
TLP 12 (1–2): 35–66, 2012. C© Cambridge University Press 2011

doi:10.1017/S1471068411000482 First published online 12 September 2011

35

SICStus Prolog—The first 25 years

MATS CARLSSON and PER MILDNER

SICS, P.O. Box 1263, SE-164 29 Kista, Sweden

(e-mail: matsc@sics.se)

submitted 4 October 2009; revised 1 March 2010; accepted 22 November 2010

Abstract

SICStus Prolog has evolved for nearly 25 years. This is an appropriate point in time for

revisiting the main language and design decisions, and try to distill some lessons. SICStus

Prolog was conceived in a context of multiple, conflicting Prolog dialect camps and a fledgling

standardization effort. We reflect on the impact of this effort and role model implementations

on our development. After summarizing the development history, we give a guided tour of the

system anatomy, exposing some designs that were not published before. We give an overview

of our new interactive development environment, and describe a sample of key applications.

Finally, we try to identify key good and not so good design decisions.

KEYWORDS: Prolog, logic programming system, virtual machine, compilers, memory

management

1 Introduction

SICStus Prolog1 is a Prolog system that has evolved for nearly 25 years. In this

article, we revisit the factors affecting the choice of language dialects and APIs,

and summarize the more important developments that have taken place over this

time period. We also give an in-depth description of the anatomy of the system and

its development environment. Some key applications are briefly described. Several

design choices that were never published before are described herein. We reflect on

these choices, and try to learn some lessons.

The rest of the article is structured as follows. In Section 2, we review and motivate

the main phases of development. In Section 3, we give our perspective on two

important role models for the SICStus Prolog language, APIs and implementation:

the Prolog standardization effort and Quintus Prolog. In Section 4, we describe the

parts of the system that are the most interesting from a design and implementation

point of view, going into details where warranted. In Section 5, we describe our

Integrated Development Environment (SPIDER). In Section 6, we briefly describe

some key applications. Finally, we conclude with some lessons learned from the

whole endeavor.

1 http://www.sics.se/sicstus

https://doi.org/10.1017/S1471068411000482 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000482

36 M. Carlsson and P. Mildner

2 Development history

SICStus Prolog is a Prolog system that “just happened” as opposed to being planned

in advance. We now review the main phases of development.

1983. The Warren Abstract Machine (WAM) is published and later becomes a cult

tech report (Warren 1983), fascinating many including the first author.

1985–1990. SICS is founded and recruits the first author, who joins the Logic

Programming Systems laboratory, headed by Seif Haridi. The laboratory’s first

and main field of research was or-parallel execution of Prolog. The first author’s

first task at SICS is to develop the Prolog engine that will be the subject

of parallelization (Gupta et al. 2001). This happens in the informal Aurora

project (Lusk et al. 1990) involving David H.D. Warren and researchers from

Manchester and ANL, who provide schedulers and visualizers. Subsequently,

another SICStus-based or-parallel effort, MUSE (Ali and Karlsson 1990a; Ali

and Karlsson 1990b), doing more copying and less sharing than Aurora, is being

pursued by other SICS researchers. At the same time, SICS begins distribution of

SICStus Prolog, which quickly becomes popular mainly in the academy. Visitors

Carl Kesselman and Ralph Haygood develop execution profilers and native code

compilers, respectively.

1988–1991. A national funding agency and several companies (see the Acknowledge-

ments) fund the industrialization of SICStus Prolog. This provides the resources

to add several pieces of necessary or desirable functionality, including indexed

interpreted code, persistent term store, and multiple library modules.

1991–2010. The first author becomes fascinated by Boolean and finite domain

constraint solvers, and such solvers appear in SICStus Prolog (Carlsson 1991;

Carlsson et al. 1997). The SICStus Prolog finite domain solver eventually grows

into a sizable subsystem. More on this in Section 4.10.

1995. The ISO Core Prolog standard is published, the first author having been an

active member of the standardization committee. Although the standard is not

perfect, contains things that would better have been left out, and lacks other dearly

needed items, we decide to comply. This leads to the release of SICStus Prolog 3, a

dual mode system: its syntax and semantics can be switched dynamically between

ISO and pre-ISO.

1998. Jesper Eskilson devotes his master’s thesis to a message-passing-based design

of multi-threaded execution for SICStus Prolog (Eskilson and Carlsson 1998). A

prototype implementation is finished, but does not quite make it into a release.

When Jesper leaves SICS, the effort runs out of steam.

1998. SICS acquires Quintus Prolog from a UK company, which had acquired it

from Quintus Corp. The reason for this move is partly economical, partly to get

access to documentation and design choices that can be integrated into SICStus

Prolog, and partly service to the community: the nitty-gritty of WAM technology

was not in the UK company’s area of expertise. SICS makes bold plans to fuse

SICStus Prolog and Quintus Prolog into the Grand Unified Prolog by the year

2000. This is not to happen, but the work on a successor of SICStus Prolog 3 is

https://doi.org/10.1017/S1471068411000482 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000482

SICStus Prolog—The first 25 years 37

started, influenced in part by the Quintus Prolog architecture. At the same time,

Quintus Prolog assets begin to make their way into the SICStus Prolog 3 system.

2007. The shortcomings of SICStus Prolog 3 and the need for a successor were

evident since early on: in particular, its dual dialect and other dynamic aspects

are difficult to defend and maintain; by design it can only use 256M of virtual

memory, way too little for many applications. After a major redesign, the successor

version SICStus Prolog 4 is deemed ready for release.

2009. The first author finally sees the advantage of logical loops (Schimpf 2002),

and they appear in SICStus Prolog 4.1. Also, it has been clear for a long time that

users have come to expect more from an integrated development environment

than what Emacs can provide. After a considerable implementation effort by the

second author, we release SPIDER, our Eclipse-based IDE.

3 Standards and role models

SICStus Prolog was conceived in a context of multiple, conflicting Prolog dialect

camps and a fledgling standardization effort. The first author’s first encounter with

a Prolog system was with DECsystem-10 Prolog, i.e. with the Edinburgh tradition,

so there was never any question, which camp to align to. Later, Quintus Prolog

arrived on the scene in the same tradition, by the same lead designer, and emerged

as the de-facto standard, due to its industrial quality and speed. Quintus Prolog was

also among the first systems to provide designs for features such as foreign language

interface, embeddability, customization through hook predicates and functions, and

module system. Since Quintus Prolog seemed to be doing everything right, it seemed

pointless to try to come up with alternative designs for these features. Instead, in

the design of SICStus Prolog, we opted for the “imitation is the sincerest (form) of

flattery” principle (Colton 1825).

The ISO Prolog standardization effort started late, too late. The Prolog dialects

had already diverged: basically, there were as many dialects as there were imple-

mentations, although the Edinburgh tradition, which had grown out of David H.D.

Warren’s work was always the dominant one. Every vendor had already invested too

much effort and acquired too large a customer base to be prepared to make radical

changes to syntax and semantics. Instead, every vendor would defend his own dialect

against such radical changes. Finally, after the most vehement opposition had been

worn down in countless acrimonious committee meetings, a compromise document

that most voting countries could live with was submitted for balloting and was

approved.

Although far from perfect, we wanted to promote the standard. At the same time,

our users had already developed vast amounts of non-compliant code, which we

had no right to break. Our solution to this dilemma was to provide a dual dialect

system, SICStus Prolog 3.

4 System anatomy

This section is more or less a white paper of the current system architecture,

covering the parts of the system that are the most interesting from a design and

https://doi.org/10.1017/S1471068411000482 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000482

38 M. Carlsson and P. Mildner

implementation point of view. This description is necessarily incomplete, and the

omission of some system component does not at all mean that its design and

implementation is trivial or uninteresting.

Before and especially after our take-over of Quintus Prolog, a lot of designs and

assets have migrated into SICStus Prolog, including: instruction set details, tagging

scheme, structs and objects modules, foreign language interface, message and

query systems, and memory manager. So in the rest of this article, we will not credit

Quintus Prolog each time.

4.1 Modes of execution

Prolog code can be executed in three different modes, and each variant comes with

its pros and cons.

Interpreted. Prolog clauses are stored in a form that is close to the source code and

are executed by an interpreter written either in the host language or in Prolog

itself. Such an interpreted is an excellent base for debuggers and is virtually

necessary for bootstrapping purposes even in the presence of a compiler. The

main disadvantage is slow execution.

Native code. Early, successful implementations such as (Warren 1979; Farkas et al.

1994) showed that Prolog is amenable to compilation to native machine code

with modest to good execution speed. Later work (Taylor 1991; Van Roy and

Despain 1992) demonstrated that excellent execution speed can be achieved with

global analysis. The main drawbacks of native code compilation are: the large

amount of work that has to be invested, slow compilation, difficulty of using

stand-alone assembler and linker tools in the compilation chain, and its inherent

lack of portability. Also, a variant of Amdahl’s law (Amdahl 1967) applies: the

speedup available from compiling code to native code is limited by the time spent

elsewhere in the runtime system and application code.

Virtual code. This approach can be seen as a compromise between the above two

extremes. Its feasibility has been demonstrated by a vast number of programming

languages including Pascal, Forth, Lisp, ML, and Java. Most if not all contempo-

rary implementations of Prolog use this approach, exclusively or in combination

with the above two.

4.2 Virtual machine

SICStus Prolog was not bootstrapped the classical way, with an interpreter written

in a host language. First came a virtual code (WAM) compiler, developed on another

Prolog system, a WAM emulator written in C, and a meta-interpreter.

The original WAM report only treated the Horn clause subset of Prolog, so

of course the instruction set had to be enriched with instructions to support cut,

arithmetic functions, arithmetic tests, term comparison, etc. Also, some deviations

from the original WAM design were made and are described and motivated below.

Specific features of the SICStus Prolog VM include the following:

https://doi.org/10.1017/S1471068411000482 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000482

SICStus Prolog—The first 25 years 39

get constant x0 t get nil x0
get structure x0 f/a get list x0
get large x0 n

Fig. 1. Specialized get instructions for indexable clauses. Each instruction encodes a principal

functor. The compiled clause for such clauses begins with one such instruction, instead of,

e.g. get constant t,0. If the given clause is called with a non-variable first argument,

indexing will kick in and only try clauses that match the given principal functor. Hence, these

instructions become no-ops, and the indexing mechanism arranges to skip them. If called

with a variable first argument, however, these instructions are not skipped and act as normal

get instructions. t denotes an atomic term; n denotes a float or bignum; and f/a denotes the

functor of a compound term.

Indexing. In SICStus Prolog, clause indexing is performed as part of the predicate

call operations (call and execute), which index on the first argument if the

callee is of the appropriate kind. This is done by means of a per-predicate data

structure (essentially, a hash table) that maintains an index over the clauses. This

is in contrast to the original WAM, which provides instructions to perform such

indexing. This design decision was made mainly for convenience of incremental

compilation, which deals with one clause at a time, but also to reduce emulator

overhead. However, incremental compilation is by no means incompatible with

having indexing instructions; witness, e.g. Quintus Prolog. Furthermore, indexable

clauses use get instructions specialized for matching the first argument, as shown

in Figure 1.

Backtracking. Taking the next alternative of a choicepoint, and removing the

choicepoint if the last alternative was taken, is done as part of a general backtracking

routine. This is again in contrast to the original WAM, which provides instructions

for these purposes. This design decision was made for the same reasons as for

the indexing issue. However, SICStus Prolog has retained a try instruction, which

creates a choicepoint if multiple clauses match a procedure call.

Inlined operations. The instruction set directly supports primitives for cut, if-then-

else, arithmetic functions and comparisons, type tests, term comparisons, passing

values to and from foreign functions, and basic built-in predicates.

It is worth going into some detail about arithmetic, as the design has changed quite

a bit. In SICStus Prolog 3, every binary arithmetic function had a corresponding

instruction with two input and one output operand (temporary registers) and a

corresponding implementation in a C function to dereference the inputs, compute the

value depending on the types of the inputs, and store the value (see Figure 2). SICStus

Prolog 4 uses the Quintus Prolog design, which is based on two accumulators holding

untagged values throughout the evaluation of an expression, and instructions falling

into four categories, each item illustrated by the corresponding part of Figure 3:

(1) Loading constants and variables into one of the accumulators; unspilling

intermediate results.

(2) Applying a function to the accumulators. The case where the operands are

integers (except bignums) is handled inline in the core emulator.

https://doi.org/10.1017/S1471068411000482 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000482

40 M. Carlsson and P. Mildner

function 1 f, s1, d
function 2 f, s1, s2, d function 2 imm f, s1, i2, d

Fig. 2. SICStus Prolog 3 arithmetic instructions (sample). Every arithmetic function is

implemented by a C function that dereferences and untags the inputs, computes the value

depending on the types of the inputs, tags it, and handles any stack overflows. The virtual

machine merely retrieves the function to call and its inputs from the operands, and stores

the computed value in the destination. The right-hand side shows the special case where a

binary function takes an immediate second argument. f denotes the C function implementing

the instruction; s1 and s2 are source registers; i2 is a source immediate value; and d is the

destination register.

first constant i later constant i
first large n later large n
first x value x later x value x
first y value y later y value y

binop add binop add imm i
binop subtract binop subtract imm i
binop multiply binop multiply imm i
binop divide binop divide imm i
binop idivide binop idivide imm i

store constant i
store large n

store x variable x store x value x
store y variable y store y value y

equal to equal to imm
less than less than imm
greater than greater than imm
not equal to not equal to imm
not less than not less than imm
not greater than not greater than imm

Fig. 3. SICStus Prolog 4 arithmetic instructions (sample). Let A and B denote the two

arithmetic accumulators. Top: instructions that untag and load a number into A (left) or B

(right). Second left: binary operations on A and B, leaving a value in A. Second right: binary

operations on A and an immediate operand, leaving a value in A. Third left: instructions

that tag and store the contents of A into a Prolog variable. Third right: instructions that

compare the contents of A with a given value, and fail if they differ. Bottom left: instructions

that compare the contents of A and B, and branch if the comparison fails. Bottom right:

instructions that compare the contents of A and an immediate operand, and branch if the

comparison fails. i denotes a size-limited integer constant; n denotes a float or bignum; x and

y denote a temporary and a permanent variable, respectively; and � denotes an “else” label.

(3) Storing or unifying the value of an expression; spilling intermediate results.

(4) Comparing the values of two expressions.

In addition, for both designs, instruction variants with immediate operands exist,

as an example of instruction merging. Thus, the SICStus Prolog 4 design may seem

to optimize non-trivial expressions involving intermediate values, but with a higher

https://doi.org/10.1017/S1471068411000482 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000482

SICStus Prolog—The first 25 years 41

incmax(X,Y,Z) :- Z is max(X+1,Y).

function 2 imm add,x(0),1,x(0)
function 2 max,x(0),x(1),x(0)
unify value x(0),x(2)
proceed

first x value x(0)
binop add imm 1
later x value x(1)
binop maximum
store x value x(2)
proceed

Fig. 4. Top: a Prolog clause containing arithmetics. Middle: the corresponding SICStus

Prolog 3 VM instruction sequence. Bottom: the corresponding SICStus Prolog 4 VM

instruction sequence.

lifetime map(, Map) :- var(Map), !.
lifetime map(DUs, Map) :-

lifetime map(DUs, 0, Map).

lifetime map/3:
var x(1) else L1
cut
proceed

L1: get x variable x(2),x(1)
put constant 0,x(1)
execute lifetime map/3

Fig. 5. Top: a Prolog clause containing a test allowing to branch directly into the next

clause if the test fails, bypassing general backtracking. Bottom: the corresponding SICStus

Prolog 4 VM instruction sequence. Execution starts at the first instruction, without creating

any choicepoint.

setup cost due to the initial load and final store. Experiments have shown that the

SICStus Prolog 4 design is significantly faster also on code doing only simple integer

arithmetic. Figure 4 shows an example of the compilation of arithmetics.

Conditionals. Type and arithmetic test instructions are equipped with an “else”

branch, which is taken if the test fails. Often, the else branch can go to the next

clause, bypassing general backtracking. This is a “leaner and meaner” variant of

shallow backtracking (Carlsson 1989), which was implemented in an early version.

These else branches somewhat complicate incremental compilation. For example,

suppose that the first clause of predicate P/N contains such an else branch. The

compiler back-end will make it point to the general backtracking routine. But to

enable this optimization, after the second clause of P/N has been compiled, the

back-end must revisit the else branch of the first clause and make it point to the

second clause. Finally, the second clause must not be threaded into the general

backtracking chain of the first clause. An example is shown in Figure 5.

https://doi.org/10.1017/S1471068411000482 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000482

42 M. Carlsson and P. Mildner

General disjunctions and logical loops (Schimpf 2002) are “flattened” by the

compiler into anonymous predicates. Backtracking from one disjunct to another can

use the general backtracking mechanism as well as else branches.

Garbage collection support. The question as to what is the best garbage collection

algorithm for Prolog is a controversial one. For SICStus Prolog, we chose to

implement a mark-and-sweep algorithm (Appleby et al. 1988; Carlsson and Sahlin

1990); see also Bevemyr and Lindgren (1994) for a detailed algorithm summary. As

shown in Bevemyr and Lindgren (1994) and elsewhere, mark-and-copy can run faster

than mark-and-sweep, especially if there is little live data, even if the optimization

in Chung et al. (2000) is applied. However, there is a property that, although not

enforced by the ISO standard, a lot of existing Prolog code relies on: preservation of

variable order. This property is maintained by construction by mark-and-sweep, but

not by mark-and-copy. In Bevemyr and Lindgren (1994), several methods to cope

with this problem are listed, and they all boil down to either disabling mark-and-

copy in the presence of term comparisons or adding extra data structures to the VM

for supporting variable order. Although we are convinced that mark-and-copy is a

viable alternative to mark-and-sweep, we found that the benefits do not outweigh the

extra complexity of having to maintain a fromspace and a tospace, the extra support

necessary for maintaining variable order, the less effective memory reclamation by

backtracking, and the risk of running into unforeseen problems, what with mutables,

trailed goals, attributed variables, and everything. Last but not least, we were guided

by the “if it ain’t broke, don’t fix it” principle.

The VM handles stack overflows as follows. At procedure calls, if the global stack

has less than a prescribed amount of free space, it is expanded and/or garbage

collected. The inlined operation instructions also check this. Finally, the compiler

emits an instruction to perform this test elsewhere if needed, which is rarely the

case. We have taken the approach to ensure that all memory reachable by the

garbage collector contain valid terms. This is in contrast to, e.g. Quintus Prolog,

which does not make such a guarantee, and uses runtime tests to determine whether

or not terms are valid. The main issue with ensuring validity of terms concerns

permanent variables, which are often uninitialized at the time garbage collection

occurs. However, uninitialized locations can be discriminated from initialized ones

by scanning the VM code for past and future operations, and this is the approach

taken by SICStus Prolog 4; see Section 4.3. In SICStus Prolog 3, we handled this

issue by ensuring that all permanent variables be initialized before any garbage

collection could be invoked.

As we will see later, there are several conditions that cause the execution to be

suspended at the next procedure call or inlined operation. The VM has a conceptual

“generic overflow flag”, which is the disjunction of all such conditions, and a “generic

overflow handler”, which “pushes” the current execution state, and then checks and

handles each condition in detail.

Coroutining support. SICStus Prolog supports goals being suspended on attributed

variables (Holzbaur 1992). Binding an attributed variable will set the generic overflow

https://doi.org/10.1017/S1471068411000482 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000482

SICStus Prolog—The first 25 years 43

get large n, x get large x0 n
put large n, x
unify large n

first large n later large n
store large n

Fig. 6. SICStus Prolog 4 instructions encoding occurrences of floats and bignums. The top

four instructions encode unification with such numbers. The bottom three encode arithmetic

with such numbers. n denotes a float or bignum; x denotes a temporary register.

flag, after which the generic overflow handler will arrange for the suspended goals

to be run. This mechanism is described in more detail in Section 4.10.

Interrupt handling. A Prolog predicate can be linked to a UNIX signal or similar.

To ensure that the VM is in a secure state when the interrupt is serviced, a two-stage

solution is used: when the interrupt arrives, a primary interrupt handler sets the

generic overflow flag; and at the first opportunity, the general overflow handler

services the interrupt.

Floats and bignums. Such numbers are represented as “boxes” on the global stack,

in a way so that they can be distinguished from regular terms. Certain instructions

encode their occurrences in Prolog code (see Figure 6). As Prolog terms, they use

the same basic tag as structures, but are distinguished by non-standard functors.

Profiling support. Profiling in SICStus Prolog is done by instrumenting the virtual

code with counter instructions. When executed, such instructions simply increment

a private counter. After execution of a benchmark, the relevant counter values are

easily gathered by scanning the virtual code. This scheme was described in Gorlick

and Kesselman (1987) and was first prototyped on an early SICStus Prolog version.

The instrumentation is done at compile time, but could have been done directly on

existing virtual code.

Although this scheme provides exact information about the number of predicate

calls and backtracks, it cannot know exactly how much time is spent where in the

code. To overcome this obvious limitation, one would have to monitor the VM

program counter using clock interrupts, like gprof.

Another current limitation is that no call graph is maintained. It is often of

interest to know not only how many times a predicate was called, but also where

it was called from. Such information could be readily provided by a small piece of

extra profiling, since at every predicate call operations (call and execute), the VM

stores the caller location in a register, for use by the source-linked debugger.

Low-level considerations. The layout of the VM code was partly designed, partly

evolved, to minimize emulator overhead. Pointers and constants are word aligned,

but instructions are half-word aligned, which implies that instructions that contain

a pointer or constant need to exist in a (word) aligned and an unaligned variant,

where one of the two variants includes a padding half-word. Operands denoting

registers are encoded with offsets off the base address of a register bank as opposed

to just integers. The instruction dispatch loop makes use of gcc’s computed goto

https://doi.org/10.1017/S1471068411000482 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000482

44 M. Carlsson and P. Mildner

extension: the instruction opcode is encoded as an offset into a table of labels.

The table has one read mode and one write mode entry per instruction. Thus, to

select mode, one just adds an offset to the opcode. On 64-bit platforms, instructions

and their fields are twice their size on 32-bit platforms, except operands encoding

bignums and floats.

Instruction merging and specialization. These are two well-known transformations of

VM instruction sets, aiming at saving time as well as space. In Nässén et al. (2001),

we performed an extensive study of these two transformations and their impact on

the SICStus Prolog VM. The current instruction set was finalized based on that

study. Briefly, we use specialization to a very limited extent, only for the special

first argument get instructions mentioned above, and for frequent instructions that

move a value from one virtual register to another. Merging, on the other hand, was

found to pay off more and is used extensively. Instruction pairs as well as patterns

involving longer sequences are subject to merging.

Tagging schemes. All Prolog implementations need to use some means of runtime

typing of its terms. Most implementations, including SICStus Prolog, use tagged

pointers, i.e. machine addresses with a few bits or even an extra word replaced by a

bit-field that denotes the type of term pointed to, but tagged object implementations

also exist, e.g. Tarau and Neumerkel (1994) and Brady (2005). SICStus Prolog 3

reserved the four most significant bits, with the rationale that fewer bits would

not suffice for encoding the basic types, including bignums, floats, and attributed

variables. The implementation settled on using nine different tags. Moreover, the

two least significant bits were reserved for use by the garbage collector. The main

disadvantage of this choice was that it limited the address range of non-atomic terms

to 256M on 32-bit platforms, which is much too little for many applications. SICStus

Prolog 4, and the original WAM report, instead reserve the two least significant bits,

plus a third bit when the pointer is not a machine address, i.e. an integer or an

atom. With this design, no address space problems arise. Bignums and floats use the

same tag as structures, but are distinguished by non-standard functors. All types of

variables use the same tag. The garbage collector still needs to store two bits for

every word, so the question is, where? The SICStus Prolog 4 solution is to reserve a

small part of each Prolog stack as a bit array for use by the garbage collector.

4.3 A note on code scanning

One of the advantages of VMs is the ease with which various information can be

extracted from the virtual code, usually in time linear in the length of the code.

This is for example the case for the use-definition analysis (Aho et al. 1986) that the

garbage collector performs. SICStus Prolog 4 uses this technique in the following

contexts:

• As mentioned before, test instructions are equipped with an “else” branch,

which is taken if the test fails. The compiler back-end must scan code

containing such “else” branches, making them point to the next clause.

https://doi.org/10.1017/S1471068411000482 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000482

SICStus Prolog—The first 25 years 45

• The garbage collector needs to identify uninitialized local stack locations.

It also needs to know which temporary registers are live, if a global stack

overflow occurred in the middle of VM code. Code scanning solves both of

these tasks.

• SICStus Prolog supports a binary file format for precompiled code. When

creating such files, VM code and other pieces of the memory image are

dumped, together with relocation information. Code scanning is used to find

what relocation information to write to the file. When loading such files, the

VM code is not only scanned but also relocated. Relocatable information

includes pointers to predicates, atom numbers, and endianness.

• All Prologs that the authors are aware store atoms in a table for purposes

of representation sharing and O(1) time identity test. Since the table can fill

up, many Prologs provide an atom garbage collector, which disposes of atoms

that are no longer in use anywhere. The atom garbage collector needs to scan

all relevant memory areas, including the VM code, to discover which atoms

are still in use.

• As mentioned before, SICStus Prolog provides a counter-based execution

profiler. If told to instrument code for profiling, the compiler inserts special

counter instructions at certain places in the VM code. The profiler later uses

code scanning to reset those counters prior to profiling and to gather their

values afterwards.

• If an arithmetic instruction encounters an invalid argument at runtime, for

example an atom, an error exception is raised. By scanning the code around

the program location, one can reconstruct a goal that is semantically if

not syntactically identical to the source code where the error occurred. The

decompiled goal is part of the error exception.

4.4 Native code

Native code compilation for SICStus Prolog has a long history. Starting in the 1980s,

we developed compilers from WAM code to Motorola 68K and SPARC. We used a

fixed mapping of WAM registers to machine registers, and took care to seamlessly

integrate all three execution modes:

• Native code calling non-native code and vice versa.

• Native code returning to non-native code and vice versa.

• Native code backtracking into non-native code and vice versa.

The compilation was not a mere macro expansion of the WAM instructions. In

particular, read and write mode instruction streams for compound term unification

were kept separate and reasonably optimized. The target code was rich in calls to

runtime routines, but operations like dereferencing, allocate, deallocate, stack

trimming, and write mode unification were inline. Speedups by a factor of 3 over

virtual code were not uncommon.

Later, Clark Haygood overhauled the native code compilers, the main inventions

being the intermediate languages SICStus Abstract Machine (SAM) and RISCified

https://doi.org/10.1017/S1471068411000482 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000482

46 M. Carlsson and P. Mildner

68K
(symbolic)

68K
(binary)

pl

SPARC
(symbolic)

SPARC
(binary)

pl

MIPS
(symbolic)

MIPS
(binary)

pl

Prolog WAMpl SAMpl
pl

RISS

pl

pl

pl

68K
(symbolic)

68K
(.s file)

pl

SPARC
(symbolic)

SPARC
(.s file)

pl

MIPS
(symbolic)

MIPS
(.s file)

pl

68K
(.o file)

as

SPARC
(.o file)

as

MIPS
(.o file)

as

SAM
pl

RISS

pl
pl

pl

Fig. 7. Top: native code compilation path for Prolog code. Bottom: compilation path for the

native code kernel. The standard assembler as is used in the native code kernel compilation

path. Everywhere else, Prolog with the appropriate back-ends in C is used.

SAM (RISS) (Haygood 1994). SAM was not only an intermediate language; it was

also a macro assembly language for the native code runtime kernel, containing all

the runtime routines. He also added a MIPS back-end. The compilation paths from

Prolog code, respectively, the runtime kernel to binary code are shown in Figure 7.

Eventually, the M68K and MIPS back-ends were dropped. The current SICStus

Prolog 3 release only supports the SPARC back-end. Native code was completely

dropped in SICStus Prolog 4 for lots of reasons, including:

• Amdahl’s law, which tends to dominate as applications scale up.

• The inevitably large number of wheels that tend to get reinvented: assembler

functionality, instruction scheduling, register allocation, etc.

• The difficulty of saving relocatable code in binary files and doing the relocation

upon loading such files.

• Scanning native code for information listed in Section 4.3 is extremely

cumbersome.

• The instruction cache easily gets confused if native code is modified on the fly.

• When an architecture goes extinct, a huge investment in code development is

lost.

Of course, the potential of getting significant speedup of time-critical code is

a baby that should not be thrown out with the bathwater. JIT compilation is a

well-known scheme that avoids most of the above problems, and has been used for

Prolog (da Silva and Costa 2007). We may well explore this approach in the future.

https://doi.org/10.1017/S1471068411000482 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000482

SICStus Prolog—The first 25 years 47

4.5 Managing dynamic code

Prolog makes a difference between dynamic predicates, whose clauses may be

asserted, retracted, or inspected by the running program, and static predicates,

where such operations are not allowed. In practice, dynamic predicates will be

represented as interpreted in the sense of Section 4.1, since accessing and inspecting

clauses are a central operation of the interpreter. There are several issues with

interpreted and/or dynamic clauses. We now describe how we deal with them.

Indexing. SICStus Prolog uses the scheme for indexing of dynamic clauses on the

first argument in linear space that was described in Demoen et al. (1989).

Semantics. The paper (O’Keefe and Lindholm 1987) proposed, and the ISO Prolog

standard later confirmed, a semantics for dynamic clauses that are asserted or

retracted during execution. The authors also invented a clever mechanism that

allows to implement the semantics in almost constant time. The mechanism is based

on a global clock register, two time-stamps per dynamic clause, and a time-stamp per

dynamic choicepoint. Note that a retracted clause cannot in general be physically

removed right away, as it might be in the scope of some dynamic choicepoint.

Dead clause reclamation. It is only safe to physically reclaim a clause when it is dead

with respect to the global clock as well as all dynamic choicepoints. It would be

logically correct to leave them around, but that would, of course, have a disastrous

effect on performance. It is a non-trivial problem how to efficiently detect them and

organize their reclamation. In O’Keefe and Lindholm (1987), the authors describe

how to scan for and reclaim clauses in time linear in the number of the retracted

clauses plus the number of choicepoints, but the question is when to do it. If it’s done

too often, the choicepoint stack will be scanned over and over again for nothing. If

it’s done too seldom, dead clauses accrete, degrading performance of dynamic code

accesses. Our implementation is a variant of this scheme. To make it really work,

we also found it necessary:

• to register retracted clauses in some data structure so that they can be found

in O(1) time,

• to recognize and speed up the case where there are no dynamic choicepoints,

and

• to recognize cases when a retracted clause can be reclaimed immediately.

Clause references. Although not in the ISO standard, many Prologs provide a way

to directly access a dynamic clause with a term known as a db reference. This is

provided by at least Ciao, Quintus, SICStus, SWI, and Yap Prologs. In SICStus

Prolog, a db reference has the form ’$ref’(i,j) where i is an integer denoting

the address of the clause, and j is an integer for validation purposes; see below.

The built-in predicate instance(+Ref,-Clause) will take a db reference and unify

Clause with a brand new copy of the clause referred to. The built-in predicate

erase(+Ref) will retract the clause, and so on. This feature, however, suffers from

a dangling pointer problem. What to do if the clause has already been retracted?

What if its memory has been reclaimed? We now outline how we address this

problem.

https://doi.org/10.1017/S1471068411000482 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000482

48 M. Carlsson and P. Mildner

• We maintain a global counter of asserted clauses and a global hash table that

maps the address of a clause, i, to the value that the counter had when the

clause was created, j.

• Db references are validated by checking that the hash table still maps i to j.

• Hash table entries are removed when the corresponding clause is reclaimed.

This scheme ensures that db references are unique, even if the memory used by

one clause happens to be reused later by another one.

4.6 General memory management

The Prolog runtime system needs to dynamically allocate and free a huge amount

of memory blocks of sizes varying from a few bytes to potentially several gigabytes.

The natural choice would be to use the POSIX primitives malloc() and free(),

and if code development had started today, that would have been the likely choice.

But in the 1980s, the quality of their implementations left much to be desired. Worse,

the quality and performance varied dramatically from platform to platform. Also,

SICStus Prolog 3’s requirement that certain memory areas be allocated in a certain

region of the address space is incompatible with the standard malloc() and free().

So for historical and other reasons, SICStus Prolog has its own memory manager,

the main features of which are the following:

• A two-layer architecture. The bottom layer requests memory from the op-

erating system (O/S) and returns memory to it. Such requests are relatively

infrequent and deal with bigmems, i.e. relatively large chunks of memory. The

behavior of the bottom layer is subject to several tunables that the user can

set. The top layer is the runtime system interface. It chops up the bigmems

into smaller mems and keeps tracks of all free mems.

• When in use, a mem has no header or other memory overhead.

• The top layer keeps free mems in multiple unsorted chains, each chain

corresponding to a specific range of sizes. This allows mems to be allocated in

almost constant time.

• Mems are freed in constant time—no attempt is made to eagerly congeal

adjacent free mems.

• From time to time, an O(n log n) algorithm to congeal all adjacent free mems

is run, where n is the number of free mems.

• The built-in predicate trimcore orders the bottom layer to endeavor to return

bigmems that are totally unused to the O/S.

The Prolog stacks tend to be the largest memory blocks by a wide margin. So the

question arises, should a Prolog stack correspond to a mem or a bigmem? It was

found that treating Prolog stacks as mems could cause severe memory fragmentation,

so our current policy is to reserve a bigmem for each Prolog stack.

4.7 Interfacing foreign code

SICStus Prolog provides multiple interfaces for calling foreign code and vice versa.

This is not the place to describe them all, but a few points are worth mentioning,

https://doi.org/10.1017/S1471068411000482 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000482

SICStus Prolog—The first 25 years 49

Instruction TYPE
push TYPE y float
push result TYPE integer
receive TYPE y term
pop TYPE y atom

string
codes

open foreign call . . .
call foreign f, a
close foreign call

Fig. 8. The SICStus Prolog 4 instruction set for the Prolog-to-C interface. Top left:

instructions for arguments and return values. push TYPE y (for input arguments) and

push result TYPE (for output arguments) populate the call frame. pop TYPE y receives an

output argument. receive TYPE y receives the return value. Top right: the types handled

by the API. Bottom left: instructions to manage the actual call. open foreign call allocates

the call frame, call foreign executes the call, and close foreign call deallocates the call

frame. y denotes a permanent variable; f is the address of the foreign function, and a is the

arity.

in particular, the fact that none of them exposes the internal Prolog data structures

to the foreign code. A comparison of such interfaces for several implementations of

Prolog can be found in Bagnara and Carro (2002).

Prolog-to-C interface. The interface provides a linking of Prolog predicates to C

functions, which can succeed, fail, and raise exceptions. The interface does not

allow to define non-deterministic predicates. The mapping of predicate and function

names, as well as type conversions, is declared in Prolog facts.

In SICStus Prolog 3, a piece of C code is compiled from such facts for each

such procedure. This piece of code implements all necessary checks and conversions

on input arguments, calls the target functions, and converts and unifies the output

arguments as necessary. Such code tends to have large chunks in common from one

predicate to another.

In SICStus Prolog 4, the VM has instructions for such checks and conversions

(see Figure 8). Foreign predicates are compiled to VM code instead of C code. This

avoids the need to use a C compiler and allows more code to be shared. The only

difficulty is the actual call to the foreign function, which expects its arguments to

be passed in a way compliant with the platform ABI. In the presence of floating-

point arguments, all call patterns cannot be precoded in the VM emulator. The

call foreign instruction, whose job is to do this call, is the only part of the

system that is implemented in assembly code. Figure 9 shows an example of this

compilation.

The basic interface handles simple C types only. In addition, the structs module

provides a way to declare C structs in Prolog with name-based access to their fields

and to pass struct pointers to C code (see Figure 10). The objects module is built

on top of this feature.

https://doi.org/10.1017/S1471068411000482 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000482

50 M. Carlsson and P. Mildner

extern long
ixkeys(SP term ref spec, SP term ref term, SP term ref list);

foreign(ixkeys, c index keys(+term, +term, -term, [-integer])).

open foreign call 4,3,c index keys/4,0
push term y(0)
push term y(1)
push result term
call foreign ixkeys,4
pop term y(2)
receive integer y(3)
close foreign call

Fig. 9. Prolog-to-C interface example: binding the predicate c index keys/4 to the ixkeys()

function. Top: the header of the C function ixkeys. The type SP term ref provides a safe

reference from C to a Prolog term. Middle: the foreign declaration, from which the VM

instruction sequence is generated. Bottom: the SICStus Prolog 4 VM instruction sequence for

c index keys/4: the first four instructions allocate and populate a call frame, one instruction

executes the call, two instructions receive the output argument and the function value, and

the last instruction deallocates the call frame.

C-to-Prolog interface. This interface provides services to start a query to a Prolog

goal, request the next solution to a query, commit to the current solution of a query,

and close a query. Exceptions can be raised in Prolog and inspected in C. Type check

and conversion functions from Prolog to C and vice versa are available. C code

accesses Prolog terms only via SP term refs, which are handles under the control of

the memory manager so that, e.g. the garbage collector can function correctly with

this interface. The C-to-Prolog and Prolog-to-C interfaces are re-entrant to arbitrary

depth.

4.8 Source-linked debugging

The ability to step through program execution with the current line of code being

highlighted is a crucial piece of debugger functionality, witness, e.g. gdb for C, and

Prolog is no exception. This functionality was designed and implemented for SICStus

Prolog around 1997 by Péter Szeredi. Using the same infrastructure, when an error

exception is raised, SICStus Prolog tries to precisely pinpoint the responsible line of

code. To support this functionality, an essential service is a way to read a Prolog

term so that every subterm gets annotated with the line number on which it occurs.

Another essential service is a data structure that can map a program location to

a filename and a line number. We use one mechanism for interpreted code and

another one for compiled (native or virtual) code.

Interpreted code. Having read a clause annotated as mentioned above, the clause

is first asserted, obtaining a unique db reference. We then create a layout table

associated with this db reference and store the filename in it. Treating the annotated

clause as a tree, every path from its root to a leaf or internal node is stored in the

https://doi.org/10.1017/S1471068411000482 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000482

SICStus Prolog—The first 25 years 51

:- foreign type
intgr = integer 32, typedef int intgr;
bool = enum([typedef enum bool {

false, false,
true true

]), } bool;
typedef struct position position;

position = struct([struct position {
x:integer 32, int x;
y:integer 32 int y;

]), };
typedef struct size size;

size = struct([struct size {
width:integer 16, short width;
height:integer 16 short height;

]), };
typedef struct mongo mongo;

mongo = struct([struct mongo {
a:intgr, intgr a;
b:integer 16, short b;
c:integer 8, char c;
d:unsigned 16, unsigned short d;
e:unsigned 8, unsigned char e;
f:float 32, float f;
g:float, double g;
h:atom, SP atom h;
i:string, char *i;
j:address, void *j;
k:array(81,integer 8), char (k)[81];
l:size, size l;
m:pointer(position), position *(m);
n:pointer(belch), belch *(n);
o:bool, bool o;
p:integer, long p;
q:pointer(mongo) mongo *(q);

]), };
typedef union uex uex;

uex = union([union uex {
a:integer 32, int a;
b:integer, long b;
c:float double c;

]). };

make size(Width, Height, SizeStr) :-
new(size, SizeStr),
put contents(SizeStr, width, Width),
put contents(SizeStr, height, Height).

Fig. 10. Left: a foreign type declaration, a feature of the structs module. Right: the

corresponding, automatically generated C header file containing type declarations. Bottom: a

predicate that creates a size struct with given Height and Width.

layout table, together with its line number. A path is simply a list of numbers, e.g.

[3, 1, 2] means “take the 3rd argument of the 1st argument of the 2nd argument of

the body”. A custom compressed format is used so as to minimize space.

During execution of an interpreted clause, it maintains a virtual program counter,

consisting of the db reference of the clause plus the path to the current goal. This

can be maintained very cheaply. To identify the line of code in the source, we just

look up the associated layout table, retrieve the filename, and map the path to a line

number.

Compiled code. For compiled code, we use a global B-tree that maps call sites to

filenames and line numbers. Having read a clause annotated as mentioned above,

https://doi.org/10.1017/S1471068411000482 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000482

52 M. Carlsson and P. Mildner

the line number information is threaded through the compiler to its back-end, which

actually stores the virtual code in memory. When the back-end is about to store a

call or execute instruction, it adds the call site and associated filename and line

number to the B-tree.

The VM emulator has a register holding the most recent call site. During tracing

of compiled code, the emulator escapes to an entry-point of the debugger, passing

the value of this register. Using the value, the associated filename and line number

are looked up in the B-tree.

4.9 Operating system interface

Interfacing with the underlying O/S and with the file system is inherently a low-level

activity. There are a lot of platform specific details and many operations that can

report permanent or temporary failures. In addition, every O/S to which SICStus

Prolog has been ported has idiosyncrasies, like operations that do not work for all

types of streams or for streams but not process handles, or vice versa.

Prolog programming, on the other hand, is a high-level activity and we want to

hide as much as possible of the underlying complexity and provide an interface to

the O/S that “just works” and is portable across major platforms such as UNIX and

Windows as well as to more exotic platforms where SICStus Prolog is sometimes

used, such as mobile phones.

SICStus Prolog 3 interfaced to the O/S using the mechanism provided by the

standard stdio library and its I/O operations. This design made sense at a time

when characters were 7-bit ASCII, Microsoft Windows was irrelevant, threads did

not exist, and (standardized) UNIX was not widely adopted. This lowest common

denominator strategy eased portability but also severely limited the features that

could be offered to the Prolog programmer.

With SICStus Prolog 4, we took the opportunity to redesign the interface to

the underlying O/S and its I/O operations in a way that directly uses the native

capabilities of the underlying O/S. This new interface was code named the SICStus

Prolog I/O library (SPIO).

Non-blocking and interruptible operations. Some operations, especially I/O related,

can take a long time or even block indefinitely. In threaded languages, like Java, it

is common to handle this by simply spawning a new worker thread that handles the

blocking operation, while the main program can either wait for the spawned thread

to complete or can continue to run while the operation completes in the worker

thread. Non-blocking and interruptable operations are crucial for multiple reasons:

• During development, the programmer must be able to interrupt a debugged

program without terminating the process or otherwise corrupting its state.

• Server applications that need to keep responding to clients while at the same

time performing I/O. They must be able to wait for either of several I/O

operations to complete.

• SICStus Prolog has a feature called asynchronous events. Such events can be

posted from C by an arbitrary thread of the process and will cause some

https://doi.org/10.1017/S1471068411000482 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000482

SICStus Prolog—The first 25 years 53

associated procedure, which can call Prolog, to be called by the Prolog main

thread. When such an event is posted, any blocking I/O must be interrupted

so that the event can be processed. Internally, asynchronous events are used

for signal handling, the timeout facility, etc.

The standard C library provides no non-blocking operations and no way to

wait for I/O to complete. In SICStus Prolog 3, some low-level routines were used

together with stdio streams to provide waitable I/O. However, mixing stdio

stream operations and O/S-level stream operations does not always work well or

even correctly and does not work at all for some types of streams.

SICStus Prolog 4 does not use stdio for I/O. Instead, the use of native O/S

routines allows us to wait on, and to do non-blocking I/O to, many kinds of O/S

streams. Unfortunately, not all streams can be handled in this way. In fact, neither

UNIX nor Windows provides non-blocking primitives that works for all, or even

for most, I/O operations. Instead, SPIO uses worker threads in C, when needed,

to provide the appearance of non-blocking and interruptible blocking operations.

SPIO also provides the necessary operations for symbolic streams that do not use an

underlying O/S stream, e.g. streams used for reading from a string. Thus, in Prolog

code, and code that uses our C API, the high-level I/O functionality “just works”,

regardless of the type of stream.

The availability of non-blocking streams makes it possible to wait for multiple

streams to become readable or writable, thus enabling server applications to be

written in Prolog. It also allows a debugged Prolog program to be interrupted, even

if it is waiting for I/O to complete, without disturbing the I/O operation.

File system. File names with non-ASCII characters are handled differently by

different operating and file systems. SPIO ensures that such file names behave

correctly on systems like Mac OS X and Windows, which use Unicode file names.

The standard UNIX way of handling file name encoding, based on a process-specific

locale, is arguably broken by design and is largely ignored by SPIO. Instead, SPIO

falls back on UTF-8 on such systems. SPIO permits file names and file paths to

be as long as the underlying O/S can handle. Thus, the Prolog programmer is not

restricted by the limited length supported by stdio.

Processes. SPIO handles all command line quoting and argument encoding necessary

to launch processes on any supported O/S. SPIO also provides a common abstraction

for process handles. The Prolog programmer does not need to care about its details,

e.g. when passing a non-ASCII file name, with embedded spaces, as an argument to

a launched program and then waiting for the subprocess to terminate.

Unicode and character encodings. A number of character encodings are provided

for encoding and decoding file and stream contents. In many cases, SPIO can

automatically detect the encoding used when reading data from a file.

Non-trivial character sets, such as Unicode, and non-trivial encodings, such as

UTF-8, place special requirements on the implementation. For instance, it is possible

to get an error when writing a character code that cannot be represented in the

encoding used by the stream being written to. Such write errors raise an I/O

https://doi.org/10.1017/S1471068411000482 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000482

54 M. Carlsson and P. Mildner

exception. Similarly, an exception is raised if the file contains byte sequences that

are invalid in the given encoding.

4.10 Attributed variables and constraint solvers

SICStus Prolog was possibly the first Prolog implementation to incorporate

Holzbaur’s seminal idea about attributed variables as a way to extend unifica-

tion (Holzbaur 1992). Attributed variables are involved in two related mechanisms:

(i) suspending a goal on a variable, i.e. until that variable has been bound, and (ii)

a means of associating data with a variable while that variable is not yet bound.

The first mechanism is implemented by the freeze/2 predicate (Carlsson 1987)

together with the generic overflow mechanism: binding the variable will set the

generic overflow flag, and running the suspended goal will be handled by the generic

overflow handler, as described earlier.

The second mechanism allows Prolog code to refer to attributes by names,

which are declared per module. Once the attributes have been declared, attribute

values can be attached to, modified, and detached from any variable. On back-

tracking, such changes are undone. A module that has declared some attributes

may also define several local “hook” predicates, which add extra functionality,

needed by constraint solvers in particular. The most important such predicate

is verify attributes(AVar,Value,Goals), which extends default unification as

follows. The predicate is called by the generic overflow handler whenever a variable

AVar with attributes in the given module is about to be bound to a non-variable

term or another attributed variable Value. It is expected to return in Goals a list of

goals. The suspended unification resumes after the call to verify attributes/3.

Finally, the goals in Goals are called.

Figure 11 shows the internal representation of attributed variables, as used by the

CLPFD solver. References to attributes by name in the Prolog code are translated

by macro expansion to more direct accesses into this representation. When attribute

values are attached, modified, or detached, destructive updates are used if they are

safe. Otherwise, the internal representation is partly copied, and the value cell is

bound to the copy. Once the value cell has been bound, the extra data structures

are no longer reachable and so are subject to normal garbage collection.

Attributed variables are a crucial mechanism for constraint solvers in at least

B, Ciao, ECLiPSe, GNU, SICStus, SWI, and Yap Prologs. SICStus Prolog has

constraint solvers over Booleans (Carlsson 1991), rationals and reals (Holzbaur

1995), finite domains (Carlsson et al. 1997), and CHR (Schrijvers and Demoen

2004).

The finite domain solver has grown into a significant subsystem, comprising

some 60,000 lines of C and 9,500 lines of Prolog code. The code is dominated by

implementations of propagators for global constraints. Two attributes are used for

a given domain variable x, as shown in Figure 11. Constraint propagation is driven

by domain changes as opposed to variable bindings, and so the solver uses its own

propagation loop instead of the freeze/2 mechanism. The solver resides in the

clpfd Prolog module, which also exploits some extensions to the Prolog system:

https://doi.org/10.1017/S1471068411000482 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000482

SICStus Prolog—The first 25 years 55

goal 1 goal 2
LIST

...LIST

domain
variable

-1 value
cell

attributes suspended
goals

REF

LIST

f clpfd attributes m2 attributes ...

STR

f bitmap clpfd:dom clpfd:susp

STR

f bitmap m2:a1 m2:a2 ...

STR

$mutable/2 domain timestamp

STR

$mutable/2 suspensions timestamp

STR

dom/4 set min max size

STR

lists/7 count bitmask dom
list

min
list

max
list

minmax
list

val
list

STR

Fig. 11. Internal representation of domain variables, as a special case of attributed variables.

The root is a reference to a value cell extended with an attributes slot and a suspended goals

slot. The value cell is a self-reference while the variable is unbound. SICStus Prolog 3 used

a dedicated tag for attributed variables, represented as three consecutive words (value cell,

attribute slot, suspension list). SICStus Prolog 4 uses a generic variable tag, but the three

words are preceded by a word containing −1. Together with an address comparison, this

suffices to distinguish attributed variables from normal variables. This distinction needs to

be made mainly when a variable is bound: if it is attributed, the generic overflow flag is set.

The attributes slot contains a structure with one component per module (m1, m2, . . .) that

has declared attributes. Each such component is a structure with the actual attribute values,

plus a bitmap indicating whether or not each given value is present. The suspended goals slot

contains a plain list of goals, i.e. the freeze/2 mechanism can suspend more than one goal

on the same variable. The CLFPD solver uses two attributes, both holding a mutable, for

a given domain variable x. dom/4 stores its domain, while lists/7 encodes the dependency

lists, i.e. the set of constraints mentioning x as well as what kind of domain change should

schedule each given constraint.

New predicate type. So-called indexical propagators (Van Hentenryck et al. 1991)

for smallish constraints can be expressed in a special stack machine language.

The solver provides a compiler into this language as well as an “assembly

code” notation. Such propagators are seen by Prolog as predicates of a specific

type—the constraint is posted simply by calling the predicate. Whenever the VM

emulator encounters such a call, it escapes to clpfd:solve/2, the relevant solver

entrypoint. The binary file format also needed to be extended to accommodate

these predicates.

Global term references. The global constraint propagators are stateful. They main-

tain the constraint arguments as well as auxiliary data structures in a block of

memory. This requires a way to store a persistent reference to a Prolog term

in a C variable. The SP term ref mechanism mentioned earlier is, however, not

https://doi.org/10.1017/S1471068411000482 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000482

56 M. Carlsson and P. Mildner

persistent—an SP term ref becomes invalid as soon as control returns from C to

Prolog. So a persistent variant of term references needed to be introduced.

Memory management. The solver C code has a license to penetrate the normal

memory barriers, i.e. it can directly manipulate the internal term representation,

bypassing the normal interface functions. In addition to global term references,

the solver has other data structures that the Prolog memory manager needs to

be aware of. Thus, when, e.g. a heap overflow occurs, the memory manager calls

certain clpfd interface functions to ensure that the solver data structures are

processed as need be.

4.11 Miscellaneous

SICStus Prolog uses a large number of implementation techniques that are shared

with other implementations, Prolog, or otherwise. Some of these features can be

traced back to a source; others are folklore. We now list a few of these points.

Cyclic term unifier. Without special care, the unification algorithm may not ter-

minate on cyclic terms. In Colmerauer (1982), a simple method to avoid this

problem is described. Briefly, before recursively unifying the ith argument of two

compound terms p and q, the unifier temporarily sets the memory cell holding

p[i] to q[i] (or vice versa). If the unifier later encounters the same pair of memory

cells, it will see two identical terms instead of falling into infinite recursion. Before

returning, the unifier restores all such modifications. We use the same technique

in the term comparison algorithm that determines the relation between two given

terms in the standard order of terms.

Mutable terms. SICStus Prolog used to have a non-logical feature called

setarg(I,P,X). The effect is to set the Ith argument of the compound term

P to X, restoring the old value on backtracking. To support restoring, the trail

must be generalized to accommodate such old values and their destinations. This

feature exists in at least B, Bin, Ciao, ECLiPSe, GNU, SWI, and Yap Prologs.

Around 1995, we replaced setarg/3 by a new abstract datatype mutable term

with operations to create such a term and to get and update its value. The

implementation is based on Aggoun and Beldiceanu (1990): each mutable term

has a time-stamp, which indicates when the value was last updated. The point is,

if no choicepoint has been pushed between two updates, the second update does

not need to be trailed. We also extended the variable shunting algorithm (Carlsson

and Sahlin 1990) to compress reset chains for mutables. We treat mutable terms

as non-ground, no matter what the current value is. Subsequently, mutable terms

have been adopted by Yap Prolog.

Bignums. Bignums are available in at least Ciao, ECLiPSe, SICStus, SWI, and Yap

Prologs. We do not use any publicly available multi-precision libraries, since when

our code was developed, none of the available libraries was compatible with our

particular memory management requirements.

Asserting clauses and copying terms. Internally, these two operations are very simi-

lar and share much of the code. Both use variants of Cheney’s algorithm (Cheney

1970). The main difference is in the output: the assert operation creates an

https://doi.org/10.1017/S1471068411000482 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000482

SICStus Prolog—The first 25 years 57

interpreted clause, i.e. a kind of blue-print from which a brand new clause copy

can be built in linear time, whereas the copy operation creates a new term directly.

Object-oriented programming. Although the combination of logic programming and

object-oriented programming was never a research topic at SICS, SICStus Prolog

does provide such modules. The SICStus Prolog 3 objects module was designed

with an emphasis on knowledge representation. It was based on the notions

of prototypes, inheritance, and delegation. The implementation piggybacked on

the module system: a named object was represented by the Prolog module with

the same name, resulting in an obvious risk for name clashes. Furthermore, the

module data structures and primitives had to be extended in order to provide all

the services that the object system needed.

The SICStus Prolog 4 objects module is based on the notions of classes and

inheritance. The emphasis is on efficiency. The implementation is 100% based on

source-to-source compilation and does not rely on or extend the module system.

A detailed description can be found in Saab and Schachte (1995).

Exceptions, or catch and throw. We use the implementation proposed in Demoen

(1989).

Cleaning up, or call cleanup. A very common situation in programming is the

following. Some algorithm needs to run, holding some resources. Those resources

must be freed afterwards, no matter whether or not the algorithm terminates

normally. Common Lisp provides a primitive for this purpose:

(unwind-protect protected cleanup)
which evaluates the form protected in a context where the form cleanup is

guaranteed to be executed when and if control leaves the form protected by

any means. Finally, the value of protected is returned from the unwind-protect

form.

Around 1997, the first author introduced an analogous construct into SICStus

Prolog, naming it call(Goal,Cleanup). Richard O’Keefe criticized him for this

choice of name, which clashes with the multiple argument generalization of

call/1. Richard was absolutely right, of course, and the construct was later

renamed to call cleanup/2, its present name. Subsequently, it has found its way

into at least B, ECLiPSe, SWI, XSB, and Yap Prologs.

call cleanup/2 guarantees the execution of Cleanup if Goal succeeds determi-

nately, fails, or raises an exception. Also, if Goal succeeds with some alternatives

outstanding, and those alternatives are removed by a cut or an exception, Cleanup

is executed. The implementation is composed of the following elements:

• Cleanup goals are placed on the trail. The general backtracking mechanism

simply executes such goals as they are encountered on failure or exception.

• A bit c(b) is reserved in every choicepoint b, denoting the fact that there may

be a pending Cleanup goal when b equals the current choicepoint B.

• When call cleanup is called, b0 ← B, c(b0) is set, and Cleanup is pushed on

the trail.

https://doi.org/10.1017/S1471068411000482 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000482

58 M. Carlsson and P. Mildner

• On non-deterministic exit from call cleanup, c(b) is set for all choicepoints

b that predate b0, so as to ensure that Cleanup is run if and when a cut back

to b0 or beyond occurs.

• On deterministic exit from call cleanup, and upon execution of a cut, if c(B)

is set, the generic overflow flag is set.

• If the generic overflow handler finds a cleanup goal in the current trail segment,

it arranges for it to be run. It clears c(B) if appropriate.

5 Development environment

5.1 Background

Since early on, SICStus Prolog has had an Emacs-based development environment,

with syntax highlighting, source-linked debugging, links to the documentation, and

more. However, both our Emacs-based development environment and Emacs itself

lacks many of the features that users have come to expect from a modern integrated

development environment (IDE), such as:

Parser. Anything but the most trivial language support requires a proper parser,

including support for operator directives. Without a parser, it is not possible to get

much more advanced than showing variables in italics. The parser must be part of

the IDE, as running it in a separate process would likely cause intolerable response

times.

Semantic analysis. The dynamic nature of Prolog is an advantage for the developer

but makes it difficult for the compiler to provide diagnostics. Traditionally, like

most other Prolog implementations, SICStus Prolog warns about syntax errors

but provides little in terms of semantic diagnostics. Semantic diagnostics are

mostly limited to local issues such as singleton variables and discontiguous clauses.

While SICStus Prolog comes with several useful tools that provide more advanced

diagnostics, e.g. for determinacy checking and cross referencing, these tools must

be run separately, which is inconvenient. On the other hand, an IDE, especially

if it has knowledge about the set of files that makes up a Prolog program, can

provide the same and more functionality than the existing tools, while the user edits

or browses the program files. An IDE can also give feedback from syntactic and

semantic analysis in a more useful way than what is possible with separate tools, e.g.

by highlighting undefined predicate calls or incorrect predicate arguments directly

in the source code editor.

Code refactoring. Code refactoring means automatic and usually global changes to a

program, preserving the semantics of the program. Typical examples for Prolog are:

renaming a predicate, reordering the arguments of a predicate, or adding arguments

to a predicate, automatically updating all callers.

Scalability. Our commercial customers have applications comprising hundreds of

modules adding up to several hundred thousand lines of code. This fact stresses the

importance that our IDE be scalable to such code sizes.

https://doi.org/10.1017/S1471068411000482 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000482

SICStus Prolog—The first 25 years 59

Fig. 12. SICStus Prolog IDE window. Top left: debugger pane. Top right: variable pane.

Middle left: source code pane with highlighting and pop-ups. Middle right: outline pane.

Bottom: toplevel pane.

Implementation. We have implemented our IDE in Eclipse, an application and IDE

framework written in Java. Eclipse has already proved itself as a foundation for

powerful IDEs for many programming languages. Using Eclipse as the basis for an

IDE also gives many features for free, such as portability, integration with common

revision control systems and support for multiple programming languages in the

same IDE. Using Eclipse will also make it possible to integrate other tools such

as profiler and constraint visualizers into the IDE. In addition, Eclipse makes it

possible for us to package our IDE as a standalone product with a completely

Prolog-centric appearance, if needed.

A first version of the IDE, with working name SPIDER, was released together

with SICStus Prolog 4.1, in December 2009. It is still in beta and lacks some of

the planned features but it is already quite useful and its analysis functionality has

helped us identify and fix several defects in our own code.

5.2 SPIDER in action

Figure 12 shows some of the features of SPIDER in action. We now discuss some

of its central features:

https://doi.org/10.1017/S1471068411000482 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000482

60 M. Carlsson and P. Mildner

Editor. While editing, SPIDER continuously re-parses the code and annotates the

text with warnings and semantic highlightings. Warnings include: calls to undefined

predicates, import or export of predicates not defined in module, assert of predicate

not declared dynamic, not using use module/[1,2] when loading a module file,

singleton variables.

Semantic highlightings include a special appearance of first and single occur-

rences of a variable. This is done also in the context of disjunction and logical

loops (Schimpf 2002), when the variable may have more than one semantically first

or singleton occurrence.

Calls to undefined predicates are highlighted, including when they appear as

arguments to meta predicates.

The editor provides completion of predicate names and documentation pop-up

when the mouse pointer is hovering over a predicate name. The documentation is

formatted on the fly for user written code and there is an integrated browser for the

SICStus Prolog product documentation.

The definition of a user-defined or built-in library predicate or module can be

opened with a single click or keyboard command.

Toplevel. The toplevel implements the traditional terminal interface and provides a

familiar interface, including the traditional debugger.

Debugger. The debugger shows an ancestor stack, local variable bindings, and direct

access to some common debugger control commands, like step into, step over, and

redo. The traditional terminal-based debugger interface is active at all times in the

toplevel, so the power user is free to use that, if desired.

The debugger and editor together provide a point and click interface for setting line

breakpoints and spypoints. It is also possible to temporarily disable all breakpoints

and to save breakpoints across debugging sessions.

The debugger and toplevel can attach to a running SICStus Prolog process that

may be running on another machine (and platform) than the IDE. This is useful for

those that embed SICStus Prolog as part of a larger program or system.

Future features. A prerequisite of many types of program analysis is complete

information about all source code in a program. This requires not only knowing

which files make up the program but also how these files load each other, especially

when modules are distributed among multiple non-module files. SPIDER, like many

other Eclipse-based language environments, delegates this task to a separate indexer,

which updates the information as files are modified. The indexer functionality of

SPIDER is currently being implemented. When this work is completed, we plan

to add features such as call hierarchy and determinacy analysis, providing similar

functionality as that of our current spxref and spdet tools, but with immediate

feedback as the program is modified. The indexer is also a requirement for refactoring

and other planned features that currently have no counterpart among the existing

SICStus Prolog tools.

https://doi.org/10.1017/S1471068411000482 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000482

SICStus Prolog—The first 25 years 61

6 Applications

SICStus Prolog is being used on a 24/7 basis in major applications comprising

hundreds of modules adding up to several hundred thousand lines of code. It is a

pity, but for reasons of customer confidentiality, we are not at liberty to describe some

of the most impressive ones. Anyway, we now briefly describe some applications for

which permission has been generously granted, or where the information is publicly

available.

Speech recognition. Clarissa2, a fully voice-operated procedure browser was devel-

oped by the NASA Intelligent Systems Division. On the International Space Station

(ISS), astronauts execute thousands of complex procedures to maintain life support

systems, check out space suits, and conduct science experiments, among their many

tasks. Today, when carrying out these procedures, an astronaut usually reads from a

PDF viewer on a laptop computer, which requires them to shift attention from the

task to scroll pages. Clarissa enables astronauts to be more efficient and to give full

attention to the task while they navigate through complex procedures using spoken

commands.

Clarissa was implemented mainly using SICStus Prolog and a speech recog-

nition toolkit provided by Nuance Communications. Application-specific spoken

command grammars were constructed using the SICStus Prolog based Regulus

platform (Rayner et al. 2006).

Telecom. Ericsson Network Resource Manager (NRM) provides the capabilities

for configuring and managing complex multi-vendor IP Backbone networks. NRM

assists the operator in making decisions when planning, configuring, and making

configuration changes.

The modeling part of the NRM software, an expert tool assisting the network

operator, was implemented in SICStus Prolog. The constructed network model,

created by analyzing the actual router configurations, is used both for showing a

graphical representation and for validating the network.

Biotech. A dispensation order generation algorithm for Pyrosequencing’s sequence

analysis instruments, using constraint programming in SICStus Prolog (Carlsson

and Beldiceanu 2004a, 2004b). The algorithm can be described as a compiler, which

calculates an instruction sequence based on an input specification. Applications

include genetics, drug discovery, microbiology, SNP and mutation analysis, forensic

identification using mtDNA, pharmacogenomics, and bacterial and viral typing.

Logistics. One of the products of RedPrairie Corporation, a leading provider of real-

time logistics solutions, is a real-time optimization engine, COPLEX. The kernel of

the engine is written in SICStus Prolog using its finite domain constraint solver

library.

Data mining. Compumine AB’s data mining software Rule Discovery System

(RDSTM) is a tool for generation of reliable, accurate, and interpretable rule based

2 http://ti.arc.nasa.gov/project/clarissa/

https://doi.org/10.1017/S1471068411000482 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000482

62 M. Carlsson and P. Mildner

prediction models by automatically searching databases for significant patterns and

relationships. RDSTM was implemented in SICStus Prolog and has been successfully

applied to problems in a large number of data intensive areas such as pharmaceutical

research, language technology, and engineering.

Business rules: The 360o Fares system. The paper (Wilson 2005) describes an applica-

tion running the 360o Fares System. It is one of the largest and most profitable Prolog

applications written. Prolog is the business-rule component in a multi-component

application that includes network, user interface, and security data access tiers.

Biomedical text search. MetaMap3 was developed by Alan Aronson at the National

Library of Medicine (NLM) to map biomedical text to the UMLS Metathesaurus

or, equivalently, to discover Metathesaurus concepts referred to in text. MetaMap

uses a knowledge intensive approach based on symbolic, natural language processing

(NLP) and computational linguistic techniques. MetaMap is one of the foundations

of NLM’s Medical Text Indexer (MTI), which is being applied to both semiautomatic

and fully automatic indexing of biomedical literature at NLM. MetaMap was first

implemented in Quintus Prolog and is being ported to SICStus Prolog.

Safety-critical applications. SPARK4 (Barnes 2003) is a high-level programming

language and toolset designed for writing software for high integrity applications.

SPARK enables the application of formal verification techniques in a segregated

monitor architecture, ensuring rapid compliance. The SPARK toolset comes in a

GPL version and includes a theorem prover implemented in SICStus Prolog.

7 Conclusion

Now that the system has been around for nearly 25 years, a relevant question to ask

is: what are the key good and less good design decisions? We now try to give some

answers.

First of all, there hardly were any truly bad decisions. Some decisions, like

endeavoring into compiling to native code, meant huge amounts of work for

platforms that eventually went extinct. But at the same time, good research was

done, important lessons were learned, and pieces of technology were developed that

could be reused in a JIT compiler, for example.

One questionable decision was the fact that SICStus Prolog 3 supported two

dialects, “classic” and ISO, in the same system, and even let the user dynamically

switch between the two. This made it awkward to document certain built-in

predicates, like atom chars/2, whose semantics differs from dialect to dialect, as

well as all the other, subtler differences. It also made it quite a challenge to ensure

that all library modules would run in both dialects. We are not aware of any other

programming system, Prolog or otherwise, that provides this degree of freedom. Of

course, this situation stemmed from the fact that the ISO standard was published

3 http://metamap.nlm.nih.gov/
4 http://www.praxis-his.com/spark.aspx

https://doi.org/10.1017/S1471068411000482 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000482

SICStus Prolog—The first 25 years 63

quite late, when a lot of application code had already been written by users as well

as implementers. We wanted to promote the ISO standard, but at the same time,

we had no right to break people’s existing code. Our solution to this dilemma was

a dual dialect system.

A lesson that keeps getting reiterated is the importance of backward compatibility.

For obvious reasons, users are very unforgiving to changes in behavior of the

programming system, even if it concerns minor points that are not necessarily

specified in detail in the documentation. For example, at one time, we were flamed

by a customer for changing the printed appearance of certain floating-point numbers

although the old and new appearances were both legal syntax. There is no escape

from this issue, and the Prolog standardization committee is well advised to bear it

in mind. The first author knows from first hand experience as a committee member

how tempting it is to start “cleaning up” or “redesigning” parts of the language.

Such ambitions can be commendable, but at this stage they are only viable if full

backward compatibility can be preserved.

Finally, the quality of the POSIX primitives malloc() and free() in today’s

operating systems is probably high enough to make a dedicated memory manager

redundant. However, we do have customers that depend on the ability to control

memory allocation with tunables, and it is not clear whether their applications would

run with tolerable performance without a tunable, dedicated memory manager.

But by and large, je ne regrette rien.

Acknowledgements

A large number of people have contributed to the development of SICStus Prolog,

including: Jonas Almgren, Johan Andersson, Stefan Andersson, Nicolas Beldiceanu,

Tamás Benkő, Kent Boortz, Per Brand, Göran B̊age, Per Danielsson, Joakim

Eriksson, Jesper Eskilson, Niklas Finne, Lena Flood, György Gyaraki, Dávid Hanák,

Seif Haridi, Ralph Haygood, Christian Holzbaur, Key Hyckenberg, Carl Kesselman,

Péter László, Carl Nettelblad, Greger Ottosson, Dan Sahlin, Peter Schachte, Rob

Scott, Thomas Sjöland, Péter Szeredi, Tamás Szeredi, Johan Widén, Magnus Ågren,

Emil Åström, and the authors. The Industrialization of SICStus Prolog (1988-1991)

was funded by Ericsson Telecom AB, NobelTech Systems AB, Infologics AB, and

Televerket, under the National Swedish Information Technology Program IT4. The

development of SICStus Prolog 3 (1991-1995) was funded in part by Ellemtel

Utvecklings AB. We thank Magnus Ågren and the anonymous referees for their

constructive comments.

References

Aggoun, A. and Beldiceanu, N. 1990. Time stamps techniques for the trailed data in

constraint logic programming systems. In Proc. of the 8ème Séminaire de Programmation

en Logique (SPLT), S. Bourgault and M. Dincbas, Eds, 487–510.

Aho, A. V., Sethi, R. and Ullman, J. D. 1986. Compilers: Principles, Techniques, and Tools.

Addison Wesley, Reading. ISBN 0-201-10088-6.

https://doi.org/10.1017/S1471068411000482 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000482

64 M. Carlsson and P. Mildner

Ali, K. and Karlsson, R. 1990a. The Muse or-parallel Prolog model and its performance. In

Proc. of the North American Conference on Logic Programming (NACLP ’90). MIT Press,

Cambridge, 757–776.

Ali, K. and Karlsson, R. 1990b. The Muse approach to or-parallel Prolog. International

Journal of Parallel Programming 19, 2, 129–162, Springer.

Amdahl, G. 1967. Validity of the single-processor approach to achieving large scale computing

capabilities. In Proc. of the AFIPS Spring Joint Computer Conference (AFIPS ’67), vol. 30.

AFIPS Press, Arlington, 483–485.

Appleby, K., Carlsson, M., Haridi, S. and Sahlin, D. June 1988. Garbage collection for

Prolog based on WAM. Communications of the ACM 31, 6, 719–740.

Bagnara, R. and Carro, M. 2002. Foreign Language Interfaces for Prolog: A Terse Survey.

Quaderno 283, Dipartimento di Matematica, Università di Parma, Italy.

Barnes, J. 2003. High Integrity Software: The SPARK Approach to Safety and Security.

Addison Wesley, Reading. ISBN 0-321-13616-0.

Bevemyr, J. and Lindgren, T. 1994. A simple and efficient copying garbage collector for

Prolog. In Proc. of the International Symposium on Programming Language Implementation

and Logic Programming (PLILP ’94), M. Hermenegildo and J. Penjam, Eds. Lecture Notes

in Computer Science, vol. 844. Springer, Berlin, 88–101.

Brady, M. 2005. Open Prolog: A Structure-Sharing Prolog for the Macintosh. Ph D Thesis.

Trinity College Dublin, Dublin.

Carlsson, M. 1987. Freeze, indexing, and other implementation issues in the WAM. In Proc.

of the International Conference on Logic Programming (ICLP ’87), Melbourne, J.-L. Lassez,

Ed. MIT Press Series in Logic Programming. MIT Press, Cambridge, 40–58.

Carlsson, M. 1989. On the efficiency of optimising shallow backtracking in compiled Prolog.

In Proc. of the International Conference on Logic Programming (ICLP ’89), Lisbon, G. Levi

and M. Martelli, Eds. MIT Press Series in Logic Programming. MIT Press, Cambridge,

3–16.

Carlsson, M. 1991. Boolean Constraints in SICStus Prolog. SICS Research Report T91:09.

Swedish Institute of Computer Science.

Carlsson, M. and Beldiceanu, N. 2004a. Dispensation order generation for pyrosequencing.

In Proc. of the Asia Pacific Bioinformatics Conference (APBC ’04), Y.-P. P. Chen, Ed.

Conferences in Research and Practice in Information technology, vol. 29. Australian

Computer Society, Dunedin, New Zealand.

Carlsson, M. and Beldiceanu, N. 2004b. Multiplex dispensation order generation for

pyrosequencing. In Proc. of the Workshop on CSP Techniques with Immediate Application

(CP ’04).

Carlsson, M., Ottosson, G. and Carlson, B. 1997. An open-ended finite domain constraint

solver. In Proc. of the International Symposium on Programming Language Implementation

and Logic Programming (PLILP ’97), H. Glaser, P. Hartel, and H. Kuchen, Eds. Lecture

Notes in Computer Science, vol. 1292. Springer, Berlin, 191–206.

Carlsson, M. and Sahlin, D. 1990. Variable shunting for the WAM. In Proc.

of the NACLP Post-Conference Workshop on Logic Programming Architectures and

Implementations (NACLP ’90), J. Mills, Ed. Also available as SICS Research Report

R91:07.

Cheney, C. 1970. A nonrecursive list compacting algorithm. Communications of the

ACM 13, 11, 677–678.

Chung, Y., Moon, S.-M., Ebcioğlu, K. and Sahlin, D. 2000. Reducing sweep time for a

nearly empty heap. In Proc. of the ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL ’00). ACM, New York, NY, USA, 378–389.

https://doi.org/10.1017/S1471068411000482 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000482

SICStus Prolog—The first 25 years 65

Colmerauer, A. 1982. Prolog and infinite trees. In Logic Programming, K. Clark and S.-Å.

Tärnlund, Eds. Academic Press, London, 231–251.

Colton, C. 1825. The Lacon, vol. 1. Longman, Hurst, Rees, Orme, Brown and Green.

Paternoster-row, London.

da Silva, A. F. and Costa, V. S. 2007. Design, implementation, and evaluation of a dynamic

compilation framework for the YAP system. In Proc. of the International Conference on

Logic Programming (ICLP ’07), V. Dahl and I. Niemelä, Eds. Lecture Notes in Computer

Science, vol. 4670. Springer, Berlin, 410–424.

Demoen, B. 1989. A 20’ Implementation of Catch and Throw in WAM. Report CW 96.

Department of Computer Science, K. U. Leuven, Leuven, Belgium.

Demoen, B., Mariën, A. and Callebaut, A. 1989. Indexing Prolog clauses. In

Proc. of the North American Conference on Logic Programming (NACLP ’89), E. Lusk and

R. Overbeek, Eds. MIT Press, Cambridge, 1001–1012.

Eskilson, J. and Carlsson, M. 1998. SICStus MT—A multithreaded execution environment

for SICStus Prolog. In Proc. of the International Symposium on Programming Language

Implementation and Logic Programming (PLILP ’98), C. Palamidessi, H. Glaser, and

K. Meinke, Eds. Lecture Notes in Computer Science, vol. 1490. Springer, Berlin, 36–53.

Farkas, Z., Köves, P. and Szeredi, P. 1994. MProlog: an implementation overview. In

Implementations of Logic Programming Systems, E. Tick and G. Succi, Eds. Kluwer Academic

Publishers, Boston, 103–117.

Gorlick, M. and Kesselman, C. 1987. Timing Prolog programs without clocks. In Proc. of

the Symposium on Logic Programming (SLP ’87). IEEE Computer Society, Los Angeles,

426–432.

Gupta, G., Pontelli, E., Ali, K., Carlsson, M. and Hermenegildo, M. 2001.

Parallel execution of Prolog programs. ACM Transaction on Programming Languages and

Systems 23, 4, 1–131.

Haygood, R. 1994. Native code compilation in SICStus Prolog. In Proc. of the International

Conference on Logic Programming (ICLP ’94). MIT Press, Cambridge, MA, USA, 190–204.

Holzbaur, C. 1992. Metastructures versus attributed variables in the context of

extensible unification. In Proc. of the International Symposium on Programming Language

Implementation and Logic Programming (PLILP ’92), M. Bruynooghe and M. Wirsing, Eds.

Lecture Notes in Computer Science, vol. 631. Springer, Berlin, 260–268.

Holzbaur, C. 1995. ÖFAI clp(q,r) Manual , 1.3.3 ed. Austrian Research Institute for Artificial

Intelligence, Vienna. TR-95-09.

Lusk, E., Butler, R., Disz, T., Olson, R., Overbeek, R., Stevens, R., Warren, D.,

Calderwood, A., Szeredi, P., Brand, P., Carlsson, M., Ciepielewski, A. and Hausman,

B. 1990. The Aurora or-parallel Prolog system. New Generation Computing 7, 2–3, 243–271.

Nässén, H., Carlsson, M. and Sagonas, K. 2001. Instruction merging and specializing in the

SICStus Prolog virtual machine. In Proc. of the International ACM SIGPLAN Conference

on Principles and Practice of Declarative Programming (PPDP ’01). ACM, New York.

O’Keefe, R. and Lindholm, T. 1987. Efficient implementation of a defensible semantics

for dynamic Prolog code. In Proc. of the International Conference on Logic Programming

(ICLP ’87). MIT Press, Cambridge, 21–39.

Rayner, M., Hockey, B. A. and Bouillon, P. 2006. Putting Linguistics into Speech

Recognition: The Regulus Grammar Compiler. CSLI studies in computational linguistics.

Stanford University Center for the Study of language and information, Stanford, California.

Saab, G. and Schachte, P. 1995. Efficient object-oriented programming in Prolog. In Logic

Programming: Formal Methods and Practical Applications. Studies in Computer Science and

Artificial Intelligence, vol. 11. Elsevier Science, Amsterdam, 205–243.

https://doi.org/10.1017/S1471068411000482 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000482

66 M. Carlsson and P. Mildner

Schimpf, J. 2002. Logical loops. In Proc. of the International Conference on Logic Programming

(ICLP’ 02), P. J. Stuckey, Ed. Lecture Notes in Computer Science, vol. 2401. Springer,

Berlin, 224–238.

Schrijvers, T. and Demoen, B. 2004. The K.U. Leuven CHR system: Implementation and

application. In Proc. First Workshop on CHR: Selected Contributions, T. Fruehwirth and

M. Meister, Eds. University of Ulm, Ulm, 1–5.

Tarau, P. and Neumerkel, U. 1994. A novel term compression scheme and data

representation in the BinWAM. In Proc. of the International Symposium on Programming

Language Implementation and Logic Programming (PLILP ’94), M. V. Hermenegildo and

J. Penjam, Eds. Lecture Notes in Computer Science, vol. 844. Springer, Berlin, 73–87.

Taylor, A. 1991. High performance Prolog on a RISC. New Generation Comput. 9, 3–4,

221–232.

Van Hentenryck, P., Saraswat, V. and Deville, Y. 1991. Constraint processing in cc(FD).

Technical report, Brown University, Providence.

Van Roy, P. and Despain, A. M. 1992. High-performance logic programming with the

Aquarius Prolog compiler. IEEE Computer 25, 1, 54–68.

Warren, D. 1979. Prolog on the DECsystem-10. In Expert Systems in the Micro-Electronic

Age, D. Mitchie, Ed. Edinburgh University Press, Edinburgh.

Warren, D. 1983. An Abstract Prolog Instruction Set. Technical note 309. Artificial Intelligence

Center, SRI International, Palo Alto.

Wilson, W. G. 2005. Use of logic programming for complex business rules. In Proc. of the

International Conference on Logic Programming (ICLP ’05). Lecture Notes in Computer

Science, vol. 3668. Springer, Berlin, 14–20.

https://doi.org/10.1017/S1471068411000482 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000482

