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A liquid droplet hovering on a hot solid surface is commonly referred to as a Leidenfrost
droplet. In this study, we discover that a Leidenfrost droplet spontaneously performs a
series of distinct oscillations as it shrinks during the span of its life. The oscillation first
starts out erratically, followed by a stage with stable frequencies, and finally turns into
periodic bouncing with signatures of a parametric oscillation and occasional resonances.
The last bouncing stage exhibits nearly perfect collisions. We showed experimentally and
theoretically the enabling effects of each oscillation mode and how the droplet switches
between such modes. We finally show that these spontaneous oscillation modes and the
conditions for transitioning between modes are universal for all tested combinations of
liquids and surfaces.
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1. Introduction

The Leidenfrost effect, a two-century-old phenomenon (Leidenfrost 1966; Quéré 2013)
causing levitation of liquid droplets deposited on hot surfaces, has been playing a critical
role in an increasing number of modern technologies. As the effect completely removes
liquid–solid contact and subsequently liberates the liquid from frictional constraints of
the surroundings, it has great potential to transform liquid-transport applications ranging
from large-scale drag reduction (Vakarelski et al. 2016), rapid and autonomous transport
of liquid droplets (Linke et al. 2006; Li et al. 2016; Bouillant et al. 2018), to nanoscale
manufacturing processes (Cordeiro & Desai 2016). Our current understanding of the
Leidenfrost phenomenon is largely based on the steady-state assumption, an approach
used to justify exclusion of minute but accumulative effects such as drop-size reduction by
evaporation. The resulting analysis, while offering tremendous insights into the short-time
Leidenfrost dynamics, filters out phenomena only visible at longer time scales, e.g. the
lifetime of Leidenfrost droplets.

Here, we reveal that as a Leidenfrost droplet shrinks on superheated solid surfaces, it
involuntarily performs a series of oscillating motions, starting erratically at the beginning,
followed by regular oscillation and finally settling at periodic bouncing towards the end
of its lifetime. The bouncing behaviour has an unusually high restitution coefficient and
exhibits signatures of parametric oscillation with occasional resonances. Our findings
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Liquid Surface tension Boiling temperature Capillary length Surface temperature
σ (mN m−1) Tb (◦C) λ (mm) T (◦C)

DI water 58.9 100 2.5 260–440
Ethanol 17.4 78 1.6 150–400
Acetone 18.9 56 1.6 150–310
IPA 15.9 82 1.5 150–310
FC-72 9.8 56 0.79 150–310

TABLE 1. Properties of liquids and surface temperature ranges for liquids in this study.

demonstrate the active nature of Leidenfrost droplets at long time scales by showing that
they exhibit self-regulating ability by switching through different modes of oscillation
in response to reduction in drop size by evaporation. The underlying active mechanism
may serve as a basis for exploring strategies for energy harvesting or frictionless and
autonomous liquid transport.

2. Experimental set-up

The spontaneous oscillation of a Leidenfrost droplet is self-triggered and occurs as the
droplet loses its weight to evaporation. The transitions between characteristic behaviours
inevitably result from liquid evaporation and subsequent size reduction, from the initial
size, which is larger than the liquid’s capillary length (see table 1), to a few hundreds of
micrometres. In our experiment, we record the droplet’s oscillation from the side view
with a high-speed camera (SA-X2, Photron) at frame rates from 500 frames per second
to 4000 frames per second. We use a Nikon micro lens with the focal length 105 mm to
achieve a pixel size of 20 μm. To focus on the droplet’s vertical motion and keep the
droplet in the camera’s field of view, we trap Leidenfrost droplets horizontally by using a
slightly curved smooth surface. We note that such surface does not cause any difference
in droplet behaviours compared with those observed on a flat one (see supplementary
movie 1 available at https://doi.org/10.1017/jfm.2020.576).

We study the oscillation phenomenon on surfaces made of either copper or aluminium
and for several liquids, i.e. acetone, ethanol, isopropyl alcohol (IPA) and FC72, and
observe that the phenomenon is robust for all tested surfaces and liquids. The surface
temperature T is systematically varied in the range from 150 ◦C to 440 ◦C. The liquid
properties, including boiling point Tb, surface tension σ and capillary length λ at Tb, as
well as the specific temperature range for each liquid, are shown in table 1.

3. Results and discussion

3.1. Oscillation behaviours of a Leidenfrost droplet
During the lifetime of a Leidenfrost droplet, its behaviour transitions through several
stages, as illustrated in the schematic shown in figure 1(a). A droplet larger than the
liquid’s capillary length, after having been deposited on a sufficiently heated surface,
first hovers around on its own vapour layer. In this so-called hovering stage (figure 1b,
supplementary movie 2), the droplet has a relatively large flattened area at the bottom due
to gravity and this area does not vary significantly with time. As the droplet gets smaller
due to evaporation, capillary forces becomes dominating over gravitational forces, causing
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FIGURE 1. (a) Schematic illustrating the characteristic behaviours of a Leidenfrost droplet as it
evaporates and shrinks. The initial drop size typically is larger than the liquid’s capillary length.
After a droplet is gently deposited on a superheated surface by a pipette, the droplet goes through
the following stages: (b) hovering, (c) bobbing and (d) bouncing. Eventually, when the drop
becomes sufficiently small, it reaches the final stage in which it either lifts off or explodes
(Celestini, Frisch & Pomeau 2012; Lyu et al. 2019). Inset is the droplet’s vertical centre of
mass yc versus time t. For an oscillation cycle from one peak to the next one, we extract the
oscillation period tcycle, the oscillation amplitude A and the oscillation frequency f = 1/tcycle.
The snapshots from panel (b–d) were taken from an experiment using deionised (DI) water as
the working liquid. The surface was polished aluminium surface and heated to 380 ◦C.

its behaviour transition from hovering to bobbing, i.e. periodic vertical deformation
without leaving the surface (figure 1c, supplementary movie 3). When the droplet radius
reduces to a critical value, it starts bouncing on the surface, i.e. the droplet is no longer
separated from the surface by a thin vapour film but jumps up and down periodically
(figure 1d, supplementary movies 4 and 5). Once the droplet becomes sufficiently small
(R ∼ 100 μm), it either takes a final leap out of the camera’s view or explodes (Celestini
et al. 2012; Lyu et al. 2019).

The recorded phenomenological behaviours of Leidenfrost droplets are robust for all
tested liquids, including DI water, ethanol, IPA, acetone and FC-72, as well as for surface
materials such as copper and aluminium. We also verify these behaviours for a wide range
of surface temperatures, from 150 ◦C to 440 ◦C, confirming that the phenomenon is not
material or temperature specific.

To shed light into the observed transient dynamics of Leidenfrost droplets, we track the
vertical position yc of the centre of mass as a function of time. Subsequently, the frequency
f and amplitude A of the periodic motion of the centre of mass can be extracted (see inset
in figure 1d). We note that there are two distinct time scales: the smaller one (∼10 ms) is
associated with the oscillating motion, and the larger one (∼10 s) is associated with the
transitions between behaviours. In figures 2(a) and 2(b), we show representative plots of
f and the normalised amplitude A/R for a DI water droplet on an aluminium surface at
380 ◦C. Here R is the droplet radius calculated for a spherical droplet of the same volume
with the one recorded from the side view. The frequency plot presents a clear picture of the
transition from the hovering stage, where a large scattering in f is observed, to the bobbing
stage, where f gently increases with time. Throughout the experiment, the normalised
droplet radius R/λ decreases continuously with time, as illustrated in figure 2(c). Here,
the capillary length λ is defined as λ = (σ/ρg)1/2, where ρ and σ are the density and
surface tension at the liquid’s boiling point, respectively (Biance, Clanet & Quéré 2003;
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FIGURE 2. (a) Representative plot showing the oscillation frequency f (left-hand axis) and
the ratio γ = 2fn/f (right-hand axis) versus time t as the droplet transitions through several
characteristic stages: hovering, bobbing and bouncing. Here, fn is the natural frequency of
the oscillation droplet. Parametric resonance occurs in the bouncing stage at t1, t2, t3 and t4.
Inset is internal velocity field of a droplet in the bobbing stage. (b) Dimensionless oscillation
amplitude A/R versus time t. (c) Dimensionless radius R/λ = Bo1/2 (left-hand axis) and Froude
number Fr ≈ (6/π)1/2( f /fn)(R/λ)−1 in the bobbing stage (right-hand axis) versus t. The solid
line indicates that the transition from hovering to bobbing stage happens at R/λ ≈ 0.93, or
equivalently Bo ≈ 0.86. The dashed line indicates that the transition from bobbing to bouncing
occurs at Fr ≈ 1.0. The working liquid is water and surface temperature is 380 ◦C.

Bouillant et al. 2018). We note that by following how the oscillation frequency f changes,
we are able to determine the droplet radius Rh at the hovering–bobbing transition
(figure 2c). The bobbing–bouncing transition, however, is clearly determined from the
recording when the droplet starts jumping readily from the surface. The oscillation
frequency at the bobbing–bouncing transition is denoted by fb (figure 2a), and the
corresponding droplet radius is denoted by Rb (figure 2c).

3.2. Transitions between oscillation behaviours
We first focus on the transition from hovering to bobbing. The erratic oscillation of the
droplet in the hovering stage originates from capillary waves on its surface. Indeed, the
droplet radius measured in this stage is larger than the capillary length λ (see figure 2c).
As the droplet radius becomes smaller than λ, the surface tension effect dominates over the
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FIGURE 3. (a) Droplet radius Rh at the hovering–bobbing transition for various liquid–surface
combinations. The tested liquids are ethanol (Eth), DI water (DI), acetone (Ace), IPA and FC72,
while the substrate materials are copper (Cu) and aluminium (Al). (b) Droplet radius Rh at
hovering–bobbing transition versus the capillary length λ. (c) The Bond number Boh at the
hovering–bobbing transition for various liquid–surface combinations.

gravitational effect, giving rise to more regular oscillations. The transition from hovering
to bobbing therefore occurs when R ≈ λ, or equivalently when the Bond number Bo =
ρgR2/σ = (R/λ)2 ≈ 1. We confirm experimentally that although different liquid–surface
combinations yield disparate values for the radius Rh (figure 3a) and the capillary length
λ, the condition Rh ≈ λ, or Boh ≈ 1, always holds at the hovering–bobbing transition, as
shown in figures 3(b) and 3(c), respectively.

We now focus on the transition from bobbing to bouncing. We observe experimentally
that the internal flow of a droplet in the bobbing stage resembles a toroidal field, i.e. a
strong downward flow at the centre of the droplet (a representative snapshot of the flow
field is shown in figure 2a, inset). This flow field provides crucial evidence indicating the
driving mechanism of the droplet’s oscillation and the eventual transition to bouncing.
We note that the internal flow may be induced by either the thermocapillary effect or the
vapour flow underneath the droplet (Bouillant et al. 2018). We are unable to ascertain
the domination of one effect over the other. Estimations of the internal velocity induced
by either effect suggest that the vapour flow might play a slightly more significant role
than thermocapillarity (Bouillant et al. 2018), although a separate investigation would
be required to establish how these effects quantitatively influence the internal flow.
Nonetheless, the observed toroidal flow field, which consists of a stagnation point at the
bottom and the region with higher velocity at the droplet’s waist, provides a mechanism for
generating a non-zero pressure gradient inside the droplet. Combined with the restoring
force by the surface tension, the deformation driven by the pressure gradient causes the
droplet to oscillate.

We highlight that the involving parameters of the oscillation, i.e. the frequency
associated with the internal flow and the droplet’s natural frequency, vary with time as
the droplet radius continuously decreases, although at different rates. Here, the natural
frequency of a droplet refers to the frequency that the droplet oscillates in the absence of
any driving or damping effects, and is defined as fn = (σ/m)1/2, where m = (4π/3)ρR3

is the droplet’s mass (Landau & Lifshitz 1976; Gilet & Bush 2009; Moláček & Bush
2013; Schutzius et al. 2015). Evolution of the involving parameters eventually leads
the oscillating droplet to parametric resonances, which are visible via abrupt jumps in
its amplitude (figure 2b). The transition to bouncing therefore occurs when the excited
oscillation gains sufficient upward acceleration to overcome gravity. If we denote Vi,
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FIGURE 4. (a) Variation in droplet radius Rb (solid square, left-hand axis) and frequency fb
(open diamond, right-hand axis) at the bobbing–bouncing transition for various liquid–surface
combinations. (b) Oscillation frequency fb as a function of R−1/2

b at the bobbing–bouncing
transition for all tested substrate–liquids combinations. The dashed line represents the relation
fb ≈ (g/8)1/2R−1/2

b Frb. (c) Plots showing the Froude number Frb at the bobbing–bouncing
transition for various liquid–surface combinations.

the characteristic velocity of internal flow, then the acceleration associated with the
internal flow (a = V2

i /2R) in comparison with the gravitational acceleration is evaluated
by the Froude number Fr = (a/g)1/2 = Vi/(2Rg)1/2. In other words, the droplet overcomes
gravity when Fr � 1.

To test the hypothesis that the transition from bobbing to bouncing is possible at Fr ≈ 1,
we now examine the dependence of the Froude number on the internal flow characteristics,
in particular its frequency fi. Since the oscillation is driven by the internal flow and
recalling that f is the oscillation frequency of the droplet, we have f ≈ fi ≈ Vi/4R, giving
Vi ≈ 4Rf . By substituting the expression for Vi into the one for Fr and using the natural
frequency fn of the droplet to normalise f , we obtain the following expression for Fr:

Fr ≈
(

6
π

)1/2 f
fn

(
R
λ

)−1

. (3.1)

In figure 2(c), we show how Fr changes in the bobbing stage. Indeed, the condition Fr ≈ 1
holds at the transition to bouncing, indicating that the upward acceleration caused by
internal flows overcomes the gravitational acceleration at the transition from bobbing
to bouncing. We note that the expression for Fr shown in (3.1) also implies that fb ≈
(g/8)1/2R−1/2

b Frb, a direct relation between fb and Rb that can be experimentally checked
assuming Fr = 1 at the bobbing–bouncing transition. Indeed, for the tested liquids with
wide ranges of variation in Rb and fb (figure 4a), we confirm that this relation is consistent
with the experimental data (figure 4b). Moreover, a direct use of (3.1) to calculate Frb
also shows that the condition Fr ≈ 1 holds at the bobbing–bouncing transition for various
liquids (figure 4c).

We highlight that the condition for bobbing–bouncing transition can be alternatively
examined by estimating the Froude number without using the frequency fb. Instead, we
use the internal velocity experimentally measured near the transition. In figure 5(a), we
show the internal flow field obtained by particle imaging velocimetry of a water droplet
of radius 1.6 mm in the bobbing stage and near the bobbing–bouncing transition. From
the internal flow field, we obtain the maximum velocity Vmax inside the droplet for two
oscillation cycles. Here, Vmax ranges from 10 cm s−1 to 25 cm s−1, with an average value
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FIGURE 5. (a) Flow fields obtained by particle imaging velocimetry of the internal flow of
a water droplet in the bobbing stage (and close to the bobbing–bouncing transition) with
radius of 1.6 mm. (b) Maximum velocity Vmax measured inside a droplet in the bobbing
stage for two oscillation cycles. The average value of Vmax is 17 cm s−1. (c) Froude number
Fr = Vmax/(2Rg)1/2 calculated using Vmax . The Fr has an average value of 0.96 ± 0.35.

of 17 cm s−1 (figure 5b). The Froude number, calculated as Fr = Vmax/(2Rg)1/2, is shown
in figure 5(c). Indeed, the average value of the Froude number is 0.96, consistent with our
hypothesis that Fr ≈ 1 sets the condition for the bobbing–bouncing transition.

We conclude that the two transitions that we observed can be understood using the
dimensionless numbers Bo and Fr. The first transition, from hovering to bobbing, occurs
when Bo ≈ 1 (figure 3c) and the second transition, from bobbing to bouncing, occurs
when Fr ≈ 1 (figure 4c).

3.3. Oscillation dynamics in the bouncing stage
We now focus on the bouncing stage to discuss the abrupt drops in f and the corresponding
jumps in A (figures 2a and 2b). We note that an increasing natural frequency of an
oscillating droplet, combined with the sudden drops in its frequency f at t1, t2, t3 and t4
(figure 2a) suggests that the droplet experiences parametric resonances at such moments
(Landau & Lifshitz 1976; Ibrahim 2008). Indeed, if we follow the signature of parametric
resonances and examine the ratio γ = 2fn/f , we observe that γ increases substantially,
from 2.8 at the bobbing–bouncing transition to 14.7 at the end of the bouncing stage.
Whenever there is a sudden drop in f , e.g. at t1, t2, t3 or t4, the corresponding value of γ is
approximately in the vicinity of an integer (see figure 6a). We note that the actual values
of t1 to t4 vary with liquid properties and the surface temperature. The first resonance
at t1 allows the droplet to gain sufficient upward acceleration to overcome gravitational
acceleration and transition to the bouncing stage. We repeated the experiment for water
droplets numerous times and recorded the value γ = 2fn/f at resonances for all these
experiments. In figure 6(b), we plot the value of γ averaged across several experiments
having the same order of resonance for all measurements conducted using water droplets,
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FIGURE 6. (a) Plot showing the ratio γ = 2fn/f evaluated at the time of resonances. Dashed
lines indicate integer values of γ . (b) Average values of γ versus the resonance order N for all
experiments with DI water droplets (44 cases).

showing that resonance occurs when γ happens to take any integer value from 4 to 13.
As a result, we conclude that the sudden decreases in f and the corresponding amplitude
jumps in the bouncing stage result from the droplet going through parametric resonances.

We stress the important role of the initial conditions, in particular the initial droplet size,
in causing the bouncing behaviour: if a droplet is deposited with initial radius R < Rb and
with insignificant disturbance, parametric oscillation and the subsequent resonance may
be completely absent. The droplet in this case will stay still on the substrate even though
its size keeps reducing and eventually will either jump up (Celestini et al. 2012) or explode
(Lyu et al. 2019).

Between resonances, the parametric oscillation is characterised by an increasing contact
time tc, defined as the duration in which the droplet appears in contact with the surface
from the side-view recording (Bird et al. 2013). During this duration, the gap h between
the droplet and the surface is smaller than the spatial resolution of the imaging system,
although strictly speaking a Leidenfrost droplet and the surface are always separated by
a thin vapour layer. In figure 7(a), we select a representative oscillating period in the
bouncing stage and show how the centre of mass of the droplet, measured by yc, and
h vary with the normalised time t/τ , where τ = 1/fn is the natural bouncing period. In
figure 7(b), we plot the time dependence of the normalised contact time tc/τ in the entire
bouncing stage of the data shown in figure 2. We observe that between two consecutive
resonances, tc/τ increases from 1.3, a typical value reported for impacting droplet on
unheated surface (Richard, Clanet & Quéré 2002; Schutzius et al. 2015), to 2.3 before
it drops to 1.3 due to a parametric resonance.

We rule out the possibility that the increase in contact time only results from the
decrease in the velocity V for impacts at small Weber number (We = ρV2R/σ � 1)
(Richard et al. 2002). Here, we calculate the impact velocity as V = (2gA)1/2. The
dependence of the contact time on the impact velocity for impacts on unheated
superhydrophobic surfaces at small Weber number was theoretically modelled and
confirmed using experimental data in the study by Chevy et al. (2012). For each measured
value of the contact time tc, we numerically calculate the corresponding theoretical value
t0 (Chevy et al. 2012) using the corresponding experimental values of impact velocity and
drop size. We note that the comparison between tc and t0 is carried out for We < 0.1,
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FIGURE 7. (a) Representative plots showing the vertical centre of mass yc (left-hand axis,
square markers) and the gap h between the droplet and the surface (right-hand axis, circular
markers) versus the dimensionless time (t − ts)/τ in the bouncing stage. Here, ts = 94 s is an
arbitrarily chosen moment in the bouncing stage, and τ = 1/fn is the natural bouncing period.
The shaded area indicates the contact time tc during which the droplet contacts with the surface
(h ≈ 0). (b) Dimensionless contact time tc/τ (left-hand axis, square markers) and contact time
tc (right-hand axis, circle markers) versus t in bouncing stage. The dashed and dashed–dotted
lines represent the upper and lower bounds of tc/τ , respectively. (c) Droplet’s Weber number
We = ρV2R/σ versus t in the bouncing stage. In the shaded area (We < 0.1), the theoretical
calculation of the contact time proposed by Chevy et al. (2012) is applicable. (d) The ratio of
contact time tc measured experimentally and t0 predicted using the theory from Chevy et al.
(2012) for We < 0.1.

i.e. the valid range of the theoretical model (Chevy et al. 2012). We also note that the
variation of the Weber number in our experiment consists of several intervals separated by
parametric resonances where the Weber number abruptly increases; in each interval the
Weber number monotonically decreases due to reductions in drop size and impact velocity
(figure 7c). In figure 7(d), we show the ratio tc/t0 for impacts with We < 0.1. It is evident
that tc/t0 > 1 consistently, suggesting that the increase in the contact time is not solely due
to the decrease in the impact velocity. Rather, it is a unique feature of bouncing Leidenfrost
droplets.

The increasing contact time between consecutive resonances is tied to the mechanism
supplying energy to the droplet to sustain its parametric oscillation. In particular, an
increasing contact time energises the internal flow further and causes additional vapour
pressure build-up under the droplet (Schutzius et al. 2015). Both of these effects contribute
to the supplied energy, causing the droplet to exhibit an unusually high recovery of
gravitational potential after each time it touches the surface. This is best illustrated by
examining the relation between the amplitude Ak of an arbitrary bouncing cycle k and
that of the immediately succeeding one, Ak+1. As shown in figure 8(a), the amplitudes
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FIGURE 8. (a) Amplitude ratio Ak+1/Ak of two consecutive oscillations Ak and Ak+1 in the
bouncing stage versus time t. (b) Restitution coefficient ε averaged over the entire bouncing
stage of a water droplet versus wall temperature T . (c) Comparison of restitution coefficient ε

of water droplets: present study (squares, 0.05 m s−1 ≤ V ≤ 0.15 m s−1); Leidenfrost surfaces
(circles, 0.02 m s−1 ≤ V ≤ 0.2 m s−1); unheated superhydrophobic surfaces (upward-triangles,
0.05 m s−1 ≤ V ≤ 0.15 m s−1); and unheated superhydrophobic surfaces (downward–triangles,
0.15 m s−1 ≤ V ≤ 0.3 m s−1).

Ak and Ak+1 of any two consecutive cycles are always almost identical, indicating that
the restitution coefficient εk = (Ak+1/Ak)

1/2 of any cycle k is approximately unity. The
average restitution coefficient ε for the entire bouncing stage, shown in figure 8(b),
ranges from 0.97 to 0.99 with the surface temperature varying from 300 ◦C to 440 ◦C.
This is remarkably higher than the restitution coefficient of droplets impinging on
superhydrophobic surfaces in the same velocity range (Richard & Quéré 2000; Schutzius
et al. 2015) (see figure 8c). We note that ε ≈ 1 does not mean perfectly elastic collisions,
but rather suggests that the energy lost to viscous dissipation is almost completely
compensated by energy gained via parametric oscillation.

4. Conclusions

Leidenfrost droplets, therefore, always set off to a series of spontaneous oscillating
motions with a variety of rhythms. A sufficiently large Leidenfrost droplet always
starts hovering on the heated surface with fluctuating frequencies until its size becomes
comparable to the liquid’s capillary length, at which the droplet starts bobbing, i.e.
oscillating with more regular frequencies but without bouncing. A transition from bobbing
to bouncing occurs when the Froude number becomes larger than unity, signifying that
the upward acceleration caused by internal flows overcomes the gravitational acceleration.
In the bouncing stage, the droplet’s dynamics is driven by parametric oscillation with
occasional resonances whereby the oscillation frequency drops and the amplitude trebles.
The bouncing motions of the Leidenfrost droplet, if not interrupted by a parametric
resonance, is also characterised by two notable factors: an increasing contact time and
an unusually high restitution coefficient, both of which are tied to the energy supplied to
the droplet to sustain its parametric oscillation. The bouncing stage ends when the droplet
becomes sufficiently small (R ∼ 100 μm) and either takes a final leap (Celestini et al.
2012) or explodes (Lyu et al. 2019).
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We highlight that parametric oscillation was also identified in several studies as the
mechanism driving Leidenfrost droplets into energetically excited behaviours. These
include oscillation of droplets confined between two superheated surfaces (Celestini
et al. 2014), impacting and subsequent bouncing of Leidenfrost droplets (Biance et al.
2006) and surface oscillation of large droplets with radius R > 1.5λ (Brunet & Snoeijer
2011; Ma, Liétor-Santos & Burton 2017; Ma & Burton 2018). The vapour pressure build-up
was considered as an important factor supplying energy for parametric oscillation of large
droplets and could also be responsible for oscillating small Leidenfrost droplets (Biance
et al. 2006; Caswell 2014). Nonetheless, our study reveals the role of parametric oscillation
in a series of distinct oscillating behaviours that a Leidenfrost droplet inevitably goes
through as it shrinks.

Our findings of the spontaneous oscillations of Leidenfrost droplets completes their
portraiture as an active system capable of creating its own motions and energetic states.
The underlying active mechanism may provide a promising avenue for frictionless liquid
manipulation and transport, as well as a potential strategy for energy harvesting.
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