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The optimum position for a tidal power
barrage in the Severn estuary
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(Received 27 April 2009; revised 28 July 2009; accepted 29 July 2009)

G. I. Taylor’s approximate analytical solution for the tidal flow in the Severn estuary
is extended to find the optimum location for a tidal power barrage, from the power
point of view. It appears to be at the lowest point in the estuary, between Ilfracombe
and Gower – contrary to earlier computations. The analytical solution shows that
barrages radiate tidal waves out to sea, which highlights the important role of the
far-field boundary condition in absorbing them. This appears to have been neglected
in numerical models, which may explain the difference from the earlier results.

1. Introduction
Tidal power barrages in the Severn estuary were studied intensively 30 years ago,

by a UK government committee chaired by Bondi (see Bondi et al. 1981). It was
concluded from computer models that the optimum position for a barrage from the
power point of view was approximately halfway down the estuary at Minehead. If
the barrage was moved further downstream, no more power was obtained, because it
was found that the barrage increasingly attenuated the incoming tides. Although tidal
power barrages for the Severn have been studied on several more recent occasions, it
appears that no more recent computer modelling has been undertaken on this point
(see Burrows et al., in press).

The problem can be investigated using G. I. Taylor’s simple analytical model of the
tidal flow in the Severn estuary (Taylor 1921). This has the advantage of revealing
the fundamental features of the problem more clearly than a computer model.

Taylor’s model is described in Lamb’s account of the ‘canal theory of the tides’
(Lamb 1932, pp. 267–278), of which it is a special case. The canal theory considers
tidal flow as a longitudinal gravity wave in a channel. Following Lamb’s notation,
if the width of the channel is b(x) and its depth is h(x), both varying with position
x along the channel, then the equation for the surface elevation η(x, t) at time t is
(Lamb 1932, p. 274)

∂2η

∂t2
=

g

b

∂

∂x

(
hb

∂η

∂x

)
, (1)

where g is the acceleration due to gravity. In an estuary, high tide is assumed to occur
at the same time, t = 0, everywhere, since the extent of the estuary, when measured in
degrees of longitude, is small compared with the tidal cycle of approximately 180◦. A
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Figure 1. Taylor’s model of the Bristol Channel. All the data in the table have been updated,
from the latest admiralty charts. Breadths, depths and areas are at the mean sea level. The
area upstream of Sharpness (17 km upstream of Chepstow) is excluded, since it is small and
the tidal range is markedly reduced there. The time delays are mean values for neap tides
(appropriate since we are considering a mean tidal range in figure 3, which will be reduced
by the barrage as in figure 4) based on data for the north shore of the estuary (which appear
more reliable than that from the south shore) in the 2009 admiralty tide tables. Parameters
for n= 7 and 8 are defined to give the correct averages over the area upstream of section G,
when used in (9)

solution is therefore sought of the form

η(x, t) = η0(x) cos(ωt), (2)

where 2π/ω is the tidal period of approximately 12 h (half a lunar day). Thus (1)
becomes

g

b

d

dx

(
hb

dη0

dx

)
+ ω2η0 = 0. (3)

In the case of the Severn estuary, Taylor observed that the width b(x) and depth
h(x) both increase approximately linearly with distance x downstream (referred to
henceforth as ‘west’) of the head of the estuary at Portishead (see figure 1, originally
figure 1 and table 1 in Taylor 1921). He therefore took x =0 at Portishead and put

b = βx and h = γ x, (4)

where β and γ are constants. This reduces (3) to

d

dx

(
x2 dη0

dx

)
+ kη0x = 0 with k = ω2/(γg), (5)

which can be solved exactly as a Bessel function:

η0 =
KJ1{2

√
kx}√

kx
, (6)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
99

14
43

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009991443


The optimum position for a tidal power barrage in the Severn estuary 499

Delay tn of
Distance xn Area Sn to high tide, relative Loss angle

Taylor’s from section Mean Breadth next section to section A from
section n G (km) depth (m) (km) (sq. km) (min) (9) (deg.)

A 1 114.3 36.9 40.6 800 0 3.8
B 2 92.10 28.7 37.7 585 2 3.9
C 3 77.83 24.4 30.0 695 2 5.2
D 4 46.33 16.3 22.7 383 6 6.1
E 5 28.72 16.3 13.2 220 14 5.2
F 6 14.82 9.5 15.2 166 19
G 7 0.0001 5.3 7.8 113 29

8 0.0001 53

where K is a constant. Taylor took γ = {25 fathoms}/{80 UK nautical miles} =
0.0003084 (β is immaterial) and the tidal period 2π/ω as 12.4 h, so that k =
0.00655 km−1, and found (6) to be a good approximation to the observed variation
of tidal range in the Severn estuary, shown in figure 1 (close to modern values).
This paper extends Taylor’s analysis to the case of a tidal power barrage in the
estuary.

2. Tidal power – the need for progressive waves
Considered as a function of time, the horizontal velocity in a tidal wave (and indeed

in a water wave generally) is 90◦ out of phase with the surface slope ∂η/∂x, since
the latter is in phase with the horizontal acceleration. And the pressure variations
are in phase with the surface elevation η. Thus for a standing-wave solution of the
form (2), where the surface slope is in phase with the surface elevation, the velocity
and pressure are 90◦ out of phase. Therefore the power flux (= velocity × pressure)
has a mean value of zero everywhere. This is of course to be expected, since the tidal
energy is nowhere being dissipated in the estuary in potential flow and only being
stored. When we extract tidal power with a barrage, however, we require an equal
mean power flux inwards at the mouth of the estuary. We thus reach the important
conclusion that Taylor’s solution (or any solution of form (2)) is ‘inadmissible west
of the barrage’ because it transmits no mean power. What is required west of
the barrage is a ‘progressive wave’, in which there is a power flux, because the
surface slope is 90◦ out of phase with the surface elevation (and thus the velocity is in
phase with the pressure). Rather than a solution of form (2) we can seek a solution
of the more general form,

η(x, t) = Re{η0(x)eiωt}, (7)

where η0(x) is now complex, and Re indicates the real part. This again leads to (5),
which can be solved in the same way as

η0 =
K1H

(1)
1 {2

√
kx} + K2H

(2)
1 {2

√
kx}√

kx
, (8)

where H
(1)
1 and H

(2)
1 are a first and second Hankel functions of order one, and we

now have two constants K1 and K2. The first term is a progressive wave travelling
east, and the second is a progressive wave travelling west. Far to the west, both
resemble tidal waves in open water of the same depth (since H1(x) ∼ −{cos(x +π/4)±
i sin(x + π/4)}/

√
x, for large x). East of the barrage, we can extend Taylor’s solution
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empirically to include the observed delay times of the tide. These are caused by the
need to transport energy into the estuary, to overcome natural energy losses from
turbulence, and may therefore be important in the context of a tidal power barrage.
(In fact they turn out to be of only minor importance; see figure 3).

3. An equivalent electric circuit
In his account of waves in channels, Lighthill (1978, p. 104) introduces the standard

electrical analogy of voltage with pressure and electric current with volume flow rate.
If the level variation of a reservoir of area S is written Re{eiωt}, then its pressure
variation is Re{ρgeiωt} (where ρ is the density of water), and the volume flow rate
in and out of the reservoir is Sd/dt(Re{eiωt}) = Re{Siωeiωt}. Thus on the electrical
analogy its impedance is ρg/(Siω), so it is analogous to an electrical capacitance S/ρg

(Lighthill 1978, p. 200, (3)).
A similar calculation applies in our case, for a reservoir formed by a barrage at

one of Taylor’s sections A–E in figure 1. The reservoir area can be can be discretized
into the sub-areas Sn between the successive sections, given in figure 1. The level
variation at the barrage is given by Taylor’s formula (6) with his x-coordinate xn

given in figure 1, and this formula can also be used to find the average amplitude of
the level variations of each sub-area. The phases of these level variations is given by
the average delay times tn in figure 1. Thus the reservoir impedance Z1 of a barrages
at the nth of Taylor’s sections A–E can be written as

Z1 =

ρgJ1{2
√

kxn}√
kxn∑j=7

j=n

[
J1{2

√
k(xj + xj+1)/2}√

k(xj + xj+1)/2
Sj iωe−iω{(tj +tj+1)/2−tn}

] . (9)

Evidently (9) is no longer purely imaginary, but has a real part analogous to a
resistance RL as well as an imaginary part analogous to a capacitance C. The
resistance RL gives the natural energy dissipation in the reservoir – to continue the
electrical analogy, it can be expressed as a ‘loss angle’ tan−1(ωCRL), which is readily
calculated from the argument of (9) and is given in figure 1. West of the barrage, it
is convenient to consider the water pressure variation (= ρg× level variation) as the
sum of the pressure variation Re{P eiωt} which would be seen in the absence of the
barrage and the additional pressure variation Re{P ′eiωt} caused, immediately west of
it, by the presence of the barrage. The additional pressure Re{P ′eiωt} at the barrage
produces a tidal wave which propagates out to sea – as far as the flow to the west
of the barrage is concerned, the barrage is acting like a wavemaker. We require its
wavemaking impedance Z2, i.e. the ratio of pressure to volume flow rate in the tidal
wave it generates. A unit wave propagating west is described by the second term in
(8), with K2 = 1. The water acceleration in this wave, in the direction of propagation,
is minus the surface slope times g, whence we can obtain the water velocity in a
westward direction by integrating, as the real part of

−g

iω

d

dx

(
H

(2)
1 {2

√
kx}√

kx

)
eiωt . (10)

The volume flow rate in the direction of propagation is this velocity times bh, and
the water pressure is ρgη. We obtain the impedance Z2 by dividing the latter by the
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Z2 = R + iωL

iωC

R

P
Z1 + Z2

Z1

RB
L

1
Z1 = RL+

RL

C

Figure 2. Equivalent electric circuit of barrage.

former, which gives this impedance as

Z2 =
−iρωH

(2)
1 {2

√
kx}

bh
√

kx

/
d

dx

(
H

(2)
1 {2

√
kx}√

kx

)
(11)

which we can consider as a resistance R in series with an inductance L, giving a
combined impedance of R + iωL. For large x, the wave resembles a tidal wave in
open water, for which the impedance is known to be purely a resistance of ρc/(bh)
(Lighthill 1978, p. 104), where c is the open-water wave speed

√
(gh). This gives a

useful cross-check, when (11) is evaluated numerically. In the absence of the barrage,
the (complex) volume flow rate at the barrage location is P/Z1, in an eastward
direction. The additional wavemaking volume flow immediately west of the barrage
is P ′/Z2, in a westward direction. Thus the total (complex) volume flow rate at this
location, in an eastward direction, can be written as follows:

P

Z1

− P ′

Z2

. (12)

If we write the total (complex) pressure at this location as P ′′ = P + P ′, then (12) can
be rearranged to

P Z1+Z2

Z1
− P ′′

Z2

. (13)

On the electrical analogy, this is the same current as would be produced by a voltage
generator P (Z1 + Z2)/Z1 with a source impedance of Z2. The flow in an eastward
direction produced by this voltage generator passes first through the barrage and
then into the reservoir beyond it. The impedance seen by the flow is thus the flow
resistance of the turbines in the barrage, in series with the reservoir impedance Z1.
The turbines can be taken for simplicity as allowing flow in both directions. This is the
most common arrangement (see Baker 1991, p. 31) and also the most efficient, before
turbine losses (see Prandle 1984). Also for simplicity, the flow resistance of the turbines
can be taken as a constant RB , because very similar results have been obtained in
simpler cases with linear and quadratic turbine characteristics (Garrett & Cummins
2004). Thus the equivalent circuit of the complete system is as shown in figure 2.
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When RB = 0, it may be seen that the pressure at the barrage is its undisturbed value
P, as it should be.

4. Similarity to wave power
At first sight it may seem curious that to provide the inward power flux needed

to power the barrage, we have introduced an additional tidal wave travelling in an
outward direction. The reason is that from (8) Taylor’s standing-wave solution (6)
can be seen (by putting K1 =K2 = K in (8) and noting that H

(1)
1 + H

(2)
1 = 2J1) as

the superposition of a tidal wave travelling east and an equal one travelling west.
Our additional wave travelling west is cancelling part of his, giving a net inward
wave. This situation is familiar in wave power (see for example Mei 1989, § 7.9).
Two-dimensional wave power devices likewise need to radiate waves out to sea, to
cancel out wave reflections.

5. Power available at various locations in the Severn estuary
We can now calculate the power from the equivalent circuit of figure 2. The

argument does not rely on the approximations above, but applies equally if accurate
values for Z1 and Z2 are available. The (complex) volume flow rate through the
barrage is

P
Z1 + Z2

Z1(Z1 + Z2 + RB)
, (14)

and thus the average power is

1

2
|P |2

∣∣∣∣ Z1 + Z2

Z1(Z1 + Z2 + RB)

∣∣∣∣
2

RB. (15)

This is readily calculated as a function of RB , using expressions (9) and (11) for Z1

and Z2. It is given in figure 3 for Taylor’s sections A–E of figure 1. The (complex)
tidal pressure P in the absence of the barrage is taken as 4ρg at Watchet, or 8m tidal
range, which is the approximate root-mean-square value between the mean spring
range of 10 m and the mean neap range of 5 m, and thus gives the annual-average
power. The values elsewhere are extrapolated from this 8 m figure, using Taylor’s
formula (6). Rather than being plotted against RB , figure 3 is plotted against the
pressure difference across the barrage (i.e (14) times RB), expressed as a fraction of
the tidal pressure variation /P/ in the absence of the barrage. Evidently the optimum
value for this fraction is between 0.4 and 0.6, and the power increases steadily as
the barrage is moved west. This is of course to be expected – as we move west, the
reservoir area increases much more than the tidal range reduces (see figure 1).

6. Effect of the shape of the estuary west of Taylor’s model
Taylor observed that the shape of the Severn estuary changes abruptly west of his

outer boundary (section A in figure 2) and ceases to follow his formulae (4), even
approximately. The width of the estuary approximately doubles immediately west of
section A and thereafter follows another of Taylor’s linearly tapering profiles, with
both depth and width increasing approximately linearly with distance from a notional
apex at Abergavenny, 100 km east of section A. The depth of 36.9 m at section A
gives a new value of γ ∗ =36.9 m/100 km= 0.000369 for γ , and thus a new value
k∗ = 0.00547 km−1 for k. We wish to find the effect of this transition to a new profile
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on the barrage wavemaking impedance Z2. The effect of the abrupt transition will
be to reflect some of the wave travelling west considered in § 3, back up the channel.
This reflection will be re-reflected from the barrage and then again from the abrupt
transition after section A, in an infinite sequence. We can sum all the waves travelling
west into a single wave travelling west between the barrage and Taylor’s section A,
and we can likewise sum all the waves travelling east into a single wave travelling
east in this region. We can write the (complex) volume flow rates in the direction of
wave propagation as

• VO and VB for the wave travelling west respectively at the outer boundary of the
region at section A and at the barrage;

• V ′
O and V ′

B for the wave travelling east respectively at the outer boundary of the
region at section A and at the barrage.

We can first find the ratio of V ′
O to VO , which we can express as a reflection

coefficient r, where V ′
O = rVO . In the wave travelling west, the impedances at the two

locations just considered are given by (11); we can write them as ZO and ZB . In
the wave travelling east the impedances can be seen from (11) to be the complex

conjugates of ZO and ZB . (The Hankel function H
(2)
1 from (8) becomes H

(1)
1 = H

(2)
1

and the −i from (10) becomes +i because the acceleration in the direction of wave
propagation is now plus the surface slope times g.) In the region west of section A,
we have only a wave travelling west, and the impedance is given by (11) with the
new parameter k∗ instead of k, and with x = 100 km. We can write this impedance as
Z∗ The sum of the pressures in the two waves immediately east of the transition at
section A can now be equated to that in the single wave immediately west of it. The
latter is obtained from the volume flow rate VO − V ′

O in the westward direction:

VOZO + V ′
OZO = (VO − V ′

O)Z∗, i.e. V ′
O =

Z∗ − ZO

Z∗ + ZO

VO so that r =
Z∗ − ZO

Z∗ + ZO

. (16)

When Z∗ = ZO there is no reflection from the outer boundary, and (16) accordingly
predicts that V ′

O = 0, as expected. We can now find the required wavemaking
impedance Z2 of the barrage, in terms of the reflection coefficient r given by (16).
From (8),

VBZB

VOZO

=
H

(2)
1 (2

√
kxB)

/√
kxB

H
(2)
1 (2

√
kxO)

/√
kxO

and
V ′

BZB

rVOZO

=
H

(1)
1 (2

√
kxB)

/√
kxB

H
(1)
1 (2

√
kxO)

/√
kxO

, (17)

where xO and xB are the x-coordinates of section A and the barrage. Since H
(1)
1 = H

(2)
1

the right-hand sides of these two equations are complex conjugates of each other.
Thus (

VBZB

VOZO

)
=

V ′
BZB

rVOZO

, i.e. V ′
B = VBr

VOVB

(VOVB)
= VBre−i2ωT , (18)

in which we are noting that the argument of VOVB is −ωT , where T is the wave
transit time between the barrage and section A (readily calculated from (8)). We can
thus obtain the wavemaking impedance at the barrage, as the sum of the pressures
divided by the sum of the volume flow rates:

VBZB + VBre−i2ωT ZB

VB − VBre−i2ωT
=

ZB + ZBre−i2ωT

1 − re−i2ωT
. (19)

When r = 0, there is no reflection at the outer boundary, and (19) then predicts that
the wavemaking impedance of the barrage is ZB , as expected. The barrage powers can
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be recalculated using this new wavemaking barrage impedance Z2 – the results are
shown in figure 3. Evidently the changed shape of the estuary west of Taylor’s original
model increases the power considerably, which is to be expected, since the increased
width of the estuary will lower Z2 and thus, from figure 2, increase the power. The
closer the barrage to this increased width, the more pronounced the effect. Thus the
conclusion remains that the power increases steadily as the barrage is moved west –
indeed it now increases more. The question thus arises of the boundary condition even
further out, where the second Taylor profile stops abruptly at the western extremities
of England and Wales. This transition can be treated exactly like the transition at
section A. If the impedance is assumed to halve at this transition, for example, and
the calculations are repeated, the maximum powers in figure 3 all increase, by 1 %
(barrage at section E) to 11 % (barrage at section A). So again the effect is more
pronounced for barrages closer to the transition – it appears that features beyond
the United Kingdom are relevant to the barrages furthest down the Severn estuary.
This supports the practice in the most recent studies (e.g. Burrows et al., in press) of
extending computer models out to the limits of the continental shelf, although the
type of boundary conditions applied there are very important. (Recent studies appear
to be subject to the criticism that the boundary conditions are zero impedance; see the
next section.) The calculations can also be repeated with the delay times tn in figure
1 set to zero, which will remove natural energy dissipation. This is done in figure
3 and reveals that natural energy dissipation is only of minor importance. Finally,
the changes in tidal range produced by the barrage are important. They are readily
calculated from the equivalent circuit in figure 2, using the full expression (19) for
Z2, and are shown in figure 4, on the same horizontal axis as figure 3. Taking into
account the fact that the power peak in figure 3 is further to the left for section C, the
changes to the tidal range are very similar for all barrage locations. With barrages
operated at maximum power, the tidal range is cut to 70 % of its former value east
of the barrage and 90 % of its former value immediately west of the barrage. A very
simple view of the barrage is that (from (9) and (11)) Z2 is small compared with Z1

and RL is small compared with C. From figure 2, the optimum power, as a matter of
elementary electrical engineering, is when RB has the same impedance as C. This is
an existing result in the tidal power literature, due to Garrett and Cummins (2004). It
would reduce the tidal range east of the barrage by a factor

√
2 and leave the range

immediately west of it unaffected because Z2 is small.

7. Previous computations
The question of the optimum position for a barrage in the Severn estuary, from the

power point of view, was studied 30 years ago (see Bondi et al. 1981). The power was
computed with various finite-difference numerical models, some of which extended
out into the Irish Sea. They showed the average power rising strongly from 0.5 to 2.3
GW as the barrage was moved west from Taylor’s section F to section D (Bondi et al.
1981, vol. 1, p. 18). This is similar to the results in figure 3, allowing for conversion
losses. However, very little increase was found for positions further west. By Taylor’s
section C, the power was starting to decline, in marked contrast to the increase seen
in figure 3 – although significant discrepancies were found between computer models
(Bondi et al. 1981, vol. 2, p. 57). We now explore a possible reason for this decline,
which is that all the models simply held the tidal range fixed on the model boundary,
at the same value it would have if the were barrage absent. This was then, and
apparently still is, the usual assumption in tidal modelling (see e.g. Prandle 1980),
although it has been recognized as wrong in principle (Garrett & Greenberg 1977). It
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in the absence of the barrage. The solid lines are with the outer estuary model (§ 6) included.
The dashed lines are without it. The dotted lines are with it included, but with the delay times
tn in figure 1 set to zero, to remove natural energy losses.
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axis and colour coding are the same as figure 3. The dashed lines are east of the barrage, and
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will produce a total reflection of the outgoing tidal wave – it is equivalent to setting
Z∗ in (16) equal to zero. This leads to

V ′
O =

−ZO

ZO

VO, i.e. r =
−ZO

ZO

= −ei2ϕ, (20)

where ϕ = arg(ZO) is the phase advance of pressure over volume flow rate, in an
outward-propagating tidal wave, at the model boundary. For a model boundary at
section A, for example, it can be calculated from (8) as 45.3◦. If we similarly write
θ = arg(ZB), then ZB = ζeiθ , where ζ is real and θ is the phase advance of pressure
over volume flow rate, in an outward-propagating tidal wave, at the barrage. For
a barrage at section E, for example, it can be calculated from (8) as 68.9◦. The
wavemaking impedance Z2 of the barrage (19) thus becomes

ζeiθ − ζe−iθei2ϕe−i2ωT

1 + ei2ϕe−i2ωT
=

ζei(π−θ+2ϕ−2ωT ) + ζeiθ

ei(2ϕ−2ωT ) + 1
. (21)

Since eiX + eiψ = {ei(X−ψ)/2 + e−i(X−ψ)/2}ei(X+ψ)/2 = 2 cos{(X − ψ)/2}ei(X+ψ)/2 this
impedance can be written as

ζ cos{π/2 + (ϕ − θ − ωT )}ei(π/2+ϕ−ωT )

cos(ϕ − ωT )ei(ϕ−ωT )
= iζ

sin(ωT + θ − ϕ)

cos(ωT − ϕ)
. (22)

Thus the wavemaking impedance at the barrage is purely imaginary (i.e. reactive), as
we would expect – the barrage can radiate no wave power because the waves it sends
west are perfectly reflected back by the model boundary. Its amplitude is small if the
model boundary is close to the barrage because then θ and ϕ are nearly equal, and the
phase delay ωT of a tidal wave between the barrage and the model boundary is then
also small. Thus the change in the results will be small because Z2 is small anyway,
as noted at the end of the previous section. However, when the model boundary is
a long way from the barrage, ϕ will be small because the tidal wave at the model
boundary will resemble an open-water wave. Thus when the phase delay ωT reaches
90◦, the denominator in (22) will drop to zero, and the wavemaking impedance of the
barrage will become very large. The power from the barrage will accordingly drop.
This condition requires the transit time T of a tidal wave between the barrage and
the model boundary to be a quarter of the tidal period, or 12.4/4 = 3.1 h. This is a
resonant condition, with the natural sloshing period of the basin between the barrage
and the outer boundary equal to the tidal period. With a mean tidal wave speed of
25 m s−1, say, it corresponds to a distance from the barrage to the outer boundary of
25 × 3600 × 4 = 360 km. This is comparable with the size of the larger models used
by Bondi et al. (1981). It is thus possible that the models used by Bondi et al. (1981)
were giving spurious results due to internal resonances, caused by the incorrect model
boundary condition, in which the tidal range was held at the same value it would have
if the barrage were absent. The appropriate boundary condition is an ‘absorbing’ one,
which does not reflect waves – these are standard in naval architecture and familiar
in physical model testing too, as the beach in a wave tank.

This work was performed under contract to the RSPB, WWF, WWT, the National
Trust and the Wye and Usk Foundation. Equations (7) and (8) are due to F. J. M.
Farley, who kindly reviewed the manuscript. The author had formerly used an
exponential-horn approximation downstream of the barrage, which fits the geometry
of the Severn estuary much less well.
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