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We consider the problem of hypothesis testing in a modified version of the sto-
chastic integration and cointegration framework of Harris, McCabe, and Ley-
bourne ~2002, Journal of Econometrics 111, 363–384!+ This nonlinear setup allows
for volatility in excess of that catered for by the standard integration0cointegration
paradigm through the introduction of nonstationary heteroskedasticity+ We pro-
pose a test for stochastic cointegration against the alternative of no cointegration
and a secondary test for stationary cointegration against the heteroskedastic alter-
native+ Asymptotic distributions of these tests under their respective null hypoth-
eses are derived, and consistency under their respective alternatives is established+
Monte Carlo evidence suggests that the tests will perform well in practice+ An
empirical application to the term structure of interest rates is also given+

1. INTRODUCTION

The cointegration framework of Engle and Granger ~1987! is characterized by
two widely held stylized empirical facts+ The first is that, of the set of eco-
nomic time series that exhibit trending behavior, many are adequately modeled
by processes that are integrated, usually of order one, I ~1!+ The second is that,
despite this trending behavior, such series often tend to comove over time accord-
ing to a stationary, or I ~0!, process; that is, they are cointegrated+ Many empir-
ical tests of important economic hypotheses are carried out within the Engle
and Granger framework, for example, the relationship between long-run and
short-run interest rates—the term structure+ The Engle and Granger approach
has, perhaps surprisingly, however, uncovered only very limited empirical evi-
dence in support of the term structure ~see Campbell and Shiller, 1987!+ An
explanation often put forward for this is that bond market series tend to be too
volatile to be compatible with the I ~1!0I ~0! framework+ That is, the individual
series often appear visually to be more volatile, or less smooth, than would be
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consistent with I ~1! and when comovements between series are analyzed ~most
simply by examining the spreads! these also tend to display periods of volatil-
ity in excess of that typically associated with stationary behavior+ In the words
of Campbell and Shiller, the spreads tend to “move too much+”

One possible approach to dealing with the presence of extra volatility is within
the stochastic integration and cointegration framework of Harris, McCabe, and
Leybourne ~2002!+ Here, the restrictive stationarity requirement of first differ-
ences of individual series and cointegrating error terms of the Engle and Granger
~1987! setup is replaced with a looser condition that these are stochastically
trendless; that is, they are simply free of I ~1! stochastic trends+ This notion, of
course, encompasses the Engle and Granger setup as a special case+We outline
this framework in Section 2+

In Section 3 we turn to the issue of hypothesis testing in a regression model
representation+ The central hypothesis of interest is whether series are stochas-
tically cointegrated ~either stationary or heteroskedastic!, or not cointegrated+We
suggest a residual-based statistic to test the null of stochastic cointegration+
Within stochastic cointegration, we also consider the hypothesis that the cointe-
gration is stationary against the alternative that it is nonstationary heteroskedas-
tic, and we suggest a second statistic to test this+Moreover, when applied to first
differences of an individual series, this same statistic can also be used to test
the null of I ~1! against heteroskedastic integration+ The asymptotic null distri-
butions of these two test statistics are derived under weak regularity conditions+
Both are shown to have normal limit distributions that, unlike most cointegra-
tion tests, do not depend on the number of regressors involved+ Their consis-
tency properties under associated alternative hypotheses are also established+

Some Monte Carlo studies that examine the finite-sample size and power
characteristics of the new tests, along with those of their conventional counter-
parts, are provided in Section 4+ These highlight clearly the benefits to be gained
by adopting the new test procedures, together with the shortcomings of using
conventional ones, in the stochastic cointegration framework+ Finally, in Sec-
tion 5 we apply our tests to bond market data from several major economies+
Our new testing framework uncovers supporting evidence in favor of the term
structure in the bond market, in the same situation where conventional tests
yield inconsistent results+ Notably, for all the interest rate series we consider
here, we conclude they are better modeled by heteroskedastically integrated,
rather than I ~1!, processes+

2. STOCHASTIC INTEGRATION AND COINTEGRATION

We first consider a variant of the model introduced in Harris et al+ ~2002!:

zt � m� dt �Pwt � «t � Vt ht , (1)

wt � wt�1 � ht ,

ht � ht�1 � yt
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for t � 1, + + + ,T+ Here zt , m, d, and, «t are m � 1 vectors; wt and ht are n � 1
vectors; ht and yt are p � 1 vectors; P and Vt are m � n and m � p matrices,
respectively+ Only the process zt is observed+ The disturbances «t, ht , yt , and
Vt are mean zero stationary processes, which may be correlated with one another;
wt and ht are vectors of integrated processes+ So, apart from deterministics, zt

consists of an integrated component, Pwt , together with a shock term, «t �
Vt ht + This latter term has a linear component, «t, and a nonlinear component
Vt ht that is nonstationary heteroskedastic through its dependence on the I ~1!
process ht + Note that it is entirely possible throughout our analysis that wt and
ht contain identical processes, though we do not enforce this restriction+1

As regards the statistical properties of the disturbance terms in ~1!, we make
the following linear process assumption+ This allows for general forms of serial
correlation, cross-correlation, and endogeneity+

Assumption LP+ Let zt � @yt
' ,vec~Vt !

',ht
' ,«t
'# ' be generated by the vector

linear process zt � (j�0
` Cj jt�j , where

1+ (j�0
` j7Cj7 � ` with C0 having full rank+2

2+ jt is an independent and identically distributed ~i+i+d+! sequence+
3+ E~jt jt

'! � I+
4+ For all i, E~jit

16! is bounded+

To examine the properties of the model more clearly, we make the tempo-
rary simplifying assumption that m � d � 0+ Next, let ei be an m � 1 vector
with 1 in its ith position and 0 elsewhere, so that ei

'zt � zit , the ith element of
the vector zt + Then, from ~1!, we have

zit � ei
'Pwt � ei

'~«t � Vt ht !,

and if ei
'P � 0 then zit is said to stochastically integrated. If, in addition,

ei
'E~Vt V t

' !ei � 0, zit is said to be heteroskedastically integrated ~HI ! due to
the term ei

'Vt ht , whereas if ei
'Vt � 0 then zit is simply I ~1!+ So, a stochastically

integrated variable encompasses both ordinary and heteroskedastic integration+
To model linear relationships between the variables in zt , let c be a nonzero

m � 1 vector and consider

c'zt � c'Pwt � c'~«t � Vt ht !+

If c'P � 0 then the variables of zt are said to be stochastically cointegrated+
Under stochastic cointegration c'zt � c'~«t � Vt ht ! behaves like a stochasti-
cally integrated process net of its stochastic trend component, and we refer to
such a process as being stochastically trendless+3 This terminology is adopted
because, under Assumption LP, we can show that as s r ` ~with t fixed!

E~«t�s � Vt�s ht�s 6�t !� E~«t�s � Vt�s ht�s !
p
&& 0+

RESIDUAL-BASED TEST FOR STOCHASTIC COINTEGRATION 431

https://doi.org/10.1017/S026646660606021X Published online by Cambridge University Press

https://doi.org/10.1017/S026646660606021X


In other words, the behavior of the process up to time t has a negligible effect
on its behavior into the infinite future+4 Therefore, even though the distur-
bances yt have an infinitely persistent effect on ht�s, their effect on the level of
Vt�sht�s is only transitory+ This implies that the product process Vt ht is sto-
chastically trendless, even if Vt is correlated with yt + Although it is the case
that Vt ht is nonstationary heteroskedastic, as it can be shown to exhibit a linear
trend in variance, it is the stochastically trendless nature of c'zt � c'~«t � Vt ht !
that bestows meaning to comovement of a nonstationary heteroskedastic kind+

When c'E~Vt V t
' !c � 0, then c'zt � c'«t is stationary+ If, in addition, Vt � 0,

the variables are all integrated and cointegrated in the standard Engle and
Granger ~1987! sense+ Because of the stationary behavior of c'zt in either case,
we simply refer to this as stationary cointegration. When c'E~Vt V t

' !c � 0, the
variables zt are said to be heteroskedastically cointegrated+ Thus, stochastic
cointegration encompasses both stationary cointegration ~possibly of the Engle
and Granger kind! and heteroskedastic cointegration+

To further position our concept of heteroskedastic cointegration, note that
I ~1!, HI, and the closely related stochastic unit root processes all share the prop-
erties of having trends in their variances although not being stochastic trendless+5

When these models of nonstationarity are extended to the multivariate cointe-
gration setting, standard cointegration implies that a certain linear combination
of the series becomes stochastically trendless and any trend in variance is
removed+ Hence, our definition of heteroskedastic cointegration effectively pro-
vides a halfway point to standard cointegration, because the linear combination
becomes stochastically trendless, yet the trend in variance remains+

3. HYPOTHESIS TESTS AND TEST STATISTICS

Our primary goal is to determine if the system is stochastically cointegrated+
This null, and the alternative of noncointegration, may be stated as H 0 : c'P �
0 and H 1 : c'P � 0+ Within stochastic cointegration, we may wish to know
whether stationary or heteroskedastic cointegration pertains+ The null of station-
ary cointegration against the heteroskedastic alternative may be tested by par-
titioning H 0 as H0

0 : c'E~Vt Vt
'!c � 0 and H1

0 : c'E~Vt Vt
'!c � 0+

It proves convenient to interpret these hypotheses within a regression model+
Partition zt into a scalar yt and an ~m � 1! � 1 vector x t as zt � @ yt ,x t

'# ' + Then
partitioning ~1! conformably, and rearranging, we obtain

�yt

x t
� � �my

mx
���dy

dx
� t ��py

'

Px
�wt ��«yt

«xt
���nyt

'

Vxt
�ht , (2)

where yt , my, dy, and «yt are scalars, x t , mx , dx , and «xt are ~m � 1! � 1 vectors,
and py

' and nyt
' are 1 � n and 1 � p vectors, respectively, whereas Px and Vxt
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are ~m � 1! � n and ~m � 1! � p matrices+ Letting c � @1,�b ' # ' , a �
my � b 'mx , k� dy � b 'dx , et � «yt � b '«xt � c'«t , q' � py

' � b 'Px � c'P, and
nt
' � nyt

' � b 'Vxt � c'Vt , then we have

yt � a� kt � x t
'b� ut , (3)

ut � et � q'wt � nt
'ht + (4)

Thus, the regression error term ut is composed of the stationary term et , the
integrated term q'wt , and the heteroskedastic component nt

'ht + Note that ut

need not have zero mean, so that a is not an intercept in the usual sense+ In the
regression framework we assume that there is only one cointegrating vector, so
that rank~Px ! � m � 1, which imposes the restriction that n � m � 1+ This
implies that further subrelationships among the x t variables in ~3! are excluded+6

The null hypothesis of stochastic cointegration against the alternative of non-
cointegration can now be expressed via ~3! as H 0 : q � 0 and H 1 :
q � 0+ Within H 0 , the null hypothesis of stationary cointegration against the
heteroskedastic alternative is H0

0 : E~nt
'nt ! � 0 against H1

0 : E~nt
'nt ! � 0+

For later use, we also define the lag covariances for an arbitrary process
$at % by

gj ~at ! � T �1 (
s�j�1

T

as as�j

and define a heteroskedasticity and autocorrelation consistent ~HAC! estimator
of the long-run variance ~LRV! by

v2~at ! � g0~at !� 2(
j�1

l

l~ j0l !gj ~at !, (5)

where l~+! is a window with lag truncation parameter l+ We also assume that
Assumption KN, which follows, holds+

Assumption KN ~Kernel and lag length!+

1+ l~0! � 1+
2+ 0 � l~x! � 1 for 0 � x � 1+
3+ l~x! is continuous and of bounded variation on @0,1# +
4+ l r ` as T r `+

3.1. Testing H 0 against H 1

To test stochastic cointegration against noncointegration we need to test whether
q � 0 in

ut � et � q'wt � nt
'ht +
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Here, the null hypothesis is composite, encompassing both stationary and het-
eroskedastic cointegration; whereas the alternative is I ~1! or heteroskedastic
integration+ Because of the level of generality being entertained it is, however,
not clear as to how to construct an optimal test statistic with a tractable limit
distribution ~even if we restrict ourselves to making Gaussian i+i+d+ assump-
tions about the distributions of the unobserved variables!+ These complications
lead us to examine instead a simple statistic for which we can at least deter-
mine a limiting null distribution free of nuisance parameters and also establish
consistency+ To this end, we consider

Snc � (
t�k�1

T

ut ut�k + (6)

In the situation where all the disturbance terms are i+i+d+, Snc with k � 1 would
test for zero autocorrelation in ut against the correlation induced by the I ~1!
term q'wt + When the disturbance terms are not i+i+d+, Snc needs to be modified
to eliminate nuisance parameter dependence resulting from autocorrelation and
also from the presence of nt

'ht + This is accomplished by allowing k to increase
with T+7 Under the cointegrating null, H 0 , the statistic Snc ~when standardized
with a HAC variance estimator! is asymptotically N~0,1! and is consistent under
the alternative of no cointegration, H 1 + This is the content of Theorem 1, which
follows+ Because of the linear process representation, letting k become large
eliminates correlation between ut and ut�k under H 0 , whereas the HAC vari-
ance estimator takes care of the term nt

'ht +8 Under H 1 , because of the presence
of the I ~1! term q'wt , letting k grow does not eliminate correlation between ut

and ut�k+ This distinction is the source of consistency of the test+
Because yt and x t are observed, we estimate b � @a,k,b '# ' of ~3! by means

of the estimator Zbk � @ [ak , [kk , Zbk
' # ' given by

Zbk � � (
t�k�1

T

Xt�k Xt
'��1

(
t�k�1

T

Xt�k yt , (7)

where Xt � @1, t,x t
'# ' + This estimator, described in Harris et al+ ~2002!, is called

an asymptotic instrumental variables estimator ~AIV!+ Under H 0, a minor mod-
ification of the proof of Harris et al+ ~2002! shows that Zbk is consistent as k and
T r `, in contrast to the ordinary least squares ~OLS! estimator, which is not
consistent under heteroskedastic cointegration unless x t consists entirely of I ~1!
processes+ We now construct ~6! using the AIV residuals:

[ut � yt � [ak � [kk t � x t
' Zbk + (8)

We then have the following result+

THEOREM 1+ Assume that the model (3), Assumption LP, and Assumption
KN hold. If k � O~T 102! , l � o~k! , and l � k, then
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(i) under H 0;

ZSnc �

T �102 (
t�k�1

T

[ut [ut�k

Mv2~ [ut [ut�k !

d
&& N~0,1!;

(ii) under H 1, the distribution of 6 ZSnc6 diverges as T r `.

Here [ut is defined in (8) using (7); v2~+! is defined in (5).

The first part of this theorem states that a properly standardized statistic, ZSnc,
is asymptotically normal under stationary cointegration ~which includes Engle
and Granger cointegration! and also under heteroskedastic cointegration; the
second part shows that the test is consistent under H 1 + The same results arise if
linear trends are excluded from ~3! and the fitted model+

3.2. Testing H0
0 against H1

0

In decomposing the composite hypothesis H 0 into the null of stationary co-
integration against the heteroskedastic alternative, we need to test whether
E~nt

'nt ! � 0 in ~4!, maintaining q � 0+ Under the temporary assumption that
et , nt , ht, and yt , are all jointly Gaussian i+i+d+ and uncorrelated with each other,
it follows from a straightforward application of McCabe and Leybourne ~2000!
that a locally most powerful test of H0

0 against H1
0 is given by

Shc � (
t�1

T

tut
2 + (9)

We then have the following result+

THEOREM 2+ Under the conditions of Theorem 1,

(i) under H0
0 ,

ZShc � ~1012!102
T �302(

t�1

T

t~ [ut
2 � [su

2!

Mv2~ [ut
2 � [su

2!

d
&& N~0,1!;

(ii) under H1
0 , the distribution of 6 ZShc6 diverges as T r `.

Here [su
2 � T �1(t�1

T [ut
2; v2~+! is defined in (5).

Notice that ZShc is calculated using [ut
2 � [su

2 , rather than simply [ut
2 , as ~9!

might suggest+ This alteration is needed to center the statistic and render it invari-
ant to the variance of ut under H0

0+
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The structure of Shc can also be used to test the null of I ~1! against the alter-
native of HI for any given individual series by simply constructing ZShc by rede-
fining [ut as [ut � Dyt � Zdy where Zdy is an estimator of the trend coefficient dy

given by Zdy � T �1(t�1
T Dyt +We denote this statistic ZShi + It is a straightforward

special case of our results to show that ZShi
d
&& N~0,1! if yt is I ~1! and 6 ZShi 6

diverges if yt is HI+ The same results arise if linear trends are excluded from
~3!, in which case [ut � Dyt +9

4. SIMULATION RESULTS

In this section we investigate, via Monte Carlo simulation, the finite-sample
behavior of our new tests, comparing these with tests applied assuming the con-
ventional paradigm+ To test for the null of conventional cointegration we apply
the Shin ~1994! adaptation of the Kwiatkowski et al+ ~1992! ~KPSS! stationar-
ity test+ This test uses an efficient OLS estimator in which @T 104# ~@+# denoting
the integer part! lead and lag terms in Dx t are added into the regression equa-
tion of yt on x t ; see Saikkonen ~1991! for details+ We denote this test Kc+ The
tests ZSnc, ZShc, ZShi , and Kc all require the use of a kernel and a lag truncation
parameter in their respective variance estimators+ For all tests we use the Bart-
lett kernel for l~+!+ As regards choice of l, we allow two schemes+ The first
simply fixes l � @12~T0100!104# , which is a fairly mainstream choice in the
literature, whereas the second is the automatic data-dependent selection method
of Newey and West ~1994!+10 Here we enforce the restriction that, for our new
tests, l � k when l is chosen automatically+ Regarding the choice of k, we wish
to avoid choosing k in a data-dependent manner as the O~T 102! rate is designed
to deal with all processes covered by Assumption LP+ Of course, O~T 102! is
not uniquely defined, and so different possibilities need to be considered+ Here
we examine three candidates+ These are k � @0+75T 102# , @T 102# , and @1+25T 102# +
Although not exhaustive, these choices nonetheless prove sufficient for us to
gauge the finite-sample influence of different values of k and also for us to
recommend a value for use in practice+

The simulation model we examine is ~2! with m � n � p � 2+ Specifically,
our data-generating process is

�yt

xt
� � �1 0

1 d1
��w1t

w2 t
���«yt

«xt
���nyt 0

0 nxt
��h1t

h2 t
� , (10)

and the stochastic processes of ~10! are generated according to

«yt � f«, y«yt�1 � e1t , «xt � f«, x «xt�1 � e2 t ,

nyt � fv, ynyt�1 � d2 e3t , nxt � fv, x nxt�1 � d3 e4t ,

Dw1t � e5t , Dw2 t � e6t ,

Dh1t � e7t , Dh2 t � e8t
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with ~e1t , e2t , e3t , e4t , e5t , e6t , e7t , e8t !
' a multivariate standard normal white noise

process+ Here the di , i � 1,2,3 are constants+ Within this setup, if d1 � d2 �
d3 � 0, then H0

0 is true and stationary cointegration between two I ~1! series
pertains, whereas if d1 � 0, H 1 is true and yt and xt are not cointegrated in any
sense ~irrespective of the status of d2 and d3!+ If d1 � 0 with d2 � 0 and0or
d3 � 0, there is heteroskedastic cointegration+ This may exist either between
two HI series ~d2 � 0 and d3 � 0! or between an I ~1! and HI series ~e+g+, d2 � 0
and d3 � 0!+ The model is generated over t � �99, + + + ,0,1, + + + ,T, with the first
100 startup values discarded+ We consider sample sizes of T � 200,400,600,
and the number of replications for all experiments is 10,000+ Table entries rep-
resent empirical rejection frequencies of the various tests, based on regressions
allowing constants but not trends, at the nominal asymptotic 0+05 level ~these
being two-tailed tests in the case of ZShi , ZSnc, and ZShc!+ For brevity, we only
report results for the ZShi tests applied to yt + In terms of notation in the tables, if
fi, j is not explicitly given, its value is set to zero+ Variants of the tests based on
the automatic lag selection are superscripted with an a+

In Table 1 we have d1 � d2 � d3 � 0 throughout, so that H0
0 is true—

stationary cointegration between two I ~1! series+ The ZShi test has near nominal
size, indicating that I ~1! rather than HI series are present, and any additional
serial correlation in the form of nonzero values of f«, y clearly has little effect
on its size+ As regards the test ZSnc, its size is well controlled apart from when
f«, y � 0+9 and f«, y � f«, x � 0+9+ Here, when k � @0+75T 102# it is moderately
oversized and thus too frequently indicates absence of cointegration+ However,
setting k � @T 102# or k � @1+25T 102# virtually removes the oversizing problems,
especially if the automated variants are considered+ When we examine the test
ZShc, we find that the choice of k has far less effect on the size+ For f«, y � 0+9

and f«, y � f«, x � 0+9, all three choices ~whether based on automated variants
or not! produce oversized tests and thus indicate spurious heteroskedastic cointe-
gration, although the degree of oversizing is not particularly serious and is mostly
ameliorated as the sample size increases+ On the basis of these results then,
specifically those pertaining to ZSnc, we would conclude that setting k �
@0+75T 102# is realistically too low to maintain reliable finite-sample size+ Notice
that the nonautomated KPSS cointegration test, Kc, is quite badly oversized
when f«, y � 0+9 and f«, y � f«, x � 0+9, and automating the lag choice strug-
gles to correct this to a satisfactory degree+ Interestingly, the automated Kc test
can be badly oversized in the presence of negative autocorrelation, unless the
sample size is large+ None of the other tests, however, appear to be adversely
affected by negative autocorrelation+

Table 2 examines the size and power of the tests under six different models
of heteroskedastic cointegration, H1

0+ In the first four, both yt and xt are HI
~d2 � 0 and d3 � 0!; in the fifth yt is HI ~d2 � 0! and xt is I ~1! ~d3 � 0!, with
these roles being reversed in the sixth model+ The size issue relates to ZSnc, and
it is clear that the test does not appear particularly sensitive to k, with size
being controlled reasonably well for all choices, across all model specifica-
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tions+ If anything, setting k � @0+75T 102# sometimes leads to slight oversizing;
setting k � @1+25T 102# occasionally yields slight undersizing+ When consider-
ing the power of ZShc, both fixed and automated variants exhibit consistency+
The power does not appear to change particularly dramatically across model
specifications either+ Power does tend to decrease monotonically as k increases,
although the rate of decrease is fairly low+ The test ZShi is also seen to be con-
sistent ~aside obviously from when yt is I ~1!!+ The behavior of the Kc test is
much less predictable, however+ This is because, as mentioned in Section 3, the
distribution of Kc in the HI case depends on nuisance parameters+ This test can
have very low or reasonably high power to reject its null of stationary cointe-
gration, depending on the nature of the heteroskedastic cointegration+ For exam-
ple, if xt is I ~1! as in the fifth case, its power is trivial+ If, on the other hand, if
xt is HI and nxt is persistent, as in the second or sixth case, it can reject station-
ary cointegration very frequently+ This differing behavior is due to the incon-
sistency of the OLS estimator of b ~� 1! whenever xt is HI+11

In Table 3, we examine the power of the tests under the case of no cointe-
gration, H 1 , here between two I ~1! series ~ ZShi is not included now!+ Consis-
tency of ZSnc is clearly evident, as is the role of k in determining its power+ The
power is seen to fall fairly rapidly with increasing k for both fixed and auto-
mated variants+12 Notice also that power of ZSnc often exceeds that of Kc+ There
is no contradiction here, however: the optimality properties associated with the
raw form of the KPSS statistic, on which Kc is based, do not necessarily carry
over to the current empirical version of the statistic, which needs to be robust-
ified both to serial correlation and to endogeneity+ It is also apparent that the
power of Kc drops quite sharply when moving from the fixed to automated lag
selection+

In unreported simulations, we also examined the properties of the tests when
some endogeneity is introduced+ The first case revisited H0

0 , stationary co-
integration between two I ~1! series, where we set cor ~e1, e5! � �0+7 and
cor~e2, e5!� 0+7, such that the increment processes of «yt and «xt are correlated
with that of the random walk w1t + The sizes of ZSnc and ZShc were largely unaffected
by introducing such correlation+ A second case revisited H1

0 , heteroskedastic
cointegration between two HI series+ Here we made w1t and h1t identical ran-
dom walks, so that the I ~1! process driving part of the heteroskedasticity also
drove the level of the processes+ In addition, we set cor~e4, e8!� 0+7, such that
the increment process of nxt was correlated with that of the random walk h2 t it
multiplies into+ Again, the size of ZSnc remained reasonably accurate, and con-
sistency of ZShc ~and ZShi ! appeared unaffected+ Full details of these simulations
are available upon request+

All the preceding simulation results concerning ZSnc, ZShc, and ZShi are pretty
much in line with what we would expect given our theoretical results of Sec-
tion 3 regarding asymptotic normality of the tests, their robustness to serial
correlation and endogeneity, and their consistency+ They all detect the appro-
priate departures from their respective null hypotheses+ The choice of k remains
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an issue, however+ Predominantly led by the behavior of ZSnc, the facts are that
setting k too low can, in certain situations, induce size distortions ~cf+ Table 1!,
whereas setting k too high leads to a loss of power ~cf+ Table 3!+ Moreover, it
seems rather unlikely that such a trade-off can be entirely avoided however k is
chosen+ A reasonable compromise would appear to be the middle value of the
three we have considered, and so we recommend setting k � @T 102# as a matter
of practice+ Whether l is selected using a fixed or an automated method does
not appear particularly crucial to our test’s performance, and we would not favor
one approach over the other+

Our results also highlight the problems of using OLS-based procedures such
as Kc to test for cointegration+ Inconsistency of the OLS estimator whenever
the heteroskedastic cointegration involves xt that is HI causes the test to reject,
so that Kc is unable to discern between this situation ~i+e+, when series “differ”
by a heteroskedastic but stochastically trendless term! and noncointegration ~i+e+,
when series “differ” by a stochastic trend term!+ Of course, we may take the
view that because neither situation represents a stationary cointegrating rela-
tion, a rejection of the null of stationary cointegration is an appropriate out-
come+ However, if the heteroskedastic cointegration involves xt that is I ~1!, the
same test tends to no longer reject this null, which clearly cannot also represent
an appropriate outcome+ This of course means that the inference drawn can
become crucially dependent on the ordering of the I ~1! and HI variables, even
asymptotically+ Such considerations do not apply to our new tests as their asymp-
totic distributions are free of nuisance parameters+ It is also important to remem-
ber that when applying ZSnc and ZShc, we never actually need to distinguish between
which series are I ~1! and HI+ That is, we do not need to calculate the test ZShi

for individual series+ Perhaps the only rationale for calculating ZShi is that it
may provide early warning of situations where it would be unwise to apply
conventional cointegration tests+

5. AN EMPIRICAL EXAMPLE: THE TERM STRUCTURE
OF INTEREST RATES

A necessary empirical condition for the expectations theory of the term struc-
ture of interest rates is that long-run and short-run interest rates cointegrate+
We test this empirically using monthly data from the United States, Canada,
the United Kingdom, and Japan, taken from the OECD0MEI database+ A single
long-run interest rate, Lt , and a variety of short-run rates, Sit , are used for each
country, and we consider bivariate regressions of Lt on Sit and also the reor-
dered regression of Sit on Lt +13 We calculate the same array of statistics as in
Section 4, where again the regressions include constants but not trends+ We
also calculate the standard KPSS stationarity test allowing a constant ~denoted
Ks!, to test individual series for stationarity+ Both fixed and automatic lag selec-
tion procedures are employed for all tests, and, in view of the results of the
previous section, we set k � @T 102# +
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The results are given in Table 4, where the entries are p-values of the
tests based on the asymptotic distribution+ Bold print indicates a p-value of
0+05 or less, and in the current context we will consider this to represent a
rejection of the associated null hypothesis+ As regards the individual series,
we first note that the KPSS test, Ks, indicates rejection of I ~0! for every one
of the 17 individual interest rate series considered+ In addition, the ZShi test
shows that all of these interest rate series appears to be HI rather than
I ~1!, so that excess volatility would certainly appear to be an issue for this
data set+14

Turning now to the bivariate regression results, first Lt on Sit , we see that
according to ZSnc, stochastic cointegration is not rejected for eight of the 13
pairs+ In both Canada and the United Kingdom, the nonrejection is unambig-
uous+ In the case of the United States the evidence is mixed; rejections are
found for two of the four pairs considered+ No evidence of stochastic cointe-
gration at all is found for Japan, though the peculiar nature of Japanese short-
run interest rates in recent times ~being effectively zero! may partly explain
this finding+ According to the ZShc test of the eight pairwise regressions that do
not reject stochastic cointegration, five represent stationary cointegration between
HI series ~three for Canada, two for the United Kingdom! and three represent
heteroskedastic cointegration between HI series ~two for the United States, one
for the United Kingdom!+ This pattern of results is the same whether the lag
selection is fixed or automated+ When we consider the regressions of Sit on
Lt , qualitatively, the results for Canada, the United Kingdom, and Japan are
unchanged+ The United States now shows no rejections of stochastic cointe-
gration, with one of the four being stationary cointegration, one being hetero-
skedastic cointegration, and two being indeterminate+ This makes the total of
nonrejections now 10 out of the 13 pairs+ Thus, there is certainly a reason-
able consensus of support for the term structure of interest rates in these
data, particularly if the somewhat anomalous case of Japan is excluded from
consideration+

A less coherent picture emerges if we examine the outcomes from the
OLS-based KPSS cointegration test, Kc+ For regressions of Lt on Sit , con-
ventional cointegration is rejected for every one of the 13 pairs of long-
and short-run rates if a fixed lag selection is used ~this drops to four
rejections if lag selection is automated, though as shown earlier the power
of this test can be a good deal lower than that of the fixed lag test!+ How-
ever, no rejections at all are obtained for the reordered regressions of Sit

on Lt + Hence, the differing degrees of excess volatility of long- and short-
run interest rate data appear to exert a substantial influence on the out-
comes for conventional OLS-based cointegration tests, to the extent that
inference can be crucially dependent on variable ordering+ By way of a
contrast, the new procedures we have proposed in this paper are designed
to provide inference that is rather more robust when analyzing this sort of
data+
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NOTES

1+ In Harris et al+ ~2002!, ht � wt + Here if any element of wt is identical to that of ht we would
simply delete the corresponding element of yt from Assumption LP+

2+ Here and throughout 7A7 � M tr~A'A!+
3+ More formally, a vector stochastic process, u t , is said to be stochastically trendless if, as

s r ` ~t fixed!,

E~ut�s 6�t !� E~ut�s !
p
&& 0,

where �t is the sigma field of information of all the elements in the vector up to time t+ This
implies that the mean square error optimal s step ahead forecasts of a stochastically trendless pro-
cess converge to the unconditional mean of the process as the forecast horizon s increases+ Follow-
ing the Beveridge and Nelson ~1981! definition, such a process has no stochastic trend ~or permanent
component!, hence the terminology “stochastically trendless+” An analogous definition has also
been used in the literature on economic convergence; see Bernard and Durlauf ~1996!+ Trendless-
ness is similar to the concept of a mixingale and the associated notion of asymptotic unpredictabil-
ity, with the minor difference, in practical terms, that the convergence of the conditional expectation
in our definition is in probability rather than in an Lp norm+

4+ A proof of this result is available upon request+
5+ There is a growing body of evidence that many economic and financial time series previ-

ously considered I ~1! are more appropriately modeled as HI or stochastic unit root processes+ See
the results in Section 5 of this paper and, inter alia, Hansen ~1992a!, Leybourne, McCabe, and
Tremayne ~1996!, Granger and Swanson ~1997!, Wu and Chen ~1997!, and Psaradakis, Sola, and
Spagnolo ~2001!+

6+ A special case of this model is studied by Hansen ~1992a!+ When q � 0 and Vxt � 0, ~3!
corresponds to a regression model when the regressors variables are all I ~1! and the error term is
heteroskedastic, so that the regressand and regressors are treated asymmetrically+

7+ The form of the statistic Snc was earlier considered by Harris et al+ ~2003! in the context of
stationarity testing in a deterministic regression+

8+ Cointegrating versions of KPSS stationarity tests, such as that of Shin ~1994!, suffer from
the fact that it is not possible to remove the effects of nuisance parameters in the partial sum pro-
cess of ut under the null of heteroskedastic cointegration, leading to incorrect size+ The simulation
studies of Section 4 confirm this+

9+ Analogous statistics can of course be constructed for each element of the vector x t +
10+ In the context of stationarity testing, this has been demonstrated by Hobijn, Franses, and

Ooms ~1998! to remove many of the well-documented oversizing problems associated with KPSS
tests+

11+ Busetti and Taylor ~2003! demonstrate that the KPSS tests applied to an individual series
with heteroskedastic errors can overreject the null of stationarity+ In the current context, the cointe-
grating KPSS statistic actually diverges because of the inconsistency of the ordinary least squares
estimator when xt is HI+

12+ These observations also apply to ZShc, though it has rather less power than ZSnc because it is
not constructed to detect this alternative+

13+ See the note to Table 4 for a full description of the data+
14+ It is easily shown that the KPSS stationarity test is consistent when the alternative is HI+
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APPENDIX: Proofs

Notation and Conventions. In what follows we assume that Assumptions LP and
KN, the model ~3!, and k � O~T 102! hold+ For the model specified by equations ~1!–~3!,
with zt � @yt

' ,vec~Vt !
',ht
' ,«t
'# ' , let C � (j�0

` Cj and Gj � (i�j∨0
` ~Ci�j � Ci ! and

define covariance matrices V11 � CC' and V22 �(j��`
` Gj Gj

'+ Also define St to be the
partial sum of the zt , that is, DSt � zt + Selector matrices Ry, Rn, Rh, and R« are defined
implicitly such that yt � Ry

' zt , nt � Rn
' zt , ht � Rh

' zt , and «t � R«
' zt + When taking

expectations through an infinite summation sign, we generally do not remark on the
operation when obviously square summable linear processes are involved+
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For transparency, we analyze the regression model without a time trend included,
though all our results can be shown to extend to the trend case+ We also make repeated
use of the following representations:

[ut � ut � ~ Zbk � b!'Xt , (A.1)

[ut [ut�k � ut ut�k � ~ Zbk � b!'Xt ut�k � ut Xt�k
' ~ Zbk � b!� ~ Zbk � b!'Xt Xt�k

' ~ Zbk � b!

� ut ut�k � zk, t (A.2)

with Xt � @1,x t
'# ' and Zbk � b � @~ [ak � a!, ~ Zbk � b!'# ' and where zk, t is defined

implicitly+
When dealing with LRV terms it is convenient to utilize the following results+ First,

in manipulating expressions involving kernels we adopt the notation l�~ j0l !� 2l~ j0l !,
j � 0, l�~0! � 1+ Next, for any sequences $at % and $bt % define

gj ~a,b! � T �1 (
s�j�1

T

as bs�j +

We use the convention that gj~a! � gj~a,a!+ Then for the sequence $at � bt % we have

gj ~a � b! � gj ~a!� gj ~a,b!� gj ~b,a!� gj ~b!+

Also define for any sequences $at % and $bt %

v~a,b! � (
j�0

l

l�~ j0l !gj ~a,b!,

again with the convention that v2~a!� v~a,a!+ So, we have for the sequence $at � bt %,

v2~a � b! � v2~a!� v~a,b!� v~b,a!� v2~b!+

Thus, for d � 0 we can write

6T �d$v2~a � b!� v2~a!%6 � 6T �dv~a,b!6� 6T �dv~b,a!6� T �dv2~b!+ (A.3)

Note too that

6T �dv~a,b!6 � (
j�0

l

l�~ j0l !{�T �~d�1! (
t�1

T

at
2{�T �~d�1! (

t�1

T

bt
2 (A.4)

with the obvious modification for a � b+
In our applications at is often a product sequence, at � ct ct�k, say+ The summation in

s starts at k � j � 1 and in t starts at t � k � 1+ Then, ~A+4! yields

6T �dv~a,b!6 � (
j�0

l

l�~ j0l !{�T �~d�1! (
t�k�1

T

~ct ct�k !
2+�T �~d�1! (

t�1

T

bt
2

� (
j�0

l

l�~ j0l !{�T �~d�1! (
t�1

T

ct
4{�T �~d�1! (

t�1

T

bt
2+ (A.5)
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Proof of Theorems. We also use the following lemmas in establishing the results of
Theorems 1 and 2+

LEMMA 1+ Under H0
0 , v2~ [ut [ut�k!

p
&& ve1

2 where

ve1
2 � lim

Tr`
T �1 var� (

t�k�1

T

et et�k�� c'R«
' V22 R« c+

Proof. In this case ut � et and [ut [ut�k � et et�k � zk, t + Setting d� 0, at � et et�k, and
bt � zk, t we have that 6v2~ [ut [ut�k!� v

2~et et�k!6 is bounded by ~A+3!+ The first term in
~A+3! is bounded by ~A+5!+ That is

6v~et et�k , zk, t !6 � (
j�0

l

l�~ j0l !{�T �1(
t�1

T

et
4{�T �1 (

t�k�1

T

zk, t
2 ,

where the order of the first right-hand side term is O~l ! ~Assumption KN+2! and the
second term is Op~1!, independent of k, by Markov’s inequality and Assumption LP+ As
for the third term, recalling the expression for zk, t in ~A+2!, note that T 102DT ~ Zbk � b! is
Op~1! where DT � diag@1,MT Im # as follows from Harris et al+ ~2002!+ Thus, in ~A+2!,
the quadratic form in ~ Zbk � b! is of a lower order than the two linear terms in ~ Zbk � b!+
The linear terms are of the same order+ So the two dominant terms in T �1(t�k�1

T zk, t
2 are

T �1(t�k�1
T ~ Zbk � b!'Xt ut�k

2 Xt
'~ Zbk � b! and T �1(t�k�1

T ~ Zbk � b!'Xt�k ut
2 Xt�k
' ~ Zbk � b!+

But

��T �1 (
t�k�1

T

~ Zbk � b!'Xt ut�k
2 Xt

'~ Zbk � b!��

� T �1 7T 102DT ~ Zbk � b!72�T �1(
t�1

T

7DT
�1 Xt Xt

'DT
�172{�T �1(

t�1

T

ut
4

� T �1+Op~1!+Op~1!+Op~1!,

and it is clear that the second dominant term is of the same order+ So,
MT �1(t�k�1

T zk, t
2 � Op~T �102!+ Hence

6v~et et�k , zk, t !6 � Op~lT
�102 !+

The same method of proof shows that 6v~zk, t , et et�k!6 and v2~zk, t ! are also Op~lT �102!+
Thus,

6v2~ [ut [ut�k !� v
2~et et�k !6 � Op~lT

�102 !+

Applying Theorem LRV of Harris, McCabe, and Leybourne ~2003! ~with n � 1, a� 2,
and m � 0! then shows that v2~et et�k!

p
&& ve1

2 + �
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LEMMA 2+ Under H1
0 , T �2v2~ [ut [ut�k! � T �2v2~nt

'ht ht�k
' nt�k ! � Op~lT �102! .

Proof. Now ut � et � nt
'ht and [ut [ut�k � ut ut�k � zk, t + Setting d � 2, at � ut ut�k,

and bt � zk, t we have that 6T �2$v2~ [ut [ut�k! � v2~ut ut�k!%6 is bounded by ~A+3!+ The
first term in ~A+3! is bounded by ~A+5!+ That is,

6T �2v~ut ut�k , zk, t !6 � (
j�0

l

l�~ j0l !{�T �3(
t�1

T

ut
4{�T �3 (

t�k�1

T

zk, t
2 ,

where the first right-hand side term is O~l ! and the second Op~1!+ The dominant term of
T �3(t�k�1

T zk, t
2 is

��T �3 (
t�k�1

T

~ Zbk � b!'Xt ut�k
2 Xt

'~ Zbk � b!��

� T �1 7DT ~ Zbk � b!72�T �1(
t�1

T

7DT
�1 Xt Xt

'DT
�172{�T �3(

t�1

T

ut
4

� T �1Op~1!+Op~1!+Op~1!,

where the first two Op~1! results can be shown to hold via a simple modification of the
approach of Harris et al+ ~2002!+ Thus

T �3 (
t�k�1

T

zk, t
2 � Op~T

�1 !,

and so 6T �2v~ut ut�k , zk, t !6 is bounded by an Op~lT �102 ! variable+ That
6T �2v~zk, t ,ut ut�k!6 and T �2v2~zk, t ! are also bounded by an Op~lT �102! variable fol-
lows similarly+ Combining these results gives

6T �2$v2~ [ut [ut�k !� v
2~ut ut�k !%6 � Op~lT

�102 !+

Because et is of a lower order of magnitude than nt
'ht it follows by similar arguments

that

6T �2$v2~ut ut�k !� v
2~nt

'ht ht�k
' nt�k !%6 � Op~lT

�102 !+ �

LEMMA 3+ Under H1
0 , T �2v2~nt

'ht ht�k
' nt�k !

d
&& *0

1~W � W !'VPP~W � W ! where

VPP � ~Rn � Rn !
'V22~Rn � Rn !, W � Ry

' B1

with B1 a Brownian motion process+
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Proof. Write

T �2v2~nt
'ht ht�k

' nt�k !

� (
j�0

l

l�~ j0l !T �3 (
t�k�j�1

T

~ht�k � ht !
' vec~nt nt�k

' !vec~nt�j nt�k�j
' !'~ht�k�j � ht�j !

� (
j�0

l

l�~ j0l !T �3 (
t�k�j�1

T

~St�k � St !
'~Ry � Ry !~Rn � Rn !

'

� $vec~zt zt�k
' !vec~zt�j zt�k�j

' !' %~Rn � Rn !~Ry � Ry !
'~St�k�j � St�j !

(A.6)

� T �3 (
t�l�1

T�k

~St � St !
'~Ry � Ry !

� ~Rn � Rn !
'�(

j�0

l

l�~ j0l !E $vec~zt zt�j
' !%E $vec~zt zt�j

' !% '�~Rn � Rn !

� ~Ry � Ry !
'~St � St !� op~1!

d
&& �

0

1

~B1 � B1!
'~Ry � Ry !~Rn � Rn !

'V22~Rn � Rn !~Ry � Ry !
'~B1 � B1!

(A.7)

��
0

1

~W � W !'VPP~W � W !+

The key to the proof lies in replacing vec~zt zt�k
' !vec~zt�j zt�k�j

' !' in ~A+6! by
E $vec~zt zt�j

' !%E $vec~zt zt�j
' !% ' in ~A+7!+ This means that the convergence in square

brackets is nonstochastic and thus the continuous mapping theorem ~CMT! is sufficient
to deduce the asymptotic distribution+ Also the quantity in square brackets converges
to V22 because it can be shown to be a consistent estimate of the long-run variance of
vec~zt zt�k

' !, which is the definition of V22, that is, V22 � limTr` var $T �102(t�k�1
T

vec~zt zt�k
' !% + Then VPP � ~Rn � Rn!'V22~Rn � Rn! by definition+

The validity of replacing vec~zt zt�k
' !vec~zt�j zt�k�j

' !' by the double expectation in-
volves establishing the following sequence of results ~expressed in the scalar case for
simplicity!+ That is,

(
j�0

l

l�~ j0l !T �3 (
t�k�j�1

T

St St�j St�k St�k�j zt zt�j zt�kzt�k�j

� (
j�0

l

l�~ j0l !T �3 (
t�k�j�1

T

St�k
4 zt zt�j zt�kzt�k�j � op~1!

� (
j�0

l

l�~ j0l !T �3 (
t�k�j�1

T

St�k
4 Et�k~zt zt�j zt�kzt�k�j !� op~1!

� (
j�0

l

l�~ j0l !T �3 (
t�j�1

T�k

St
4 $E~zt zt�j !%

2 � op~1!

� �(
j�0

l

l�~ j0l !$E~zt zt�j !%
2�T �3 (

t�1

T�k�l

St
4 � op~1!

d
&& v2

2�
0

1

B1
4 +
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The complete proofs of these steps are available from the authors on request+ Notice
that the last equality shows the virtue of using the expectation device as the CMT and
then delivers the result in a very straightforward way+ �

LEMMA 4+ Under H0
0 , v2~ [ut

2 � [su
2!

p
&& ve2

2 where

ve2
2 � lim

Tr`
T �1 var�(

t�1

T

~et
2 � se

2!	
and se

2 � E~et
2!+

The proof is similar to that of Lemma 1 and is thus omitted+

LEMMA 5+ Let zt satisfy Assumption LP and let k � O~T 102! . Then, as T r `,

�T �302 (
t�k�1

T

~ht�k � ht !
' vec~nt nt�k

' !, T �1h@Ts#�k � h@Ts#�1, T �102 (
t�k�1

@Ts#

vec~nt nt�k
' !�

n ��
0

1

~W � W !' dP,W � W,P� ,
where W � Ry

' B1 and P � ~Rn � Rn!'B2 where B1 and B2 are independent Brownian
motion processes+

Proof. First rewrite using DSt � zt , so that

T �302(~ht�k � ht !
' vec~nt nt�k

' !

� T �302(~Ry' St�k � Ry
' St�1!

' vec~Rn
' zt zt�k

' Rn !� T �302( ht�k
' nt�knt

'yt +

The proof proceeds by applying the Beveridge–Nelson decomposition to the first term
and showing that the second term is asymptotically negligible+ We use the notation

zt zt�k � mk, t � rk, t � D Irk, t ,

where

mk, t � (
j�1

`

Gk, k�j vec~jt jt�j
' !, rk, t � (

i��`

`

Fk, k�i ~L!vec~jt jt�i
' !,

Irk, t � (
i�1

`

EGk, k�i ~L!vec~jt jt�i
' !,

and the coefficients are defined by

Gk, r ~L! � (
j�r∨0

k�1

~Cj�r � Cj !L
j, Fk, r ~L!� (

j�r∨k

`

~Cj�r � Cj !L
j,

EGk, k�i ~L! � (
j�0

k�2

EGk, k�i, j L j, EGk, k�i, j � (
r�~k�i !∨~ j�1!

k�1

Cr�k�i � Cr +
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Apply Theorem BN of Harris et al+ ~2003! to vec~zt zt�k
' ! to get a martingale approx-

imation, mk, t , a remainder term rk, t , and an overdifferenced factor D Irk, t + The idea is
that the martingale term is dominant and that the dependence on k is absorbed into its
variance+ In this way the proof of convergence to a stochastic integral can be treated by
conventional methods of analysis+ Thus,

T �302(~ht�k � ht !
' vec~nt nt�k

' !

� T �302(~Ry' St�k � Ry
' St�1!

'~Rn � Rn !
'mk, t

� T �302(~Ry' St�k � Ry
' St�1!

'~Rn � Rn !
'~rk, t � D Irk, t !

� T �302( ht�k
' nt�knt

'yt +

We find

T �302(~Ry' St�k � Ry
' St�1!

'~Rn � Rn !
'rk, t

p
&& 0,

T �302(~Ry' St�k � Ry
' St�1!

'~Rn � Rn !
'D Irk, t

p
&& 0,

T �302( ht�k
' nt�knt

'yt
p
&& 0+

The first result follows directly from Theorem SI of Harris et al+ ~2003!, and the second
is established along very similar lines+ The last follows by writing

T �302( ht�k
' nt�knt

'yt � T �302( ht�k
' $at � Et�k~at !%� T �302( ht�k

' Et�k~at !,

where at � nt�knt
'yt + The first term can be shown to disappear on exploiting the prop-

erties of the increment process, that is, that Et�k$at � Et�k~at !% � 0; the second term
disappears by applying Theorem 3+3 of Hansen ~1992b!+

Thus,

T �302(~ht�k � ht !
' vec~nt nt�k

' !

� T �302(~Ry' St�k � Ry
' St�1!

'~Rn � Rn !
'mk, t � op~1!+

Now, because k � o~T !, it follows from Theorem FCLT of Harris et al+ ~2003! that

UT, @Ts# [ T �1~Ry
' S@Ts#�k � Ry

' S@Ts#�1!n Ry
' B1 � Ry

' B1,

jointly with

NT, @Ts# � T �102 (
@Ts#

vec~nt nt�k
' !� MT, @Ts#� op~1!n ~Rn � Rn !

'B2 ,
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where MT, @Ts# � T �102( @Ts#mk, t + Thus Theorem SI of Harris et al+ ~2003! applies, and
setting BQ [ ~Rn � Rn!'B2 � P and U [ Ry

' B1 � Ry
' B1 � W � W we have that

�T �102(T �1~Ry
' St�k � Ry

' St�1!
'~Rn � Rn !

'mk, t ,UT, @Ts# ,MT, @Ts#�

n ��
0

1

~W � W !' dP,U,P� + �

Proof of Theorem 1.
Part (i) (Null distribution). Sections ~a! and ~b! derive the asymptotic null distribu-

tion of ZSnc under H0
0 and H1

0 , respectively+
~a! Under H0

0 , ut � et and from Harris et al+ ~2002!, ~ Zbk � b!' � @Op~T �102!,
Op~T �1!# and

T �2 (
t�k�1

T

x t x t�k
' , T �102 (

t�k�1

T

et , T �1 (
t�k�1

T

x t�k et ,

T �1 (
t�k�1

T

x t et�k , T �302 (
t�k�1

T

x t�k

are all Op~1!+ Consequently, using ~A+2! we find

T �102 (
t�k�1

T

[ut [ut�k � T �102 (
t�k�1

T

et et�k � Op~T
�102 !+

Because et � c'«t is a linear combination of a vector linear process, it follows from an
application of Theorem FCLT of Harris et al+ ~2003! that

T �102 (
t�k�1

T

et et�k
d
&& N~0,ve1

2 !,

where by Lemma 1, v2~ [ut [ut�k!
p
&& ve1

2 + Thus,

ZSnc �

T �102 (
t�k�1

T

[ut [ut�k

v~ [ut [ut�k !
d
&& N~0,1!+

~b! Under H1
0 , ut � et � nt

'ht , and from a minor modification to the results of Harris
et al+ ~2002!, ~ Zbk � b!' � @Op~1!,Op~T �102!# , T �1(t�k�1

T ut , and T �302(t�k�1
T x t ut�k

are Op~1!+ Hence, using ~A+2! we find

T �302 (
t�k�1

T

[ut [ut�k � T �302 (
t�k�1

T

ut ut�k � Op~T
�102 !+
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Now, substituting ut � et � nt
'ht , we can write

T �302 (
t�k�1

T

[ut [ut�k � T �302 (
t�k�1

T

nt
'ht ht�k

' nt�k � T �302 (
t�k�1

T

et ht�k
' nt�k

� T �302 (
t�k�1

T

nt
'ht et�k � T �302 (

t�k�1

T

et et�k � Op~T
�102 !

� T �302 (
t�k�1

T

nt
'ht ht�k

' nt�k � Op~T
�102 !

� T �302 (
t�k�1

T

~ht�k � ht !
' vec~nt nt�k

' !� Op~T
�102 !

d
&& �

0

1

~W � W !' dP,

where W � Ry
' B1 and P � ~Rn � Rn!'B2 and B1 and B2 are independent Brownian

motions with covariance matrices V11 and V22+ The weak convergence follows from
Lemma 5+ The covariance matrix of P is VPP � ~Rn � Rn!'V22~Rn � Rn!+

Combining the results of Lemmas 2 and 3 shows that

T �2v2~ [ut [ut�k !
d
&& �

0

1

~W � W !'VPP~W � W !+

We now require the distribution of the ratio of T �302(t�k�1
T [ut [ut�k to T �1v~ [ut [ut�k!+

As shown in Lemma 5,

�T �302 (
t�k�1

T

~ht�k � ht !
' vec~nt nt�k

' !,T �1h@Ts#�k � h@Ts#�1,T �102 (
t�k�1

@Ts#

vec~nt nt�k
' !� '

n ��
0

1

~W � W !' dP,W � W,P� +
Next the CMT, with the preceding vector as argument and the ratio as the map, applies
to conclude that

T �302 (
t�k�1

T

[ut [ut�k

T �1v~ [ut [ut�k !
d
&&

�
0

1

~W � W !' dP

��
0

1

~W � W !'VPP~W � W !

+ (A.8)

As

�
0

1

~W � W !' dP ; N�0,�
0

1

~W � W !'VPP~W � W !�
conditional on W, the distribution in ~A+8! is unconditionally N~0,1!+
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Part (ii) (Consistency). Under H 1 , ut � et � q'wt � nt
'ht where q � 0+ Here, it is

easy to show that [ak � a� Op~T 102! and Zbk � b� Op~1!, and, using ~A+2!, this implies
that [ut [ut�k is of the same order in probability as ut ut�k+ It is then straightforward to
deduce that

T �102 (
t�k�1

T

[ut [ut�k � Op~T
302 !+

Now we require a bound for the order of probability of v2~ [ut [ut�k!, which again is the
same as the order of probability of v2~ut ut�k!+ Setting a � b � ut ut�k and d � 2 in
~A+5! yields

l�1T �2v2~ut ut�k ! � l�1 (
j�0

l

l�~ j0l !+T �3(
t�1

T

ut
4

� O~1!+Op~1!+

Thus we conclude that v2~ [ut [ut�k! � Op~lT 2! at most+ Hence the distribution of 6 ZSnc6
diverges at least as fast as Op~MT0l !+ �

Proof of Theorem 2.
Part (i) (Null distribution). Under H0

0 , ut � et we have [ak � a � Op~T �102! and
Zbk � b � Op~T �1!+ Then, it follows from ~A+1! that

T �302(
t�1

T

t~ [ut
2 � [su

2! � T �102(
t�1

T � t

T
�

1

2
�

1

2T
�~et

2 � se
2!� Op~T

�102 !,

where se
2 � E~et

2!+ Write

T �102(
t�1

T � t

T
�

1

2
�

1

2T
�~et

2 � se
2! ��

0

1�s �
1

2
� dFT ~s!� op~1!+

Here FT ~s! is the partial sum process of $et
2 � se

2% that weakly converges to F~s! by
Theorem 3+8 of Phillips and Solo ~1992!+ Then, noting by integration by parts that
*0

1~s � 1
2
_ ! dFT ~s! �

1
2
_ FT ~1! � *0

1 FT ~s! ds, we can use the CMT to deduce

T �302(
t�1

T

t~ [ut
2 � [su

2! d
&& �

0

1�s �
1

2
� dF~s!,

where F~s! is a Brownian motion with variance ve2
2 , as defined in Lemma 4+ Hence,

*0
1~s � 1

2
_ ! dF~s! is normally distributed with mean zero and variance

ve2
2 �

0

1�s �
1

2
�2

ds � 12ve2
2 ,

which shows

T �302(
t�1

T

t~ [ut
2 � [su

2! d
&& N~0,12ve2

2 !+
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From Lemma 4, v2~ [ut
2 � [su

2!
p
&& ve2

2 , and so the result follows+
Part (ii) (Consistency). Under H1

0 , ut � et � nt
'ht we have [ak � a� Op~1! and Zbk �

b � Op~T �102!+ We may write

T �302(
t�1

T

t~ [ut
2 � [su

2! � T �102(
t�1

T � t

T
�

1

2
�

1

2T
� [ut

2 +

From ~A+1!, [ut is of the same order in probability as ut , and it is then straightforward to
show that

T �102(
t�1

T � t

T
�

1

2
�

1

2T
� [ut

2 � Op~T
302 !

and hence

T �302(
t�1

T

t~ [ut
2 � [su

2! � Op~T
302 !+

In the denominator, v2~ [ut
2 � [su

2! and v2~ut
2 � Tsu

2! ~where Tsu
2 � T �1(t�1

T ut
2! are of

the same order in probability+ Setting a � b � ut
2 � Tsu

2 and d � 2 in ~A+4! yields

l�1T �2v2~ut
2 � Tsu

2! � l�1 (
j�0

l

l�~ j0l !+T �3(
t�1

T

~ut
2 � Tsu

2!2

� O~1!+�T �3(
t�1

T

ut
4 � �T �2(

t�1

T

ut
2�2	 +

It is easily shown that both T �3(t�1
T ut

4 and T �2(t�1
T ut

2 are Op~1!+ Hence v2~ut
2 �

Tsu
2! and consequently v2~ [ut

2 � [su
2! are Op~lT 2! at most+ So, the distribution of 6 ZShc6

diverges at least as fast as Op~MT0l !+ �
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