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In low-cost self-contained pedestrian navigation systems, traditional Pedestrian Dead

Reckoning (PDR) solutions utilize accelerometers to derive the speed as well as the distance
travelled, and obtain the walking heading from magnetic compasses or gyros. However,
these measurements are sensitive to instrument errors and disturbances from ambient

environment. To be totally different from these signals in nature, the electromyography
(EMG) signal is a typical kind of biomedical signal that measures electrical potentials
generated by muscle contractions from the human body. This kind of signal would reflect
muscle activities during human locomotion, so that it can not only be used for speed

estimation, but also disclose the azimuth information from the contractions of lumbar
muscles when changing the direction of walking. Therefore, investigating how to utilize
the EMG signal for PDR is interesting and promising. In this paper, a novel EMG-based

speed estimationmethod is presented, including setup of the EMG equipment, pre-processing
procedure, stride detection and stride length estimation. Furthermore, this method suggested
is compared with the traditional one based on accelerometers by means of several field tests.

The results demonstrate that the EMG-based method is effective and its performance in
PDR can be comparable to that of the accelerometer-based method.
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1. INTRODUCTION. In pedestrian navigation, integrating GPS with Dead
Reckoning (DR) sensors, to provide a self-contained Pedestrian Navigation System
(PNS), is a very promising method to provide a seamless outdoor/indoor position-
ing solution without any requirement for extra infrastructures or fingerprint
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databases. The PNS always adopts the Pedestrian Dead Reckoning (PDR)
algorithm to calculate a relative position and bridge the gaps when GPS outages
occur (Chen et al, 2009a; Cho and Park, 2006; Fang et al, 2005; Godha et al, 2006;
Grejner-Brzezinska et al, 2007; Ladetto, 2000; Levi and Judd, 1999; Retscher,
2007). Taking advantage of human physiological characteristics, the PDR typically
utilizes accelerometers to detect the stride occurrence and to estimate the stride length,
gyros and digital compasses to obtain the walking heading, and barometers to sense
the changes in height. However, since all of these sensors currently applied in PNS
measure the physical quantities of the pedestrian’s locomotion with respect to the
involved environment, such as the Earth’s gravity and magnetic field, as well as the
atmospheric pressure field, the performance of the sensors is influenced by the
relevant environments. For example, in indoor environments, there are too many
magnetic disturbances for digital compasses, while the drift error of inexpensive
gyros degrades the positioning accuracy after a few minutes.

To be totally different from the signals mentioned above in nature, the electro-
myography (EMG) signal is a typical kind of biomedical signal that measures
electrical potentials generated by the muscle contractions of the human body, not
the physical quantity with respect to the environment. Therefore, it is relatively in-
dependent and less sensitive to the ambient environment, especially in conditions
where these environment-related physical quantities may be distorted, for example,
in the weightless condition that limb kinematics are relatively invariant in various
modes of locomotion, the patterns of muscle activities required to produce those
kinematic patterns can vary considerably (Ivanenko et al. 2004). Since the EMG
signal can reveal muscle activities during human locomotion, we believe that when a
pedestrian is walking, we could get the speed and azimuth or angular rate from
the EMG signal and establish a relative positioning system with sufficient accuracy,
based only on one type of such biological signal. Therefore, our motivation is to
explore a novel means to realize an accurate and reliable positioning solution, which
is based on one type of sensor for two applications (speed and azimuth) and is less
sensitive to the environment in the surroundings of the sensors. Furthermore, the
potentials of the EMG signal in gesture recognition, fatigue detection and other
biomedical applications provide the possibility of utilizing several suitable sensors
to establish a comprehensive context-awareness system (for example, getting the
position and gesture altogether). Our paper is focused on how the EMG technology
can be used for speed estimation and evaluating its performance in PDR through
several comparative field tests with the accelerometer-based method.

The paper is organized as follows. A brief background is given first to include the
principle of PDR and the explanation of basic characteristics about the EMG tech-
nology as well as its applications. Several typical accelerometer-based models that
derive the pedestrian’s speed are reviewed. Following this, the EMG-based method is
described, including the setup of the EMG equipment, pre-processing procedure,
stride detection and stride length estimation. Then details of the comparative ex-
periments between the two kinds of methods are presented, followed by the con-
clusions and future work.

2. BACKGROUND.
2.1. Pedestrian Dead Reckoning. When a pedestrian is walking, her/his gait

shows a cyclic pattern, especially from the waveform of acceleration. A gait cycle is
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defined as a fundamental unit to describe the gait during ambulation, which occurs
from the time when the heel of one foot strikes the ground to the time at which the
same foot contacts the ground again. A stride is synonymous to one gait cycle, and is
equal to two steps, which is from the heel strike of one foot to the heel strike of the
opposite foot (Chai 2004). The patterns of gait are different due to various place-
ments of PNS mounted on the user’s body. If the device is mounted on the user’s
trunk, the pattern is periodic according to every step (Chen et al. 2009a; Fang et al.
2005; Ladetto 2000); while on the lower limb, it circulates per stride (Godha et al.
2006). In this paper, the EMG sensors are mounted on the legs, while the accelero-
meter is mounted on the waist. Since the rhythms of these two kinds of signals are not
the same, for the sake of simplicity and avoiding the confusion between the stride and
step, we uniformly take the stride to explain the principle of related methods, except a
special indication.

As introduced before, there are three key procedures for PDR: stride detection,
stride length estimation and heading determination. Once the procedures are
implemented, the position of the PDR solution is propagated via the following
equation:

Nk+1=Nk+SLk � cos ak
Ek+1=Ek+SLk � sin ak

�
(1)

whereNk and Ek are the North and East coordinates, SLk is the stride length and ak is
the heading (azimuth) at epoch k. Suppose the stride frequency is SFk, then the speed
at current stride is calculated by:

Sk=SLk �SFk (2)

And the speed at every second can be linearly interpolated with the lengths of in-
volved strides.

2.2. Sensing Muscle Activities with EMG. There are more than 600 muscles in a
human body, which are classified by three types: skeletal muscles, smooth muscles
and cardiac muscles. The skeletal muscles are made up of muscle fibres attached to
the bone by tendons and their contractions are responsible for the movements of the
human body. To contract a muscle, the brain sends an electrical signal to motor
neurons which conduct messages in the form of nerve impulses from one part of the
body to the other, and then the motor neurons transmit electrical impulses known as
action potentials to the adjoining muscle fibres causing the muscle to contract (Reaz
et al. 2006; Saponas et al. 2008). The EMG technology is applied to detect the elec-
trical potentials generated during the contractions of muscles. Surface EMG sensors
are used for measuring the electrical signal from muscle tissues in a non-intrusive
manner, which is more practical than the invasive mode in most applications, such
as neuromuscular diagnostics, rehabilitation, prosthetics, ergonomics and modern
human-computer interaction (Chen et al. 2007; Saponas et al. 2008; Zhang et al.
2009). For more details on EMG, please see Cram et al. 1998.

When walking, relevant muscles of the pedestrian would be contracted and gen-
erate electrical potentials periodically, which can be recorded by the EMG sensors.
The patterns of the EMG signal are distinct, depending on the tester’s gender, age
and health condition, the placement of EMG electrodes, and so on. Therefore,

NO. 2 SPEED ESTIMATION METHODS 267

https://doi.org/10.1017/S0373463310000391 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463310000391


utilizing the EMG technology in gait analysis attracts extensive research in the
literature (Anders et al. 2007; Campanini et al. 2007; Ivanenko et al. 2004). But
almost all of them are for clinical purposes. Introducing the EMG signal into pe-
destrian navigation is a brand-new application. The EMG signal can be used for
stride detection, stride length estimation, and thus determination of the speed, based
on the fact that when a pedestrian is walking, the EMG signal is periodical and its
intensity directly reflects the force exerted by the legs.

3. SPEED ESTIMATION METHODS BASED ON ACCELERO-
METERS. In classical Inertial Navigation Systems (INS), the speed is calculated
by integration of the acceleration. This methodology is not applicable for PDR due to
the instrument errors of low-cost accelerometers, alignment of navigation platform
during walking, computation complexity and so forth. Therefore, most of the re-
searchers in this area resort to detecting the stride and estimating the stride length
for determination of the speed indirectly.

To detect a stride, there are many effective methods, such as zero-crossing
(Beauregard and Haas, 2006; Käppi et al, 2001), peak detection (Fang et al, 2005;
Ladetto, 2000; Levi and Judd, 1999), autocorrelation (Weimann and Abwerzger,
2007), stance-phase detection (Cho and Park, 2006; Godha et al, 2006), FFT (Levi
and Judd, 1999), and a method of adopting an impact switch mounted on the user’s
shoes to measure the steps directly (Grejner-Brzezinska et al, 2007). And the corre-
sponding stride length is typically determined according to different models that can
be grouped into four kinds: constant/quasi-constant model, linear model, nonlinear
model, and Artificial Intelligence (AI) model. Most of the models are established on
the basis of good correlation between the walking speed and some statistical features
of acceleration, such as stride frequency, maximum or minimum value per stride, vari-
ance per stride, etc. One example is illustrated in Figure 1, which depicts some rel-
evant features when the pedestrian walked at self-selected slow, normal and fast
speeds. Obviously, once the stride length is estimated, the speed is easily determined
according to (2). Hence in the following, we emphasize the introduction of some
typical examples of the four kinds of stride length models.

3.1. Constant/Quasi-Constant Model. This kind of model is the simplest one that
assumes stride length is a constant (Judd 1997) or a quasi-constant (Godha et al.
2006, Mezentsev 2005). The constant is pre-defined or online obtained fromGPS. For
example, in Godha et al. 2006, the stride length is assumed as a random walking
process. When GPS outage is encountered, the stride length is fixed to the last com-
puted one from GPS:

SLk+1=SLk+ws; ws � N(0, s2
s) (3)

A more flexible model is the look-up table, which stores a few levels of stride
length. The estimated stride length is chosen according to the user’s locomotion
mode, time duration of each stride, etc (Vildjiounaite et al, 2002).

3.2. Linear Model. To the best of the authors’ knowledge, Levi and Judd first
proposed the idea of stride detection and stride length estimation in pedestrian
navigation (Levi and Judd 1999). They established a model based on a linear re-
lationship between the stride frequency and stride length. Furthermore, in Ladetto
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2000, a two-parameter linear model is proposed:

SL=A+B �SF+C �SV+w (4)

where SF is stride frequency, SV is stride variance, and w is Gaussian noise, A, B
and C are the regression coefficients. Other linear models are similar to (4) and at
most different in choosing specific statistical variables (Käppi et al. 2001, Leppäkoski
et al. 2002).

3.3. Nonlinear Model. Since there is not enough evidence to testify to the linear
relationship between stride length and some statistical features, some researchers also
adopt various nonlinear models. In Fang et al, 2005, the stride length is modelled as:

SL=K �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AmaxxAmin

4
p

(5)

where Amax(or Amin) is the maximum (or minimum) acceleration at a stride and K is
the coefficient. In this model it is easy to implement real-time estimation algorithms
due to only one parameter. In Tome et al, 2008, the stride length is modelled as a
simple inverse pendulum, and is calculated from the trigonometric relation:

SL=L �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � [1x cos (a)]

p
(6)

where the angle a is computed by integrating the angular rate rotation of the shank
during one stride, and L is the length of the user’s leg. Another empirical nonlinear
model is introduced in Kim et al, 2004.

3.4. Artificial IntelligenceModel. For anAI approach, the main advantage is that
there is no need to figure out an exact mapping relationship among these variables.
In addition, these AI models are more flexible and adaptive to be applied in various

Figure 1. Statistical features of acceleration under different speeds.
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locomotion patterns and different ground conditions, rather than the other three
types above. In Cho and Park 2006, an Artificial Neural Network (ANN) is utilized
for estimating the stride length, with the inputs: stride frequency, variance of the
acceleration per stride and terrain slope. And in Beauregard and Haas 2006, four
features are adopted in the ANN, that is, the maximum, minimum value, variance
and integral of the acceleration per stride. The team of Prof. Grejner-Brzezinska
developed a 6-input ANN to derive stride length (Grejner-Brzezinska et al, 2007), and
then introduced Fuzzy Logic into recognizing the pedestrian’s locomotion pattern,
for the sake of upgrading the adaptability of the estimation model in the actual
navigation (Moafipoor et al, 2008).

4. NOVEL SPEED ESTIMATION METHOD USING EMG SIGNAL.
Since this is a new attempt to use the EMG signal for pedestrian navigation, it
is necessary to explore which muscle is suitable for speed assessment, and how
to realize the specific algorithms of stride detection and stride length estimation
on the basis of the characteristics of this kind of signal. The details are presented
as follows.

4.1. EMG Equipment and Setup. To record the EMG data, an EMG measure-
ment system is used, which supports up to 16 wired or wireless active surface EMG
sensors (or channels) and contains built-in amplifiers of 40–80 dB gain. Each EMG
sensor consists of a pair of line-shaped differential electrodes with 1 mmr10 mm
contact area and 10 mm inter-electrode distance. The sampling rate was set to 1 kHz.

In the first few experiments, several EMG sensors were attached to different mus-
cles in both the left and right legs. From the empirical results and some conclusions
in the literature (Campanini et al, 2007; Ivanenko et al, 2004), when the pedestrian
is walking, the pattern of the EMG signal from the surface skin of the calf
(Gastrocnemius) is more visible than the ones from other muscles. Therefore, to sense
the walking strikes, at least two EMG sensors are required to be attached to the
Gastrocnemius in either the left or right leg as shown in Figure 2.

In addition, based on our experiences gained from extensive tests, stride patterns
are more visible and stable from the EMG signal of the right leg than that from the
left leg, especially under different speeds. The reason is that when a pedestrian is
walking, one leg always contributes more than the other one for keeping or adjusting
the speed. And most people are right-legged, just like right-handed, including the
testers in our experiments. Hence, in this paper, all EMG signals are referred to the
ones collected from the sensors attached to the right leg, though we have also col-
lected the EMG signals from the left leg.

4.2. EMG Signal Pre-processing. Since the measurements from EMG sensors
have been amplified, the amplitude of the EMG signal cannot stand for the actual
value of the muscular electrical signal. But the value of the signal can represent the
level of muscle activities directly. Before applying the EMG signal for stride detection
and stride length estimation, they should be pre-processed with the following proce-
dures (Zhang et al. 2009):

’ calculate the sum of the signals at each epoch from all channels with:

s(t)=
Xn
i=1

si(t) (7)
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where i is the index of the data channel, n is the number of EMG channels that is
two in our case, si(t) is the measurement from the i-th channel at epoch t, s(t) is the
sum of the measurements from all channels at epoch t, and

’ calculate the smoothed square signal using a sliding window with the window
size of m as:

S(t)=
1

m

Xt

k=txm+1

s2(k) (8)

the size m of the sliding window has been chosen as 64 (equivalent to 0.064 second) in
our computation by taking the practice and performance into account. The objective
of applying a sliding window on the raw data is to reduce the vibration in the raw
data.

Figure 3 shows a typical example of processing the EMG data, which illustrates
that after pre-processing, the cyclic pattern is more obvious and easier to detect than
that of the raw data, and the bursting part of each stride indicates the moment that
the leg is about to leave the ground during a gait cycle (Ivanenko et al, 2004).

4.3. Stride Detection. Considering the unique pattern of the EMG signal, a peak
detection algorithm is adopted, which includes two main constraints :

’ the pre-processed EMG signal should be larger than a threshold, which is de-
signed for avoiding the false detection due to body oscillation, and

’ the time interval between two adjacent peaks should be larger than a timing
threshold, considering that the stride frequency would not be higher than 2Hz in
a walking status.

Based on this algorithm, the detection accuracy can typically reach higher than
99%, which will be demonstrated in section 5.3.

Figure 2. The setup of EMG sensors (The background of the right-hand-side figure is obtained

from http://www.answers.com/topic/muscle).
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4.4. Stride Length Estimation. Referring to the experiences and methods from
acceleration-based models, several tests were conducted to explore the correlation
between the speed and some statistical features of the EMG signal. In these tests, the
tester was required to walk along a straight line a few times at self-selected slow,
normal and fast walking speeds, as well as at a continuously changing speed. Some
statistical features of the EMG signal in these tests indicate a strongly correlative
relationship with the speed, especially the stride period and the maximum value of the
EMG signal per stride (or stride peak). For example, Figure 4 illustrates one of the
tests that the tester walked for about 200 metres at a continuously changing speed.
We can learn from it that when the speed is changed, the stride period and stride peak
are varied correspondingly. Therefore, considering the cross correlation between
these features and the algorithmic complexity, only the stride period and stride peak
are adopted in the EMG-based stride length model, and a linear equation is estab-
lished as follows:

SL=A+B �ST+C �SP (9)

where SL is stride length, ST is stride period, and SP is stride peak. A, B and C are the
estimated coefficients which can be determined by a least square method or a Kalman
filter during the training phase when the GPS signal is available. And once in a GPS
denied environment, stride length is estimated via (9). Note that since the two features
have different physical characteristics, the numerical value of stride peak is normal-
ized before being utilized. Finally, the EMG-based speed is determined according
to (2).

Figure 3. A typical example of pre-processing the EMG signal: (top trace) raw EMG signal from

channel 1; (second trace) raw EMG signal from channel 2; (third trace) summed EMG signal;

(bottom trace) pre-processed EMG signal.
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5. COMPARATIVE EXPERIMENTS FOR THE TWO METHODS.
5.1. Experiment Design. To validate the feasibility and effectiveness of the EMG-

based method, and compare its performance in PDR with that of the accelerometer-
based method, several field tests were conducted by three testers in the west campus of
University of Science and Technology of China (USTC), using the EMG equipment
and a self-developed low-cost Multi-Sensor Positioning (MSP) platform by the
Finnish Geodetic Institute (FGI). The MSP includes a GPS chip (Fastrax iTrax03),
a 3-axis accelerometer (VTI SCA3000), and a 2-axis digital compass (Honeywell
HMC6352). For more details about the MSP, please see Chen et al. 2009b. As shown
in Figure 5, the EMG sensors were attached to the Gastrocnemius in both the left and
right legs, and the MSP was mounted on the tester’s abdominal area, with the GPS
antenna fixed on top of a cap for maximum satellite visibility.

The testers were required to walk one round along track 1 of a sports field, and
then turn to track 6 for another round. In addition, the first tester was asked to walk
along a prescribed long-range trajectory around the campus as shown in Figure 6.
Since the major objective of these tests is to compare the performance of the two
kinds of speed estimation methods, we chose an open-sky environment to achieve
a good GPS solution and avoid severe magnetic disturbances, and utilized the posi-
tioning outputs from the built-in Kalman filter of the GPS chip for training the stride/
step length model in the training phase and as a reference in the navigation phase.
Note that as mentioned in section 2.1, due to different placements of the two systems
on the testers’ body, the EMG system detects the stride occurrences, while the
accelerometer in MSP senses the step strikes.

5.2. Comparative Algorithm Architecture and Time Synchronization. At the cur-
rent stage of this research, the data of two systems were stored during the tests and
post-processed later on. The comparative algorithm is realized as shown in Figure 7.

Figure 4. The EMG signal and statistical features when walking at a continuously changing

speed: (top) pre-processed EMG signal; (centre) stride period; (bottom) stride peak.
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The specific EMG-based algorithms for stride detection and stride length estimation
are presented as above, while based on the accelerometer, step detection is im-
plemented by a method combining sliding window, peak detection and zero-crossing
(Chen et al, 2009b), and the model in (5) is used for step length estimation. In the
training phase, the speed from GPS is interpolated in accordance with the results
of stride/step detection, and then is utilized to train the estimation models. Besides,
the heading from GPS is used for calibrating the digital compass according to an
adaptive approach (Chen et al, 2010). Afterwards, relevant positioning results are
calculated in the navigation phase, which would be demonstrated in the latter.

Figure 5. Placement of the EMG sensors and the MSP platform.

Figure 6. The nominal trajectory of the long-range test.
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Time synchronization is important among these heterogeneous sensors. The
microprocessor in the MSP has a master clock to keep the timing and control the data
acquisition from each sensor at a regular rate (accelerometer 50 Hz, digital compass
10 Hz). Whenever the GPS fix is obtained, the master clock is synchronized to the
GPS time. The EMG equipment has its own timing system. Its sampling rate can be
up to 64 kHz, and was set to 1 kHz in our tests. To synchronize these two systems, an
autonomous method was developed for detecting the starting point of the walking
process in each system. The time offset of these two systems were then determined and
applied to synchronize the measurements of these sensors. Due to the low walking
speed, a synchronization error of 0.1 second can be ignored because it will cause a
positioning error of a few centimetres (Mezentsev, 2005). Therefore, based on the
preciseGPS timing and the high sampling rate of the EMG signal, the synchronization
accuracy is sufficient for pedestrian navigation. Figure 8 shows the time synchroni-
zation of the long-range test, and it also illustrates that one stride is equivalent to two
steps.

5.3. Experiment Results. Table 1 lists the detection results of the second round
along track 6 by the three testers, as well as that of the long-range test, based on the
two types of signal separately. As shown, the accuracy of each method is higher than
99%.When stopping walking, some testers’ muscles would still contract involuntarily
for a while, which might cause a false detection based on the EMG-based method.
Note that all the testers started walking with the right leg, and if they stopped at the
right leg too, there would be one step difference between the actual steps and the
double of the strides. Since the length of one step is not longer than 1 m, the error can
be neglected when estimating the distance travelled.

As mentioned before, the EMG-based method detects the stride occurrences, while
the accelerometer-based one senses the step strikes. It is not convenient to compare
the results of stride/step length estimation directly. Therefore, the two methods are

Figure 7. Architecture of the comparative algorithm.
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compared in terms of the speed and total distance travelled. The results of these tests
are listed in Table 2, except the test by tester 3, in which the poor geometric condition
of satellite observability causes deterioration in GPS positioning accuracy so that
the data from GPS are unsuitable for training the models and as a reference. The
statistics in Table 2 demonstrate that the performance of the proposed EMG-based
speed estimation method is comparable to that of the accelerometer-based method,
and the difference of the travelled distance estimated by the EMG method is not
beyond 1.5% in these tests, which is quite good in pedestrian navigation.

Table 1. Results of the stride/step detection.

Test case

True

strides

Detected

strides

Error

[%]

True

steps

Detected

steps

Error

[%]

Track 6 (T1) 285 286 0.35 570 570 0

Track 6 (T2) 299 300 0.33 597 597 0

Track 6 (T3) 313 314 0.32 625 625 0

Long-range test 1044 1044 0 2087 2086 0.05

Figure 8. Time synchronization between the EMG and MSP systems.

Table 2. Estimation results of the speed and distance travelled.

Test case

GPS

speed

[m/s]

Travelled

distance

from

GPS [m]

EMG-based Accelerometer-based

Speed

[m/s]

Travelled

distance

[m]

Distance

difference

[%]

Speed

[m/s]

Travelled

distance

[m]

Distance

difference

[%]

Track 6 (T1) 1.41t0.07 438.2 1.39t0.07 433.2 1.14 1.39t0.06 431.7 1.49

Track 6 (T2) 1.45t0.07 438.9 1.44t0.14 435.0 0.89 1.44t0.06 436.4 0.56

Long-range

test

1.39t0.09 1581.8 1.40t0.09 1592.8 0.69 1.37t0.07 1566.0 1.00
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Furthermore, to evaluate the performance of the two methods in PDR, some
simulated GPS gaps are intentionally introduced into the trajectory of track 6 as well
as that of the long-range test. According to equation (1), the dead reckoning positions

(a) 

(b) 

(c) 

Figure 9. Position results of the simulated GPS gaps: (a) along track 6 by tester 1; (b) along track

6 by tester 2; (c) along the long-range trajectory by tester 1.
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of the gaps are calculated with the stride/step length derived from both the
EMG-based and accelerometer-based methods, and the compensated heading from
the 2-axis digital compass.

In Figure 9, the green points in the GPS trajectories indicate the start and stop
points of the simulated gaps, and the PDR solutions of these two kinds are depicted
in red separately. Figure 10 illustrates the corresponding horizontal position difference
of these gaps between the GPS and the two kinds of PDR solutions. Table 3 lists the
corresponding statistical results in detail. These results demonstrate that the PDR
solution based on any kind of the two methods can achieve an acceptable perform-
ance under GPS-denied environments in a few minutes, comparable to that of GPS
under open-sky environments.

Table 3. Positioning results of simulated GPS gaps.

Simulated gap

Walking

time [s]

EMG-based Accelerometer-based

RMS Max difference RMS Max difference

[m] [%] [m] [%] [m] [%] [m] [%]

Track 6 (T1) 150 2.63 1.25 4.58 2.17 3.02 1.44 5.66 2.69

Track 6 (T2) 150 2.88 1.33 4.64 2.15 4.99 2.31 7.34 3.40

Long-range test 200 3.55 1.31 5.13 1.89 4.75 1.75 7.77 2.87

Figure 10. Horizontal difference of the simulated GPS gaps between the GPS and PDR

solutions: (top) along track 6 by tester 1; (centre) along track 6 by tester 2; (bottom) along the

long-range trajectory by tester 1.
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6. CONCLUSIONS AND FUTURE WORK. Based on the fact that during
walking, the contractions of muscles are cyclic and the intensity of the EMG signal
directly represents the force exerted by the legs, a novel EMG-based stride detection
and stride length estimation method is introduced in the paper. More details are
focused on the setup of the EMG equipment, procedure of pre-processing the EMG
signal, stride detection, and how to establish a simple but effective linear model for
estimating the stride length. Several field tests were conducted to evaluate this pro-
posed method, as well as to compare its performance in PDR with that of the
accelerometer-based method. From these results, it can be concluded that the
EMG-based speed estimation method in PDR is feasible and effective, and could be
an alternative to the accelerometer-based method. Furthermore, the performance of
the PDR solution that integrates the EMG-based stride length and the compen-
sated heading from a 2-axis digital compass under short-term GPS outages can be
comparable to that of the GPS under open-sky environments.

However, it cannot be asserted that the EMG-based method would be always
superior to the one based on accelerometers, because in our tests, the walking dy-
namics of the testers are a little bit simple and the ground is even and level. For a
thorough comparison, it should be conducted in scenarios with various walking
dynamics and different ground conditions. Nevertheless, the potential of the EMG
technology for speed estimation has been demonstrated, and as is known to all, ac-
tually the major problem in PDR is determination of heading, especially in indoor
environments. Therefore, the next step is to utilize the EMG signal to aid the digital
compass in discriminating the actual turning with magnetic disturbances, even in
deriving the azimuth information solely from this kind of biomedical signal when the
pedestrian is adjusting his/her walking direction, for achieving a seamless outdoor/
indoor positioning solution with satisfactory accuracy.
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