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Abstract
This article presents an innovative adaptive-observer-based scaled four-channel (4-CH) control approach applying
damping injection for nonlinear teleoperation systems, which unify the study of robotic dynamic uncertainties, oper-
ator/environment force acquirements and asymmetric time-varying delays in the same framework. First, a scaled
4-CH scheme with damping injection is developed to handle time-varying delay while guaranteeing the passivity
of communication channels. Then, the improved extended active observer (IEAOB) is deployed to derive the opera-
tor/environment force while addressing the issues of measurement noise and model uncertainties. Furthermore, the
system stability is analyzed by choosing Lyapunov functional. Finally, the proposed method is validated through
simulation.

1. Introduction
Due to the capabilities of extending human sensing, decision making and manipulation to the remote
object by the exchange of various information, the bilateral teleoperation system has attracted much
attention over the past decades and become a very hot and challenging topic of control technologies with
numerous applications, such as space operation, underwater exploration and mining, handling toxic or
nuclear materials, as well as, robotic-assisted surgical interventions [1]. There are two major control
objectives in a bilateral teleoperation system: stability and transparency. The system stability would be
easily affected by the nonzero communication time delay, which causes performance degradation and,
in the worst scenario, instability of the overall system. Transparency indicates that the technical medium
between operator and environment is not felt, that is, the dynamics of master and slave are canceled
out [2]. Since force feedback may cause instability, enhancing transparency and simultaneously guar-
anteeing stability is a challenge in bilateral teleoperation systems [3]. To fight against the time delay in
a teleoperation system, various control strategies [4, 5] have been reported in the literature. Prevalent
among these approaches is the passivity-based control method, which makes the use of scattering trans-
formations for constant time delays [6] and variable time delays in [7, 8]. However, as the time delay
increases, these scattering-based methods would cause wave reflection and position drift, and accord-
ingly the practicality of the teleoperation system decreases due to the reduced transparency. Hence,
many modifications [9, 10, 11, 12] have been proposed for the wave-variable-based approaches to rein-
force the system performance. As one of the other passivity-based control schemes, damping injection
controllers, which deploy delayed position and velocity error terms (PD) in addition to the delayed pro-
portional term (d), can provide good position tracking performance in the presence of constant [13]
or variable time delays [14, 15]. Readers can refer to [16] for an extensive survey of various bilateral
teleoperation control approaches, and [17] for a recent survey of passivity-based approaches. As more
complex teleoperation tasks are increasing in recent years, the nonlinearity and uncertainty, essentially
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existing in robot manipulators have become another formidable barrier to achieve a high level of fidelity
while maintaining system stability. Many control schemes have been reported in the engineering com-
munity to deal with these problems, such as adaptive control [18, 19, 20, 21, 22, 23, 24], robust control
[25, 26, 27, 28, 29, 30], and neural network and fuzzy logic technique [31, 32, 33, 34, 35, 36, 37], etc.

In addition, the literature reveals that very few methods apply direct force signals reflection in the
nonlinear teleoperation system under time delays, although the force reflection can greatly enforce the
realistic haptic perception felt by the operators and increase the system transparency. The reason is
that the design of the force source and the transmission of the external force signals in delayed com-
munication channels may adversely affect the passivity of the communication channels and jeopardize
the stability of the teleoperation system using the passivity-based controllers [38]. Therefore, design-
ing control strategies to accurately derive external force signals and transmit command signals without
jeopardizing the system stability is a big challenge for bilateral teleoperation. Four-channel teleopera-
tion architecture, proposed in [39] and [40] to realize ideal transparency, can achieve the perfect position
tracking between master and slave robots and perfect force reflection from the environment to the oper-
ator by transmitting the force and position information from both robots. In some micromanipulation
applications, such as tele-surgery, as the master and the slave works on the macroscale and microscale,
respectively, the scaled four-channel control is required, which means the master position and human
force information are scaled down to the slave while the slave position and environment force informa-
tion are scaled up to the master. Since the four-channel teleoperation architecture is known to provide
the best performance in terms of transparency [41], the combination of the (scaled) four-channel and
passivity-based approaches could be an effective way to achieve stability and good transparency per-
formance simultaneously for a nonlinear bilateral teleoperation system in the presence of constant or
time-varying delays [42, 43].

Motivated by the aforementioned discussions, a novel adaptive-observer-based scaled four-channel
(4-CH) control approach applying damping injection for nonlinear teleoperation systems is developed in
this article to achieve very good synchronization between the master and slave robots whether the slave
robot is during free motion or in contact with the environment. The investigated design can cope with
the majority of the control issues in a nonlinear teleoperation system, such as robot dynamical model
uncertainties, external noises, external operator and environment force acquirements and time-varying
delays. The stability of the proposed teleoperation system is guaranteed in the presence of bounded dis-
turbances and time-varying delays. The effectiveness of the system is demonstrated through simulation.
Specifically, the work offers the following contributions:

1. A novel scaled 4-CH control scheme with the damping injection is developed to handle
time-varying delays and improve the position and force tracking performance in addition to guar-
anteeing the passivity of the communication channels and accordingly the stability of the whole
system.

2. The improved extended active observers (IEAOBs) are employed at both the master and slave
sides to accurately estimate the external operator/environment forces and velocity signals while
simultaneously eliminating the external noise and coping with the robot parameter variation
issues.

3. By building a proper Lyapunov–Krasovskii functional, the close-loop master–slave teleoperation
system stability and performance under time-varying delays is analyzed.

4. The theoretical work presented here is supported by simulation results based on a 2-DOF master–
slave teleoperation system.

The remainder of the article is structured as follows: after stating the model of the nonlinear tele-
operation system and the control objective in Section 2, the proposed scaled 4-CH control scheme
applying damping injection will be described in Section 3. In this section, the stability analysis will
be also discussed. In Section 4, simulation results are provided followed by the conclusion in Section 5.
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2. Problem formulation
The dynamics of the nonlinear teleoperation system consisting of a pair of n-degree-of-freedom (DOF)
robots with revolute joints can be formulated as:

Mm(qm, θm) q̈m + Vm(qm, q̇m, θm) q̇m + gm(qm, θm) + Tfm = Tm + Th, (1a)

Ms(qs, θs) q̈s + Vs(qs, q̇s, θs) q̇s + gs(qs, θs) + Tfs = Ts + Te, (1b)

where q̈∗, q̇∗, q∗(∗ = m/s) are angular acceleration, angular velocity and angular position signals,
M∗(q∗, θ∗) is the inertia matrix, V∗(q∗, q̇∗, θ∗) is the vector of Coriolis and centripetal terms, g∗(q∗, θ∗) is
the gravity torque, Tf∗ are the friction torques, T∗ are input torques of the controllers, θ∗ represent inertial
robotic parameters and Th, Te correspond to the torques exerted by the human operator and environment,
respectively. In this study, Tf∗ is modeled as a simplified version of the LuGre model [44], by considering
viscous and Coulomb friction:

Tf∗ = vc∗ ∗ sgn(q̇∗) + vv∗ ∗ q̇∗, (2)

where vc∗ ∈ Rn is the coefficient vector of Coulomb friction, and vv∗ ∈ Rn is the coefficient vector of
viscous friction.

When one treats the external human or environment force acting on a manipulator as an unknown
input and models it as a random walk process, and also considers that the master and slave robot
dynamics are nonlinear with parameter variations, by defining the state vector X∗(∗ = m/s) as X∗ =[

q∗ q̇∗ θ∗ vv∗ vc∗ Th/e

]′
, the teleoperation system model in (1) can be extended in state-space

representation as follows:

Ẋ∗ = f∗(X∗, T∗) + G∗ξX∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̇∗

M−1
∗

(−V∗q̇∗ − g∗ − Tf∗ + T∗ + Th/e

)
0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ G∗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξq∗

ξq̇∗

ξθ∗

ξvv∗

ξvc∗

ξTh/e

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3a)

Y∗ = H∗X∗ + ηX∗ = [
I 0 0 0 0 0

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q∗

q̇∗

θ∗

vv∗

vc∗

Th/e

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ ηX∗ , (3b)

where Y∗ is the output of the system, G∗ is a unit matrix and the state observation matrix H∗ =[
I 0 0 0 0 0

]
, and ξq∗ , ξq̇∗ and ηX∗ represent the process noises and measurement noises,

respectively, ξTh/e , ξvv∗ , ξvc∗ and ξθ∗ represent the rates at which the vectors of external torques, friction
coefficients and robot parameters are estimated to vary.

Some important properties of the above nonlinear robot dynamic model, which will be used in the
analysis of the teleoperation system, can be obtained as follows [37]:

Property 1. The inertia matrix M∗(q∗) for a manipulator is symmetric positive-definite which
verifies:

0 < σmin(M∗(q∗)) I ≤ M∗(q∗) ≤ σmax(M∗(q∗)) I < ∞, (4)
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where I ∈ Rn×n is the identity matrix. σmin and σmax denote the strictly positive minimum and maximum
eigenvalue of M∗ for all configurations q∗(∗ = m/s).

Property 2. Under an appropriate definition of the Coriolis/centrifugal matrix, the matrix Ṁ∗ − 2V∗ is
skew symmetric, which can also be expressed as:

Ṁ∗(q∗(t)) = V∗(q∗(t) , q̇∗(t)) + VT
∗ (q∗(t) , q̇∗(t)) . (5)

In addition, some assumptions for this work are stated as

Assumption 1. It is assumed that there are time-varying delays in the forward and feedback com-
munication channel. t(t) = T1(t) + T2(t) represents the round-trip time delay, T1(t) is the forward
communication channel-induced delay, T2(t) is the feedback communication channel-induced delay.
The variable time-delays T∗(t) and the derivatives Ṫ∗(t) have known upper bounds, i.e., 0 ≤ T∗(t) ≤
T∗max < ∞, ∗ = 1, 2. It is reasonable to assume that the time-varying delay in the communication chan-
nel is bounded from a practical point of view. Infinite time delays imply that the connection between
the master side and the slave side is broken. Furthermore, the variable time-delays do not increase or
decrease faster than time itself [11, 13, 14, 17], i.e.,

∣∣Ṫ∗(t)
∣∣ < 1, ∗ = 1, 2.

Assumption 2. we assume that the operational and environmental torques are passive and satisfy:

−
∫ t

0

q̇ T
m (η) Th(η) dη + ρh ≥ 0, (6)

and

−
∫ t

0

q̇ T
s (η) Te(η) dη + ρe ≥ 0, (7)

for ∃ρh, ρe > 0, ∀t ≥ 0. For the system stability analysis later, the operational and environmental torques
are modeled as [11]

Th(t) = −∅m(q̇m(t) + ρqm(t)) , (8a)

Te(t) =∅s(q̇s(t) + ρqs(t)) , (8b)

where ρ, ∅m and ∅s are positive constant and matrices and are properties of the human and the
environment, respectively.

The control objective is to achieve asymptotic master–slave coordination in free motion and asymp-
totic force reflection in the steady state in the presence of time-varying delays and bounded parameter
variations and external disturbances. To accomplish that, we will present the proposed adaptive-
observer-based scaled four-channel (4-CH) control approach with damping injection in the following
section with three steps:

Step 1: Design the novel adaptive scaled 4-CH control scheme with the damping injection to
compensate the effect of the time-varying delay and improve position and force tracking
performance.

Step 2: Design the IEAOB at both master and slave sides to identify the nonlinear robot dynami-
cal model and estimate the external forces, position and velocity signals in the presence of
measurement noises.

Step 3: Build proper Lyapunov–Krasovskii functional to analyse the overall system stability and find
sufficient conditions on the controller parameters to guarantee the system performance.
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Figure 1. The proposed scaled 4-CH control architecture for bilateral teleoperation manipulators.

3. Adaptive-observer-based robust control approach with scaled 4-CH architecture
In this section, the adaptive scaled 4-CH method with damping injection is developed to handle the time-
varying delay first. Then, the IEAOBs are deployed at both master and slave sides to identify the robot
model and estimate the external force while dealing with dynamic uncertainties and external noises.
After that, the stability of the proposed bilateral control system is theoretically analyzed.

3.1. The proposed scaled 4-CH teleoperation architecture with damping injection
Figure 1 shows the proposed control architecture for a nonlinear time-delayed bilateral teleoperation
system. The master position and human force signals q̂m(t) , T̂h are scaled by α and 1/β, respectively,
and then transmitted to the slave through the forward communication channel e−T1s, and the IEAOB is
designed at the slave side to estimate the robot model parameters (θ̂s, v̂cs , v̂vs ) and environment torque T̂e.
The estimated robot parameters (θ̂s, v̂cs , v̂vs ) are utilized to calculate the estimated ĝs and T̂fs for compen-
sation of the gravity item and friction, and the slave controller Ts based on the estimated torque ĝs and
T̂fs , the force controller Kf , the position controller Kp, and damping injection Ds(s) is designed for the
slave manipulator to achieve great tracking position performance under various noises and uncertain-
ties. The slave position signal q̂s(t) and the estimated environment torque T̂e are scaled by 1/α and β,
respectively, and then transmitted to the master via the feedback communication channel e−T2s to design
the controller at the master side. The IEAOB is designed at the master side as well for the master robot
to identify the dynamical model

(
θ̂m, v̂cm , v̂vm

)
and estimate the human operator torque T̂h, which are then

used in the master controller design under various noises and uncertainties. Similar to the slave side, the
estimated robot parameters (θ̂m, v̂cm , v̂vm ) are utilized to calculate the estimated ĝm and T̂fm for compensa-
tion of the gravity item and friction, and the master controller Tm is built based on the estimated torque
ĝm and T̂fm , the force controller Kf , the position controller Kp, and damping injection Dm(s) . The master
control design is simplified to let the forces track as closely as possible. Therefore, good transparency
performance can be obtained with the satisfied position tracking performance for the slave robot and the
actual feeling of estimated environmental torque provided for the human operator.

Let’s define emp = 1
α
qs(t − T2(t)) − qm(t) , esp = αqm(t − T1(t)) − qs(t) , emf = βTe(t − T2(t)) +

Th, esf = Te + 1
β

Th(t − T1(t)) , the proposed controllers for master and slave robots are:

Tm = −
Tm + T̂fm + ĝm

(̂
qm, θ̂m

) − Dm(s) ∗ q̂m; (9a)

Ts = −
Ts + T̂fs + ĝs

(̂
qs, θ̂s

) − Ds(s) ∗ q̂s; (9b)
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where
−
Tm = Kp̂emp + Kf êmf , (10a)

−
Ts = Kp̂esp − Kf êsf , (10b)

where α, β are the position and force scaling factors, respectively, Kf , Kp are the force controller and
position controller, respectively, the damping coefficients Dm(s) = Kbms, Ds(s) = Kbss, ∗̂ is the estimate
item by the IEAOB, which will be presented in the following subsection.

3.2. IEAOB for master/slave model identification and external force estimation
Due to the nonlinearity and uncertainty essentially existing in robot manipulators, it is very difficult to
achieve a high level of fidelity while maintaining system stability for a bilateral teleoperation system if
the issue is not well addressed. Therefore, in this subsection, the IEAOB in [19] is employed to identify
the accurate nonlinear robot model as well as estimate the external force without knowing a specific
external force model in the presence of friction, processing noise and measurement noise. Let’s recall
the dynamical model for master and slave robots in (3), the IEAOB is designed as follows:

˙̂X∗ = f∗
(
X̂∗, T∗

) + P∗H
T
∗ R−1

∗
(
Y∗ − H∗X̂∗

)
, (11a)

where

Ṗ∗ = ∂f∗
∂X̂∗

P∗ + P∗
∂f T

∗
∂X̂∗

+ G∗Q∗G
T
∗ − P∗HT

∗ R−1
∗ H∗P∗, (11b)

and

R∗ = cov
(
ηX∗

)
,

Q∗ = diag
(
cov

(
ξq∗

)
, cov

(
ξq̇∗

)
, cov

(
ξθ∗

)
, cov

(
ξvv∗

)
, cov

(
ξvc∗

)
, cov

(
0ξTh/e

))
,

f∗
(
X̂∗, T∗

) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f∗1

f∗2

f∗3

f∗4

f∗5

f∗6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

˙̂q∗
¨̂q∗
˙̂θ ∗
˙̂vv∗

˙̂vc∗

˙̂Th/e

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

˙̂q∗

M̂−1
∗

(−V̂∗ ˙̂q∗ − ĝ∗ + T∗ + T̂h/e − T̂f∗
)

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (12a)

where f∗1 = ˙̂q∗, f∗2 = M̂−1
∗

(−V̂∗ ˙̂q∗ − ĝ∗ + T∗ + T̂h/e − T̂f∗
)

, f∗3 = 0, f∗4 = 0, f∗5 = 0, f∗6 = 0, ∗ = m/s,
cov

(
ξq∗

)
, cov

(
ξq̇∗

)
, cov

(
ξθ∗

)
, cov

(
ξvv∗

)
, cov

(
ξvc∗

)
, cov

(
0ξTh/e

)
, and cov(η∗) are, respectively, the covari-

ance matrices of the input stochastic, zero mean, and Gaussian noises ξq∗ , ξq̇∗ , ξθ∗ , ξvv∗ , ξ
vc∗

, 0ξTh/e , and
the output stochastic, zero mean, and Gaussian noise ηX∗ , and

F∗(t) = ∂f∗
∂X̂∗

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f∗1
∂ q̂∗

∂f∗1
∂ ˙̂q∗

∂f∗1
∂θ̂∗

∂f∗1
∂̂vv∗

∂f∗1
∂̂vc∗

∂f∗1
∂T̂h/e

∂f∗2
∂ q̂∗

∂f∗2
∂ ˙̂q∗

∂f∗2
∂θ̂∗

∂f∗2
∂̂vv∗

∂f∗2
∂̂vc∗

∂f∗2
∂T̂h/e

∂f∗3
∂ q̂∗

∂f∗3
∂ ˙̂q∗

∂f∗3
∂θ̂∗

∂f∗3
∂̂vv∗

∂f∗3
∂̂vc∗

∂f∗3
∂T̂h/e

∂f∗4
∂ q̂∗

∂f∗4
∂ ˙̂q∗

∂f∗4
∂θ̂∗

∂f∗4
∂̂vv∗

∂f∗4
∂̂vc∗

∂f∗4
∂T̂h/e

∂f∗5
∂ q̂∗

∂f∗5
∂ ˙̂q∗

∂f∗5
∂θ̂∗

∂f∗5
∂̂vv∗

∂f∗5
∂̂vc∗

∂f∗5
∂T̂h/e

∂f∗6
∂ q̂∗

∂f∗6
∂ ˙̂q∗

∂f∗6
∂θ̂∗

∂f∗6
∂̂vv∗

∂f∗6
∂̂vc∗

∂f∗6
∂T̂h/e

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 I 0 0 0 0

F∗21(t) F∗22(t) F∗23(t) F∗24(t) F∗25(t) F∗26(t)

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (12b)

Now we will show how to get F∗21(t) , F∗22(t) , F∗23(t) , F∗24(t) , F∗25(t) , F∗26(t) in (12b).
Let’s first consider

∂
(

M̂∗ ∗ M̂
−1

∗
)

∂ q̂∗
= ∂I

∂ q̂∗
= 0 = ∂M̂∗

∂ q̂∗
∗ M̂−1

∗ + M̂∗ ∗ ∂M̂−1
∗

∂ q̂∗
,

Then, we can get

∂M̂−1
∗

∂ q̂∗
= −M̂−1

∗ ∗∂M̂∗
∂ q̂∗

∗M̂−1
∗ .

Similarly, one can have

∂M̂−1
∗

∂θ̂∗
= −M̂−1

∗ ∗ ∂M̂∗
∂θ̂∗

∗ M̂−1
∗ .

Hence,

F∗21(t) = ∂f∗2

∂ q̂∗
= −M̂−1

∗ ∗ ∂M̂∗
∂ q̂∗

∗ M̂−1
∗ ∗(−V̂∗ ˙̂q∗ − ĝ∗ + T∗ + T̂h/e − T̂f∗

)
− M̂−1

∗ ∗
(

∂V̂∗ ˙̂q∗
∂ q̂∗

+ ∂ ĝ∗
∂ q̂∗

+ ∂T̂f∗

∂ q̂∗

)
= −M̂−1

∗

(
∂M̂∗
∂ q̂∗

¨̂q∗ + ∂V̂∗ ˙̂q∗
∂ q̂∗

+ ∂ ĝ∗
∂ q̂∗

+ ∂T̂f∗

∂ q̂∗

)
,

F∗22(t) = ∂f∗2

∂ ˙̂q∗
= −M̂−1

∗

(
∂V̂∗ ˙̂q∗
∂ ˙̂q∗

+ ∂T̂f∗

∂ ˙̂q∗

)
,

F∗23(t) = ∂f∗2

∂θ̂∗
== −M̂−1

∗ ∗ ∂M̂∗
∂θ̂∗

∗ M̂−1
∗ ∗(−V̂∗ ˙̂q∗ − ĝ∗ + T∗ + T̂h/e − T̂f∗

)
− M̂−1

∗ ∗
(

∂V̂∗ ˙̂q∗
∂θ̂∗

+ ∂ ĝ∗
∂θ̂∗

)
= −M̂−1

∗

(
∂M̂∗
∂θ̂∗

¨̂q∗ + ∂V̂∗ ˙̂q∗
∂θ̂∗

+ ∂ ĝ∗
∂θ̂∗

)
,

F∗24(t) = ∂f∗2

∂ v̂v∗
= −M̂−1

∗
∂T̂f∗

∂ v̂v∗
, F∗25(t) = ∂f∗2

∂ v̂c∗
= −M̂−1

∗
∂T̂f∗

∂ v̂c∗
, F∗26(t) = ∂f∗2

∂T̂h/e

= M̂−1
∗ .

Then, one has

T̂f∗ = v̂c∗sgn
( ˙̂q∗

) + v̂v∗ ˙̂q∗. (13)

It is worth stressing that the implementation of the IEAOB into real-world applications would not be easy
due to the massive calculation of the inverse of inertia matrix M̂−1

∗ . However, Bierman et al. [45] provide
one way to optimize the derivation of the IEAOB, and the calculation is largely reduced according to
the result in [45].
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3.3. Stability analysis
In this subsection, the stability for the nonlinear bilateral teleoperation system with the proposed control
law is analyzed.

Theorem 1. In the nonlinear teleoperation system described by equation (1) with the control law in
(9-10), the external force modelled as (8) and the IEAOB in (11), the velocities q̇m, q̇s and position error
emp, esp are bounded (q̇m, q̇s, emp, esp ∈ L2 ∩ L∞), provided that

1) Kbm + 1

2
KpA1 − 1

1 − Ṫ1(t)

1

2

B1

B2

KpA2 − KpB1

2

(
ω1 + T1max

2

ω2

)
> 0,

2) Kbs + 1

2

B1

B2

KpA2 − 1

1 − Ṫ2(t)

1

2
KpA1 − KpB1

2

(
ω2 + T2max

2

ω1

)
> 0,

3) α1I ≤ Qm(t) ≤ α2I, β1I ≤ Qs(t) ≤ β2I,

4) α3I ≤ Rm(t) ≤ α4I, β3I ≤ Rs(t) ≤ β4I,

5) The following is true:

α5I ≤
∫ t+σ

t

[
Fm23(τ ) Fm24(τ ) Fm25(τ ) Fm26(τ )

]T∗
[

Fm23(τ ) Fm24(τ ) Fm25(τ ) Fm26(τ )
]

dτ ≤ α6I,

where Fm23(τ ) , Fm24(τ ) , Fm25(τ ) and Fm26(τ ) are evaluated along X̂m and Ḟm23(τ ) ,
Ḟm24(τ ) , Ḟm25(τ ) and Ḟm26(τ ) are bounded, with

Fm23(t) = −M̂−1
m

(
∂M̂m

∂θ̂m

¨̂qm + ∂V̂m
˙̂qm

∂θ̂m

+ ∂ ĝm

∂θ̂m

)
,

Fm24(t) = −M̂−1
m

∂T̂fm

∂ ˙̂vvm

,

Fm25(t) = −M̂−1
m

∂T̂fm

∂ ˙̂vcm

,

Fm26(t) = M̂−1
m ,

for some positive constants α1, α2, α3, α4, α5, α6, σ and all t > t0,

6) The following is true:

β5I ≤
∫ t+σ

t

[
Fs23(τ ) Fs24(τ ) Fs25(τ ) Fs26(τ )

]T∗
[

Fs23(τ ) Fs24(τ ) Fs25(τ ) Fs26(τ )
]

dτ ≤ β6I,
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where Fs23(τ ) , Fs24(τ ) , Fs25(τ ) and Fs26(τ ) are evaluated along X̂s and Ḟs23(τ ) , Ḟs24(τ ) , Ḟs25(τ ) and
Ḟs26(τ ) are bounded, with

Fs23(t) = −M̂−1
s

(
∂M̂s

∂θ̂s

¨̂qs + ∂V̂s
˙̂qs

∂θ̂s

+ ∂ ĝs

∂θ̂s

)
,

Fs24(t) = −M̂−1
s

∂T̂fs

∂ ˙̂vvs

,

Fs25(t) = −M̂−1
s

∂T̂fs

∂ ˙̂vcs

,

Fs26(t) = M̂−1
s ,

for some positive constants β1, β2, β3, β4, β5, β6, σ and all t > t0.

Proof: Define
∼̈
q∗ = q̈∗ − ¨̂q∗,

∼̇
q∗ = q̇∗ − ˙̂q∗,

∼
q∗ = q∗ − q̂∗,

∼
θ ∗ = θ∗ − θ̂∗,

∼
Th/e = Th/e − T̂h/e, where ∗ = m/s.

If conditions 3,4,5,6 of the Theorem and Property 1 in Section 2 are satisfied, according to Theorem 1
in [19], the estimated signals converge to real values asymptotically, then we have

lim
t→∞

∣∣∣∼
q∗

∣∣∣ = 0, lim
t→∞

∣∣∣∣∼̇
q∗

∣∣∣∣ = 0, lim
t→∞

∣∣∣∼
θm

∣∣∣ = 0, lim
t→∞

∣∣∣∼
Th

∣∣∣ = 0, lim
t→∞

∣∣∣∼
Te

∣∣∣ = 0, (14)

Let’s choose the position and force scaling factors α = 1, β = ∅m
∅s

, and reconsider the control law in
(10) with the human/environment force modeled as (8), one can have

−
Tm = Kp̂emp + Kfm̂emf = Kp

(
emp + Kf

Kp

emf

)
= Kp

(
Kf

Kp

∅m

(̂
q̇s(t − T2(t)) −̂̇qm(t)

) +
(

1 + Kf

Kp

∅mρ

)
(̂qs(t − T2(t)) − q̂m(t))

)
, (15)

Let’s define A1 = Kf

Kp
∅m, B1 = I + Kf

Kp
∅mρ, then (15) turns into

−
Tm = Kp

(
A1

(̂
q̇s(t − T2(t)) −̂̇qm(t)

) + B1(̂qs(t − T2(t)) − q̂m(t))
)

, (16)

Similarly, one can get

−
Ts = Kp̂esp − Kf êsf = Kp

(
Kf

Kp

∅s

(̂
q̇m(t − T1(t)) −̂̇qs(t)

) +
(

1 + Kf

Kp

∅sρ

)
(̂qm(t − T1(t)) − q̂s(t))

)
, (17)

Let’s define A2 = Kf

Kp
∅s, B2 = I + Kf

Kp
∅sρ, then (17) turns into

−
Ts = Kp

(
A2

(̂
q̇m(t − T1(t)) −̂̇qs(t)

) + B2(̂qm(t − T1(t)) − q̂s(t))
)

, (18)

Now, let’s define a Lyapunov function V(t) as

V(t) = V1(t) + V2(t) + V3(t) + V4(t) , (19)
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where

V1(t) = 1

2
̂̇q T

m (t) M̂m(̂qm(t))̂̇qm(t) + 1

2

B1

B2

̂̇q T

s (t) M̂s(̂qs(t))̂̇qs(t) ,

V2(t) = −
∫ t

0

̂̇q T

m (η) T̂h(η) dη + ρh −
∫ t

0

̂̇q T

s (η) T̂e(η) dη + ρe,

V3(t) = 1

2
KpB1(̂qm(t) − q̂s(t))

T
(̂
qm(t) − q̂s(t)

)
,

V4(t) = 1

1 − Ṫ1(t)

1

2

B1

B2

KpA2

∫ t

t−T1(t)

∣∣̂q̇m(η)
∣∣2

dη + 1

1 − Ṫ2(t)

1

2
KpA1

∫ t

t−T2(t)

∣∣̂q̇s(η)
∣∣2

dη.

Using Property 2 in Section 2, the time derivative of V1(t) + V2(t) can be written as

V̇1(t) + V̇2(t) =̂̇q T

m (t)
(−

Tm − Kbm̂q̇m(t)
)

+ B1

B2

̂̇q T

s (t)
(−

Ts − Kbŝq̇s(t)
)

= KpA1̂q̇
T

m (t)̂̇qs(t − T2(t))

+ KpB1̂q̇
T

m (t)(̂qs(t − T2(t)) − q̂m(t)) −(
Kbm + KpA1

) ∣∣̂q̇m(t)
∣∣2

+ B1

B2

KpA2̂q̇
T

s (t)̂̇qm(t − T1(t)) + KpB1̂q̇
T

s (t)(̂qm(t − T1(t)) − q̂s(t))

−
(

Kbs + B1

B2

KpA2

) ∣∣̂q̇s(t)
∣∣2

, (20)

Also, the time derivate of V3(t) is given by

V̇3(t) = KpB1

(̂
q̇m(t) −̂̇qs(t)

)T (̂
qm(t) − q̂s(t)

)
, (21)

By adding (20) and (21), one can get

V̇1(t) + V̇2(t) + V̇3(t) = −(
Kbm + KpA1

) ∣∣̂q̇m(t)
∣∣2 −

(
Kbs + B1

B2

KpA2

) ∣∣̂q̇s(t)
∣∣2

+ KpA1̂q̇
T

m (t)̂̇qs(t − T2(t)) + B1

B2

KpA2̂q̇
T

s (t)̂̇qm(t − T1(t))

+ KpB1̂q̇
T

m (t)(̂qs(t − T2(t)) − q̂s(t)) + KpB1̂q̇
T

s (t)(̂qm(t − T1(t)) − q̂m(t)) , (22)

Since q̂m(t − T1(t)) − q̂m(t) = −∫ 0

−T1(t)̂
q̇m(t + η) dη, q̂s(t − T2(t)) − q̂s(t) = −∫ 0

−T2(t)̂
q̇s(t + η) dη, and the

bounds

KpA1̂q̇
T

m (t)̂̇qs(t − T2(t)) ≤ 1

2
KpA1

(∣∣̂q̇m(t)
∣∣2 + ∣∣̂q̇s(t − T2(t))

∣∣2
)

, (23a)

B1

B2

KpA2̂q̇
T

s (t)̂̇qm(t − T1(t)) ≤ 1

2

B1

B2

KpA2

(∣∣̂q̇s(t)
∣∣2 + ∣∣̂q̇m(t − T1(t))

∣∣2
)

, (23b)

Then, one can further write (22) as

V̇1(t) + V̇2(t) + V̇3(t) ≤ −
(

Kbm + 1

2
KpA1

) ∣∣̂q̇m(t)
∣∣2 −

(
Kbs + 1

2

B1

B2

KpA2

) ∣∣̂q̇s(t)
∣∣2

− KpB1̂q̇
T

s (t)
∫ 0

−T1(t)̂

q̇m(t + η) dη − KpB1̂q̇
T

m (t)
∫ 0

−T2(t)̂

q̇s(t + η) dη

+ 1

2

B1

B2

KpA2

∣∣̂q̇m(t − T1(t))
∣∣2 + 1

2
KpA1

∣∣̂q̇s(t − T2(t))
∣∣2

, (24)
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In addition, the time derivate of V4(t) is calculated as

V̇4(t) = 1

1 − Ṫ1(t)

1

2

B1

B2

KpA2

(∣∣̂q̇m(t)
∣∣2 − (1 − Ṫ1(t) )

∣∣̂q̇m(t − T1(t))
∣∣2

)
+ 1

1 − Ṫ2(t)

1

2
KpA1

(∣∣̂q̇s(t)
∣∣2 −(

1 − Ṫ2(t)
) ∣∣̂q̇s(t − T2(t))

∣∣2
)

= 1

1 − Ṫ1(t)

1

2

B1

B2

KpA2

∣∣̂q̇m(t)
∣∣2 + 1

1 − Ṫ2(t)

1

2
KpA1

∣∣̂q̇s(t)
∣∣2 − 1

2

B1

B2

KpA2

∣∣̂q̇m(t − T1(t))
∣∣2

− 1

2
KpA1

∣∣̂q̇s(t − T2(t))
∣∣2

, (25)

Combining (24) with (25), one can get

V̇(t) = V̇1(t) + V̇2(t) + V̇3(t) + V̇4(t) ≤ −
(

Kbm + 1

2
KpA1 − 1

1 − Ṫ1(t)

1

2

B1

B2

KpA2

) ∣∣̂q̇m(t)
∣∣2

−
(

Kbs + 1

2

B1

B2

KpA2 − 1

1 − Ṫ2(t)

1

2
KpA1

) ∣∣̂q̇s(t)
∣∣2 − KpB1̂q̇

T

s (t)
∫ 0

−T1(t)̂

q̇m(t + η) dη

− KpB1̂q̇
T

m (t)
∫ 0

−T2(t)̂

q̇s(t + η) dη, (26)

Applying Lemma 1 in [14], one has∫ t

0

(
−KpB1̂q̇

T

s (t)
∫ 0

−T1(t)̂

q̇m(t + η) dη − KpB1̂q̇
T

m (t)
∫ 0

−T2(t)̂

q̇s(t + η) dη

)
dt

≤ KpB1

2

(
ω1 + T1max

2

ω2

) ∣∣̂q̇m(t)
∣∣2 + KpB1

2

(
ω2 + T2max

2

ω1

) ∣∣̂q̇s(t)
∣∣2

.

Then, Integrating V̇(t) in (26) from zero to t, yields

V(t) − V(0) ≤ −μ1

∣∣̂q̇m(t)
∣∣2 − μ2

∣∣̂q̇s(t)
∣∣2

, (27)

where

μ1 = Kbm + 1

2
KpA1 − 1

1 − Ṫ1(t)

1

2

B1

B2

KpA2 − KpB1

2

(
ω1 + T1max

2

ω2

)
,

μ2 = Kbs + 1

2

B1

B2

KpA2 − 1

1 − Ṫ2(t)

1

2
KpA1 − KpB1

2

(
ω2 + T2max

2

ω1

)
.

If we choose the controller parameters Kp, Kf , Kbm, Kbs to satisfy μ1 > 0, μ2 > 0, then̂̇qm(t) ,̂̇qs(t) , q̂m(t) − q̂s(t) ∈ L2 ∩ L∞. Combined with (14), we have q̇m(t) , q̇s(t) , qm(t) − qs(t) ∈
L2 ∩ L∞.

Let’s reconsider emp as

emp = qs(t − T2(t)) − qm(t) = qs(t − T2(t)) − qs(t) + qs(t) − qm(t)

= −
∫ T2(t)

0

̂̇qs(t − η) dη + qs(t) − qm(t) . (28)

Since qs(t) − qm(t) ∈ L2 ∩ L∞, Using Schwartz’s inequality,
∫ T2(t)

0
̂̇qs(t − η) dη ≤ T2max

1
2 ||q̇s(t) ||2 ∈

L2 ∩ L∞, where ||q̇s(t) ||2 stands for the Euclidian 2-norm of the vector q̇s(t) ∈ Rn. Thus, emp ∈ L2 ∩ L∞,
similarly, we can show esp = qm(t − T1(t)) − qs(t) ∈ L2 ∩ L∞. This completes the proof.

One can notice that the conditions 5 and 6 of the Theorem 1 are the persistency criteria for the
deployed IEAOB, the derivation of the conditions 5 and 6 is an extension of the results in [46, 47]. These
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two conditions look complicated and hard to check before implementation, however, it can be viewed
in another easy way based on the results in [46, 47]: If the desired trajectory is persistently exciting, the
IEAOB would be uniformly stable provided that the inertia matrix M∗(q∗) is positive definite.

4. Simulation study
In this section, computer simulation will be carried out to illustrate the effectiveness of the proposed
control scheme. Both the master and slave robots are considered to be planar two-link manipulators. The
dynamic model of a 2 DOF nonlinear teleoperation system in the joint space is defined as

Mm(qm, θm) q̈m + Vm(qm, q̇m, θm) q̇m + gm(qm, θm) + Tfm = Tm + Th, (29a)

Ms(qs, θs) q̈s + Vs(qs, q̇s, θs) q̇s + gs(qs, θs) + Tfs = Ts + Te, (29b)

where Tf∗ is defined in (2),

θ∗ =
[

θ∗1

θ∗2

]
=

[
m∗1l∗1

2

m∗2l∗2
2

]
,

M∗(q∗, θ∗) =
[

θ∗1 + 2θ∗2 + 2θ∗2cos(q∗2) θ∗2 + θ∗2cos(q∗2)

θ∗2 + θ∗2cos(q∗2) θ∗2

]
,

V ∗(q∗, q̇∗, θ∗) =
[−2θ∗2q̇∗2sin(q∗2) −θ∗2q̇∗2sin(q∗2)

θ∗2q̇∗1sin(q∗2) 0

]
,

where ∗ = m/s, l∗1 = l∗2 are the lengths of the first and the second links, m∗1 and m∗2 are the masses of the
first and the second links, and we assume the robots operate in a horizontal plane, and as such g∗(q∗, θ∗)
is zero.

4.1. Initial conditions
The sample time is set to 1.0 ms. The actual values of the robot dynamical parameter and friction coef-
ficients are θ∗1 = 0.1kgm2, θ∗2 = 0.2 kgm2, vv∗ = 2.5e − 3, vc∗ = 5.0e − 3. The time-varying delays are
simulated in PC. The forward and feedback time delays are chosen as random variables in the range
of [0.1, 0.3] s with Ṫ1,2(t) ≤ 0.5. In the simulation, human operator manipulates the master manipulator
and the slave manipulator makes contact with the environment at around 0.3 rad.

In order to demonstrate the superiority of the proposed approach, we assume that there is no param-
eter variation (θm1, θm2, vvm , vcm are set to the actual values) for the master robot, while 20% parameter
variation (θs1, θs2, vvs , vcs are 20% larger than the actual values) is considered in the slave robot. The
parameters for the adaptive observer-based robust scaled 4-CH control with damping injection proposed
in this paper in the presence of time delay, and model uncertainties and disturbances are as follows:

The human insert torque to the master manipulator is shown in Fig. 2. The parameters of the

position and force controllers for the master and slave robots are selected as Kp =
[

0.3 0

0 0.3

]

and Kf =
[

0.3 0

0 0.3

]
. The damping coefficients for the master and slave robots are selected as

Kbm =
[

3 0

0 3

]
, Kbs =

[
3 0

0 3

]
. The human and environment model parameters are selected as
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Figure 2. The human insert torque to the master manipulator and its estimation by IEAOB.

∅m =∅s =
[

0.5 0

0 0.5

]
, ρ = 1. From the filtering theory, the initial filtered state estimates are the

expected values of these states at the beginning of control. Hence, for the robotic manipulator starting at
rest and at origin, the initial filtered states: qm0 = 0, qs0 = 0, q̇m0 = 0, q̇s0 = 0. Hence, the initial conditions
of IEAOB for the master and slave robots, when measurement noises (N ∼ (0, 1.0e − 4)) are considered
at both sides of the teleoperation system and 20% dynamical parameter variation is considered for the
slave robot, are chosen respectively as

X̂m0 = (0, 0, 0, 0, 0.1, 0.2, 2.5e − 3, 5.0e − 3, 2.5e − 3, 5.0e − 3, 0, 0)′,

Rm = diag {1.0e − 4, 1.0e − 4} ,

Qm = diag{1.0e − 7, 1.0e − 7, 1.0e − 7, 1.0e − 7, 1.0e − 2, 1.0e − 2, 1.0e − 2, 1.0e − 2, 1.0e − 2, 1.0e

− 2, 8.0e − 7, 1.0e − 6},
Pm0 = diag{1.0e − 7, 1.0e − 7, 1.0e − 7, 1.0e − 7, 1.0e − 4, 1.0e − 4, 1.0e − 4, 1.0e − 4, 1.0e − 4, 1.0e

− 4, 1.0e − 7, 1.0e − 7}.
X̂s0 = (0, 0, 0, 0, 0.12, 0.24, 3.0e − 3, 6.0e − 3, 3e − 3, 6e − 3, 0, 0)′,

Rs = diag {1.0e − 4, 1.0e − 4} ,

Qs = diag{1.0e − 7, 1.0e − 7, 1.0e − 7, 1.0e − 7, 1.0e − 2, 1.0e − 2, 1.0e − 2, 1.0e − 2, 1.0e − 2, 1.0e

− 2, 8.0e − 7, 1.0e − 6},
Ps0 = diag{1.0e − 7, 1.0e − 7, 1.0e − 7, 1.0e − 7, 1.0e − 4, 1.0e − 4, 1.0e − 4, 1.0e − 4, 1.0e − 4, 1.0e

− 4, 1.0e − 7, 1.0e − 7}.
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Based on the selected parameters for the simulation, it is easy to show, as below, that they satisfy the
conditions 1, 2, 3, 4 of the Theorem 1.

μ1 = Kbm + 1

2
KpA1 − 1

1 − Ṫ1(t)

1

2

B1

B2

KpA2 − KpB1

2

(
ω1 + T1max

2

ω2

)
≥

[
2.772 0

0 2.772

]
> 0,

μ2 = Kbs + 1

2

B1

B2

KpA2 − 1

1 − Ṫ2(t)

1

2
KpA1 − KpB1

2

(
ω2 + T2max

2

ω1

)
≥

[
2.772 0

0 2.772

]
> 0, where

Ṫ1,2(t) ≤ 0.5, T1max = T2max = 0.3, ω1 = ω2 = 0.5,

α1I ≤ Qm(t) ≤ α2I, β1I ≤ Qs(t) ≤ β2I, where α1 = β1 = 1.0e − 7 > 0, α2 = β2 = 1.0e − 2 > 0,

α3I ≤ Rm(t) ≤ α4I, β3I ≤ Rs(t) ≤ β4I, where α3 = β3 = 1.0e − 4 > 0, α4 = β4 = 1.0e − 4 > 0.

4.2. Simulation results and analysis
In this simulation, the performance of the proposed teleoperation approach under the circumstance of
measurement noise: N ∼ (0, 1.0e−4) at both ends of the teleoperation system and parameter varia-
tion: 20% larger than the actual parameters at the slave side of the teleoperation system is examined.
Figures 2 and 7 depict the human and environment rendered torques to the master and slave manipula-
tors and the torque estimations by IEAOB, it is easy to observe that the rendered torques are estimated
with an acceptable accuracy by IEAOB under no requirement of any human/environment dynamical
model information. Figures 5 and 10 illustrate the master and slave robot dynamical parameters and
friction coefficients estimation performances by IEAOB, respectively. As there is no parameter varia-
tion assumed at the master end, the parameter convergence curves almost maintain unchanged in Fig. 5
during the simulation, while the parameter estimation curves for the slave robot in Fig. 10 asymptoti-
cally converge to the actual values (θs1 = 0.1, θs2 = 0.2, vvs−1 = vvs−2 = 2.5e − 3, vcs−1 = vcs−2 = 5.0e − 3)
due to 20% parameter variation. Figures 3-4 and 8-9 describe the position and velocity estimation errors
by IEAOB at the master and slave ends, respectively. As expected, the error trajectories converge to zero
eventually. It is observed from Fig. 3 that the peak point for the second joint is higher than that of the
first joint, which results from the sudden contact with the environment. However, when the scale of
the estimation error is taken into account, the error is relatively small compared to the actual position.
Furthermore, Fig. 6 and Fig. 11 show the force and position synchronization errors at the master and
slave sides respectively, there are position error peak points in these two figures, which result from
the sudden contact with the environment, but the two figures demonstrate that even in the large time-
varying delays, the teleoperation system still has accurate trajectory tracking performances with very
little steady-state errors by using the proposed control algorithm. As for the method to reduce the error
for the force estimation for the presented IEAOB, one way is to deploy the high-order IEAOB for esti-
mation, the result for this was shown in [48], it will significantly increase the accuracy. However, at
the meantime, it will increase the calculation difficulty. Hence, one needs to take a balanced view to
consider this when applying it to real-world applications.

In summary, the simulation results illustrate that the proposed scaled 4-CH control scheme with
the damping injection can achieve accurate trajectory tracking at the master and slave sides, respec-
tively, as well as simultaneous human force estimation and parameter adaptation for nonlinear master
and slave systems in the presence of time-varying delays, robot parameter variations and measurement
noises.
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Figure 3. The master position estimation error by IEAOB.

Figure 4. The master velocity estimation error by IEAOB.
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Figure 5. The master robot parameter estimation performance by IEAOB.

Figure 6. Force synchronization error at the master side.
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Figure 7. The environment torque to the slave manipulator and its estimation by IEAOB.

Figure 8. The slave position estimation error by IEAOB.
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Figure 9. The slave velocity estimation error by IEAOB.

Figure 10. The slave robot parameter estimation performance by IEAOB.
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Figure 11. Position synchronization error at the slave side.

5. Conclusion
In this article, the major control issues in a nonlinear bilateral teleoperation system are considered and
addressed, including dynamic uncertainties, external force acquirement, and time-varying communica-
tion delays. A novel scaled 4-CH control scheme with the damping injection is developed to handle
the time-varying delay and improve the position and force tracking performances in addition to guaran-
teeing the passivity of the communication channels and accordingly the stability of the whole system.
Meanwhile, the IEAOB is utilized to eliminate the perturbations caused by the internal parameter uncer-
tainties and external disturbance (measurement noise) while obtaining accurate environment/operator
force estimation. By applying the proper Lyapunov function, the whole master-slave system stability is
analyzed and the stability conditions are deduced. The simulation result on a 2-DOF nonlinear teleop-
eration system demonstrates the feasibility of the proposed control algorithm under time-varying time
delays. In the future, the experiments will be carried out to validate the proposed method in practical
use. Meanwhile, actuator saturation issue will be studied for the proposed method and extending these
results from bilateral teleoperation to multilateral teleoperation will also be a future research direction.
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