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Stochastic ordering of random variables may be defined by the relative convexity of the
tail functions. This has been extended to higher order stochastic orderings, by iteratively
reassigning tail-weights. The actual verification of stochastic orderings is not simple, as this
depends on inverting distribution functions for which there may be no explicit expression.
The iterative definition of distributions, of course, contributes to make that verification
even harder. We have a look at the stochastic ordering, introducing a method that allows
for explicit usage, applying it to the Gamma and Weibull distributions, giving a complete
description of the order of relations within each of these families.
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1. INTRODUCTION

Aging and ordering notions between random variables have long attracted the interest of a
wide community. These notions raise intricate theoretical problems and have been widely
used in applications in reliability, actuarial science, psychology, or economics (see, e.g.,
Chandra and Roy [7], Nanda et al. [21], Franco, Ruiz, and Ruiz [13], Chechile [8], Belzunce,
Candel, and Ruiz [3,4], Colombo and Labrecciosa [9], and Veres-Ferrer and Pavia [32]). A
connection with risk function properties may be found through utility functions, which may
be interpreted as distribution functions. Aging notions are usually defined in terms of the
monotonicity of the survival or of the failure rate functions, while orderings between random
variables, or to be more precise, their distributions, use relationships between these type
of functions. The simplest ordering notions are based on direct comparisons between the
survival or the failure rate functions. More interesting ordering relations, generally known
as convex orderings, compare the decreasing rate of the tail functions through the relative
convexity between the inverse tail functions. These convex orderings have been introduced
by Hardy, Littlewood, and Pólya [15], with some more recent results may be found in
Palmer [23] or Rajba [28]. This means that the actual verification of these relations for
given families of distributions is, in general, not obvious if the characterization of the dis-
tribution function are not simple, as is the case, for example, of the Gamma distributions.
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A classical early reference on aging and some ordering problems for random variables and
also on applications to reliability is the book by Barlow and Proschan [2]. More recent ref-
erences on aging and ordering notions, describing a nice account of properties and relations,
including convex order notions, may be found in Mashall and Olkin [19] or Shaked and
Shanthikumar [31].

A classification of families of distributions with respect to aging notions was studied
in Deshpande, Kochar, and Singh [10] or Deshpandee et al. [11]. Some of the classifica-
tions were based on higher order stochastic dominance, defined through relations between
distributions constructed by iteratively reassigning their tail-weights as measures for the
tails, as described in Definitions 6 and 14 below, and looking at the monotonicity of the
failure rate functions after iteration. Those iterated relations were also studied by Aver-
ous and Meste [1], giving an almost complete picture of the aging notions classification.
The main focus being in establishing an hierarchy among the aging notions rather than
being very much concerned with the calculatory aspects. Naturally, the computational side
of the problem becomes increasingly difficult, as a result of iterating the distribution func-
tions. This means that, in general, simple questions as deciding whether a given distribution
satisfies the appropriate monotonicity property is not simple. The monotonicity of failure
rate functions after iteration has been considered in the literature, although under different
names. Indeed, as mentioned in Nanda et al. [20], the monotonicity of the twice iterated
failure rate corresponds to the monotonicity in reversed direction of the mean residual life,
studied by Bryson and Siddiqui [6], or, considering three iteration steps to the monotonic-
ity, again in reversed direction, of the variance of the residual life, studied by Launer [18].
Hence, failure rate monotonicity after further iteration steps may be interpreted as the
monotonicity of higher order moments of the residual life. Although starting from a dif-
ferent initial definition, the iterated distributions have also been used to compare different
portfolios, as follows from the closed form representation we derive below. Indeed, the iter-
ated distributions are, up to a constant factor, used to define Zolotarev ideal metrics (see,
e.g., Rachev and Rüschendorf [25] or the book by Rachev, Stoyanov, and Fabozzi [27]).
Ideal metrics appear as a natural way to measure the distance between different portfolios
and depend on higher order truncated moments of the distributions. On other directions,
Hanin, and Rachev [14] applied ideal metrics to mass transshipment problems, Rachev and
Rüschendorf [26] used the ideal metrics for the estimation of the Berry–Esséen bounds
in compound Poisson models, or, more recently, Boutsikas and Vaggelatou [5] used this
approach to characterize normal approximations under suitable dependence notions.

As what concerns ordering notions based in the tail-weight iterated distributions, a
first classification study is found in Fagiuoli and Pellerey [12]. Again, the main concern is
in establishing different relations between the several ordering notions, essentially with no
explicit examples. The same problem, considering some new ordering notions was recently
studied by Nanda et al. [20]. Once more, the main interest is in studying relations between
the different orderings defined, with no examples. It is interesting to note that, although
there is a vast literature on ordering (and aging) notions, the actual verification of these
relations is surprisingly difficult, even for the important and popular Gamma distributions
(see, e.g., Khaledi, Farsinezhadb, and Kochar [16] or Kochar and Xu [17] for recent results
on ordering relations within the Gamma family of distributions). Iterated order relations
have been used by Sengupta and Deshpande [30] to obtain estimates for the difference
between moments of random variables. Some results in this direction may also be found
in [26].

We will look at aging and convex ordering notions having in mind the purpose of
introducing an actual computationally usable methodology to decide about the iterated fail-
ure rate monotonicity and ordering relations. The paper is organized as follows: Section 2
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introduces the iterated distributions, gives a closed representation and defines the aging
notions, Section 3 establishes the failure rate aging for the Weibull and Gamma distri-
butions, Section 4 defines the convex order relation the paper is studying and proves
characterizations in terms that are computationally exploitable. Finally, in Section 5 we
use the previous results to give an almost complete classification of the order relations
within the Gamma and Weibull families of distributions.

2. DEFINITIONS AND BASIC REPRESENTATIONS

Let X be a non-negative random variable with density function fX , distribution function
FX , and tail function, or, as many authors call it, survival function, FX = 1 − FX . We will
be interested in aging properties depending on iterated tail-weights for the distributions, as
introduced by Averous and Meste [1] and initially studied by Fagiuoli and Pellerey [12].

Definition 1: For each x ≥ 0, define

TX,0(x) = fX(x) and μ̃X,0 =
∫ ∞

0

TX,0(t) dt = 1. (1)

For each s ≥ 1, define the s-iterated distribution TX,s by their tails TX,s = 1 − TX,s as
follows:

TX,s(x) =
1

μ̃X,s−1

∫ ∞

x

TX,s−1(t) dt, where μ̃X,s−1 =
∫ ∞

0

TX,s−1(t) dt, (2)

assuming this integral is finite. Moreover, we extend the domain of definition of each TX,s

defining TX,s(x) = 1, for x < 0.

We will be using these iterated distributions to establish aging properties of distributions
and aging relations between different distributions within the same family. Our main concern
is to introduce and use a method that actually allows the derivation of properties for specific
families of distributions. For this purpose, we will be exploring a closed representation for
the iterated distributions.

Lemma 2: The tails TX,s may be represented as

TX,s(x) =
1∏s−1

j=1 μ̃X,j

∫ ∞

x

(t − x)s−1

(s − 1)!
fX(t) dt. (3)

Proof: Successively replacing each TX,j , j = s − 1, . . . , 1, by its integral representation
and reversing the integration order, we have

TX,s(x) =
1

μ̃X,s−1

∫ ∞

x

1
μ̃X,s−2

∫ ∞

t

TX,s−2(u) du dt

=
1

μ̃X,s−1μ̃X,s−2

∫ ∞

x

∫ u

x

TX,s−2(u) dt du
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=
1

μ̃X,s−1μ̃X,s−2

∫ ∞

x

(u − x)TX,s−2(u) du

=
1

μ̃X,s−1μ̃X,s−2

∫ ∞

x

(u − x)
1

μ̃X,s−3

∫ ∞

u

TX,s−3(t) dt du

=
1

μ̃X,s−1μ̃X,s−2μ̃X,s−3

∫ ∞

x

(t − x)2

2
TX,s−3(t) dt

= · · · =
1

k∏
j=1

μ̃X,s−j

∫ ∞

x

(t − x)k−1

(k − 1)!
TX,s−k(t) dt.

So, finally, taking k = s, we obtain

TX,s(x) =
1

s∏
j=1

μ̃X,s−j

∫ ∞

x

(t − x)s−1

(s − 1)!
fX(t) dt.

To conclude the proof, reverse the indexing order on the product of the μ̃X,j . �

Remark 3: From (3), if we choose x = 0 and take into account that TX,s(0) = 1, it follows
that

EXs−1 = (s − 1)!
s−1∏
j=0

μ̃X,j .

Replacing this expression in (3), another representation of TX,s follows:

TX,s(x) =
1

EXs−1

∫ ∞

x

fX(t)(t − x)s−1 dt. (4)

Moreover, it also follows an explicit expression for moments of the iterated distributions:

μ̃X,s−1 =
1

s − 1
EXs−1

EXs−2
.

Remark 4: The representation (4) means that TX,s = (1/EXs−1)E(X − x)s−1
+ . Given ran-

dom variables X and Y , representing portfolios, the stop-loss distance or Zolotarev ideal
metric of order s between the portfolios (see, e.g., Rachev and Rüschendorf [25] or Rachev,
Stoyanov, and Fabozzi [27]) may be written as EXs−1TX,s − EY s−1TY,s.

We now discuss some definitions of aging. One of the most simple and common aging
notions is based on the failure rate function of a distribution

fX(x)
1 − FX(x)

=
TX,0(x)
TX,1(x)

.

Even before getting into comparisons between probability distributions, studied later in this
paper, the monotonicity of the failure rate function is a relevant property, satisfied by many
common distributions. The direct verification of this monotonicity may not be a simple
task, as for many distributions the tail does not have an explicit closed representation or,
at least, not a manageable one. As we have defined iterated distributions, it becomes now
natural to proceed likewise with respect to the failure rate functions.
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Definition 5: For each s ≥ 1 and x ≥ 0, define the s-iterated failure rate function as

rX,s(x) =
TX,s−1(x)∫ ∞

x
TX,s−1(t) dt

=
TX,s−1(x)

μ̃X,s−1TX,s(x)
.

It is obvious that for s = 1, we find the failure rate of X:

rX,1(x) =
TX,0(x)

μ̃0TX,1(x)
=

fX(x)
1 − FX(x)

=
fX(x)
FX(x)

.

Thus, the monotonicity of the failure rate is expressed as the monotonicity of rX,1. We
may extend this monotonicity notion by considering the s-iterared distribution, as done in
Averous and Meste [1] and Fagiuoli and Pellerey [12], among many other authors.

Definition 6: For s = 1, 2, . . ., the non-negative random variable X is said to be

1. s-IFR (resp., s-DFR) if rX,s is increasing (resp., decreasing) for x ≥ 0.
2. s-IFRA if 1

x

∫ x

0
rX,s(t) dt is increasing for x > 0.

3. s-NBU if TX,s(x + t) ≤ TX,s(x)TX,s(t), for all x, t ≥ 0.
4. s-NBUFR if rX,s(0) ≤ rX,s(x), for all x ≥ 0.
5. s-NBAFR if rX,s(0) ≤ 1

x

∫ x

0
rX,s(t) dt, for all x > 0.

Throughout this paper, we will be interested mainly in the s-IFR notion. But as proved
by Fagiuoli and Pellerey [12], this is the strongest notion. The following lemma states the
relevant part, for the purposes of the present paper, of the relations between the above
notions proved by Fagiuoli and Pellerey [12] (see their Figure 2 for an easily readable
account of the relations proved).

Lemma 7: Let X be a non-negative random variable with finite s − 1 moment. Then, for
each integer s ≥ 1, the following implications hold: X is s-IFR ⇒ X is s-IFRA ⇒ X is
s-NBU ⇒ X is s-NBUFR ⇒ X is s-NBAFR.

3. ITERATED FAILURE RATE MONOTONICITY

The iterated failure rate property of a distribution turns out not to add much to the aging
notion. Indeed, it follows from the results in Fagiuoli and Pellerey [12], that, if the appro-
priate moments exist, then higher order monotonicity of the failure rate are inherited from
the corresponding lower order properties, as described next.

Lemma 8: Let X be a non-negative random variable with finite moment of order s ≥ 1. The
following implications are true:

(a) If X is s-IFR, then X is (s + 1)-IFR.
(b) If X is s-DFR, then X is (s + 1)-DFR.

Proof: This is an immediate consequence of Theorems 3.4 and 4.3 in Fagiuoli and
Pellerey [12]. �

This result is included in Theorem 2 in Navarro and Hernandez [22]. It implies that,
for most distributions it is enough to verify the 1-IFR or the 1-DFR property. However, we
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may find examples of distributions for which lower order monotonicity does not hold, but
this property is true after a few iterations.

Example 9: Consider a random variable X with density fX(x) = c′((log(x + c))/(x + c)3),
for x > 0, where c′ is a suitable normalizing constant. This is a fattened tail Pareto type
distribution. Simple integration shows that,

TX,1(x) = c′
2 log(x + c) + 1

4(x + c)2
and TX,2(x) =

c

2 log c + 3
2 log(x + c) + 3

x + c
,

hence

rX,1 =
4 log(x + c)

(x + c)(2 log(x + c) + 1)
and rX,2 =

2 log(x + c) + 1
(x + c)(2 log(x + c) + 3)

.

It is now easily verified that if c ∈ (exp(−1 +
√

20/4), e1/2) ≈ (1.12528, 1.64872), the
1-iterated failure rate rX,1 is not monotone, while the 2-iterated failure rate rX,2 is
decreasing.

The density considered above has finite expectation, but the second-order moment does
not exist. Therefore, the 3-iterated distribution is no longer definable. To obtain examples
of distributions with higher order finite moments for which we have the same behavior for
the monotonicity as above for rX,1 and rX,2, consider densities of the form c′ log(x+c)

(x+c)α , for
some large enough α > 0. It is possible to check the existence of an interval for the choice
of the parameter c where the 1-iterated failure rate is not monotonous and the 2-iterated
failure rate is decreasing, although the explicit characterizations for this interval becomes
somewhat cumbersome. Naturally, the same approach is possible with higher moments to
obtain a failure rates is decreasing, and so on to construct distributions that only show
failure rate monotonicity properties after some iteration steps.

We will now use the property stated in Lemma 8 to describe the failure rate mono-
tonicity of the Weibull and the Gamma families of distributions. We prove here the
complete result for the iterated failure rate monotonicity of the Weibull and of the Gamma
distributions.

Theorem 10: Let X be a non-negative random variable with Weibull distribution with shape
parameter α and scale parameter θ, and s ≥ 1 an integer. If α ≥ 1 (resp., α < 1), then X
is s-IFR (resp., s-DFR).

Proof: Taking into account Lemma 8, it is enough to consider the case s = 1. Using the
expression for the distribution function of X, it follows that the quotient

rX,1(x) =
fX(x)
FX(x)

=
α

θ

(x

θ

)α−1

,

which is increasing if α ≥ 1 and decreasing otherwise. �

We now handle the Gamma distributions. For this family of distributions, we cannot
compute explicitly the failure rate function, as in general, the distribution function does not
have a closed form representation. So, we need a work around to prove the monotonicity.
Let us start by stating without proof, a simple but useful characterization of monotonicity.
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Lemma 11: A function g : R −→ R is increasing (resp., decreasing) if and only if for every
a ∈ R, g(x) − a changes sign at most once when x traverses from −∞ to +∞, and if the
change occurs, it is in the order “−,+” (resp., “+,−”).

Theorem 12: Let X be a non-negative random variable with distribution Γ(α, θ), and s ≥ 1
an integer. If α ≥ 1, then X is s-IFR. If α < 1, then X is s-DFR.

Proof: Again, from Lemma 8, it is enough to prove that X is either 1-IFR or 1-DFR, that
is, to prove the increasingness or decreasingness of the quotient rX,1(x) = fX(x)/FX(x).
Since, in general, there is no explicit closed form for FX(x), we will prove the monotonicity
using Lemma 11. As fX and FX are non-negative, it is enough to take, while applying
Lemma 11, the constant a > 0. So, for every given a > 0, we shall study the sign variation
of fX(x)/FX(x) − a. Remark that the sign of this difference coincides, for every x ≥ 0, with
the sign of H(x) = fX(x) − aFX(x), so it is enough to study the sign variation of H. It is
obvious that H(0) = −a < 0 and, if α ≥ 1 we have limx→+∞ H(x) = 0. Now, differentiating,
we find that

H ′(x) = f ′
X(x) + afX(x) =

xα−2e−x/θ

θα+1Γ(α)
((aθ − 1)x − θ(1 − α)),

so the sign of H ′ is determined by the sign of the straight line �(x) = (aθ − 1)x − θ(1 − α).
Obviously �(0) = −θ(1 − α). Keeping in mind that we are assuming that α ≥ 1, it follows
that �(0) > 0, thus the sign variation of �(x) in [0,+∞) is “+”, if (aθ − 1) > 0, or “+,−”,
if (aθ − 1) < 0. In the first case, where �(x) > 0, for all x > 0, the function H is always
increasing so, given its value at 0 and at infinity, the sign of H is “−”. In the case where the
sign variation of � is “+,−”, again taking into account the behavior of H at the origin and
at infinity, implies that its sign variation is “−,+”. The case α < 1 is analyzed analogously
by taking into account that limx→0 H(x) = +∞. �

The s-IFR-ness of the Gaussian distributions is proved in an analogous way. We state
the result without proof.

Theorem 13: Gaussian distributions are s-IFR.

4. ITERATED FAILURE RATE ORDERING

We now compare different distributions with respect to their iterated failure rate mono-
tonicity rates. In the sequel, let F denote the family of distributions functions such that
F (0) = 0 and the corresponding probability distribution has support contained in [0,+∞).
In this section, we will define an iterated failure rate order and prove a general criterium.
We start by defining the ordering, following Nanda et al. [20].

Definition 14: Let X and Y be random variables with distribution functions FX , FY ∈ F
and s ≥ 1 an integer. The random variable X (or its distribution FX) is said to be less s-IFR
than Y (or its distribution FY ), and we write X ≤s−IFR Y , or equivalently, FX ≤s−IFR FY ,
if cs(x) = T

−1

Y,s(TX,s(x)) is convex.
Moreover, two non-negative random variables X and Y , or two distribution functions

FX , FY ∈ F , are said to be s-IFR equivalent, denoted by X ∼s−IFR Y or FX ∼s−IFR FY ,
if there exists a constant k > 0 such that FX(x) = FY (kx), for all x ≥ 0.
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The s-IFR relation between random variables, or their distributions to be more precise,
is a variant of relative convexity between real functions f1 and f2, as defined by Hardy,
Littlewood, and Pólya [15], Pečarić, Proschan and Tong [24] or Roberts and Varberg [29].
However, these authors define the relative convexity of f1 with respect to f2 requiring
the convexity of f1(f−1

2 (x)), that is, using the inverse functions in reversed order when
compared with Definition 14. For some more recent results on the characterization of relative
convexity, we may refer the reader to Palmer [23] or Rajba [28]. These authors give some
equivalent characterizations of relative convexity, but they all depend on the functions
that are compared. So, if we do not have closed and manageable representations for these
functions, as is the case for the distributions, we will be analyzing below, the effective
calculation difficulty remains.

It is possible to define several other ordering relations corresponding to the different
aging notions referred in Definition 6, as was done by Nanda et al. [20]. We will be only
interested in the s-IFR ordering, so we do not quote here those other ordering notions.
Results and characterizations similar to the ones we derive below may also be proved for
these alternative stochastic order relations. Moreover, as happens for the aging notions, the
s-IFR ordering is the strongest of those order relations, as proved in Nanda et al. [20]. We
have been referring to the s-IFR as an ordering but, of course, one has to verify that this
is really the case. This has been proved in Nanda et al. [20].

Lemma 15 Theorem 2.1 in Nanda et al. [20]: The relationship FX ≤s−IFR FY defines an
order relation on the equivalence classes with respect to ∼s−IFR, of F .

Example 16: This order relation is indeed only partial, as shown by the following exam-
ple. Consider X with inverse Gamma distribution with shape parameter α = 1 and scale
parameter β > 0, Y with exponential distribution with scale parameter λ, and consider
s = 1. Then, we have:

fX(x) =
β

x2
e−β/x, TX,1(x) = FX(x) = 1 − e−β/x, and TY,s(x) = e−x/λ,

so,
c1(x) = −λ log FX(x) = −λ log(1 − e−β/x),

is neither convex nor concave, thus X and Y are not comparable with respect to 1-IFR.

From Definition 14 and Lemma 15, it follows immediately that the multiplying random
variables by positive constants will not affect the s-IFR ordering relation.

Corollary 17: Let X and Y be non-negative random variables with distributions FX , FY ∈
F , s ≥ 1 an integer, and α1, α2 > 0. X ≤s−IFR Y if and only if α1X ≤s−IFR α2Y .

The previous result will be useful to compare parametric distributions where there exists
a scale parameter, as it follows that we may assume this parameter to be equal to 1.

The exponential distribution plays an important role when dealing with aging notions.
As already proved by Nanda et al. [20], the s-IFR comparability with the exponential is
equivalent to the failure rate monotonicity.

Theorem 18 (Theorem 2.2 in Nanda et al. [20]): Let X be a random variable with distri-
bution function FX ∈ F and Y with exponential distribution with scale parameter λ. Then
X ≤s−IFR Y (resp., Y ≤s−IFR X) if and only if X is s-IFR (resp., X is s-DFR).
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Proof: We have TY,s = e−x/λ, thus FX ≤s−IFR FY is equivalent to log(TX,s(x)) being
concave, which is equivalent to requiring that rX,s(x) is increasing, that is, X is s-IFR. �

Remark 19: As what regards the comparison of two distribution with respect to the s-IFR
order an inheritance relation suggested by the Lemma 8 could be expected. We will not prove
any such inheritance relationship. Moreover, the previous result allows to exhibit examples of
distributions for which no 1-IFR order exists, but a 2-IFR order does exist. Indeed, consider,
as in Example 9, the random variable X with density fX(x) = c′((log(x + c))/(x + c)3), for
x > 0. Taking into account Theorem 18, for c ∈ (1.12528, 1.64872), it follows that X is not
comparable with any exponential distribution with respect to the 1-IFR ordering. On the
other hand, the decreasingness of rX,2, proved in Example 9, also shows that the exponential
distribution is less 2-IFR than X. More generally, this ordering remains true in the s-IFR
sense, for s ≥ 2.

Note that the characterization described in Theorem 18 provides an alternative way
to our statements about the s-IFR-ness of the Weibull and Gamma distributions (Theo-
rems 10 and 12 above). Of course, to use Theorem 18, we still need an effective way to
compare distributions with respect to s-IFR order relation, and this may not be a simple
task. Indeed, the direct verification of the convexity of cs, stated in Definition 14, is in
general difficult to perform, as we cannot find explicit closed representations of the distri-
butions functions involved in the definition of cs, thus we cannot invert TY,s. One could try
to use the characterization of the derivative of the inverse function for this purpose. This is
exactly what was done in Proposition 2.2 in Nanda et al. [20] to obtain alternative charac-
terizations for the s-IFR ordering. But those alternatives are not really effective for actual
computation purposes, as they all depend on monotonicity relations of transformations of
the iterated distribution functions and their inverses. Thus, in all cases where no explicit
closed representations is available, as for the Gamma family, we still have no effective way
to conclude about the order relation. As already commented above, the characterizations
proved by Palmer [23] or Rajba [28] do not help on this matter.

We shall start by proving an alternative characterization for the convexity of a con-
tinuous real function in terms of crossings of their graphical representations with straight
lines.

Theorem 20: Let f be a continuous function. The function f is convex if and only if for
every real numbers a and b, f(x) − (ax + b) changes sign at most twice when x traverses
from −∞ to +∞, and if the change of sign occurs twice, it is in the order “+,−,+”.

Proof: Assume that f(x) − (ax + b) changes sign more than twice or in the order
“−,+,−”. In both cases there exists an interval where the sign change sequence is in the
order “−,+,−”. But this means that the function f is not convex as, after getting above a
straight line it crosses again under the same straight line.

Assume now that f is not convex, then there exists an interval I = [x0, x1] such that

f(x) >
f(x1) − f(x0)

x1 − x0
(x − x0) + f(x0),

for all x ∈ (x0, x1), that is, the graph of f is, for x ∈ I, above the line Δ defined by (x0, f(x0))
and (x1, f(x1)). Let Δε be the line obtained by shifting upwards Δ by ε, described by the
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equation

y =
f(x1) − f(x0)

x1 − x0
(x − x0) + f(x0) + ε.

It is obvious that, at least for ε small enough, the sign variation of

f(x) −
(

f(x1) − f(x0)
x1 − x0

(x − x0) + f(x0) + ε

)
,

for x ∈ I, is at least in the order “−,+,−”. �

To complement the previous result, the following characterization of the crossing of two
graphical representations will be useful.

Lemma 21 Marshal and Olkin [19], pp. 699–700: Let f and g two real-valued functions, and
ζ be a strictly increasing (resp., decreasing) and continuous function defined on the range
of f and g. For any real number c > 0, the functions f(x) − cg(x) and ζ(f(x)) − ζ(cg(x))
have the same (resp., reverse) sign variation order as x traverses from −∞ to +∞.

The previous results provide an immediate and simple alternative characterization of
s-IFR order relation.

Theorem 22: Let X and Y be random variables with distribution functions FX , FY ∈ F .
X <s−IFR Y if and only if for any real numbers a and b, TY,s(x) − TX,s(ax + b) changes
sign at most twice, and if the change of signs occurs twice, it is in the order “+,−,+”, as
x traverses from 0 to +∞.

Remark 23: We have reduced the variation of x to traversing from 0 to +∞ because all the
functions TX,s and TY,s are equal to 1 for x < 0.

Definition 24: Given random variables X and Y , we denote Vs(x) = TY,s(x) − TX,s

(ax + b).

It is obvious from the definition of the iterated tails that Vs is differentiable.

Remark 25: Taking into account that, being the tails of distributions, TX,s and TY,s are
decreasing it is enough to consider, when applying Theorem 22, the constant a > 0. Indeed,
we have Vs(0) = 1 − TX,s(b), and if a < 0,

V ′
s (x) = − 1

μ̃Y,s−1
TY,s−1(x) +

a

μ̃X,s−1
TX,s−1(ax + b) ≤ 0.

Now, it is obvious that for a < 0, we have limx→+∞ Vs(x) = −1. Thus, the sign variation of
V will be “+,−”, if b > 0, and “−” if b ≤ 0. That is, in both cases we meet the convexity
condition described in Theorem 20.

Finally, we prove a simple result describing the sign variation after performing
integration. This will be convenient for the later discussion.
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Lemma 26: Let f and g be two real-valued functions defined on [0,∞) such that,

g(x) =
∫ ∞

x

f(t) dt.

Assume that, as x traverses from 0 to +∞, f(x) changes sign in one of the following orders
“−,+” or “+,−” or “+,−,+” or “−,+,−,+”. Then g(x), as x traverses from 0 to ∞,
has sign variation equal to every possible final part of the sign variation of f(x).

Proof: The proof follows from a simple argument using that g′(x) = −f(x), and separating
into the four possible sign variations considered. �

We may now prove a general criterium to compare with respect to the s-IFR order two
distribution functions.

Theorem 27: Let X and Y be random variables with absolutely continuous distributions
with densities fX and fY , and distribution functions FX , FY ∈ F , respectively. If, for some
positive integer k ≤ s, and every a > 0 and b ∈ R, the function

Hk(x) =
1∏k

j=1 μ̃Y,s−j

TY,s−k(x) − ak∏k
j=1 μ̃X,s−j

TX,s−k(ax + b) (5)

changes sign at most twice, and if the change of signs occurs twice, it is in the order
“+,−,+”, as x traverses from 0 to +∞, then FX ≤s−IFR FY .

Proof: Remember the integral representation for Vs(x) = TY,s(x) − TX,s(ax + b) obtained
in the intermediate steps of the proof of Lemma 2:

Vs(x) =
1∏k

j=1 μ̃Y,s−j

∫ ∞

x

(t − x)k−1

(k − 1)!
TY,s−k(t) dt

− 1∏k
j=1 μ̃X,s−j

∫ ∞

ax+b

(t − (ax + b))k−1

(k − 1)!
TX,s−k(t) dt

=
∫ ∞

x

(t − x)k−1

(k − 1)!
Hk(t) dt,

after an appropriate change of variable in the second integral. Now, using Theorem 22 and
Lemma 26 the proof is concluded. �

Remark 28: As mentioned before, in general, the explicit forms of TX,s and TY,s are difficult
to obtain. So, in most of the cases we will be interested in applying Theorem 27 choosing
k = s, thus using the density functions to define Hs, or k = s − 1, using the distribution
functions to define Hs−1, if these are available.

Following the previous remark, we have a closer look at Hs and Hs−1, and the control
of their sign variation. Taking into account the representation (4) for the iterated tails, we
have

Hs(x) =
1

EY s−1
fY (x) − as

EXs−1
fX(ax + b)

and

Hs−1(x) =
1

EY s−1
FY (x) − as−1

EXs−1
FX(ax + b).

In most cases, the direct analysis of the sign variation of Hs is, to say the least, difficult, even
for relatively simple density functions as, for example, the Gamma densities. An alternative
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approach to the control of this sign variation is to apply Lemma 21, choosing an appropriate
ζ transformation. For the family of distributions, we will be considering in the sequel, we
shall take ζ(x) = log x.

Corollary 29: Let X and Y be random variables with absolutely continuous distributions
with densities fX and fY and distribution functions FX , FY ∈ F , respectively. If, for every
constants a > 0 and b ∈ R, either of the functions,

Ps(x) = log fY (x) − log fX(ax + b) + log
EXs−1

asEY s−1
,

or,

Ps−1(x) = log FY (x) − log FX(ax + b) + log
EXs−1

as−1EY s−1
,

changes sign at most twice when x traverses from 0 to +∞, and if the change of sign occurs
twice it is in the order “+,−,+”, then FX ≤s−IFR FY .

5. SOME APPLICATIONS

In this section, we will be applying the general characterizations derived before to establish
the s-IFR ordering among some families of distributions, and analyze an example high-
lighting the influence of the various parameters appearing in the expression of Ps and
Ps−1.

5.1. Comparing two Gamma distributions

As argued after Corollary 17, it is enough to compare Gamma distributions both with the
same scale parameter θ = 1. We will be using Corollary 29 with respect to Ps, assuming X
has Γ(α′, 1) distribution and Y has Γ(α, 1) distribution. Thus, we need to analyze the sign
variation in [0,+∞) of

Ps(x) = (α − 1) log x − (α′ − 1) log(ax + b) − x + ax + b + log
Γ(α′)
Γ(α)

+ log
EXs−1

asEY s−1
, (6)

where a > 0 and b ∈ R. Note that limx→+∞ Ps(x) = ∞× sgn(a − 1). Differentiating the
expression above, we have

P ′
s(x) =

α − 1
x

− a(α′ − 1)
ax + b

+ a − 1 =
a(a − 1)x2 + ((α − α′)a + (a − 1)b)x + (α − 1)b

x(ax + b)
.

(7)
Let us denote the numerator in (7) by Ns(x) = a(a − 1)x2 + ((α − α′−)a + (a − 1)b)x +
(α − 1)b. To analyze the sign variation of Vs, we need to separate between the cases when
b ≥ 0 and b < 0. Indeed, while for the first case, we need to consider x traversing from 0 to
+∞, for the later case, we will be only analyzing the sign variation in the interval (− b

a ,+∞)
as, for x ≤ − b

a , Vs(x) = TY,s(x) − 1 ≤ 0. Hence, for both cases, in the interval of interest,
the sign of P ′

s is determined by the sign of Ns.

Proposition 30: Let α′ > α > 1 and θ1, θ2 > 0. The Γ(α′, θ1) distribution is less s-IFR
than the Γ(α, θ2) distribution.

https://doi.org/10.1017/S0269964817000481 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964817000481


76 I. Arab and P.E. Oliveira

Proof: Taking into account Corollary 17, we may assume θ1 = θ2 = 1. Moreover, remem-
ber that, according to Remark 25, it is enough to take a > 0. Note further that
limx→0+ Ps(x) = −∞.

Assume first that b ≥ 0. The convexity of Ns is determined by the sign of a − 1, and
Ns(0) = (α − 1)b ≥ 0, so the behavior of P ′

s may be as follows:

Case 1 : a > 1. We have limx→+∞ Ps(x) = +∞, thus the most sign varying situation corre-
sponds to “−,+,−,+” implying, based on Lemma 26, that the sign variation of Vs

might be “−,+,−,+” or “+,−,+” or “−,+” or “+”. Now, as Vs(0) = 1 − TX,s(b) ≥ 0,
the only possible cases are “+,−,+” or “+”.

Case 2 : a ≤ 1. In this case we have limx→+∞ Ps(x) = −∞. The behavior of P ′
s when a = 1 is

still described by the picture on the right, with P ′
s approaching 0 as x −→ +∞, instead

of being strictly negative. Taking into account this behavior of P ′
s the monotonicity of

Ps is, ↗↘, meaning that the most sign varying case for Ps is “−,+,−”. Again, based
on Lemma 26 and Vs(0) ≥ 0, the only possible sign variation is “+,−”.

Assume now that b < 0. Then, we have, for x ≤ − b
a , Vs(x) = TY,s(x) − 1 ≤ 0, so it remains

to describe the sign variation for x > − b
a , thus needing to locate − b

a with respect to the
roots of Ns. As Ns(0) = (α − 1)b < 0, two situations may occur:

Case 3 : a > 1. The sign variation of Ns(x) in the interval (− b
a ,+∞) is either “+” or “−,+”.

As limx→(−b/a)+ Ps(x) = +∞ and limx→+∞ Ps(x) = +∞, it follows that the sign vari-
ation of Ns(x) is “−,+”. Thus, the most sign varying possibility for Ps in the interval
(− b

a ,+∞) is “+,−,+”. From Lemma 26, it follows that the sign variation for Vs in
(− b

a ,+∞) is one of the three possibilities: “+,−,+” or “−,+” or “+”. As Vs(− b
a ) ≤ 0,

it follows that the sign variation of Vs in (0,+∞) is “−,+”.
Case 4 : a ≤ 1. The sign variation of Ns(x) in the interval (− b

a ,+∞) is either “−”, or
“−,+,−”. Assume first that the sign variation of Ns(x) is “−,+,−”, which means
that Ns has two positive roots and its maximum is reached for

x = − b

2a
+

α − α′

2(1 − a)
< − b

a
,

therefore, the sign variation of Ns in the interval (− b
a ,+∞) is “+,−” or “−”. As

limx→(−b/a)+ Ps(x) = +∞, there is only one possible sign variation of Ns, which is
“−”. Hence, the sign variation of Ps is, at most, “+,−”. Now, using the fact that
Vs(− b

a ) ≤ 0, it follows the sign variation of Vs in [0,+∞) is “−”. It remains to analyze
the case where Ns is always negative, but the description of the sign variation of Vs

follows in the same way.
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So, finally, the possibilities for the sign variation of Vs are: either at most one sign change
or, in case of two sign changes, these are “+,−,+”. Hence, the conclusion follows taking
into account Theorem 22. �

Proposition 31: Let α′ > 1 > α > 0 and θ1, θ2 > 0. The Γ(α′, θ1) distribution is less
s-IFR than the Γ(α, θ2) distribution.

Proof: The result follows immediately using Theorem 18 and the transitivity of the
s-IFR-order, by comparing both of them with the exponential distribution. �

5.2. Comparing two Weibull distributions

In the sequel, we shall denote by W (α, θ) the Weibull distribution with shape parameter α
and scale parameter θ. As for the Gamma family of distributions, it is enough to compare
Weibull distributions both with scale parameter θ = 1. Moreover, we will apply Corollary 29
now with respect to Ps−1, as the tail of a Weibull distribution has a simple closed form
representation, assuming that X has distribution W (α′, 1) and Y has distribution W (α, 1).
So, we are interested in analyzing the sign variation of

Ps−1(x) = −xα + (ax + b)α′
+ log

EXs−1

as−1EY s−1
, (8)

where a > 0 and b ∈ R. Differentiating this expression, we have

P ′
s−1 = aα′(ax + b)α′−1 − αxα−1. (9)

The direct control of the sign variation of P ′
s−1 is too difficult, so we will use again Lemma 21

with the choice ζ(x) = log x. This means that the sign variation of P ′
s−1 is the same as the

sign variation of

Qs−1(x) = log(aα′(ax + b)α′−1) − log(αxα−1)

= log(aα′) − log α + (α′ − 1) log(ax + b) − (α − 1) log x,
(10)

whose derivative is

Q′
s−1(x) =

a(α′ − 1)
ax + b

− α − 1
x

=
a(α′ − α)x + (1 − α)b

x(ax + b)
. (11)

Proposition 32: Let α′ > α > 1 and θ1, θ2 > 0. The W (α′, θ1) distribution is less s-IFR
than the W (α, θ2) distribution.

Proof: As before, without loss of generality, we may take θ1 = θ2 = 1 and use the repre-
sentations (8)–(11). As usual, we need to separate the cases b > 0 and b ≤ 0, and remember
that we need only to assume that a > 0.

Assume first that b > 0. It follows from (11) that the sign variation in the interval
(0,+∞) for Q′

s−1 is “−,+”, hence the monotonicity of Qs−1, in this same interval, is ↘↗.
From (10), it follows that limx→0+ Qs−1(x) = +∞ and limx→+∞ Qs−1(x) = +∞, so the
most sign varying possibility for Qs−1, which coincides with the sign variation of P ′

s−1, is
“+,−,+”. It follows that the monotonicity of Ps−1 is ↗↘↗. Note that α′ > α implies
limx→+∞ Ps−1(x) = +∞. Hence, the most sign varying possibility in the interval (0,+∞)
for Ps−1 is “−,+,−,+”. Taking now into account Lemma 26, the sign variation of Vs in
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the interval (0,+∞) may be “−,+,−,+” or “+,−,+” or “−,+” or “+”, and remembering
that Vs(0) ≥ 0, the actual possible choices are “+,−,+” or “+”.

Assume now that b ≤ 0. As explained before, we need only to describe the sign variation
in (− b

a ,+∞). Now from (11) it follows that, for x > 0, we have Q′
s−1(x) > 0, so Qs−1 is

always increasing in (0,+∞). As α′ > α > 1, it follows that limx→(−b/a)+ Qs−1(x) = −∞
and limx→+∞ Qs−1(x) = +∞, hence the sign variation of Qs−1 in (− b

a ,+∞), which is equal
to the sign variation of P ′

s−1, is “−,+”, thus the monotonicity of Ps−1 is ↘↗. We have
limx→+∞ Ps−1(x) = +∞, so, if Ps−1(− b

a ) > 0, the most sign varying possibility is “+,−,+”,
while if Ps−1(− b

a ) < 0, the most sign varying possibility is “−,+”. In either case, taking
into account Lemma 26, the sign variation possibilities in (− b

a ,+∞) for Vs are “+,−,+”
or “−,+” or “+”. As now, Vs(− b

a ) ≤ 0, the actual sign variation for Vs is “−,+”.
So, finally, the possible sign variations for Vs as x traverses from 0 to +∞ are “+,−,+”

or “−,+” or “+”, so applying Theorem 22, the proof is concluded. �

Proposition 33: Let α′ > 1 > α > 0 and θ1, θ2 > 0. The W (α′, θ1) distribution is less
s-IFR than the W (α, θ2) distribution.

Proof: The argument is the same as that of the proof of Proposition 31. �

5.3. About the role of iteration parameter

The criteria defined in Corollary 29 states a dependence on the iteration parameter s through
the last term in both expressions. The applications discussed in the previous subsections
have, actually, not used this dependence on s to characterize the order relation. This is due
to the particular shape of the Ps or Ps−1 functions constructed, showing relatively few sign
variations and becoming infinite when x → +∞. We discuss now an example illustrating
that this term may play a relevant role.

Example 34: Let X have Pareto distribution with tail FX(x) = 1
(x+1)α , and Y be the mixing

of two Pareto distributions with tail

FY (x) =
p

(x + 1)α
+

q

(x + 1)α+1
,

where p, q > 0 verify p + q = 1, and α > s − 1, so the moments appearing in the definition
of the s-iterated distributions (remember (4)) are finite. In order to use the criterium
introduced in Corollary 29, denote

U(x) =
FY (x)

FX(ax + b)
,

so we may rewrite

Ps−1(x) = log U(x) − (s − 1) log a + log
EXs−1

EY s−1
. (12)

It is easily seen that

EXs−1

EY s−1
= (1 − q

s − 1
α

)−1 and lim
x→+∞U(x) = paα.

Moreover, computing U ′, a little algebra shows that its sign is the same as the sign of �(x) =
(p(a − (b + 1))α + a(p − 1))x + (a − (b + 1))α + (b + 1)(p − 1). To produce the convenient
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sign variations, we are interested in choosing the slope and the intercept of � with opposite
signs. We distinguish two different cases, depending on the sign of b.

Case 1 : b ≥ 0. For this choice of the parameter b, we have that U(0) = (b + 1)α ≥ 1, hence
log U(0) ≥ 0. Choose a > 1 such that paα = (b + 1)α. This means that a > b + 1 and
that

Ps−1(0) = lim
x→+∞Ps−1(x) = α log a + log p − (s − 1) log a − log

(
1 − q

s − 1
α

)
. (13)

It is obvious that Ps−1 is not constant and its monotonicity is the same as the mono-
tonicity of U(x), which is easier to determine. The only compatible choice is for the
sign of the intercept and slope of � is a positive intercept and a negative slope, although
with different characterizing regions depending on the sign of p(α + 1) − 1. Therefore,
the sign of U ′, as x traverses from 0 to ∞, is “+,−”, meaning that U(x) is initially
increasing and eventually decreasing. Hence, going back to Ps−1, this function will first
be increasing and then decreasing, reaching at infinity the same value it has for x = 0,
given the choice for a. Choose now a > 1 such that

(α − (s − 1)) log a < log
α − q(s − 1)

pα
.

For such choice of a, the sign variation of the function Ps−1 is “−,+,−”, which is
compatible with Y ≤s−IFR X.

Case 2 : b < 0. Now we have that, for x < − b
a , U(x) = FY (x) ≤ 1 and U is decreasing,

thus Ps−1 is also decreasing for this choice of x. Moreover, Ps−1(0) = −(s − 1) log a −
log

(
1 − q s−1

α

)
. For x ≥ − b

a , Ps−1 behaves as described in previous case. Therefore, for
x ≥ − b

a , Ps−1 is first increasing and then decreasing. Taking into account that b < 0, we
have that Ps−1(− b

a ) ≤ −(s − 1) log a + paα. So, choosing conveniently the parameter a,
we may obtain the sign variation, as x traverses from 0 to +∞, for Ps−1 as “+,−,+”,
which is compatible with X ≤s−IFR Y , reversing the order relation obtained in the
previous case.

That is, this example shows that the iteration parameter s may play an active role for the
conclusion about the iterated order relation.

Finally, remember Remark 19, for another example where the s-IFR comparison may
depend on the iteration parameter s.

Acknowledgments

The authors would like to thank the anonymous Referee and the Associate Editor whose careful reading
and suggestions helped improving on earlier versions of this paper.

This work was partially supported by the Centre for Mathematics of the University of Coimbra –
UID/MAT/00324/2013, funded by the Portuguese Government through FCT/MEC and co-funded by the
European Regional Development Fund through the Partnership Agreement PT2020.

References

1. Avarous, J. & Meste, M. (1989). Tailweight and life distributions. Statistics and Probabability Letters

8(4): 381–387.
2. Barlow, R.E. & F. Proschan, F. (1975). Statistical theory of reliability and life testing. New York: Holt,

Rinehart and Winston.

https://doi.org/10.1017/S0269964817000481 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964817000481


80 I. Arab and P.E. Oliveira

3. Belzunce, F., Candel, J., & Ruiz, J.M. (1995). Ordering of truncated distributions through concentration

curves. Sankhyā 57: 375–383.
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