the ûrst relative de Rham cohomology and the ûrst ℓ-adic cohomology of Ax , respec-
tively. he level εpx ,K takes sα to (sα , l ,x)l≠p .

If T = Spec k where k ⊂ Fp is a subûeld containing the residue ûeld kE ofOE , then
there exists crystalline Tate tensors (sα ,0,x) on the ûrst crystalline cohomology of Ax .
If x is the specialization of a point x̃ over F with F∣E an extension, then there exist
p-adic étale tensors (sα ,p , x̃) on the ûrst p-adic étale cohomology of Ax̃ , and (sα ,0,x)
and (sα ,p , x̃) are related by the p-adic comparison theorem; cf. [39, Proposition 1.3.7].
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By [39, Corollary 1.3.11] the datum

(Ax , λx , εpx ,K , (sα ,0,x))

uniquelydetermines thepoint x ∈ SK(G , X)(k). Sometimeswewillwrite sα ,0,x as tα ,x
to be compatiblewith our previous notation on crystalline Tate tensors on p-divisible
groups.

6.1.2 Case (G , X) of Abelian Type

Take a Shimura datum of Hodge type (G1 , X1) that is unramiûed at p, together with
a central isogeny Gder

1 → Gder, such that it induces an isomorphism of the associated
adjoint Shimura datum (Gad

1 , Xad
1 ) ≃ (Gad , Xad). Let K = KpK p ⊂ G(A f ) be an open

compact subgroup with Kp = G(Zp). he integral model SK(G , X) is constructed as
the quotient

SKp(G , X)/K p ,
where SKp(G , X) is an integral model over OE of the pro-scheme

ShKp(G , X) = lim
←Ð
K p

ShKpK p(G , X).

he scheme SKp(G , X) is constructed as follows. Fix a connected component X+ ⊂ X.
We get the induced connected component ShK(G , X)+C of the complex Shimura va-
riety as usual. By [38, Proposition 2.2.4], it is deûned over L. Consider the connected
component

ShK1p(G1 , X1)
+ = lim
←Ð
K p

1

ShK1pK
p
1
(G1 , X1)

+

of ShK1p(G1 , X1) = lim
←ÐK p

1
ShK1pK

p
1
(G1 , X1), where K1p = G1(Zp). Let SK1p(G1 , X1)

+

be the Zariski closure of ShK1p(G1 , X1)
+ in SK1p(G1 , X1) over W = W(Fp). Write

Z = ZG . he above integral model SKp(G , X) of ShKp(G , X) over W is given by

SKp(G , X) = [A (GZ(p)) × SK1p(G1 , X1)
+]/A (G1Z(p))

○ ,

where
A (GZ(p)) = G(Ap

f )/Z(Z(p))
− ∗G(Z(p))+/Z(Z(p)) Gad(Z(p))

+

and
A (GZ(p))

○ = G(Z(p))
−
+/Z(Z(p))

− ∗G(Z(p))+/Z(Z(p)) Gad(Z(p))
+;

similarly, we haveA (G1Z(p)) andA (G1Z(p))
○; see [38, 3.3.2]. he scheme SKp(G , X)

descends to OE and gives the integral canonical model of ShKp(G , X) =
lim
←ÐK p

ShKpK p(G , X); see the proof of loc. cit. heorem 3.4.10.

6.2 Newton Stratification of the Special Fibers

We keep the notations as above. We will work over Fp in this subsection. By abuse
of notation, denote the special ûber of SK = SK(G , X) over Fp by SK for simplicity.
In this subsection, we will write an element of B(GQp) simply by b, and B(G , µ) =
B(GQp , µ), as usual. In [68], we proved the following results.
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heorem 6.2 (i) For any b ∈ B(G , µ), there exists a non-empty locally closed
subset S

b
K ⊂ SK , which we view as a subscheme of SK with its reduced structure such

that set theoretically, we have
SK = ∐

b∈B(G ,µ)
S
b
K .

(ii) For any b ∈ B(G , µ), the Zariski closure of S
b
K in SK is ∐

b′≤b
S
b′

K .

For b ∈ B(G , µ), we call the subschemes S
b
K as the Newton strata of SK . If (G , X)

is ofHodge type, then the existence of theNewton stratiûcation is implied by [55]; see
also [25, 2.3] and [74, 5.2].
For later use, we brie�y review the construction of the Newton stratiûcation. If

(G , X) is of Hodge type, it is constructed by the associated p-divisible groups with
crystalline Tate tensors. We now assume that (G , X) is of abelian type. In this case,
let (G1 , X1) be an unramiûed Shimura datum of Hodge type (G1 , X1), together with
a central isogeny Gder

1 → Gder, such that it induces an isomorphism of the associated
adjoint Shimura data (Gad

1 , Xad
1 ) ≃ (Gad , Xad). hen we have a canonical bijection

B(G1 , µ1) ≃ B(G , µ). Consider the Newton stratiûcation at level K p
1 ,

SK1pK
p
1
(G1 , X1) = ∐

b∈B(G1 ,µ1)

SK1pK
p
1
(G1 , X1)

b .

When the level K p
1 varies, the Newton stratiûcations are compatible. herefore, we

get a Newton stratiûcation

SK1p(G1 , X1) = ∐
b∈B(G1 ,µ1)

SK1p(G1 , X1)
b

by taking inverse limit over K p
1 . As [39, 3.5.8], consider

π(G1) ∶= G1(Q)−+/G1(A f )/G1(Zp) = G1(Z(p))
−
+/G1(Ap

f ),

which is the set of geometric connected components of SK1p(G1 , X1). By [68],

SK1p(G1 , X1)
b ⊂ SK1p(G1 , X1)

is stable under the action of A (G1Z(p)), and we have a surjective A (G1Z(p))-
equivariant map

SK1p(G1 , X1)
b Ð→ π(G1).

Let SK1p(G1 , X1)
b ,+ be thepullback of SK1p(G1 , X1)

b under the inclusion SK1p(G1 , X1)
+

↪ SK1p(G1 , X1). In other words, we consider the following commutative diagrams:

SK1p(G1 , X1)
b ,+ � � //

� _

��

SK1p(G1 , X1)
+

� _

��
SK1p(G1 , X1)

b � � //

����

SK1p(G1 , X1)

����
π(G1) π(G1),
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where the upper square is cartesian. he stabilizer of SK1p(G1 , X1)
b ,+ ⊂ SK1p(G1 , X1)

b

is A (G1Z(p))
○, and we have the identity

SK1p(G1 , X1)
b = [A (G1Z(p)) × SK1p(G1 , X1)

b ,+]/A (G1Z(p))
○ .

For more details, we refer the reader to [68]. Now, as

SKp(G , X) = [A (GZ(p)) × SK1p(G1 , X1)
+]/A (G1Z(p))

○ ,

we get the Newton stratiûcation

SKp(G , X) = ∐
b∈B(G ,µ)

SKp(G , X)b ,

where for any b ∈ B(G , µ), the associated stratum

SKp(G , X)b = [A (GZ(p)) × SK1p(G1 , X1)
b ,+]/A (G1Z(p))

○ ↪ SKp(G , X).

For any suõciently small open compact subgroup K p ⊂ G(Ap
f ), we deûne

SKpK p(G , X)b = SKp(G , X)b/K p .

herefore, we get the Newton stratiûcation at the ûnite level

SKpK p(G , X) = ∐
b∈B(G ,µ)

SKpK p(G , X)b .

6.3 Rapoport–Zink Uniformization

he notation will be the same as in the previous subsection. We will work over W in
the rest of this section. For simplicity, denote the base change of SK = SK(G , X) over
W by the same notation. Let b ∈ B(G , µ) (the same convention as the last subsec-
tion). We get an unramiûed local Shimura datum of abelian type (GQp , b, {µ}), thus
a formal scheme M̆ = M̆(G , b, µ) over W . Fix a point x ∈ S

b
K(Fp).

6.3.1 Case (G , X) of Hodge Type

We want to construct amorphism of formal schemes over SpfW :

Θ = Θx ∶ M̆ ×G(Ap
f )/K

p Ð→ ŜK ,

where ŜK is the formal completion of SK along its special ûber. he morphism Θ
is constructed in [37, Proposition 4.3 and Corollary 4.3.2]. Let (Ax , λx , εpx ,K , (tα ,x))
be the abelian variety with additional structures attached to x, and let Iϕ(Q) be the
group of quasi-isogenies ofAx preserving (tα ,x). hen Iϕ(Q) is the group ofQ-points
of a reductive group Iϕ over Q (cf. [39, Corollary 2.3.1]), which depends only on the
isogeny class of x ([39, 1.4.14]). In this case, Θ factors through the quotient by Iϕ(Q),

Θ ∶ Iϕ(Q)/M̆ ×G(Ap
f )/K

p Ð→ ŜK ,

and the image Zϕ ,K p is contained in the stratum S
b
K .

https://doi.org/10.4153/S0008414X19000269 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X19000269


1160 X. Shen

6.3.2 Case (G , X) of Abelian Type

We ûrst work on the level of sets. By [39,heorem 4.6.7], we have the bijection

SKp(G , X)b(Fp)
∼
Ð→ ∐

[ϕ],b(ϕ)=b
S(G , ϕ),

where ϕ ∶ Q→ GG runs through the set of admissiblemorphisms ofGalois gerbs, [ϕ]
is the associated equivalence class (cf. [39, 3.3]), and

S(G , ϕ) = lim
←Ð
K p

Iϕ(Q)/Mred(Fp) ×G(Ap
f )/K

p ,

where Mred is the reduced special ûber of the Rapoport–Zink space M̆ associated
with (GQp , b(ϕ), {µ}).

Remark 6.3 In [39, 3.3], in fact, one considers the set
S(G , ϕ) = lim

←Ð
K p

Iϕ(Q)/Xp(ϕ) × X p(ϕ)/K p ,

where Xp(ϕ) and X p(ϕ) are certain sets canonically associated with ϕ, such that
(cf. [39, Lemma 3.3.4])

Xp(ϕ) ≃ XG
µ (b) ≃Mred(Fp)

and X p(ϕ) is a G(Ap
f )-torsor.

Take an unramiûed Shimura datumofHodge type (G1 , X1), togetherwith a central
isogeny Gder

1 → Gder, such that it induces an isomorphism of the associated adjoint
Shimura data (Gad

1 , Xad
1 ) ≃ (Gad , Xad). Let ϕ1 ∶ Q→ GG1 be an admissiblemorphism

of Galois gerbs. We note that

S(G1 , ϕ1) = lim
←Ð
K p

1

Iϕ1(Q)/M1 red(Fp) ×G1(Ap
f )/K

p
1

= Iϕ1(Q)/M1 red(Fp) ×G1(Ap
f ),

whereM1 red is the reduced special ûber of the Rapoport–Zink space M̆1 associated
with (G1Qp , b(ϕ1), {µ1}).
Fix an admissiblemorphism ϕ0 ∶ Q→ GGad . Consider

S(G , ϕ0) = ∐
[ϕ],ϕad=ϕ0

S(G , ϕ)

= ∐
[ϕ],ϕad=ϕ0

lim
←Ð
K p

Iϕ(Q)/Mred(Fp) ×G(Ap
f )/K

p .

By [39, Lemmas 3.7.2 and 3.7.4], there is an action ofA (GZ(p)) on S(G , ϕ0), together
with an A (GZ(p))-equivariant surjectivemap

cG ∶ S(G , ϕ0)Ð→ π(G).

Recall that we have ûxed a point x ∈ SKp(G , X)b(Fp). We choose ϕ0 such that x ∈
S(G , ϕ0) under the bijection

SKp(G , X)b(Fp)
∼
Ð→ ∐

[ϕ],b(ϕ)=b
S(G , ϕ).
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For the identity class e ∈ π(G), consider the ûber

S(G , ϕ0)
+ = c−1

G (e).

Let (G1 , X1) be the unramiûed Shimura datum ofHodge type as above. Similarly, we
have S(G1 , ϕ0) =∐[ϕ1],ϕad1 =ϕ0

S(G1 , ϕ1) and S(G1 , ϕ0)
+.

Proposition 6.4 We have the following isomorphism of sets with A (GZ(p)) × ⟨Φ⟩-
action:

S(G , ϕ0) ≃ [A (GZ(p)) × S(G1 , ϕ0)
+]/A (G1Z(p))

○ .

Proof his follows from of [39, Corollary 3.8.12]. ∎

Nowwe come back toRapoport–Zink spaces. IfK p′

1 ⊂ K p
1 is another open compact

subgroup of G1(Ap
f ), then we have the following commutative diagram:

Iϕ1(Q)/M̆1 ×G1(Ap
f )/K

p′

1
//

Θ
1Kp′

1
��

Iϕ1(Q)/M̆1 ×G1(Ap
f )/K

p
1

Θ1Kp
1

�� ��
ŜK1pK

p′
1
(G1 , X1) // ŜK1pK

p
1
(G1 , X1)

with horizontal maps ûnite. herefore, if we set

Ŝ(G1 , ϕ1) ∶= lim
←Ð
K p

1

Iϕ1(Q)/M̆1 ×G1(Ap
f )/K

p
1 ,

then we get
Θ1 = lim

←Ð
K p

1

Θ1K p
1
∶ Ŝ(G1 , ϕ1)Ð→ lim

←Ð
K p

1

ŜK1pK
p
1
(G1 , X1),

where both limits are taken in the category of formal schemes.

Lemma 6.5 Let ŜK1p(G1 , X1) be the formal completion of SK1p(G1 , X1) along its spe-
cial ûber. hen we have a canonical isomorphism of formal schemes

lim
←Ð
K p

1

ŜK1pK
p
1
(G1 , X1) = ŜK1p(G1 , X1).

Proof his follows from the deûnition of inverse limit of formal schemes. ∎

We have thus Θ1 ∶ Ŝ(G1 , ϕ1) Ð→ ŜK1p(G1 , X1). On the other hand, we have a sur-
jectivemap

cG1 ∶ SK1p(G1 , X1)Ð→ π(G1).
Consider the ûber over e of this map cG1 , SK1p(G1 , X1)

+ ⊂ SK1p(G1 , X1), and let
ŜK1p(G1 , X1)

+ be formal completion of SK1p(G1 , X1)
+ along its special ûber. Let

Θ+
1 ∶ Ŝ(G1 , ϕ1)

+ ∶= ( lim
←Ð
K p

1

Iϕ1(Q)/M̆1 ×G1(Ap
f )/K

p
1 )

+

Ð→ ŜK1p(G1 , X1)
+
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be the pullback of

Θ1 ∶ Ŝ(G1 , ϕ1) = lim
←Ð
K p

1

Iϕ1(Q)/M̆1 ×G1(Ap
f )/K

p
1 Ð→ ŜK1p(G1 , X1)

under the inclusion ŜK1p(G1 , X1)
+ ↪ ŜK1p(G1 , X1). hemorphism Θ+

1 can be written
as Θ+

1 = lim
←ÐK p

1
Θ+

1K p
1
, with

(Iϕ1(Q)/M̆1 ×G1(Ap
f )/K

p
1 )

+
//

Θ+
1Kp

1
��

Iϕ1(Q)/M̆1 ×G1(Ap
f )/K

p
1

Θ1Kp
1

��
ŜK1pK

p
1
(G1 , X1)

+ // ŜK1pK
p
1
(G1 , X1).

Deûne formal schemes

Ŝ(G1 , ϕ0)
+ = ∐

[ϕ1],ϕad1 =ϕ0

Ŝ(G1 , ϕ1)
+

= ∐
[ϕ1],ϕad1 =ϕ0

( lim
←Ð
K p

1

Iϕ1(Q)/M̆1 ×G1(Ap
f )/K

p
1 )

+

and

Ŝ(G , ϕ0) = ∐
[ϕ],ϕad=ϕ0

lim
←Ð
K p

Iϕ(Q)/M̆ ×G(Ap
f )/K

p .

Proposition 6.6 In the above situation, we have

Ŝ(G , ϕ0) ≃ [A (GZ(p)) × Ŝ(G1 , ϕ0)
+]/A (G1Z(p))

○ .

Proof his is identical to the proof of Proposition 6.4. ∎

LetZϕ1 ,K
p
1
(resp. Z+ϕ1 ,K

p
1
) be the image ofΘ1K p

1
(resp. Θ+

1K p
1
). his exists a geometric

structure on Zϕ1 ,K
p
1
as follows. We can write

Zϕ1 ,K
p
1
= ⋃

j∈J
Kp
1

Z j
ϕ1 ,K

p
1
,

where JK p
1
is the Iϕ1(Q)-orbits of irreducible components of M̆1 × G1(Ap

f )/K
p , and

Z j
ϕ1 ,K

p
1

is the image of the irreducible components under Θ1K p
1
corresponding to

j ∈ JK p
1
. For each j ∈ JK p

1
, there exists only ûnitely many j′ ∈ JK p

1
such that

Z j
ϕ1 ,K

p
1
⋂ Z j′

ϕ1 ,K
p
1
≠ ∅.

hus, we get an induced geometric structure on Z+ϕ1 ,K
p
1
as

Z+ϕ1 ,K
p
1
= ⋃

j∈J
Kp
1

Z j ,+
ϕ1 ,K

p
1
,
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where Z j ,+
ϕ1 ,K

p
1
is the pullback of Z j

ϕ1K
p
1
to ŜK1pK

p
1
(G1 , X1)

+. WhenK p
1 varies, JK p

1
,Zϕ1 ,K

p
1
,

and Z+ϕ1 ,K
p
1
form inverse systems, and we set

Zϕ1 = lim
←Ð
K p

1

Zϕ1 ,K
p
1
, Z+ϕ1

= lim
←Ð
K p

1

Z+ϕ1 ,K
p
1
.

Let J1 be the Iϕ1(Q)-orbits of irreducible components of M̆1 ×G1(Ap
f ). For any j ∈ J1,

let Z j
ϕ1
be the image of the irreducible components under Θ1 corresponding to j; then

we can write
Zϕ1 = ⋃

j∈J1
Z j

ϕ1
and Z j

ϕ1
= lim
←Ð
K p

1

Z j
ϕ1 ,K

p
1
,

where Z j
ϕ1K

p
1
is the image of the irreducible components corresponding to j under the

composition

M̆1 ×G1(Ap
f )Ð→ M̆1 ×G1(Ap

f )/K
p
1 Ð→ ŜK1pK

p
1
(G1 , X1).

his is similar forZ+ϕ1
. By the proof of [39, Proposition 4.6.2],we have ⟨Φ⟩×Z1(Qp)×

A (G1Z(p))
Iϕ1 -equivariant bijection of sets (cf. Remark 6.8)

Zϕ1(Fp) ≃ S(G1 , ϕ1), Z+ϕ1
(Fp) ≃ S(G1 , ϕ1)

+ .

We have (cf. [38, 3.4.11])

[A (GZ(p)) × ŜK1p(G1 , X1)
+]/A (G1Z(p))

○ = ŜKp(G , X).

Recall that we ûxed an admissiblemorphism ϕ0 ∶ Q→ GGad . Set

Z+G1 ,ϕ0
= ∐

[ϕ1],ϕad1 =ϕ0

Z+ϕ1
.

Applying the functor [A (GZ(p)) × −]/A (G1Z(p))
○ to Z+G1 ,ϕ0

, we get a subset
Zϕ0(=ZG ,ϕ0) ⊂ ŜKp = ŜKp(G , X). Let Zϕ0 ,K p be the image of Zϕ0 under the pro-
jection ŜKp → ŜK = ŜKpK p . hen we can deûne the formal completion of ŜK along
Zϕ0 ,K p as [56, Chapter 6] and [37, Deûnition 4.6].

heorem 6.7 We have an isomorphism of formal schemes over W ,

Θ ∶ ∐
[ϕ],ϕad=ϕ0

Iϕ(Q)/M̆ ×G(Ap
f )/K

p ∼
Ð→ ŜK/Zϕ0 ,Kp .

Proof If (G , X) is of Hodge type, this is proved in [37, heorem 4.7]. Assume that
we are in the general case. By the above notation, it suõces to prove that

∐
[ϕ],ϕad=ϕ0

lim
←Ð
K p

Iϕ(Q)/M̆ ×G(Ap
f )/K

p ≃ [A (GZ(p)) × Ŝ(G1 , ϕ0)
+]/A (G1Z(p))

○ .

his is given by Proposition 6.6. ∎

Remark 6.8 Denote by Gad
1 (Z(p))

+,Iϕ1 the kernel of the composite of

Gad
1 (Z(p))

+ ↪ Gad
1 (Z(p))→ H1(Q, Z1)→ H1(Q, Iϕ1),
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where Z1 is the center ofG1. Similarly,we deûneGad(Z(p))
+,Iϕ . Following [39, 4.3.4],

we deûne
A (G1Z(p))

Iϕ1 = G1(Ap
f )/Z1(Z(p))

− ∗G1(Z(p))+/Z1(Z(p)) Gad
1 (Z(p))

+,Iϕ1 ,

A (G1Z(p))
Iϕ1 ,○ = G1(Z(p))

−
+/Z1(Z(p))

− ∗G1(Z(p))+/Z1(Z(p)) Gad
1 (Z(p))

+,Iϕ1 .

Similarly, we deûne A (GZ(p))
Iϕ and A (GZ(p))

Iϕ ,○. he group A (G1Z(p))
Iϕ1 acts

on S(G1 , ϕ1), cf. [39, Lemma 4.5.9]. By construction, we have an A (G1Z(p))
Iϕ1 -

equivariant map cG1 ∶ S(G1 , ϕ1) Ð→ π(G1), which is surjective, since G1(Ap
f ) (and

thus A (G1Z(p))
Iϕ1 ) acts transitively on π(G1). For the identity class e ∈ π(G1), con-

sider the ûber S(G1 , ϕ1)
+= c−1

G1
(e). henwehave S(G1 , ϕ0)

+=∐[ϕ1],ϕad1 =ϕ0
S(G1 , ϕ1)

+.
he stabilizer of S(G1 , ϕ1)

+ ⊂ S(G1 , ϕ1) is

A (G1Z(p))
Iϕ1 ,○ ⊂ A (G1Z(p))

Iϕ1 .

We have

S(G1 , ϕ1) = [A (G1Z(p))
Iϕ1 × S(G1 , ϕ1)

+]/A (G1Z(p))
Iϕ1 ,○ .

Take any ϕ1 ∶ Q→ GG1 , such that

ϕad = ϕad1 ∶ QÐ→ GGad .

It should be possible that the strategy of [39, 3.8] enables us to prove the following
reûnement of Proposition 6.4:

S(G , ϕ) = [A (G1Z(p))
Iϕ1 × S(G1 , ϕ1)

+]/A (GZ(p))
Iϕ ,○ .

Once this is done, the same argument as above shows that there is an isomorphism of
formal schemes over W ,

Iϕ(Q)/M̆ ×G(Ap
f )/K

p ∼
Ð→ ŜK/Zϕ ,Kp ,

where Zϕ ,K p is the image under the projection ŜKp → ŜKpK p of

Zϕ ∶= [A (G1Z(p))
Iϕ1 × Z+ϕ1

]/A (GZ(p))
Iϕ ,○ .

Remark 6.9 In the special cases of Shimura curves associated with quaternion al-
gebras over a totally real ûeld, see [3] for a construction of the uniformization by
Drinfeld spaces.

Let ShK(ϕ0) = (ŜK/Zϕ0 ,Kp )
ad
η . We get anaturalmorphismof adic spaces ShK(ϕ0)→

ShadK . For any open compact subgroup K′
p ⊂ G(Qp), let ShK′pK p(ϕ0)→ ShadK′pK p be the

pullback of ShK(ϕ0) → ShadK under the projection ShadK′pK p → ShadKpK p . We get the
following corollary from heorem 6.7.

Corollary 6.10 With the above notations,Θ induces an isomorphismof rigid analytic
spaces over L,

Θ ∶ ∐
[ϕ],ϕad=ϕ0

Iϕ(Q)/MK′p ×G(Ap
f )/K

p ∼
Ð→ ShK′pK p(ϕ0).
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We ûx a morphism π ∶ M Ð→ ShadK coming from the above uniformization iso-
morphism, which factors through the good reduction locus (ŜK)

ad
η ⊂ ShadK . By [46],

the universal Qp − G-local system LK on ShadK is de Rham (which can be proved di-
rectly for the abelian type case; moreover we assume that G = Gc for the notation Gc

of [46]). When restricting to (ŜK)
ad
η , it is even crystalline. Recall by Proposition 4.17,

we have the universal Qp-G-local system V on M. We have the natural local-global
compatibility identity V = π∗LK .

Recall that in [67] we have proved that there exists a perfectoid space SK p over Cp
such that

SK p ∼ lim
←Ð
K′p

ShK′pK p(G , X)ad .

On the other hand, by Proposition 4.18, we get a perfectoid spaceM∞ over Cp such
that

M∞ ∼ lim
←Ð
K′p

MK′p ,Cp .

From Corollary 6.10 we get the following corollary.

Corollary 6.11 here exists a perfectoid space SK p(ϕ0) together with a map
SK p(ϕ0)→ SK p , such that

SK p(ϕ0) ≃ ∐
[ϕ],ϕad=ϕ0

Iϕ(Q)/M∞ ×G(Ap
f )/K

p .

Remark 6.12 For the b ∈ B(G , µ) we ûxed in this subsection, we can deûne the
Newton stratum SbK p ⊂ SK p , which is a locally closed subspace; cf. [5, subsection 4.3].
hen we have SK p(ϕ0) → SK p factors through SbK p . In the case where b is basic, we
will have SK p(ϕ0) = SbK p ; cf. the next subsection. In the general case, the image of
SK p(ϕ0) → SbK p is a strict subspace, and to understand the whole stratum SbK p , one
should introduce Igusa varieties; cf. [5, section 4] in the PEL case.

6.4 The Case of Basic Strata

Let the notations be as in the last subsection. Assume now that b = b0 is the basic
element. Note that up to equivalence there is only one ϕ such that b(ϕ) = b0.

heorem 6.13 In the setting above, Zϕ0 ,K p = S
b
K . hus, we have an isomorphism of

formal schemes over W

Θ ∶ Iϕ(Q)/M̆ ×G(Ap
f )/K

p ∼
Ð→ ŜK/SbK

.

Proof In the casewhere (G , X) is ofHodge type, this is proved in [37,heorem4.11].
Wenote that by [75, Lemma 7.2.14], Iϕ is an inner formofG with Iϕ ,p = Jb . he general
case follows from theHodge type case by construction. ∎

Corresponding to Corollaries 6.10 and 6.11, we have the following corollary.
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Corollary 6.14 For any open compact subgroup K′
p ⊂ G(Qp), Θ induces an isomor-

phism of rigid analytic spaces over L,

Θ ∶ Iϕ(Q)/MK′p ×G(Ap
f )/K

p ∼
Ð→ ShbK′pK p ,

and an isomorphism of perfectoid spaces over Cp ,

Θ ∶ Iϕ(Q)/M∞ ×G(Ap
f )/K

p ∼
Ð→ SbK p .

7 Ekedahl–Oort Stratifications for Good Reductions of Rapoport–
Zink Spaces

In this section,wewill construct and studyEkedahl–Oort stratiûcations for the special
ûbers of our Rapoport–Zink spaces of abelian type, motivated by the study of Artin
invariants ofK3 surfaces. henwewill discuss some special interesting cases, namely,
the fully Hodge–Newton decomposable cases; cf. [22]. In the next section we will
further specialize to orthogonal groups. As before, we assume p > 2 in this section.

7.1 Ekedahl–Oort Stratifications for Special Fibers of Rapoport–Zink Spaces

Let (G , [b], {µ}) be an unramiûed local Shimura datum of abelian type, b ∈ G(L)
be a representative of [b], and let M̆ = M̆(G , b, µ) be the associated Rapoport–Zink
space by heorem 4.6. Consider the special ûber M over Fp of M̆ and the associated
reduced special ûberMred of M̆, which is by deûnition the reduced subscheme ofM.

Since our local Shimura datum is unramiûed, we can consider G−Zipµ , the stack
ofG-zips of type µ overFp (we refer the reader to [51] and [77, 1.2] for some basic facts
aboutG-zips and the stackG−Zipµ). he underling set of geometric points ofG−Zipµ

is in canonical bijectionwith a subset JW of theWeyl groupW ofG (for a ûxed choice
of maximal torus). More precisely, let J be the type of the parabolic subgroup of G
attached to {µ} in the usual way, and let WJ be the associated subgroup ofW; then
JW ⊂ W is the set of elements w ∈ W that are ofminimal length in their coset WJw.
here is a partial order ⪯ on JW making it into a topological space; cf. [77, 3.1] or
[74, 5.3]. In fact we have isomorphisms of topological spaces

∣G−Zipµ ∣ ≃ JW;

cf. [77,heorem 3.1.5] and [74, Proposition 5.12].

heorem 7.1 here exists a formally smooth morphism

ζ ∶ MÐ→ G−Zipµ ,

which induces a decomposition

M = ∐
w∈JW

Mw ,

whereMw ⊂M is locally closed (could be empty).

Proof Assume ûrst that (G , [b], {µ}) is ofHodge type. hen the universal p-divisible
groupwith crystallineTate tensors gives rise to aG-zip of type µ (I, I+ , I− , ι) onM: the
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arguments of [77,heorem 2.4.1] apply to our local setting. hus, we get amorphism

ζ ∶ MÐ→ G−Zipµ .

his morphism is Jb(Qp)-invariant. To show this morphism is formally smooth, one
can apply the arguments for the proof of [77, heorem 3.1.2]. More precisely, from
the datum (I+ , I− , ι) one can construct an EG ,µ-torsor M

♯
over M, which sits in the

following cartesian diagram:

M
♯ ζ♯ //

��

GFp

��
M // [EG ,µ/GFp

] = G−Zipµ .

Here the algebraic group EG ,µ is as that in [51, section 3] (see also [77, subsection 1.2]),
considered as a group over Fp . It suõces to show that ζ♯ is formally smooth. By [24,
Prop. 17.1.6], formal smoothness is local in both the sources and targets; thus, we can
reduce to the algebra side: taking any aõne subschemes SpecB ⊂ M

♯
, SpecA ⊂ GFp

over Fp with induced ζ♯ ∶ SpecB → SpecA,we need to prove that B is formally smooth
over A. SinceM

♯
is formally smooth (and formally locally of ûnite type) over Fp , GFp

is smooth over Fp . By [48, heorems 65 and 66], the fact that B is formally smooth
over A is equivalent to themap

ΩA/Fp
⊗A B/J Ð→ ΩB/Fp

⊗ B/J

being le� invertible, where J ⊂ B is an ideal of deûnition. Note that ΩB/Fp
⊗ B/J is

a projective B/J-module. By [23, Cor. 19.1.12], the last statement is equivalent to the
following: for any closed points x ∈ SpecB, y = ζ♯(x) ∈ SpecA, the induced maps
on the tangent spaces TxSpecB → TySpecA are surjective. One can then show the
surjectivity on tangent spaces by the arguments in the proof of [77,heorem 3.1.2].

Now assume that (G , [b], {µ}) is unramiûed of abelian type. Take any unramiûed
local Shimura datum of Hodge type (G1 , [b1], {µ1}) such that (Gad , [bad], {µad}) ≃
(Gad

1 , [bad1 ], {µad1 }). Let M andM1 be the special ûbers of Rapoport–Zink spaces at-
tached to (G , [b], {µ}) and (G1 , [b1], {µ1}), respectively. By construction, a�er ûx-
ing x0 ∈ π1(G1)

Γ , we haveM
+
= M

+

1 . Consider the restriction ζ+1 ∶ M
+

1 → G1−Zipµ1 .
As ∣G1−Zipµ1 ∣ ≃ ∣G−Zipµ ∣, we get a formally smooth morphism ζ+ ∶ M

+
→ G−Zipµ .

Applying the Jb(Qp)-action, we get a formally smooth Jb(Qp)-invariant morphism

ζ ∶ MÐ→ G−Zipµ ,

as desired. ∎

We note that in the EL/PEL cases,Wedhorn and Lau proved the above proposition;
cf. [72], [51, Example 9.21], and [69,heorem 3.2]. If (G , [b], {µ})↪ (GLn , [b′], {µ′})
is an embedding of unramiûed local Shimura data ofHodge type, by constructionwe
have the commutative diagram
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M(G , b, µ) �
� //

ζG
��

M(GLn , b′ , µ′)

ζGLn
��

G−Zipµ // GLn−Zipµ′ .

Let JWb ⊂ JW be the subset deûned by the image of ζ. For each w ∈ JWb , we call
Mw the Ekedahl–Oort stratum ofM attached to w. We get a stratiûcation

M = ∐
w∈JWb

Mw .

We also get an induced stratiûcation
Mred = ∐

w∈JWb
Mw ,

whereMw ⊂Mred is a locally closed subscheme ofMred, which we call the Ekedahl–
Oort stratum of Mred associated with w. For a locally closed subscheme X ⊂ Y ,
we write X c l the (Zariski) closure of X in Y . By construction, we have the closure
relations

M
c l
w = ∐

w′⪯w ,w′∈JWb
Mw′ and Mc l

w = ∐
w′⪯w ,w′∈JWb

Mw′ .

In [22, 1.4] (and [21, 3.4]), there exists a decomposition

XG
µ (b) = ∐

w∈Adm(µ)∩K W̃
XK ,w(b),

where in our case K = G(Zp) is the ûxed hyperspecial group. Here are some expla-
nations about the notation: W̃ is the Iwahori Weyl group of G; Adm(µ) ⊂ W̃ is the
(ûnite) subset deûned as [30, (2.1)]; KW̃ ⊂ W̃ is the set ofminimal length elements in
the cosetWK/W̃ ,withWK ⊂ W̃ the subgroup corresponding to K = G(Zp), our ûxed
hyperspecial group. he above decomposition holds in the general setting of arbitrary
local Shimura data. On the other hand, if we set AdmK(µ) = WK Adm(µ)WK , then
we have

Adm(µ) ∩ KW̃ = AdmK(µ) ∩ KW̃ ∼
Ð→ JW,

where the ûrst equality follows from [30, heorem 6.10], and the second bijection is
induced by the projection W̃ →W by [71, heorem 1.1 (1)]. Moreover, this bijection
preserves the order ⪯K ,σ on KW̃ (cf. [30, 6.5] and [21, 3.3]) and the order ⪯ on JW.
herefore, we can rewrite the above decomposition in the hyperspecial level as

XG
µ (b) = ∐

w∈JW

XK ,w(b).

Recall that by heorem 4.6, we have

M
perf

≃ XG
µ (b).

Proposition 7.2 For w ∈ JW, the strata XK ,w(b) ≠ ∅ if and only if w ∈ JWb , in
which case, we have

M
perf
w ≃ XK ,w(b).

In particular,Mw is of dimension dimXK ,w(b) if it is non-empty.
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Proof It suõces to prove M
perf
w ≃ XK ,w(b) for any w ∈ JW. We ûrst consider

the Hodge type case. By the proof of [78, Proposition 3.11], we have two morphisms
f ∶ M

perf
→ XG

µ (b) and f −1 ∶ XG
µ (b) → M

perf
, inverse to each other, by using

Dieudonné theory over perfect rings. It suõces to check that f (resp. f −1) induces
f ∶ M

perf
w → XK ,w(b) (resp. f −1 ∶ XK ,w(b) → M

perf
w ). his follows from [71, heo-

rem 1.1] (see [71] Section 7 for some discussion in the global setting of Shimura va-
rieties), see also [30, Remark 6.5 (2)]. Indeed, the above decomposition XG

µ (b) =

∐w∈Adm(µ)∩K W̃ XK ,w(b) is given by truncations of level 1 of elements in theWitt loop
group. Since G is unramiûed, by [71,heorem 1.1], the set of σ − K̆-conjugacy classes
in K̆1/K̆µ(p)K̆/K̆1 (together with the partial order ⪯K ,σ ) is identiûed with the under-
lying topological space of the algebraic stack G−Zipµ . Here, K̆1 is the kernel of the
projection K̆ = G(W) → G(Fp). hus, the above decomposition is equivalent to a
morphism of algebraic stacks

XG
µ (b)Ð→ G−Zipµ ,per f ,

which is given by ζperf ○ f −1, since by construction f and f −1 preserve the universal
G-Zips.

Now assume that (G , [b], {µ}) is unramiûed of abelian type. Take any unramiûed
local Shimura datum of Hodge type (G1 , [b1], {µ1}) such that (Gad , [bad], {µad}) ≃
(Gad

1 , [bad1 ], {µad1 }). Let M and M1 be the special ûbers of Rapoport–Zink spaces
attached to (G , [b], {µ}) and (G1 , [b1], {µ1}), respectively. As always, a�er ûxing a
point x0 ∈ π1(G1)

Γ we haveM
+
= M

+

1 . he restriction of f induces an isomorphism
f +1 ∶ M

+,per f
1w ≃ XK1 ,w(b1)+. Applying the Jb(Qp) action, we get M

perf
w ≃ XK ,w(b), as

desired. ∎

Remark 7.3 Let (G , [b], {µ}) be a local Shimura datum such that G is unramiûed.
Fix a representative b ∈ G(L) of [b].

(i) he closure relation for the decomposition XG
µ (b) = ∐w∈JW XK ,w(b) can be

proved similarly as [30]heorem 6.15. See also [22, 4.11] and [21, section 7].
(ii) If we were working in the equal characteristic setting, then a formula for

dimXK ,w(b) is known by combining [21, heorem 4.1.2 (2)] and [29, heorem 6.1].
In our mixed characteristic setting, it should be possible to prove that the same for-
mula holds by applying [30, Proposition 6.20], theWitt vector aõne �ag varieties in
[78, 1.4], and themethod in 3.1 of [78].

7.2 Rapoport–Zink Spaces for a Fully Hodge–Newton
Decomposable Pair (G , {µ})

We discuss some special Rapoport–Zink spaces in this subsection. Our motivation
here is the observation that the list in the classiûcation of [22,heorem 2.5] (a poste-
riori) lies in our class of local abelian type (for minuscule µ).

Let G be a connected reductive group over Qp and let {µ} be a conjugacy class
of cocharacters µ ∶ Gm → GQp

. Assume that G is quasi-split. Recall the following
deûnition.
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Deûnition 7.4 ([22, Deûnition 2.1], [9, Lemma 4.11]) he pair (G , {µ}) (or the
set B(G , µ)) is called fully Hodge–Newton decomposable if for any non-basic [b′] ∈
B(G , µ), the pair ([b′], {µ}) is Hodge–Newton decomposable, i.e., there exists a
proper Levi subgroup G ⊋ M ⊃ Mb′ such that κM(b′) = µ♯ in π1(M)Γ .

Recall that Mb′ = Mνb′ is the Levi subgroup ofG deûned as the centralizer of ν[b′].
In [22, heorem 2.5] there is a purely group theoretical classiûcation of all the fully
Hodge–Newton decomposable pairs (G , {µ}), and in loc. cit. heorem 2.3 one can
ûnd further equivalent conditions (those in (ii)–(vi) of the statement of the theorem)
for (G , {µ}) being fully Hodge–Newton decomposable.

heorem 7.5 Let (G , [b], {µ}) be an unramiûed local Shimura datumof abelian type
and letMred be the reduced Rapoport–Zink space associated to (G , [b], {µ}). Suppose
that (G , {µ}) is fully Hodge–Newton decomposable.

(i) If [b] is non-basic, then dimMred = 0.
(ii) If [b] is basic, then the perfection of each Ekedahl–Oort stratum Mw ⊂ M is a

disjoint union of perfections of classical Deligne–Lusztig varieties.
(iii) For each w ∈ JW, there exists a unique [b′] ∈ B(G , µ) such that Mw ≠ ∅, where

Mw is an Ekedahl–Oort stratum ofM′
red, the reduced Rapoport–Zink space asso-

ciated with (G , [b′], {µ}). In particular, we get a decomposition

JW = ∐
[b′]∈B(G ,µ)

JWb′ .

Conversely, if (G , {µ}) is part of any unramiûed local Shimura datum of abelian type
with one of the above three conditions holds, then (G , {µ}) is fully Hodge–Newton
decomposable.

Proof his follows from [22,heorem 2.3] (in the hyperspecial level case), our he-
orem 4.6, and Proposition 7.2. ∎

Remark 7.6 Let (G , [b], {µ}) be an unramiûed local Shimura datum of abelian
type, with M the special ûber of the associated Rapoport–Zink space. Suppose that
[b] is non-basic and the pair (b, {µ}) is Hodge–Newton decomposable. With our
heorem4.6 at hand,we refer the reader to [22,heorems 3.16 and 6.2] (in the unram-
iûed case) towrite down an isomorphism betweenM

perf
andM(M , bM , µM)perf , the

perfection of the special ûber of some Rapoport–Zink space of abelian type attached
to a Levi subgroup M of G.

8 Applications to Moduli Spaces of K3 Surfaces in
Mixed Characteristic

In this section,we discuss some applications toK3 surfaces and theirmoduli inmixed
characteristic. We will ûrst discuss some examples of Rapoport–Zink spaces of or-
thogonal type, following the line of the previous section. henwewillmove to orthog-
onal Shimura varieties and moduli spaces of K3 surfaces. Finally, we will apply our
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constructions of Rapoport–Zink uniformization and Ekedahl–Oort stratiûcations to
moduli spaces of K3 surfaces. Again, we assume that p > 2 in this section.

8.1 Rapoport–Zink Spaces of Orthogonal Type

In this and the next subsection, we will discuss an example of Rapoport–Zink space
for a fully Hodge–Newton decomposable pair (G , {µ}).

Let (L,Q) be a non-degenerate self dual quadratic lattice of rank n + 2 over Zp ,
where n ≥ 1 is an integer. Wewrite (V ,Q) as the induced quadratic space overQp . Let
G = SO(V ,Q),G1 = GSpin(V ,Q) be the associated special orthogonal and spinor
similitudes groups over Qp . By our assumption that L is self dual, both G and G1 are
unramiûed. We have an exact sequence of groups

1Ð→ Gm Ð→ G1 Ð→ G Ð→ 1,

which is, in fact, deûned over Zp .
As in [32, subsection 4.2], there is a natural choice of minuscule cocharacter µ1

of G1. Take any [b1] ∈ B(G1 , µ1). hen (G1 , [b1], {µ1}) is a local Shimura datum of
Hodge type. We get a local Shimura datum (G , [b], {µ}) by taking [b], {µ} as the
image of [b1], {µ1} under themap G1 → G. By construction (G , [b], {µ}) is unrami-
ûed of abelian type. We get the associated Rapoport–Zink spaces M̆1 = M̆(G1 , b1 , µ1)

and M̆ = M̆(G , b, µ). he pairs (G1 , {µ1}) and (G , {µ}) are fullyHodge–Newton de-
composable by [22,heorem 2.5] (or one can compute the sets B(G1 , µ1) and B(G , µ)
directly to see they are fully Hodge–Newton decomposable).

Let X0 be the p-divisible group over Fp with contravariant Dieudonné module
(C(V)∨ ⊗W , b1σ), where C(V) is the Cliòord algebra attached to V and C(V)∨ is
its dual. Fix any δ ∈ C(V)× with δ∗ = δ where ∗ is the canonical involution on C(V).
henψδ(c1 , c2) = Tr(c1δc∗2 ) is a perfect symplectic formon C(V). Here Tr ∶ C(V)→
Zp is the reduced tracemap. he perfect symplectic formψδ on C(V) induces a prin-
cipal polarization λ0 ∶ X0 → X∨

0 . here exists a ûnite collection tensors (sα)α∈I that
includes ψδ , such that G1 ⊂ GL(C(V)) is cut out by (sα)α∈I . Recall that M̆1 has the
following moduli interpretation. For any R ∈ Nilps m

W , M̆1(R) = {(X , (tα)α∈I , ρ)}/≃,
where

● X is a p-divisible group on SpecR;
● (tα)α∈I is a collection of crystalline Tate tensors of X;
● ρ ∶ X0⊗R/J → X⊗R/J is a quasi-isogeny that sends sα ⊗ 1 to tα for α ∈ I, where

J is some ideal of deûnition of R,
such that the following condition holds: the R-scheme

Isom((D(X)R , (tα), Fil●(D(X)R)) , (Λ ⊗ R, (sα ⊗ 1), Fil●Λ ⊗ R))

that classiûes the isomorphisms between locally free sheaves D(X)R and Λ ⊗ R on
SpecR preserving the tensors and the ûltrations is a Pµ1 ⊗ R-torsor.

he exact sequence 1 → Gm → G1 → G → 1 induces a long exact sequence
(cf. [2, Lemma 1.5])

1Ð→ π1(Gm)Γ Ð→ π1(G1)
Γ Ð→ π1(G)Γ Ð→ H1(Γ, π1(Gm))Ð→ ⋅ ⋅ ⋅ .
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We have the following isomorphisms:

π1(Gm)Γ = π1(Gm) ≃ X∗(Gm) ≃ Z.

Since Gder
1 = Spin(V) is simply connected, and we have the exact sequence

1Ð→ Spin(V)Ð→ GSpin(V)Ð→ Gm Ð→ 1,
we get ([2, 1.6])

π1(G1)
Γ ≃ π1(Gm)Γ ≃ Z.

On the other hand, since
1Ð→ µ2 → Spin(V)Ð→ SO(V)Ð→ 1

is exact, we get
π1(G) = µ2(−1) = Z/2Z.

Lemma 8.1 We have π1(G)Γ ≃ Z/2Z, and themap π1(G1)
Γ → π1(G)Γ is surjective.

Proof As µ2 ⊂ Gm , and Γ acts trivially on the latter, we get π1(G)Γ = µ2(−1)Γ =
µ2(−1) = Z/2Z. For the second assertion, note that

π1(G1)
Γ/2π1(G1)

Γ = Z/2Z ⊂ Im(π1(G1)
Γ Ð→ π1(G)Γ) .

hus, the image is π1(G)Γ . ∎

Corollary 8.2 We have an isomorphism of formal schemes M̆ ≃ M̆1/pZ.

Proof By the above lemma π1(G1)
Γ → π1(G)Γ is surjective.hus, M̆ ≃ M̆1/pZ as in

the proof of Proposition 4.9(i). ∎

As the pairs (G1 , {µ1}) and (G , {µ}) are fully Hodge–Newton decomposable, by
heorem 7.5 we get the following corollary.

Corollary 8.3 Assume that [b1] (andhence [b]) isnon-basic.henwehavedimMred=
dimM1 red = 0.

8.2 Ekedahl–Oort and Howard–Pappas Stratifications for Basic Rapoport–Zink
Spaces of Orthogonal Type

Let the notations be as in the previous subsection. Now assume that [b1] (thus [b]) is
basic.

In [32], Howard and Pappas introduced a stratiûcation8 for the reduced special
ûber M1 red of M̆1:

M1 red =∐
Λ
M○

1Λ ,

where Λ runs through the set of vertex lattices. By deûnition (cf. [32, section 5]), a
vertex Λ lattice is a Zp-lattice in VΦ

L such that pΛ ⊂ Λ∨ ⊂ Λ ⊂ VΦ
L . Here, L =

W(Fp)Q ,Φ = bσ is the Frobenius and VΦ
L admits a quadratic form induced from VL ,

so that this quadratic space VΦ
L has the same dimension and determinant as V , but

8In [32, 6.5], it is called the Bruhat–Tits stratiûcation, and our M○

1Λ is denoted there by BTΛ .
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has Hasse invariant −1. Associatedwith a vertex,we have the type t(Λ) ∶= dimΛ/Λ∨,
which is an even integer with 2 ≤ t(Λ) ≤ tmax, where

tmax =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

n + 1, n odd,
n + 2, n even, detV ≠ (−1) n

2 ,
n, n even, detV = (−1) n

2 .

Recall that we have the inclusion VΦ
L ⊂ End(X0)Q, so each vertex lattice Λ ⊂ VΦ

L
can be viewed as a set of self quasi-isogenies of X0. For each vertex lattice Λ, the
associated Howard–Pappas stratum9 M○

1Λ ⊂ M1 red is the locus (X , (tα), ρ), where
ρ ○ Λ∨ ○ ρ ⊂ End(X) and this does not hold for any smaller vertex lattice Λ′ ⊊ Λ.
Let M1Λ ⊂ M1 red be its Zariski closure. In [32, 4.3.3 and 6.4.1], Howard and Pappas
proved that there exists a decomposition

M1 red = ∐
j∈Z

M
( j)
1 ,

such that each M
( j)
1 is a connected component ofM1 red. Accordingly, we get a de-

composition for each stratum:

M○
1Λ = ∐

j∈Z
M

( j),○
1Λ .

By [32, heorem 6.5.6], each connected stratum M
( j),○
1Λ is isomorphic to a Deligne–

Lusztig variety XB(w) for the group SO(ΛW/Λ∨
W).

As
M̆ ≃ M̆1/pZ ≃ M̆(0)

∐ M̆(1) ,

we get an inducedHoward–Pappas stratiûcation for Mred:

Mred =∐
Λ
M○

Λ .

In fact, in [32, sections 5 and 6],Howard and Pappas studied the geometric structures
ofM1 red by passing to the quotient spaceMred =M1 red/pZ ûrst.

Recall that W = W(Fp), L = WQ. Following [32], we can describe the sets
Mred(Fp),MΛ(Fp), andM○

Λ(Fp) in terms of special lattices ofVL as follows. By def-
inition ([32, Deûnition 5.2.1]) a special latticeL ⊂ VL is a self-dualW-lattice such that
(L + Φ∗(L))/L ≃ W/pW , where Φ∗(L) is theW-submodule generated by Φ(L).
By [32, Proposition 6.2.2], we have a bijection Mred(Fp) ≃ {special latticesL ⊂ VL}.
By loc. cit. 5.3.1 andheorem 6.3.1, we have bijections

MΛ(Fp) ≃ {LagrangiansL ⊂ Ω ∶ dim(L +Φ(L)) = d + 1}
≃ {special latticesL ⊂ VL ∶ Λ∨

W ⊂ L ⊂ ΛW}

= {special latticesL ⊂ VL ∶ Λ(L) ⊂ Λ},

9We refer the reader to [44, Deûnition 2.9.1 andheorem 4.2.11] for a variant.
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whereΩ = ΛW/Λ∨
W ,Λ(L) = (L(d))Φ , d = t(Λ)

2 , andL(d) = L+Φ(L)+⋅ ⋅ ⋅+Φd(L).
Under the above description, we have the bijection

M○
Λ(Fp) ≃ {special latticesL ⊂ VL ∶ L

(d) = ΛW}

= {special latticesL ⊂ VL ∶ Λ(L) = Λ}.

In fact, the above descriptions are true for any ûnitely generated ûeld extension k′∣Fp
(cf. [32]).

Let G1−Zipµ1 be the stack of G1-zips of type µ1 over Fp . he universal p-divisible
group with crystalline Tate tensors on M̆1 deûnes amorphism

ζ ∶ M1 Ð→ G1−Zipµ1 .

he underlying set of geometric points of G1−Zipµ1 is in canonical bijection with the
subset JW of the Weyl group of G1. In fact, we have isomorphisms of topological
spaces

∣G1−Zipµ1 ∣ ≃ ∣G−Zipµ ∣ ≃ JW.

Let JWb ⊂ JW be the subset deûned by the image of ζ. For each w ∈ JWb , recall we
have the Ekedahl–Oort stratum ofM1 red associated with w:

M1w = ζ−1(w)red .

We get the Ekedahl–Oort stratiûcation

M1 red = ∐
w∈JWb

M1w .

We get also the induced Ekedahl–Oort stratiûcation for Mred.
Let m ≥ 1 be such that 2m = n + 1 if n is odd, and 2m = n + 2 if n is even. hen

there is a bijection (cf. [77, subsection 4.4])

JW
∼
Ð→

⎧⎪⎪
⎨
⎪⎪⎩

{0, 1, . . . , 2m − 1}, n = 2m − 1 odd,
{0, 1, . . . ,m − 2,m − 1,m − 1′ ,m, . . . , 2m − 2}, n = 2m − 2 even,

induced by the length function w ↦ ℓ(w), where we use the symbols m − 1′ ,m − 1 to
distinguish the two elements with the same length m − 1. Under the above bijection,
the subset JWb ⊂ JW can be described as

JWb ∼
Ð→

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

{m, . . . , 2m − 1}, n = 2m − 1 odd,
{m, . . . , 2m − 2}, n = 2m − 2 even, detV = (−1) n

2 ,
{m − 1,m − 1′ ,m, . . . , 2m − 2}, n = 2m − 2 even, detV ≠ (−1) n

2 .

For each i ≠ m − 1′ on the right-hand side, we denote the corresponding element of
the le�-hand side asw i . he element corresponding to m−1′ will be denoted byw′

m−1.
We can describe the map i ↦ w i in more detail. Assume ûrst that n is odd. he

simple re�ections are
⎧⎪⎪
⎨
⎪⎪⎩

s i = (i , i + 1)(2m + 1 − i , 2m + 2 − i), 1 ≤ i ≤ m − 1,
sm = (m,m + 2), i = m,
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and we have

w i =

⎧⎪⎪
⎨
⎪⎪⎩

s1 ⋅ ⋅ ⋅ s i , 0 ≤ i ≤ m,
s1 ⋅ ⋅ ⋅ sm−1smsm−1 ⋅ ⋅ ⋅ s2m−i , m + 1 ≤ i ≤ 2m − 1.

Now assume that n is even. he simple re�ections are
⎧⎪⎪
⎨
⎪⎪⎩

s i = (i , i + 1)(2m − i , 2m + 1 − i), 1 ≤ i ≤ m − 1,
sm = (m − 1,m + 1)(m,m + 2), i = m,

and we have

w i =

⎧⎪⎪
⎨
⎪⎪⎩

s1 ⋅ ⋅ ⋅ s i , 0 ≤ i ≤ m,
s1 ⋅ ⋅ ⋅ smsm−2 ⋅ ⋅ ⋅ s2m−1−i , m + 1 ≤ i ≤ 2m − 2,

and
w′

m−1 = s1 ⋅ ⋅ ⋅ sm−2sm .
Let V = LW ⊗Fp be the quadratic space over Fp . For eachw i ∈

JW, we will attach
to it an orthogonal F-zip (also called a SO(V)-zip) as follows. Fix a basis e1 , . . . , en+2
of L such that the quadratic form Q has the form x1xn+2 + x2xn+1 + ⋅ ⋅ ⋅ + xmxm+2 +
x2
m+1 (cf. the proof of [77, Proposition 4.4.1]). By abuse of notation, we still denote by
e1 , . . . , en+2 the induced basis of (V ,Q). For each w ∈ JW, let Mw be the orthogonal
F-zip (V ,Q ,C● ,D● , ϕ●) where

● C● is the descending ûltration V ⊃ ⟨e2 , e3 , . . . , en+2⟩ ⊃ ⟨en+2⟩ ⊃ 0, denoted by
C0 ⊃ C1 ⊃ C2 ⊃ C3,

● D● is the ascending ûltration

0 ⊂ ⟨w(e1)⟩ ⊂ ⟨w(e1),w(e2), . . . ,w(en+1)⟩ ⊂ V ,

denoted by D0 ⊂ D1 ⊂ D2 ⊂ D3 ,
● φ● is the collections of isomorphisms

φ0 ∶ (C0/C1)(p)
∼
Ð→D1 , φ1 ∶ (C1/C2)(p)

∼
Ð→D2/D1 , φ2 ∶ (C2/C3)(p)

∼
Ð→D3/D2 .

We remark that the above construction is not the standard isomorphism JW ≃
∣G − Zipµ ∣ of Pink, Wedhorn, and Ziegler (for example as in [77, heorem 3.1.5]).
he standard association is the twist w z→ Mw0w of ours, where w0 is the maximal
length element of JW. In particular, ℓ(w0w) = n − ℓ(w).

heorem 8.4 Each stratum M1w is some union of Howard–Pappas strata ofM1 red.

Proof By themethods of [32], it suõces to prove the following assertion ûrst. ∎

Corollary 8.5 Each stratum Mw is some union of Howard–Pappas strata ofMred.

Proof We ûrst prove the equalities for the sets of k-points,where k is an algebraically
closed ûeld of characteristic p. his follows from [32,heorem 6.5.6] and [21, Corol-
lary 4.1.3].

Indeed, by [32,heorem 6.5.6], we have an isomorphism

M○
Λ ≃ XB(w+)∐XB(w−),
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where XB(w+) and XB(w−) are the Deligne–Lusztig varieties associated with the el-
ements w+ and w− ofWΩ , theWeyl group of SO(Ω), where as before, Ω = ΛW/Λ∨

W .
As in [32, 6.5.4], w± are Coxeter elements. Write w(Λ) = w+, and consider it as an
element in W under the inclusion WΩ ↪W. hen by [21, Corollary 4.1.3], we have

Mw(k) = ∐
Λ ,w(Λ)=w

M○
Λ(k).

To prove the identities on the level of schemes, we argue as in the proof of
[69, Corollary 4.10]. hat is, it suõces to show that M○

Λ is open and closed in Mw .
his follows from the facts that M○

Λ is open in MΛ ,MΛ ∩Mw = M○
Λ , and the above

identities on the level of points. ∎

Consider the case k = Fp . For any vertex lattice Λ and any point x ∈M○
Λ(Fp), we

have the associated special lattice Lx . By reduction modulo p, we get an orthogonal
F-zip Mx , which we write it as Mw0wx attached to w0wx ∈

JWb for some wx ∈
JWb .

hen by deûnition, x ∈ Mw0wx . By the above corollary, we have the equality d − 1 =
ℓ(w0wx), where d = t(Λ)

2 . he following corollaries are coarser versions ofheorem
8.4 and Corollary 8.5. However, they aremore explicit in terms of types.

Corollary 8.6 (i) If n is odd, or n is even with det(V) = (−1) n
2 , then we have the

identity
M1w i = ∐

Λ ,t(Λ)=2(n−i+1)
M○

1Λ .

(ii) If n is even with det(V) ≠ (−1) n
2 , then

(a) if m ≤ i ≤ 2m − 1,

M1w i = ∐
Λ ,t(Λ)=2(n−i+1)

M○
1Λ ;

(b) if i = m − 1,

M1wm−1 ∐M1w′m−1
= ∐

Λ ,t(Λ)=2m
M○

1Λ .

Corollary 8.7 (i) If n is odd, or n is even with det(V) = (−1) n
2 , then we have the

identity
Mw i = ∐

Λ ,t(Λ)=2(n−i+1)
M○

Λ .

(ii) If n is even with det(V) ≠ (−1) n
2 , then

(a) if m ≤ i ≤ 2m − 1,

Mw i = ∐
Λ ,t(Λ)=2(n−i+1)

M○
Λ ;

(b) if i = m − 1,

Mwm−1 ∐Mw′m−1
= ∐

Λ ,t(Λ)=2m
M○

Λ .
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8.3 Moduli Spaces of Polarized K3 Surfaces with Level Structures and the Integral
Kuga–Satake Map

In this and the next subsection,wewill turn tomoduli spaces of polarizedK3 surfaces,
with the involved Shimura varieties; cf. [47, Sections 2 and 4], [58, Section 6].

LetU be the hyperbolic lattice overZ of rank 2, and let E8 be the positive quadratic
lattice associated with the Dynkin diagram of type E8. Set N = U⊕3 ⊕ E⊕2

8 , which is
a self-dual lattice. Let d ≥ 1 be an integer. Choose a basis e , f for the ûrst copy of U
in N and set Ld = ⟨e − d f ⟩� ⊂ N . his is a quadratic lattice over Z of discriminant 2d
and rank 21 (in [58] it is denoted by L2d ). Let Vd = Ld ⊗Q and L∨d ⊂ Vd be the dual
lattice. Set G = SO(Vd), which is isomorphic to the special orthogonal group over Q
of signature (2, 19). Let K ⊂ G(A f ) be an open compact subgroup that stabilizes Ld ,Ẑ
and acts trivially on L∨d /Ld . Such compact opens are called admissible. We ûx a prime
p > 2 such that p ∤ d fromnow on. hen as L is self dual at p, the local reductive group
GQp is unramiûed. Let Kp = G(Zp) be the hyperspecial group. We only consider
open compact subgroups K p ⊂ G(Ap

f ) that are contained in the discriminant kernel
of Ld ,Ẑp with ûnite index. In particular, K = KpK p is admissible; cf. [58, 5.3]. For
the reductive group G, we have the associated Shimura varieties ShKpK p , which are
deûned over Q. By [38], there exists an integral smooth canonical model SKpK p of
ShKpK p over Zp .

Let M2d (resp. M∗
2d ) be the moduli spaces of K3 surfaces f ∶ X → S together

with a primitive polarization ξ (resp. quasi-polarization) of degree 2d over Zp (in
[47, Section 2], these spaces are denoted by M○

2d and M2d respectively). hese are
Deligne–Mumford stacks of ûnite type over Zp . he natural map M2d → M∗

2d is an
open immersion. Moreover, M2d is separated and smooth of dimension 19 over Zp ;
cf. [58,heorem 4.3.3, Proposition 4.3.11], and [47, Proposition 2.2].

Let ( f ∶ X → M2d , ξ) be the universal object over M2d . For any prime ℓ, we con-
sider the second relative étale cohomology H2

ℓ of X over M2d . his is a lisse Zℓ-sheaf
of rank 22 equipped with a perfect symmetric Poincaré pairing ⟨ ⋅ , ⋅ ⟩ ∶ H2

ℓ × H2
ℓ →

Zℓ(−2). he ℓ-adic Chern class chℓ(ξ) of ξ is a global section of the Tate twist H2
ℓ(1)

that satisûes ⟨chℓ(ξ), chℓ(ξ)⟩ = 2d. he product

H2
Ẑ =∏ℓ

H2
ℓ

is a lisse Ẑ-sheaf, and the Chern classes of ξ can be put together to get the Chern class
chẐ(ξ) in H2

Ẑ(1). Recall that we have the quadratic lattice N of rank 22 over Z.

Deûnition 8.8 Consider the étale sheaf over M2d whose sections over any scheme
T →M2d are given by

I(T) = {η ∶ N ⊗ Ẑ ∼
→ H2

Ẑ,T(1) isometries, with η(e − d f ) = chẐ(ξ)} .

Let K = KpK p ⊂ KLẐp be an admissible open compact subgroup. hen I admits a
natural action by the constant sheaf of groups K. A section η ∈ H0(T , I/K) is called
a K-level structure over T (in [58, 5.3] it is called a full K-level structure).
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Let M2d ,K (resp. M∗
2d ,K) be the relativemoduli problem over M2d (resp. M∗

2d ) that
parametrizes K-level structures. For K p (thus K) small enough, these are smooth
algebraic spaces. Moreover, themaps

M2d ,K Ð→M2d and M∗
2d ,K Ð→M∗

2d

are ûnite étale. For another admissible K′ = KpK p′ ⊂ K = KpK p , we have natural
ûnite étale projections

M2d ,K′ Ð→M2d ,K and M∗

2d ,K′ Ð→M∗
2d ,K

as algebraic spaces over M2d ,M∗
2d respectively. When K p′ is a normal subgroup of

K p , these projections are Galois with Galois group K p/K p′ .
For any prime ℓ, we have the primitive cohomology sheaf

Pℓ = ⟨chℓ(ξ)⟩� ⊂ H2
ℓ .

Let H2
B and H2

dR be the second relative Betti and de Rham cohomology respectively
of the universal K3 surface X → M∗

2d ,K ,C. We have also the primitive cohomology
sheaves

PB = ⟨chB(ξ)⟩� ⊂ H2
B , PdR = ⟨chdR(ξ)⟩� ⊂ H2

dR .
Consider M̃∗

2d ,K → M∗
2d ,K , the two-fold ûnite étale cover parameterizing isometric

trivializations det(Ld) ⊗ Z2
∼
→ det(P2) of the determinant of the primitive 2-adic

cohomology of the universal quasi-polarized K3 surface. We can identify M̃∗
2d ,K with

the the space of isometric trivializations det(Ld)
∼
→ det(PB) of the determinant of

the primitive Betti cohomology. here is a Hodge-de Rham ûltration F●PdR on PdR,
and we have a natural isometric trivialization η ∶ disc(Ld)

∼
→ disc(PB) and the the

tautological trivialization β ∶ det(Ld)
∼
→ det(PB). he tuple (PB , F●PdR , η, β) gives

rise to a natural periodmap

M̃∗
2d ,K ,C Ð→ ShK ,C;

cf. [47, Propositions 4.2 and 3.3]. here is a section map M2d ,K ,C ⊂ M∗
2d ,K ,C →

M̃∗
2d ,K ,C, whose composition with the above period map gives us the Kuga–Satake

periodmap
ιC ∶ M2d ,K ,C Ð→ ShK ,C .

It follows from [59,heorem 3.9.1], this map is deûned over Q. herefore we get the
map over Qp :

ιQp ∶ M2d ,K ,Qp Ð→ ShK ,Qp .
As SK is the integral canonical model of ShK , by extension property of SK , the Kuga–
Satakemap extends to amap over Zp :

ι ∶ M2d ,K Ð→ SK .

heorem 8.9 ([47, Corollary 5.15]) he integral Kuga–Satake periodmap

ι ∶ M2d ,K Ð→ SK

is an open immersion.
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When K p
1 ⊂ K p is another open compact subgroup, we note that the following

diagram is cartesian:
M2d ,K1

//

��

SK1

��
M2d ,K // SK .

As a corollary, we see that for K p small enough,M2d ,K is a scheme.

8.4 Newton and Ekedahl–Oort Stratifications of the Moduli Spaces of K3 Surfaces

In the rest of this section we will work over W . As before, we simply denote by the
same notation for an object base changed to W . Let M2d ,K be the special ûber of
M2d ,K , which can be viewed as an open subspace of the special ûber SK of SK by
heorem 8.9. For the good reduction of Shimura varieties of abelian type, in [68] we
have introduced the Newton and Ekedahl–Oort stratiûcations for the special ûbers.
In Subsection 6.2, we have seen the Newton stratiûcation. In the cases of GSpin and
SO Shimura varieties, we can compare the Newton and Ekedahl–Oort stratiûcations
as follows. hese are in the list of Shimura varieties of coxeter type studied in [21]
(comp. [22]).

heorem 8.10 ([68]) Assume that n is odd.10

(i) We have
SK = ∐

b∈B(G ,µ)
S
b
K , SK = ∐

w∈JW

S
w
K ,

with each stratum in the two stratiûcations non-empty.
(ii) Let b0 be the unique basic element in B(G , µ).

● For b ≠ b0, there exists a unique wb ∈ JW such that S
b
K = S

wb
K ;

● For b0, S
b0
K =∐w∈JWb0 S

w
K .

Note that the subset JWb = {wb} for any b ≠ b0. In fact these statements are just
the global analogue ofheorem 7.5 in the setting of Shimura varieties of abelian type;
cf. [68, Section 7] (see also [22, Section 6], where the authors there assume that the
axioms of [32] are veriûed).

We return to the case n = 19. Consider the Kuga–Satake map ι ∶ M2d ,K ↪ SK ,
which is an open immersion by heorem 8.9. he above stratiûcations of SK in turn
induce stratiûcations ofM2d ,K :

M2d ,K = ∐
b∈B(G ,µ)

Mb
2d ,K , M2d ,K = ∐

w∈ JW

Mw
2d ,K ,

whereMb
2d ,K andMw

2d ,K are thepullbacks of the corresponding strata S
b
K and S

w
K under

the open immersion ι ∶ M2d ,K ↪ SK . We have the similar relation

10When n is even,we have a similar butmore delicate statement that eachNewton stratum is a disjoint
union of some Ekedahl–Oort strata; cf. [68].
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● for b ≠ b0, there exists a unique wb ∈ JW such that Mb
2d ,K = Mwb

2d ,K ,
● for b0,M

b0
2d ,K = ∐w∈ JWb0 Mw

2d ,K . We will also writeMb0
2d ,K as Mss

2d ,K to indicate
that it is the supersingular locus ofM2d ,K .

Wewill investigate these stratiûcations in somemore classical terms, which appeared
in the literature; see [50], for example.

8.4.1 Newton Stratification vs. Height Stratification

Let X be a K3 surface over a ûeld k of characteristic p. Consider the functor on local
Artinian k-algebras with residue ûeld k deûned by

Φ2
X/k ∶ (Art/k)Ð→ (Abelian groups)

R z→ ker (H2
e t(X × SpecR,Gm)→ H2

e t(X ,Gm)) .

It ispro-representable by a one-dimensional formal group B̂r(X), the so-called formal
Brauer group. he height h of this formal Brauer group of the K3 surface X satisûes
1 ≤ h ≤ 10 or h =∞.

heNewton slopes of the F-crystal H2
cris(X/W) are equal to (1− 1

h , 1, 1+
1
h ). hus,

the set B(G , µ) is in bijection with the set {1, . . . , 10,∞}. he basic element b0 corre-
sponds to ∞. We write B(G , µ) = {b1 , . . . , b10 , b11 = b0}. he Newton stratiûcation
of M2d ,K is just the classical height stratiûcation. By [13], for each b ∈ B(G , µ), the
Newton stratum Mb

2d ,K is non-empty.

8.4.2 Ekedahl–Oort Stratification vs. Artin Invariant Stratification

hanks to the recent proof of the Tate conjecture for K3 surfaces, we know that for
a K3 surface X over Fp , h = ∞ if and only if its Picard rank ρ = 22; i.e., it is Artin
supersingular if and only if it is Shioda supersingular; cf. [45,heorem 2.3]. We sim-
ply call X supersingular in this case. Let X be a supersingular K3 surface over Fp ;
then the discriminant of its Néron–Severi lattice is equal to −p2σ0(X) for some integer
1 ≤ σ0(X) ≤ 10. he integer σ0(X) is called the Artin invariant of X.
By [13], we have an explicit description of the set JW as {w1 , . . . ,w20}, with w i

corresponds to b i for 1 ≤ i ≤ 10, and for 11 ≤ i ≤ 20, the elements w i are basic. he
K3 surfaces in the stratum Mw i

2d ,K have Artin invariant 21 − i. In particular, we note
that the index i in the description of the set JW in subsection 8.2 (where 0 ≤ i ≤ 19 in
our case) is shi�ed to i + 1 here. By [13], for each w ∈ JW, the Ekedahl–Oort stratum
Mw

2d ,K is non-empty.

8.5 Rapoport–Zink Type Uniformization and Artin Invariants

In this ûnal subsection,wemake the link between Rapoport–Zink spaces andmoduli
spaces of K3 surfaces.

Let M̂2d ,K and ŜK be the formal completion ofM2d ,K and let SK along their special
ûbers respectively. hen the integral Kuga–Satake periodmap inheorem 8.9 induces
an open immersion of formal schemes: ι̂ ∶ M̂2d ,K Ð→ ŜK .
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Let x0 ∈ M2d ,K be any point in the special ûber M2d ,K ofM2d ,K , and x = ι(x0) be
its image in SK . Let b ∈ B(G , µ) be the Newton point associated with x and consider
the corresponding formal Rapoport–Zink space M̆ = M̆b for the group SO(V). he
choice of the point x determines a morphism of formal schemes: Θx ∶ M̆ Ð→ ŜK .
Denote by N̆ the pullback of M̆ under ι̂ ∶ M̂2d ,K → ŜK . In other words, we get a
cartesian diagram

N̆ //

��

M̆

Θx
��

M̂2d ,K
ι̂ // ŜK ,

with the upper horizontal map N̆ → M̆ is an open immersion. By themoduli descrip-
tion of M̆, we get the following description of N̆. For any R ∈ Nilps m

W ,

N̆(R) = {(X , (tα), ρ) ∈ M̆(R)},

where the following hold:
● (X , (tα), ρ) ∈ M̆1(R), with X = KS(Y)[p∞], where Y is a K3 surface over R,

KS(Y) is the Kuga–Satake abelian scheme attached to Y (cf. heorem 8.9 and
[47, section 5]);

● ρ is the pZ-orbit of ρ.
In particular, N̆ is stable under the action of Jb(Qp) on M̆.

Remark 8.11 By construction, we have an open subspace N̆1 ⊂ M̆1, such that for
any R ∈ Nilps m

W ,
N̆1(R) = {(X , (tα), ρ)}

with (X , (tα), ρ) ∈ M̆1(R) as above. he space N̆ is given by N̆ = N̆1/pZ. On the level
of aõne Deligne–Lusztig varieties, we get subsets

Nred(Fp) ⊂Mred(Fp) = XG
µ (b) and N1 red(Fp) ⊂M1 red(Fp) = XG1

µ1
(b1).

In the case that b is basic, itwill be interesting to describe the above subsets by special
lattices as in [32, Section 5].

We can apply the Rapoport–Zink uniformization theorem for SK to deduce a sim-
ilar uniformization for M2d ,K . Recall that as dimV = 21 is odd, the groupG = SO(V)
is adjoint.

Corollary 8.12 Let Jϕ be the pullback ofZϕ ,K p under the open immersion ι ∶ M2d ,K ↪

SK . hen we have the identity

M̂2d ,K/Jϕ = ∐j∈I
N̆/Γj ,

where I is certain countable set, and for each j ∈ I, Γj ⊂ Jb(Qp) is some discrete subgroup
(constructed as usual from the uniformization theorem of the last section). If,moreover,
b = b0 is basic, then Jϕ = Mss

2d ,K , which is the supersingular locus in M2d ,K , and the
above disjoint union is ûnite.
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Recently there has been a deûnition of isogeny between two K3 surfaces in char-
acteristic p; cf. [76]. One can cheek that the locus Jϕ parametrizes an isogeny class of
polarized K3 surfaces.

Remark 8.13 If the open compact subgroup K = KpK p ⊂ G(A f ) (Kp = G(Zp)) is
the image of some open compact subgroup K1 = K1pK p

1 ⊂ G1(A f ) (K1p = G1(Zp)),
then it will be much easier to prove the uniformization theorem for SK . One can
work directly on the ûnite level and take a ûnite étale quotient from the corresponding
Rapoport–Zink uniformization for G1; cf. [67, section 4], for example.

Assume that b = b0 is basic. Let Nred be the reduced special ûber of N̆. hen the
Howard–Pappas stratiûcation of the reduced special ûberMred of M̆ induces a similar
stratiûcation of the open subspaceNred:

Nred =∐
Λ
N○

Λ ,

where N○
Λ ⊂ Nred is the pullback of the stratum M○

Λ ⊂ Mred. For each w i ∈
JWb ,

consider the corresponding Ekedahl–Oort stratum

Mw i = ∐
Λ ,t(Λ)=2(21−i)

M○
Λ and Nw i = ∐

Λ ,t(Λ)=2(21−i)
N○

Λ .

For each 11 ≤ i ≤ 20, the image of Nw i under the uniformization morphism gives us
the corresponding Ekedahl–Oort stratum Mw i

2d ,K in supersingular locus.
For (X , ξ) ∈ Mss

2d ,K(Fp), consider L = ⟨chcris(ξ)⟩� ⊂ H2
cris(X/W). his is a spe-

cial lattice in the sense of [32, Deûnition 5.2.1]. hen we can apply Proposition 5.2.2
of loc. cit. to produce a vertex lattice Λ(L). For any integer r ≥ 0, deûne

L(r) = L +Φ(L) + ⋅ ⋅ ⋅ +Φr(L).

hen there is a unique integer 1 ≤ d ≤ 10 such that

L = L(0) ⊊ L(1) ⊊ ⋅ ⋅ ⋅ ⊊ L(d) = L(d+1) .

he vertex lattice Λ(L) is deûned by Λ(L) = (L(d))Φ . It has type t(Λ(L)) = 2d and
Λ(L)∨ = LΦ . he following corollary follows from the above uniformization and
Corollary 8.5.

Corollary 8.14 Under the uniformization identity

Mss
2d ,K = ∐

j∈I
Nred/Γj ,

the Ekedahl–Oort stratum Mw i
2d ,K for each 11 ≤ i ≤ 20 is the image ofNw i . In particular,

if x ∈ Mss
2d ,K(Fp), let Xx be the associated supersingular K3 surface over Fp , then we

have the identity between the Artin invariant σ0(Xx) and the type t(Λx):

σ0(Xx) =
t(Λx)

2
,

where Λx = Λ(Lx) is the vertex lattice attached to the special lattice associated with
(Xx , ξx) as above.
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A Admissibility and Weakly Admissibility in the Basic Orthogonal
Case

In this appendix, we investigate the p-adic period domains F ℓadmG ,µ andF ℓwaG ,µ in the
case b is basic and G = SO. Although heorem A.2 appears as a special case of our
more recent work [9], we present it here, since it provides some concrete computa-
tions,which can serve as a good example-based introduction to our proof for [9,he-
orem 6.1] in the direction (i)⇒ (ii). All the following material is taken from [18]. We
thank Fargues sincerely for kindly allowing us to include it here.

Let V = Qn
p equipped with the quadratic form Q with matrix

⎛
⎜
⎜
⎝

1

. . .

1

⎞
⎟
⎟
⎠

.

Let G = SO(V ,Q) and consider the minuscule cocharacter µ ∶ Gm → GQp
given

by µ(z) = diag(z, 1, . . . , 1, z−1). hen the basic class in B(G , µ) is [b] = [1] and thus
Jb = G. One checks easily that any non-basicNewton polygon has a nontrivial contact
point with the Hodge polygon, i.e., (G , {µ}) is fully Hodge–Newton decomposable
in the sense of [22, Deûnition 2.1].
For simplicity, we write F ℓ = F ℓG ,µ as the p-adic �ag variety, F ℓwa = F ℓwaG ,µ ,

andF ℓadm = F ℓadmG ,µ . We ûrst describe the weakly admissible locus F ℓwa. he asso-
ciated isocrystal is Q̆n

p with Frobenius σ⊕n . he sub-isocrystals are in bijection with
the sub-Qp-vector space of V . Let C be a complete and algebraically closed extension
of Q̆p . hen we have

F ℓ(C ,OC) = {Lagrangian linesD ⊂ VC}.
It follows that F ℓ ⊂ Pn

Q̆p
is the quadric deûned by the equation∑n

i=1 x ixn−i+1 = 0. Let

Q[ n
2 ]

p ⊕ (0) ⊂ V be a Lagrangian subspace with associated parabolic subgroup P ⊂ G.
We attach to it theHodge ûltration

0 ⊂ Fil1 = D ⊂ Fil0 = D⊥ ⊂ Fil−1 = VC
to any line D ∈ F ℓ(C ,OC). hen

F ℓwa(C ,OC) = {D ∈ F ℓ(C ,OC) ∣ D ∩WC = 0,
for each totally isotropic subspaceW ⊂ V}.

herefore, we get the following proposition.

Proposition A.1
F ℓwa = F ℓ/G(Qp)Sad ,

where Sad is the adic space associated with the Schubert variety attached to P (S is de-
ûned by the locus x[ n

2 ]+1 = ⋅ ⋅ ⋅ = xn = 0 insideF ℓ).

Now we look at the admissible locus F ℓadm (cf. [54, Deûnition A.6 ] or [9, Deû-
nition 3.1]). We have the following theorem.
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heorem A.2 F ℓadm = F ℓwa.

Proof For any point x ∈ F ℓwa(C ,OC), let Ex be the associated modiûcation of
On

X such that the relative position of (B+dR)n and Êx ,∞ is bounded by µ. Here X
is the Fargues–Fontaine curve over Qp associated with the perfectoid ûeld C♭, and
∞ = xC ∈ X is the point deûned by C. We need to show that this weakly admissible
modiûcation is in fact an admissiblemodiûcation (i.e., Ex is semi-stable of slope 0).
By [54, Proposition A.9], we have either

Ex ≃ OX(
1
r
) ⊕On−2r

X ⊕OX(−
1
r
)

for some integer 1 ≤ r ≤ [ n
2 ], or Ex ≃ On

X . he second case is admissible. We have
to show this is always the case. Suppose that we are in the ûrst case; we will ûnd a
contradiction. he perfect quadratic form on Ex is such that for any λ ∈ Q, we have
(E≥λ

x )⊥ = E>−λ
x , where Eλ

x ⊂ Ex is a step in the Harder–Narasimhan ûltration of Ex .
herefore, we get

OX(
1
r
)
⊥

= OX(
1
r
) ⊕On−2r

X ,

and OX(
1
r ) is totally isotropic. It follows that there exists a unique subvector bundle

F ⊂ On
X that is a locally direct summand, such that themodiûcationEx ∣X/∞

∼
→ On

X/∞
induces amodiûcation

OX(
1
r
) ∣X/∞

∼
Ð→F ∣X/∞ .

In particular, F is totally isotropic in On
X . Such a modiûcation is necessarily of one

of the following types:
(1) (−1, 0, . . . , 0),
(2) (0, . . . , 0, 1),
(3) (0, . . . , 0).
Indeed, it suõces to look at the relative positions of the lattices E ∩ (B+dR)

n and E ∩
⟨te1 , e2 , . . . , en−1 , t−1en⟩ for all the sub-BdR-vector spaces E of Bn

dR, where e1 , . . . , en
is a basis of V . As On

X is semi-stable, we have deg(F ) ≤ 0. By looking at the above
three cases, we get that F is a degree −1 modiûcation of OX(

1
r ). hus,

F ≃ Or
X ;

that is, F = W ⊗ OX for some totally isotropic subspace W ⊂ Qn
p of dimension r.

his implies that our modiûcation Ex ∣X/∞
∼
→ On

X/∞ is not weakly admissible. hus,
we get a contradiction. ∎
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