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SUMMARY
The dynamic manipulability of a manipulator refers to the capacity to generate accelerations given
the joint torques, which is an important indicator for motion planning and control. In this paper,
the dynamic manipulability analysis is extended to the multi-arm space robot, and further to the
closed-loop system composed of the space robot and the captured target. According to the dynamic
equations, the relation between the joint torques and the end-effector accelerations in the open-loop
space robot and that between the joint torques and the target accelerations in the closed-loop system
are derived. On this basis, the dynamic manipulability factor and dynamic manipulability ellipsoid
are proposed as two tools for the dynamic manipulability measure, where the effects of the bias
acceleration are considered. The influences of dynamic parameters, link lengths, joint variables, and
velocities on the dynamic manipulability measure are mainly studied.

KEYWORDS: Multi-arm space robot; Closed-loop system; Dynamic manipulability factor;
Dynamic manipulability ellipsoid.

1. Introduction
With the development of space technology, more complex space tasks will be carried out in the future.
Space robots can replace astronauts in high-risk space tasks such as capturing failure satellites, trans-
porting and assembling large space aircrafts, and cleaning up space debris, which have attracted the
attention of the world’s major space powers over the past 30 years. A series of studies have been car-
ried out like The Shuttle Remote Manipulator System, Robot Technology Experiment, Engineering
Test Satellite VII, Robonaut, etc.1–5 In view of the above-mentioned facts, an increase in the number
and the capacity of robot applied in space explorations will be a foregone conclusion in the coming
future.6, 7 Free-floating space robot exhibits some special characteristics due to the dynamic coupling
between the space manipulators and the spacecraft (base). Therefore, particular modeling, trajectory
planning and control techniques have to be developed to cope with the dynamic coupling issue of
free-floating space robot.

The manipulability measure is one of the most important indicators for the manipulator. This
concept originally evaluates the mapping from joint velocity to the reference point velocity, that is,
the ability to generate the end-effector velocities given the range of joint velocities,8 which only
involves kinematic parameters of the manipulator, and can be called the kinematic manipulabil-
ity. The kinematic manipulability measure is one of the hot spots in the robot field. Vahrenkamp
et al.9 used manipulability measure to build a quality distribution in workspace. They10 also pro-
posed an extension to the manipulability measure which incorporates constraining factors. Okada and
Tahara11 used manipulability measure to evaluate the output force of the end point of the manipulator.

∗ Corresponding author. E-mail: mwang@nwpu.edu.cn

https://doi.org/10.1017/S0263574720000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000077
https://orcid.org/0000-0003-2063-4054
mailto:mwang@nwpu.edu.cn
https://doi.org/10.1017/S0263574720000077


24 Dynamic manipulability analysis

Tanaka et al.12 proposed a scheme for human force manipulability. The manipulability measure has
also been applied in the field of space robot. Wang et al.13–15 used it as an optimization index and
designed different path planning methods to maximize the end-effector manipulability. Chen and
Qin16 established a cost function measurement of key performance characteristics including manip-
ulability. Yan et al.17, 18 introduced it into control problems. Zhang et al.19, 20 proposed a performance
index based on the manipulability measure to design and choose an optimization configuration for a
dual-arm space robot.

Yoshikawa21 took the dynamics into consideration and proposed the concept of dynamic manip-
ulability for a single fixed-base manipulator, which is defined as the capacity to generate the
end-effector accelerations given the range of joint torques. The DME is proposed to give a mea-
sure of the ability of performing end-effector accelerations in a given posture with the joint torques
constrained to belong to a unit sphere. Chiacchio22 proposed a new definition of DME for redundant
manipulators which leads to more correct results in evaluating manipulator capabilities in terms of
task-space accelerations. Rosenstein and Grupen23 derived the relationship between joint velocity
and end-effector acceleration and explored the dynamic manipulability in motion. Chiacchio et al.24

also introduced the DME for multi-arm systems. For multiple robotic mechanisms in coordinated
manipulation, Lee and Shim25 derived the bounds of task acceleration of object carried by the system.
Yokokohji et al.26 extended the concept of dynamic manipulability to evaluate the dynamic property
of multi-fingered grasping systems consisting of a multi-fingered hand and a grasped object and
explored the effects of internal force. Based on the end-effector manipulability, Cotton et al.27 intro-
duced dynamic manipulability of the center of mass (CoM) for humanoid robots. Gu et al.28 proposed
feasible CoM dynamic manipulability for planar humanoids. Azad et al.29 analysed CoM dynamic
manipulability of floating base robots which have multiple contacts with the environment. In addition,
by combining dynamic manipulability and reconfiguration manipulability, Minami et al.30, 31 defined
the concept of dynamic reconfiguration manipulability, which estimates dynamic ability to change
configuration by using remaining redundancy, while prior task is being controlled. Azad et al.32 stud-
ied the importance of the weighting matrix included in the mapping for dynamic manipulability of
robots.

The aforementioned studies about dynamic manipulability mainly focused on ground manipula-
tor. Due to the space microgravity environment, the base of the space robot can be fixed (equal to
the ground manipulator), controlled (the free-flying mode), or free (the free-floating mode). The last
mode is mainly studied in this paper, which has six more degrees of freedom than the ground manip-
ulator. Unlike the fixed-base robot, a free-floating space robot meets the conservation of momentum,
and the movement of manipulators will alter the base. Compared with a single-arm space robot, a
multi-arm robot has much more dexterity and flexibility and is capable of carrying out more com-
plex tasks. What is more, when a multi-arm space robot captures the target, a closed-loop system
will be formed and its dynamic manipulability measure is more complicated. The study on dynamic
manipulability in above conditions is necessary for the design, planning, and control of space robots.

The main contributions of this paper lie in three aspects: (1) We study the dynamic manipulabil-
ity of the multi-arm space robot and further consider that of a closed-loop system composed of the
space robot and the capture target. (2) The spatial vector theory and the graph theory are used to
model general space robots, while the dynamic manipulability ellipsoid (DME) and dynamic manip-
ulability factor (DMF) based on singular values of the correlation matrices are presented for dynamic
manipulability measure, which take the bias acceleration under the motion state into account. (3) The
effects of mass, link lengths, joint variables, and velocities on the dynamic manipulability are mainly
studied.

The remainder of this paper is organized as follows. In Section 2, we use the spatial vector theory
and the graph theory to model space robots, and the expression of end-effector accelerations about
joint torques in the open-loop space robot and the closed-loop system is derived. Two measuring
tools, DMF and DME, are presented in Section 3. Finally, Section 4 studies the influences of different
factors on dynamic manipulability.

2. Modeling of Space Robots
To derive the kinematic and dynamic equations quickly and express them in a compact form, we use
the 6D vectors called spatial vectors,33, 34 which combine the linear and angular aspects of motions

https://doi.org/10.1017/S0263574720000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000077


Dynamic manipulability analysis 25

and forces. Then, the graph theory is employed to model general multi-arm space robots, where
the connectivity, geometry, and joint model are completely described. The dynamic equations of the
open-loop space robot and the closed-loop system are derived as the basis of dynamic manipulability
measure and analysis.

2.1. Spatial vector theory
The velocity of body B is composed of a linear velocity υO and an angular velocity ω about the axis.
The force acting on body B consists of a linear force f and a couple nO about the axis. The spatial
velocity of body B and the spatial force acting on it can be represented as

V =
[

ω

υO

]
, F =

[
nO

f

]
(1)

A spatial velocity is the combination of angular velocity and linear velocity, while a spatial force is
the combination of couple and linear force.

The matrix EB
A ∈R

3×3 represents a rotation transform for 3D vectors from frame A to B. Let XB
A ∈

R
6×6 and YB

A ∈R
6×6 be the same transforms for spatial motion and spatial force vectors, respectively,

which are related by YB
A = (XB

A)−T. Their forms are

XB
A =

[
EB

A 0

0 EB
A

] [
1 0

−r× 1

]
=

[
EB

A 0

−EB
Ar× EB

A

]
(2)

and

YB
A =

[
EB

A 0

0 EB
A

] [
1 −r×
0 1

]
=

[
EB

A −EB
Ar×

0 EB
A

]
(3)

where 0 and 1 are zero and identity matrix, r× is the cross product operator for r = −→
AB (expressed in

frame A)

r× =
⎡
⎣0 −rz ry

rz 0 −rx

−ry rx 0

⎤
⎦ (4)

The spatial acceleration is the time derivative of its spatial velocity

V̇ =
[

ω̇

υ̇O

]
=

[
ω̇

p̈ − ω × υO

]
(5)

where p is the position of O.
If a body has the mass of m and the inertia of ĪC ∈R

3×3 about its centroid, its spatial inertia
IO ∈R

6×6 about any point O is

IO =
[

ĪC − mc × c× mc×
−mc× m1

]
(6)

where c = −→
OC. The derivative of spatial inertia I is

d

dt
I = V ×∗ I − IV× (7)

where V× and V×∗ represent the cross product operator for spatial velocity and force vectors, whose
forms are

V× =
[

ω× 0

υO× ω×

]
V×∗ =

[
ω× υO×
0 ω×

]
= −(V×)T (8)
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Fig. 1. Two numberings of a simple tree and their corresponding parent arrays.

Fig. 2. Coordinate frames and transforms associated with joint i.

The transform for I from frame A to B is

IB = YB
AIAXA

B (9)

Finally, we can get the equation of motion by differentiating the momentum

F = d

dt
IV = IV̇ + (V ×∗ I − IV×)V = IV̇ + V ×∗ IV (10)

2.2. Kinematic modeling
2.2.1. Connectivity. The connectivity of a robot mechanism can be represented by a kinematic tree,
where the nodes and arcs represent bodies and joints, respectively. An open-loop space robot is
composed of N joints and N + 1 bodies (including N links and the base) and has M manipulators.
The base is assigned the number 0, and the remaining bodies and joints are numbered from 1 to N,
respectively, while confirm that each body has a higher number than its parent, and joint i connects
body i and its parent. As shown in Fig. 1, the numbering for a certain robotic system is not unique.

The connectivity can be described by arrays. Let λ(i) represents the parent of body i, μ(i) is
the set of children of body i, κ(i) is the set of joints on the path between body i and the base,
and ν(i) is the set of bodies in the subtree starting at body i. For the left tree of Fig. 1, we have
λ(1) = 0, μ(1) = {2, 4}, κ(1) = {1}, ν(1) = {1, 2, 3, 4, 5, 6} and so on. In addition, we use ε( j) to
present the end number of the jth manipulator, and ε = {3, 5, 6} for the left tree of Fig. 1.

2.2.2. Geometry. The geometric model of a robot specifies the relative locations of the joints in each
body. As shown in Fig. 2, two coordinate frames are connected by joint i, where the body frame Fi is
fixed in body i, and the transition frame Fλ(i),i is fixed in body λ(i). The base frame F0 is located in
its centroid. An end frame Fe( j) is defined at the end-effector of the jth manipulator. In general, there
are 2N + 1 + M coordinate frames on a space robotic system, consisting of N + 1 body frames, N
transition frames, and M end frames.

https://doi.org/10.1017/S0263574720000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000077


Dynamic manipulability analysis 27

The transform Xi
λ(i) from frame Fλ(i) to Fi can be divided into the transform XT(i) from frame Fλ(i)

to Fλ(i),i, and the transform XJ(i) from frame Fλ(i),i to Fi. Their relationship is Xi
λ(i) = XJ(i)XT(i).

XJ(i) is a function of the joint variable qi. XT(i) depends on the relative posture and position between
Fλ(i) and Fλ(i),i, which is a constant. In addition, the transform XE( j) from end body frame Fε( j) to
the end frame Fe( j) (noticing that they are two different frames) is also a constant.

2.2.3. Joint model. A joint is a kinematic constraint between two bodies, which can be indicated by
the joint subspace Si. The frames Fλ(i),i and Fi have a common z axis, and coincide when qi = 0. For

a revolute (R) joint i, the joint subspace is Si =
[
0 0 1 0 0 0

]T
, meaning that frame Fi can only rotate

relative to frame Fλ(i),i about the common z axis, and qi is the rotation angle. For a prismatic (P) joint

i, the joint subspace is Si =
[
0 0 0 0 0 1

]T
, meaning that frame Fi can only translate relative to frame

Fλ(i),i along the common z axis, and qi is the translation distance.
The velocity of each body (expressed in its body frame) is composed of the velocity transmitted

from the parent body and the joint velocity

Vi = Xi
λ(i)Vλ(i) + Siq̇i (11)

On the basis of Eq. (11), we can get the velocity of each body starting from the base. The end
velocities are derived by

Ve( j) = XE( j)Vε( j)

= XE( j)(Sε( j)q̇ε( j) + Xε( j)
λ(ε( j))Sλ(ε( j))q̇λ(ε( j)) + · · · + Xε( j)

0 V0)

= Xe( j)
0 V0 +

∑
i∈κ(ε( j))

Xe( j)
i Siq̇i

= [
Jeb( j) Jem( j)

] [
V0

q̇

]
= Je( j)ẋ (12)

where ẋ ∈R
6+N is the general velocity of the space robot, and Je( j) ∈R

6×(6+N) is the end Jacobian
for the jth manipulator, which can be lined up as

Ve =

⎡
⎢⎢⎣

Ve(1)

...

Ve(M)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Jeb(1) Jem(1)

...
...

Jeb(M) Jem(M)

⎤
⎥⎥⎦

[
V0

q̇

]
= [

Jeb Jem
] [

V0

q̇

]
= Jeẋ (13)

where Je ∈R
6M×(6+N) is the end Jacobian of the whole robotic system.

In general, the symbols used in this paper are listed in Table I. Without special explanation, the
vectors and matrices related to body i are expressed in frame Fi.

2.3. Dynamic modeling
2.3.1. Dynamic equation of the open-loop space robot. The dynamic equation of a space robotic
system using Lagrangian mechanism can be expressed as follows:

Hẍ + C = T − JT
e Fe (14)

which can be decomposed into the form[
Hb Hbm

HT
bm Hm

] [
V̇0

q̈

]
+

[
Cb

Cm

]
=

[
Fb

τ

]
−

[
JT

eb

JT
em

]
Fe (15)
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Table I. Symbols of the space robotic system.

Symbols Physical meanings

λ(i) Parent of body i
μ(i) Set of children of body i
κ(i) Set of joints that support body i
ν(i) Set of bodies in subtree starting at body i
ε( j) End-effector of the j − th manipulator
αi, βi, γi Euler rotation angles from Fλ(i) to Fλ(i),i

ri Vector from Fλ(i) to Fλ(i),i expressed in Fλ(i)

ci Vector from Fλ(i) to body i’s centroid expressed in Fλ(i)

mi, Īi Mass, rotational inertia about the centroid of body i
Ii, Mi Spatial inertia tensor and momentum of body i
XB

A, YB
A 6 × 6 Transform for spatial motion and spatial force vectors

ωi,υ i,Vi Angular, linear, and spatial velocity of body i
ω̇i,υ̇ i,V̇i Angular, linear, and spatial acceleration of body i
qi, q̇i, q̈i Variable, velocity, and acceleration of joint i
ni,fi,Fi Couple, linear, and spatial force applied to body i
Si, τ i Subspace and torque of joint i
Je, Jeb, Jem Jacobian of end-effectors and its components
Hb, Hm, Hbm Inertia matrix of base and manipulators, the coupling term

H ∈R
(6+N)×(6+N) is the generalized inertia matrix consisting of the base term Hb, the manipulator

term Hm, and the coupling term between base and manipulators Hbm. Their detailed forms are

Hb = I0 +
N∑

k=1

Y0
kIkXk

0

(Hbm)j =
⎛
⎝ ∑

k∈ν( j)

Y0
kIk

⎞
⎠ Xk

j Sj (16)

(Hm)ij = ST
i

⎛
⎝ ∑

k∈ν(i)∩ν( j)

Yi
kIkXk

j

⎞
⎠ Sj

where (Hbm)j is the jth column of Hbm, and (Hm)ij is the ith row and jth column of Hm.
C ∈R

6+N is the generalized bias force consisting of the base term Cb and the manipulator term
Cm. Their detailed forms are

Cb =
N∑

i=1

Y0
i

⎛
⎝Ii

∑
j∈κ(i)

(Xi
jVj × Sjq̇j + Vj ×∗ IjVj)

⎞
⎠

(Cm)i = ST
i

∑
j∈ν(i)

Yi
jIj

∑
k∈κ( j)

(Xj
kVk × Skq̇k + Vk ×∗ IkVk) (17)

where (Cm)i is the ith row of Cm.
T ∈R

6+N is the generalized force exerted on the robotic system consisting of the spatial force
acted on the base Fb (Fb = 0 for a free-floating space robot) and joint torque vector τ . Fe ∈R

6M is
the space forces exerted on the external environment by end-effectors.

2.3.2. Dynamic equation of the closed-loop system. A closed-loop system is formed after a multi-
arm space robot captures the target. The motion equation of the target is

ItV̇t + Vt ×∗ ItVt = JT
t Fe (18)
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where It is the spatial inertia of the target, Vt is the spatial velocity of the target’s centroid, and
Jt ∈R

6M×6 is the target’s Jacobian consisting of transforms from the its centroid to capture points,
which is a constant.

The end-effectors of manipulators coincide with the capture points on the target, meaning that
their velocities are always the same

Jeẋ = JtVt (19)

The time derivative of Eq. (19) gives the relation of accelerations

Jeẍ + J̇eẋ = JtV̇t (20)

Pre-multiplying Eq. (14) by JeH−1, we can obtain

Jeẍ + JeH−1C = JeH−1(T − JT
e Fe) (21)

Substituting Eq. (21) into Eq. (20), we get

JtV̇t + JeH−1JT
e Fe = JeH−1(T − C) + J̇eẋ (22)

Finally, combining Eqs. (18) and (22)

[
It −JT

t

−Jt P

] [
V̇t

Fe

]
=

[−Vt ×∗ ItVt

Q

]
(23)

where P = −JeH−1JT
e , Q = −JeH−1(T − C) − J̇eẋ.

Equation (23) is the closed-loop system dynamic equation, which solves V̇t and Fe, and ẍ can be
obtained by Eq. (14).

3. Dynamic Manipulability Modeling and Measuring
Yoshikawa8, 21 proposed the manipulability measure w = √

det(JJ)T and dynamic manipulability
measure w =

√
det(J(HTH)−1J)T for the fixed-base manipulator. In this section, the dynamic manip-

ulability of the effectors in the open-loop space robot and the target in the closed-loop system are
modeled. To measure the dynamic manipulability, the DME and DMF are proposed and modified
based on dynamic manipulability equations.

3.1. Dynamic manipulability modeling
3.1.1. Dynamic manipulability modeling of the open-loop space robot. The dynamic manipulability
for end-effectors of the open-loop space robot is considered first. For a free-floating space robot,
from Eq. (15), we get [

V̇0

q̈

]
=

[
Hb Hbm

HT
bm Hm

]−1 ([
0
τ

]
−

[
Cb

Cm

])
(24)

where Fb = 0 and Fe = 0. The time derivative of Eq. (13) is

V̇e = [
Jeb Jem

] [
V̇0

q̈

]
+ [

J̇eb J̇em

] [
V0

q̇

]
(25)

Substituting Eq. (25) into Eq. (24)

V̇e = [
Jeb Jem

] [
Hb Hbm

HT
bm Hm

]−1 ([
0
τ

]
−

[
Cb

Cm

])
+ [

J̇eb J̇em

] [
V0

q̇

]
(26)

Here we define the matrix

B =
[

Bb Bbm

BT
bm Bm

]
=

[
Hb Hbm

HT
bm Hm

]−1

(27)
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where

Bb = (
Hb − HbmH−1

m HT
bm

)−1

Bbm = − (
Hb − HbmH−1

m HT
bm

)−1
HbmH−1

m = −BbHbmH−1
m (28)

Bm = H−1
m + H−1

m HT
bmBbHbmH−1

m = H−1
m − H−1

m HT
bmBbm

So we can obtain

V̇e = (JebBbm + JemBm) τ − Jeb (BbCb + BbmCm)

− Jem
(
BT

bmCb + BmCm
) + J̇ebV0 + J̇emq̇ (29)

= Maeτ + be

where Mae = JebBbm + JemBm ∈R
6M×N is the dynamic manipulability matrix of the end-effectors.

be = J̇emq̇ − Jeb(BbCb + BbmCm) − Jem(BT
bmCb + BmCm) + J̇ebV0 ∈R

6M is the bias acceleration
caused by Coriolis and centrifugal forces, which will be zero if the system is at rest.

Equation (29) can be divided into the form of each manipulator⎡
⎢⎣

V̇e(1)

...

V̇e(M)

⎤
⎥⎦ =

⎡
⎢⎣

Mae(1)

...

Mae(M)

⎤
⎥⎦ τ +

⎡
⎢⎣

be(1)

...

be(M)

⎤
⎥⎦ (30)

which also consists of the angular and linear terms

V̇e(i) =
[
ω̇e(i)

υ̇e(i)

]
=

[
Maω

e(i)

Maυ
e(i)

]
τ +

[
bω

e(i)

bυ
e(i)

]
(31)

3.1.2. Dynamic manipulability modeling of the closed-loop system. For the closed-loop system,
starting from Eq. (23) [

V̇t

Fe

]
=

[
It −JT

t

−Jt P

]−1 [−Vt ×∗ ItVt

Q

]
(32)

Defining the matrix

G =
[

Gt Gte

GT
te Ge

]
=

[
It −JT

t

−Jt P

]−1

(33)

where

Gt = (It − JT
t P−1Jt)

−1

Gte = (It − JT
t P−1Jt)

−1JT
t P−1 = GtJT

t P−1 (34)

Ge = P−1 + P−1JtGtJT
t P−1 = P−1 + P−1JtGte

So we can obtain

V̇t = −Gte(JebBbm + JemBm)τ + GteJeb(BbCb + BbmCm)

+ GteJem(BT
bmCb + BmCm) − Gte(J̇ebV0 + J̇emq̇) − GtVt ×∗ ItVt

= −GteMaeτ − Gtebe − GtVt ×∗ ItVt (35)

= Matτ + bt

where Mat = −GteMae ∈R
6×N is the dynamic manipulability matrix of the target. bt = −Gtebe −

GtVt ×∗ ItVt ∈R
6 is the bias acceleration.
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Equation (35) can also be decomposed into angular and linear terms

V̇t =
[
ω̇t

υ̇ t

]
=

[
Maω

t

Maυ
t

]
τ +

[
bω

t

bυ
t

]
(36)

3.2. Dynamic manipulability measuring
3.2.1. Dynamic manipulability ellipsoid. The DME reflects the spatial distribution of dynamic
manipulability. Taking Maω

t as the example, we can get the following expression from Eq. (36):

τ = Maω +
t (ω̇t − bω

t ) (37)

where + represents the pseudo-inverse. The joint torques are normalized as τ = Lτ τ̂ using the
weighting matrix Lτ = diag(|τ1|max, |τ2|max, · · · , |τN |max), and Eq. (37) can be rewritten as

τ̂ = L−1
τ Maω +

t (ω̇t − bω
t ) (38)

If the normalized joint torques satisfy the unit sphere constraint ‖τ̂‖2 ≤ 1, that is, τ̂T
τ̂ ≤ 1, the target’s

angular acceleration will satisfy the constraint

(ω̇t − bω
t )T(Maω +

t )TL−2
τ Maω +

t (ω̇t − bω
t ) ≤ 1

or (ω̇t − bω
t )T(Maω

t L2
τ Maω T

t )−1(ω̇t − bω
t ) ≤ 1 (39)

Eq. (39) expresses a 3-D ellipsoid constraint whose center is located in bω
t , which is called the target

angular DME. The target linear DME and end-effector DME for the open-loop space robot can be
defined in the similar way. The lengths of the three semi-axes of the ellipsoid are in proportion to the
three singular values of Maω

t , whose directions are the same with the corresponding eigenvectors.
If the matrix has less than three nonzero singular values, the ellipsoid will become an ellipse in the
plane or a pair of parallel lines.

The ellipsoidal volume (or the elliptical area) reflects the size of dynamic manipulability measure
if the bias acceleration is omitted. However, the center of DME will deviate from the manipulation
point due to the bias acceleration when the robotic system is moving, which makes the dynamic
manipulability measure reduce in some directions while increase in opposite directions. Most seri-
ously, the manipulation point can fall outside the ellipsoid and lose the ability to accelerate in
most directions. The ellipsoidal volume (or elliptical area) cannot factually measure the dynamic
manipulability under the circumstances.

3.2.2. Dynamic manipulability factor. The DMF considering the bias acceleration is proposed to
compensate the defect of DME. Maω

t is still taken as the example, whose rank is r. Applying the
singular value decomposition to it yields

Maω
t = [

U1 U2
] [

� 0

0 0

] [
VT

1

VT
2

]
(40)

where U1 ∈R
3×r, U2 ∈R

3×(3−r), V1 ∈R
N×r, V2 ∈R

N×(N−r). � = diag(σ1, σ2, · · · , σr) ∈R
r×r is the

diagonal matrix consisting of all nonzero singular values of Coω
bm. The target angular DMF without

offset is defined as

vω
t = σ1(Maω

t )σ2(Maω
t ) · · · σr(Maω

t ) = det((Maω
t )) (41)

When the robotic system is in a static state, the DMF is the product of the three (or less) singular
values of the dynamic manipulability matrix, therefore proportional to the corresponding ellip-
soidal volume (or the elliptic area). As mentioned earlier, it cannot factually reflect the dynamic
manipulability when the bias acceleration exists. So the bias factor is defined

η =
√(

(pω
t )x

σ1

)2

+
(

(pω
t )y

σ2

)2

+
(

(pω
t )z

σ3

)2

(42)
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Table II. Kinematic and dynamic parameters of the dual-arm space robot.

Number 0 1 2 3 4 5 6 e(1) e(2)

λ(i) – 0 1 2 0 4 5 – –
The end No No No Yes No No Yes – –
Joint type – R R R R R R – –
mi, kg 100 10 10 10 10 10 10 – –
Īxx, kg · m2 10 1 1 1 1 1 1 – –
Īyy, kg · m2 10 1 0.1 0.1 1 0.1 0.1 – –
Īzz, kg · m2 10 0.1 1 1 0.1 1 1 – –
αi, rad – 0 0 0 0 0 0 0 0
βi, rad – 0 0 0 0 0 0 0 0
γi, rad – 0 0 0 0 0 0 0 0
rx, m – 0 0 0 0 0 0 0 0
ry, m – −1 −1 −1 1 1 1 −1 1
rz, m – 0 0 0 0 0 0 0 0
cx, m 0 0 0 0 0 0 0 – –
cy, m 0 −0.5 −0.5 −0.5 0.5 0.5 0.5 – –
cz, m 0 0 0 0 0 0 0 – –

where pω
t = U−1bω

t is the bias acceleration in the ellipsoidal frame. If Maω
t is rank deficit, we can

only take the first two or one terms. η measures the offset between the ellipsoidal origin and the
manipulation point. The relationship between η and the position of the manipulation point is

η

⎧⎪⎨
⎪⎩

< 1, the manipulation point is inside the ellipsoid
= 1, the manipulation point is on the edge
> 1, the manipulation point is outside the ellipsoid

(43)

when η ≥ 1, the manipulation point is not inside the ellipsoid and the dynamic manipulability is lost.
The new DMF considering the offset is defined as

vω
t =

{
(1 − η) det((Maω

t )), η < 1
0, η ≥ 1

(44)

The DMF for other cases can be defined similarly.

4. Dynamic Manipulability Simulation and Analysis
In this section, the rigid bodies of robotic system are assumed to be resting firstly, that is, the bias
acceleration is ignored, where the effects of dynamic parameters, link lengths, and joint configura-
tions are considered. Then the effects of joint velocities on the dynamic manipulability measure are
explored.

4.1. Dynamic manipulability without bias acceleration
4.1.1. Effects of mass. The dynamic manipulability of the open-loop space robot is considered first.
Table II presents the initial kinematic and dynamic parameters of a dual-arm space robot, where 0 is
the base and e(1) and e(2) represent the two end-effectors. All vectors and matrices are expressed in
their fixed body frame, noticing that the Euler angles and ri are fixed with body λ(i) rather than body
i. The schematic of the robotic system is shown in Fig. 3.

To analyze the effects of each body’s mass on the dynamic manipulability, we view them as inde-
pendent variables and let them increase from 1 to 100 kg, respectively (the rotational inertia increases
in the same proportion), while the mass of other bodies stays the same. The DMFs are used as depen-
dent variables. Two joint configurations (1) Case 1: q = [−π/6, −π/3, −π/3, π/6, π/3, π/3]T and
(2) Case 2: q = [π/6, −2π/3, −π/3, −π/6, 2π/3, π/3]T are set here. The space robot is moving
in the plane, and the base has an angular and two linear degrees of freedom. Since the joint con-
figuration is symmetrical, we just investigate the left arm’s dynamic manipulability. The simulation
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The open-loop space robot before capture The closed-loop system after capture

(b)(a)

Fig. 3. Schematic of a free-floating dual-arm space robotic system.
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Fig. 4. Left-end DMFs for the open-loop space robot with respect to mass.

results are shown in Fig. 4. The increase of the mass of rigid bodies reduces the end-effector dynamic
manipulability to varying degrees, while the DMFs are most sensitive to the mass change of link 3.

Above methods are promoted to the closed-loop system. The model is composed of the dual-arm
space robot and a captured target whose mass mt and rotational inertia Īt change in the same way.
As shown in Fig. 3, the target frame is in the same direction as the space robot base frame, and
the distances from the two capture points are 1 m. Figure 5 shows the simulation results for two
joint configuration cases. The target DMFs are negatively correlated with the mass of all rigid bodies
besides link 1. The target angular DMF increases with the increase of m1 at first, and the tendency to
decrease appears when m1 ≥ 40 kg.
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Fig. 5. Target DMFs for the closed-loop system with respect to mass.
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Fig. 6. Left-end DMEs for the open-loop space robot with respect to mass.

The spatial distribution of dynamic manipulability can be further illustrated by DMEs. Since the
base moves in the plane, we only consider the linear DMEs here. The weighting matrix is Lτ =
diag(50, 25, 10, 50, 25, 10). The simulation results for the open-loop space robot is shown in Fig. 6,
which are expressed in the base coordinate frame. The mass of the base and each link of the left arm
increases to 100 kg successively and is compared with the initial mass configuration where the mass
of each body is 10 kg. The increase of mass for all rigid bodies makes the elliptical directions biased
toward corresponding bodies. When the mass of link 1 increases to 100 kg, the corresponding linear
DMEs are not much changed from the initial mass configuration in area. The DMEs corresponding to
other conditions are smaller than the initial condition, where the DMEs for m3 = 100 kg are smallest,
which are consistent with preceding DMF analysis. The dynamic manipulability along the tangential
direction is much larger than that along the normal direction in all conditions.

As for the closed-loop system under the same joint configurations, the mass of the base, each link
of the left arm, and target is increased to 100 kg in order, the corresponding DMEs are compared with
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Fig. 7. Target DMEs for the closed-loop system with respect to mass.

the initial mass configuration. The simulation results are shown in Fig. 7, which are also expressed
in the base coordinate frame. The mass changes of the base and target have no effect on the elliptical
directions, while those of the left arm bodies make the elliptical directions biased. The elliptical areas
reduce when the mass of all bodies increases, and the closer the body to the target, the smaller the
DME is.

Overall, above simulations for the open-loop and closed-loop systems show that the dynamic
manipulability is negatively correlated with the mass of rigid bodies in most cases. From this point
of view, the weight of links close to the end should be lighten to increase its dynamic manipulability
when designing dynamics parameters. However, the end links ought to have a certain weight to avoid
damage during tasks. Both sides should be considered in practice.

4.1.2. Effects of link lengths. The dynamic manipulability is also affected by kinematic param-
eters like the lengths of links. In the previous study, the link lengths are unified as 1 m, and
we will investigate the effects of link lengths in this subsection. The simulation methods of the
open-loop space robot are similar to those for the open-loop space robot in the last subsec-
tion, where the variation tendency of DMFs with the change of link lengths will be viewed.
The mass and inertia of all bodies remain unchanged as Table II, and the length of each link
increases from 0.1 to 10 m, while its CoM is always located in the midpoint of the link. Two
joint configurations (1) Case 1: q = [−π/6, −π/3, −π/3, π/6, π/3, π/3]T and (2) Case 2: q =
[π/6, −2π/3, −π/3, −π/6, 2π/3, π/3]T are considered here. The simulation results are shown in
Fig. 8. It can be seen that the DMFs decrease as the links lengthen on the whole, while it may slightly
increase when the links are very short.

Based on the above performance, the dynamic manipulability degrees decline rapidly with respect
to the length of links. It is unfavorable to be too long when designing kinematic parameters. However,
the links also should not be too short to ensure adequate workspace.

4.1.3. Effects of joint variables. In this subsection, the joint variables are viewed as independent
variable to study their effects on the dynamic manipulability. The dynamic manipulability char-
acteristic can behave specially when the system is near a singular configuration, for example, the
manipulators are outstretched or contracted. They are difficult to move in some directions under
these circumstances. To view the performance of dynamic manipulability near the singular configu-
ration, we use the open-loop space robot in Table II and observe the DMFs with respect to the change
of q2 and q3, respectively, while other joint variables remain zero. The results are shown in Fig. 9.
The angular DMFs rise rapidly to its maximum values when q2 or q3 is near 0◦ or 180◦ (the manipu-
lator is outstretched or contracted), while drops rapidly to the minimum values when q2 or q3 is near
90◦ or 270◦. The variation tendency of the linear DMFs is completely opposite, which drop very fast
to zero when the robotic system is very close to the singular configuration.

According to the definition of the correlation matrices, let each joint variable changes from 0◦ to
360◦ successively, and the DMFs under all joint variable combinations are obtained. On this basis,
we can draw DMF maps which can visually reflect the dynamic manipulability under different joint
variables. Since the number of joint variables combinations is too large for a high-degree system
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Table III. Kinematic and dynamic parameters of the single-arm space robot.

Number 0 1 2 e

λ(i) – 0 1 –
The end No No Yes –
Joint type – R R –
mi, kg 10 10 10 –
Īi, kg · m2 diag(1,1,1) diag(1,1,0.1) diag(1,0.1,1) –
αi, βi, γi, rad –

[
0 0 0

]T [
0 0 0

]T [
0 0 0

]T

ri, m –
[
0 1 0

]T [
0 1 0

]T [
0 1 0

]T

ci, m –
[
0 0.5 0

]T [
0 0.5 0

]T [
0 0.5 0

]T

(a) (b)

(c) (d)

Fig. 8. Left end DMFs for the open-loop space robot with respect to link lengths.

(link number is three or more), here we use a two-link single-arm space robot as the research model
for simplicity, whose parameters are shown in Table III.

The DMF maps are shown in Figs. 10 and 11, where the mass of each body increases to 100 kg,
and maps under different mass configurations are compared. It is shown that the increase in mass
makes DMFs reduce in varying degrees, where DMFs for the condition of m2 = 100 kg are much
lower than the original state, which is consistent with foregoing research. Noticing that when q2 is
around 0◦ or 360◦, that is, the manipulator is outstretched, the end-effector’s angular DMFs are much
larger, while its linear DMFs are much smaller than other regions. For the area where q2 is around
180◦, that is, the manipulator is constrictive, both the angular and linear DMFs are lower.

The DMF maps under all joint variables have great significance for the trajectory planning of free-
floating space robots. From which we can visually see the joint variable area of large or small DMFs,
and let the manipulator move along the paths with larger DMF. As for systems with high degrees of
freedom, the DMF maps associated with joint variables are difficult to get, while the DMF can still be
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Fig. 9. Left-end DMFs for the open-loop space robot with respect to joint variables.
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Fig. 10. End angular DMF maps under different mass configurations.
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Fig. 11. End linear DMF maps under different mass configurations.

used as an optimization index to maximize the manipulator’s performance. The trajectory planning
problem can be stated as the following optimization problem under a list of inequality constraints
gi(q) and equality constraints hi(q):

maximize :ve(q) or vt(q)

subject to : gi(q) < 0, i = 1, 2, · · · , nieq (45)

hi(q) = 0, i = 1, 2, · · · , neq

4.2. Dynamic manipulability with bias acceleration
When the manipulators move, the manipulation point will obtain different dynamic manipulability in
opposite directions due to the bias acceleration, which depends on joint velocities. According to the
definition of bias acceleration, it has a quadratic relationship with joint velocities. Firstly, the effects
of joint velocities on DMFs are investigated. For the dual-arm space robot in Table II, the simulation
results for the changes of left-end DMFs with joint velocities under different mass configurations are
shown in Fig. 12. It can be seen that the DMFs decline quadratically with joint velocities. Noticing
that the stationary DMFs on the conditions of m0 = 100 kg and m1 = 100 kg are larger, but fall faster
with the increase of joint velocities. On the contrary, the DMFs for m2 = 100 kg and m3 = 100 kg are
lower in a static state but decline slower with joint velocities.

The effects of bias accelerations can be further illustrated by DMEs. The simulation results for the
left-end DMEs under different mass configurations are shown in Fig. 13, where all joint velocities
qi, i = 1, · · · , N are 1 rad/s. The arrows represent the bias acceleration vectors from the manipula-
tion point to ellipsoidal centers, which are also expressed in the base frame. Compare it to Fig. 6,
almost all DMEs are completely deviated from the manipulation point, meaning that it cannot be
accelerated in most directions. The DMEs for m0 = 100 kg and m1 = 100 kg are larger but have far-
ther deviation distance. Meanwhile, those for m2 = 100 kg and m3 = 100 kg are smaller but closer to
the manipulation point, which confirms the previous results.
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Fig. 12. Left-end DMFs for the open-loop space robot with joint velocities.
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Fig. 13. Left-end DMEs for the open-loop space robot when joint velocities are 1 rad/s.

5. Conclusions
The dynamic manipulability is one of the most important indicators for the manipulator. Previous
studies have mainly focused on the ground fixed-base manipulator, while that for the space robot has
not been investigated. The main features of this paper can be listed as follows:

1. The dynamic manipulability of the open-loop multi-arm space robot is studied and further
expanded to its combined closed-loop system with the captured target.

2. The spatial vector theory and the graph theory are used to model general space robots, which
are appropriate for a serial space robot with arbitrary configuration. On the basis of dynamic
manipulability modeling, the DME and DMF considering bias accelerations are proposed as two
indicators for dynamic manipulability measure.
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3. For the open-loop space robot and the closed-loop system under static state, the effects of dynamic
parameters, link lengths, and joint variables are mainly studied using above indicators. Then, the
effects of joint velocities are explored taking the bias acceleration into account.

The results can be used as an important reference for the dynamics parameters design and
trajectory planning. Joint trajectories with higher dynamic manipulability can be chosen for a
single manipulator through the DMF maps. As for high-degree systems, the proposed dynamic
manipulability measure can be used as an optimization index, which will be one of our future work.
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