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Consequences of viscous anisotropy in a
deforming, two-phase aggregate. Why is
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In laboratory experiments that impose shear deformation on partially molten
aggregates of initially uniform porosity, melt segregates into high-porosity sheets
(bands in cross-section). The bands emerge at 15◦–20◦ to the shear plane. A model
of viscous anisotropy can explain these low angles whereas previous simpler models
have failed to do so. The anisotropic model is complex, however, and the reason
that it produces low-angle bands has not been understood. Here we show that
there are two mechanisms: (i) suppression of the well-known tensile instability,
and (ii) creation of a new shear-driven instability. We elucidate these mechanisms
using linearised stability analysis in a coordinate system that is aligned with the
perturbations. We consider the general case of anisotropy that varies dynamically
with deviatoric stress, but approach it by first considering uniform anisotropy that is
imposed a priori and showing the difference between static and dynamic cases. We
extend the model of viscous anisotropy to include a strengthening in the direction
of maximum compressive stress. Our results support the hypothesis that viscous
anisotropy is the cause of low band angles in experiments.

Key words: magma and lava flow, non-Newtonian flows, rheology

1. Introduction

In laboratory experiments, forced shear deformation of nominally uniform, partially
molten rocks causes melt segregation into high-porosity bands oriented at low angle
(15◦–20◦) to the shear plane (Holtzman et al. 2003; Holtzman & Kohlstedt 2007;
King, Zimmerman & Kohlstedt 2010). Stevenson (1989) predicted the emergence
of such bands in a self-reinforcing feedback arising from the porosity weakening
of the crystal + magma aggregate, but the angle predicted by this theory was 45◦
(Spiegelman 2003), much higher than observed. The low angle of high-porosity bands
is widely thought to provide an additional constraint on the rheology of the aggregate,
but it has proven challenging to understand. Katz, Spiegelman & Holtzman (2006)
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found that non-Newtonian viscosity with a high sensitivity to stress could reproduce
the low angle of bands, but King et al. (2010) subsequently showed that the viscosity
of experiments that produce low-angle bands is actually close to Newtonian.

Theory by Takei & Holtzman (2009a,b) of anisotropic viscosity under diffusion
creep of a partially molten aggregate represents a possible solution. This theory is
motivated by observations of the coherent alignment of melt pockets between solid
grains under a deviatoric stress (e.g. Daines & Kohlstedt 1997; Zimmerman et al.
1999) and of the enhancement of diffusion creep by melt at grain boundaries and triple
junctions (e.g. Cooper, Kohlstedt & Chyung 1989). The melt provides fast pathways
for diffusional transport of solid constituents around grains; the alignment of melt with
respect to the principal stress directions hypothetically results in anisotropic viscosity
of the aggregate (Takei & Holtzman 2009a).

Analysis of the theory of anisotropic viscosity by Takei & Holtzman (2009b), Katz
& Takei (2013), Takei & Katz (2013) and Allwright & Katz (2014) shows that it
introduces qualitatively different behaviour from previous models with isotropic (and
even power-law) viscosity. Shear and normal components of stress and strain rate are
coupled under viscous anisotropy. As a result of this coupling, a gradient in shear
stress becomes a driving force for melt segregation that is not present in the isotropic
system. Under Poiseuille flow, melt segregates towards higher-stress regions; under
torsional flow, compressive hoop stresses drive the solid outwards and the magma
inwards. The mechanics of this ‘base-state’ melt segregation are explained in detail
by Takei & Katz (2013). An experimental test of radial melt segregation in torsional
flow by Qi et al. (2015) shows striking consistency with predictions.

Furthermore, theoretical work has demonstrated that there is a connection between
the strength of anisotropy and the angle of high-porosity bands that emerge by
unstable growth. This was shown with linearised stability analysis (Takei & Holtzman
2009b; Takei & Katz 2013) and numerical simulations (Butler 2012; Katz & Takei
2013), where the strength and orientation of anisotropy are assumed to be known
and are imposed a priori. In those static anisotropy calculations, high-porosity bands
emerge at low angles to the shear plane only when viscous anisotropy is at or near
saturation. This is a rather restrictive condition that may be incompatible with the
robust appearance and consistently low angle of bands in experiments (Holtzman &
Kohlstedt 2007). However, in numerical simulations that allow anisotropy strength
and direction to vary dynamically in space and time (Katz & Takei 2013), band
angles are significantly lowered and appear to be less sensitive to the mean strength
of anisotropy. These findings raise several basic unanswered questions. Why do the
mechanics of viscous anisotropy give rise to low-angle bands? Why is dynamic
anisotropy more effective in this regard than static anisotropy? What are the general
conditions under which low-angle high-porosity bands should form?

The present paper addresses these questions through a combination of linearised
stability analysis and physical reasoning. The crucial, enabling advance is to perform
the analysis in a coordinate system that is rotated to align with the porosity bands
(rather than with the plane of shear). This drastically simplifies the expressions
for growth rate under static anisotropy (Takei & Katz 2013), making them readily
interpretable in physical terms. Moreover, it allows us to extend the analysis to
dynamic anisotropy in a form that exposes the physical differences from static
anisotropy. Finally, the same coordinate rotation clarifies the physical reason for low
angles under isotropic non-Newtonian viscosity.

The paper is organised as follows. In the next section, we briefly discuss
the non-dimensionalised governing equations and present an anisotropic viscous
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constitutive model for the two-phase partially molten aggregate. The full nonlinear
system is solved numerically in § 3 for static and dynamic cases, to elucidate the
questions listed above. The coordinate rotation is introduced and the linearised
stability analysis is developed in § 4. In particular, § 4.3 develops an expression for
the growth rate of porosity perturbations under the fully dynamic model of § 2. This
expression is challenging to understand and so we subsequently consider it under
reducing assumptions of static anisotropy (§ 5.1), which includes the simplest case of
Newtonian isotropic model. We build on this to explain the full complexity in §§ 5.2
and 5.3. We conclude with a summary and discussion of the results in terms of the
motivating questions.

2. Governing and constitutive equations

In the theory of magma–mantle interaction, the macroscopic behaviour of a
two-phase aggregate is treated within the framework of continuum mechanics
(e.g. Drew 1983; McKenzie 1984). This theory is concerned with the evolution
of macroscopic fields, including the volume fraction of melt or porosity φ, the
velocity of the solid phase V , the liquid pressure P (compression positive) and the
bulk or phase-averaged stress tensor σij = (1 − φ)σ S

ij − φPδij, where σ S
ij is the stress

tensor of the solid phase (tension positive). Further details of the two-phase flow
theory were previously presented (e.g. Rudge, Bercovici & Spiegelman 2011; Takei
& Katz 2013) and are not repeated here.

We proceed directly to the non-dimensional governing equations,

∂φ

∂t
=∇· [(1− φ)V ] , (2.1a)

∇· V = R2

rξ + 4/3
∇·

[(
φ

φ0

)`
∇P

]
, (2.1b)

∇P=∇· τ , (2.1c)

and refer the reader to Takei & Katz (2013) and references therein for details of the
derivation and rescaling. In the system (2.1) we have introduced the differential stress
tensor τij≡σij+Pδij. We have excluded body forces and assumed that the permeability
of the solid matrix is a function of the porosity only, proportional to (φ/φ0)

`, where φ0
is a reference porosity and ` is a constant. Also, R is the non-dimensional compaction
length and rξ is a rheological parameter explained below. To close the system, a
constitutive relationship that relates the differential stress τij and strain rate ėij= (Vi,j+
Vj,i)/2 is required.

Takei & Holtzman (2009b) and Takei & Katz (2013) proposed a model of
anisotropic viscosity caused by stress-induced microstructural anisotropy. In partially
molten rocks, the melt phase is contained within a permeable network of tubules
between grains. The solid matrix is formed by a contiguous skeleton of solid grains.
The area of grain-to-grain contact is known as the contiguity. Contiguity is the
microstructural variable that determines the macroscopic (i.e. continuum) mechanical
properties of the matrix (Takei 1998; Takei & Holtzman 2009a). Although the
equilibrium microstructure developed under hydrostatic stress has isotropic contiguity,
deviations from the equilibrium microstructure have been observed in experimentally
deformed, partially molten samples (e.g. Daines & Kohlstedt 1997; Takei 2010). Based
on these observations, we infer that, under a differential stress, the grain-to-grain
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contacts with normals that are parallel to the maximum tensile stress (τ3) are
reduced in area. Similarly, the areas of those with normals parallel to the maximum
compressive stress (τ1) are increased. Using a microstructure-based model of aggregate
viscosity (Takei & Holtzman 2009a) and a coordinate transformation (Takei & Katz
2013), the constitutive law and the viscosity tensor are

τij = Cijklėkl, (2.2a)

Cijkl = e−λ(φ−φ0)

×

ij ↓ kl→ XX YY XY

XX

YY

XY




rξ + 4
3
− α + β

2
cos 2Θ rξ − 2

3
−α + β

4
sin 2Θ

−α − β
8

(3+ cos 4Θ) −α − β
8

(1− cos 4Θ) −α − β
8

sin 4Θ

· rξ + 4
3
+ α + β

2
cos 2Θ −α + β

4
sin 2Θ

−α − β
8

(3+ cos 4Θ) +α − β
8

sin 4Θ

· · 1−α − β
8

(1− cos 4Θ)




.

(2.2b)

For simplicity, we consider a two-dimensional problem, in which the τ1–τ3 plane
is parallel to the X–Y plane. Therefore only the two-dimensional version of Cijkl is
written in (2.2b). Only six of the 16 components are shown due to the symmetry of
Cijkl under the exchange of i and j, k and l, and ij and kl.

The factor in front of the matrix represents the normalised shear viscosity
η(φ)/η(φ0); it decreases exponentially with increasing melt fraction φ, and so λ is
called the porosity-weakening factor. We take λ= 27 based on the experimental results
(e.g. Mei et al. 2002). The parameter rξ represents the bulk-to-shear viscosity ratio,
rξ = ξ/η, which is assumed to be constant (= 5/3) based on theoretical results by
Takei & Holtzman (2009a) (although see Simpson, Spiegelman & Weinstein 2010a,b).
Parameters α, β and Θ represent the magnitude and direction of microstructural
anisotropy: α and β quantify the amplitude of contiguity reduction and increase,
respectively, in the directions of principal stress τ3 and τ1; Θ represents the angle
that the most tensile stress (τ3) direction makes with the X axis of the coordinate
system. Using the local differential stress τij, Θ is given by

tan 2Θ = 2τXY

τXX − τYY
, (2.3)

and α and β are modelled as

α = 1+ tanh
(

2(1τ − τoffset)

τsat

)
, (2.4a)

β = rβα, (2.4b)

where 1τ = τ3 − τ1 =
√
(τXX − τYY)2 + 4τ 2

XY represents the amplitude of deviatoric
stress. The detailed forms of the functions in (2.4) are poorly constrained, owing to a
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lack of experimental data. The form of α was chosen based on the constraints that α is
less than or equal to 2 (Takei & Katz 2013) and increases with increasing differential
stress (Daines & Kohlstedt 1997; Takei 2010). The parameter rβ is assumed to be a
constant that is probably between 0 and 1. In the present study, α is parametrised by
τoffset and τsat, which control the stress offset and slope of increase. In Takei & Katz
(2013), β = 0 and α was parametrised by τsat alone. Parameters β and τoffset are newly
introduced here.

For simplicity in previous linearised analyses (Takei & Katz 2013; Allwright &
Katz 2014), parameters α, β and Θ were fixed to their initial values. We call this
simplifying assumption the static anisotropy model. In contrast, the complete model
with stress-dependent direction and magnitude is called the dynamic anisotropy model.
Katz & Takei (2013) discovered a remarkable difference between static and dynamic
anisotropy; this difference motivates the present study and is demonstrated in the next
section.

3. Numerical solutions

Numerical solutions of (2.1) and (2.2) highlight the difference between results
obtained for static and dynamic anisotropy. The solutions are computed with a
finite-volume method on a fully staggered grid that is periodic in the X direction;
in this section, the X axis is taken parallel to the initial flow direction. No-slip
impermeable boundary conditions enforce a constant displacement rate of ± 1

2 X̂ on
the top and bottom boundaries, respectively. A semi-implicit Crank–Nicolson scheme
is used to discretise time, and the hyperbolic equation for porosity evolution is solved
separately from the elliptic system in a Picard loop with two iterations at each time
step. The solutions are obtained in the context of the Portable, Extensible Toolkit
for Scientific Computation (PETSc; Balay et al. 2001, 2004; Katz et al. 2007). Full
details and references are provided by Katz & Takei (2013).

Figure 1 compares solutions with fixed and dynamic anisotropy. In figure 1(a),
anisotropy parameters are prescribed as α = β = 1.8, Θ = 45◦; in figure 1(b), these
parameters are calculated cellwise using (2.3) and (2.4), with rβ = 1. Both calculations
have R = 1 (compaction length equal to domain height) and are initialised with the
same porosity field, φ(X, t = 0) = φ0 + εφ1(X). Here φ0 = 0.05 and ε = 0.005; and
φ1(X) is a smooth random field with unit amplitude, generated by filtering grid-scale
white noise to remove variation at wavelengths below 15 grid cells. Because the
growth rate of porosity perturbations differs for fixed and dynamic anisotropy, the
simulations are shown at different values of the average simple shear strain γ .

The different orientation of high-porosity features is evident in figure 1(a) and
(b): dynamic anisotropy is associated with lower angles. This is quantified by the
power spectrum in figure 1(c), where the power from a two-dimensional fast Fourier
transform of the porosity field is binned according to the angle between the wavefront
and the shear plane (Katz et al. 2006). Dynamic anisotropy produces a peak at ∼10◦

whereas static anisotropy produces a peak at ∼23◦. There is also a high-angle (∼80◦)
peak for static anisotropy (corresponding to features visible in figure 1(a)) that does
not survive at large strain. Figure 1(d) and (e) show the covariation of α and Θ with
φ in figure 1(b); black dotted lines indicate mean values. These means are closely
matched with the parameter values used in the fixed anisotropy simulation. It is
therefore clear that the difference in the dominant band angle (figure 1c) arises from
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FIGURE 1. (Colour online) Comparison of numerical solutions to (2.1) and (2.2) with
static and dynamic anisotropy. For both calculations, rβ = 1, R = 1, rξ = 5/3, φ0 =
0.05, ε|φ1(X)| 6 0.005 and the domain is discretised into 600 × 300 square cells. (a)
Porosity field at a strain of 0.75 for a simulation with α= 1.8 and Θ = 45◦ throughout the
domain. (b) Porosity field at a strain of 1.25 for a simulation with anisotropy calculated
according to (2.3) and (2.4) with τsat = 1, τoffset = 1.5. (c) Spectral power binned by
wavefront angle θ to the shear plane (after Katz et al. 2006) for the porosity fields shown
in (a,b). Each spectrum is normalised by its maximum power. (d,e) Two-dimensional
histograms derived from the simulation with dynamic anisotropy at a strain of 1.25 (after
Katz & Takei 2013, figure 12). Red dashed lines have a slope given by the ratio of
perturbation quantities α1/φ1 and Θ1/φ1 from the stability analysis in § 4.

the coupling between stress and the variations in α and Θ . What is unclear, however,
is the physical explanation for this difference and, indeed, why viscous anisotropy
gives rise to bands at angles less than 45◦ to the shear plane at all. We clarify these
points below.

4. Linearised analysis with a perturbation-oriented coordinate system

Let ε � φ0 be the initial amplitude of a porosity perturbation. We express the
problem variables as a series expansion about the base state in which the porosity is
uniform and equal to φ0. We truncate the series after the first-order terms,
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φ(X, t)= φ0 + εφ1(X, t),
P(X, t)= 0+ εP1(X, t),

V(X, t)= V (0)(X)+ εV (1)(X, t),
ėij(X, t)= ė(0)ij + εė(1)ij (X, t),

τij(X, t)= τ (0)ij + ετ (1)ij (X, t),

Cijkl(X, t)= C(0)
ijkl + εC(1)

ijkl(X, t),
α(X, t)= α0 + εα1(X, t),
Θ(X, t)=Θ0 + εΘ1(X, t).





(4.1)

The first term of (4.1) with index 0 represents a simple shear flow and its associated
anisotropy, which is the base-state solution of order one (ε0), corresponding to the
uniform porosity φ0. The second term of (4.1) with index 1 represents the perturbation
of order ε1 caused by εφ1. By substituting (4.1) into (2.1), using ∇· V (0) = 0,
and balancing terms at the order of ε1, we derive the governing equations for the
perturbations as

Dφ1

Dt
= (1− φ0)∇· V (1), (4.2a)

∇· V (1) = R2

rξ + 4/3
∇2P1, (4.2b)

P1,i = [C(1)
ijklė

(0)
kl ],j + [C(0)

ijklė
(1)
kl ],j (= τ (1)ij,j ), (4.2c)

where Dφ1/Dt= ∂φ1/∂t+ V (0) · ∇φ1.
Following previous studies, the porosity perturbations φ1 take the form of a

plane wave oriented at a given angle to the base-state shear plane. Past workers
chose to align the coordinate system with the base-state shear plane, such that the
base-state strain-rate tensor has a simple form (e.g. Spiegelman 2003). Although the
coordinate system was so aligned in the numerical models above, in this section
the coordinates are rotated such that the Y axis is parallel to the wavevector of the
initial perturbation, as shown in figure 2. With this choice, θ again represents the
angle between the perturbation wavefronts and the base-state shear plane. However,
in the rotated coordinate system, Θ depends on both the direction of τ3 and the
orientation of the bands. The base-state direction of maximum tensile stress τ3 makes
an angle π/4 to the shear plane (2.3) and so, for a coordinate rotation by θ , we have
Θ0 =π/4+ θ (figure 2a).

In the following part of this section, we give an outline of the linearised approach,
which shows that the new coordinate system reduces the complexity of the analysis
and exposes the physical mechanisms of perturbation growth. This enables us to
clarify the mechanics leading to low-angle bands in complicated problems such as
under dynamic anisotropy. We first consider the base-state simple shear flow at the
order of ε0 (§ 4.1) and then the linearised governing equations at the order of ε1

(§ 4.2). Finally, in § 4.3, we obtain the growth rate of porosity perturbations φ1 for
the most general case of dynamic anisotropy. The result obtained is used in § 5 to
clarify the mechanisms of low-angle band formation.

4.1. Base-state simple shear flow
Using the angle θ between the initial perturbation wavefronts (aligned with the X
direction) and the base-state shear plane (figure 2a), the components of the base-state
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Y
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Shear plane of

base-sta
te flo

w

FIGURE 2. Schematic diagrams of the coordinate axes and porosity perturbation. (a) The
coordinate system (X,Y) for the linearised analysis is taken such that the X axis is parallel
to the initial perturbation wavefronts. The shear plane of the base-state simple shear flow
is then rotated by an angle θ . (b) The base-state normal stress τ (0)YY is oriented parallel to
the initial perturbation wavevector. (c) The base-state shear stress τ (0)XY is parallel to the
wavefronts.

strain-rate tensor in the rotated coordinate system are

ė(0)ij =
1
2

(− sin 2θ cos 2θ
cos 2θ sin 2θ

)
. (4.3)

As shown in figure 2(b,c), τ (0)YY and τ
(0)
XY represent, respectively, the base-state tensile

and shear stresses normal and parallel to the perturbation wavefronts, which play
important roles in understanding the growth of these perturbations. Noting that
ė(0)YY =−ė(0)XX , these components are given by

(
τ
(0)
YY

τ
(0)
XY

)
= 1

2

(
C(0)

YYYY − C(0)
YYXX 2C(0)

YYXY

C(0)
XYYY − C(0)

XYXX 2C(0)
XYXY

)(
sin 2θ
cos 2θ

)
, (4.4)

with Θ0 = π/4 + θ . In figure 3, τ (0)YY and τ
(0)
XY are plotted as a function of angle θ .

An understanding of their systematics is needed to interpret the results of the stability
analysis.

Considering first the solid curves representing normal stress, we see that, for
α0 = β0 = 0 (isotropic, figure 3a), τ (0)YY follows the expected pattern of sin 2θ . It is
tensile for θ < 90◦ and compressive for θ > 90◦ (Spiegelman 2003). However, as α0

increases (for β0 = 0, figure 3a–c), τ (0)YY becomes negative (compressive) at all angles.
The mechanism for this change is twofold. First, α0 decreases the viscous resistance
to extension in the τ3 direction and reduces the maximum tensile stress. This is
because increasing α0 reduces (C(0)

YYYY − C(0)
YYXX) for angles near θ = 45◦ (figure 4a,

black solid line). Superimposed on this is a compressive stress around θ = 0◦ and
90◦ that emerges as a consequence of shear strain rate coupled to normal stress via
the C(0)

YYXY viscosity (figure 4a, grey solid line). The product C(0)
YYXY ė(0)XY is negative for

all θ , motivating us to name this coupling ‘shear strain-induced compression’. This
non-trivial result comes from the fact that the stress-induced softening occurs in the
tensile (τ3) direction, as schematically illustrated in Takei & Katz (2013, figure 7b).

The effect of increasing β0 on τ (0)YY is shown down the columns in figure 3. Similar
to α0, β0 couples the shear strain rate to compressive normal stress for angles near
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FIGURE 3. Normal stress τ (0)YY (tension positive) and shear stress τ (0)XY produced by the
base-state simple shear flow as functions of angle θ between the shear plane and the X
axis (figure 2a). We use rξ = 5/3 here and throughout (Takei & Katz 2013). Each panel
is computed with a different set (α0, β0) as labelled above each panel.

θ = 0◦ and 90◦ via the C(0)
YYXY viscosity. In contrast to α0, however, β0 strengthens the

aggregate in the τ1 direction and increases the normal stress amplitude near θ = 135◦
(figures 3 and 4b). As a result, the sign change of normal stress caused by β0 occurs
in a limited range of θ . 90◦ and θ & 0◦ (figure 3g).

The shear stress curves in figure 3 (dashed lines) also change with increasing
α0 and/or β0. For zero anisotropy in figure 3(a), the shear stress follows cos 2θ , as
expected for coordinate rotation only. Anisotropy does not change the mean of τ (0)XY (θ),
as required by symmetry of the stress tensor. Increasing α0 (or β0) has an overall
weakening (or strengthening) effect, changing only the amplitude of τ (0)XY . This is in
contrast to the effect of anisotropy on normal stress, which has a strong dependence
on angle θ .

4.2. Growth of porosity perturbations
For simplicity in this linearised analysis, we consider the case of liquid viscosity
ηL = 0, giving a non-dimensional compaction length R → ∞. In this limit, liquid
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FIGURE 4. Viscosity components from (4.4) as functions of angle θ between the shear
plane and the X axis. The curves are computed for the anisotropy parameters (a) α0 = 1
and β0= 0, and (b) α0= 0 and β0= 1. The thin black lines represent each component for
the isotropic case (α0 = β0 = 0).

segregation over any length scale occurs at vanishingly small pressure gradients.
Therefore, the pressure gradient terms in (4.2c) are negligible. Pressure then drops
out of the problem and we no longer need to solve (4.2b) (which has become
indeterminate anyway!). This is equivalent to considering only the subset of
perturbations with wavelengths much smaller than the dimensional compaction length
(e.g. Katz et al. 2006).

Using the initial wavenumber vector K = (0, K), the porosity perturbation at time
t is

φ1(X, t)= exp[iK · (X − V (0)t)+ ṡt], (4.5)

which accounts for rotation of the wavevector due to advection by the base-state flow
(Spiegelman 2003). At t = 0, by choice of the coordinate system, perturbations are
uniform in the X direction. Therefore, partial derivatives of the first-order quantities
with respect to X are zero. Using ė(0)XX =−ė(0)YY , ė(1)XX = 0 and ∇P1 = 0, equations (4.2)
become

ṡ= (1− φ0)ė
(1)
YY/φ1, (4.6a)

0= [(C(1)
YYYY − C(1)

YYXX)ė
(0)
YY + 2C(1)

YYXY ė(0)XY] + [C(0)
YYYY ė(1)YY + 2C(0)

YYXY ė(1)XY], (4.6b)

0= [(C(1)
XYYY − C(1)

XYXX)ė
(0)
YY + 2C(1)

XYXY ė(0)XY] + [C(0)
XYYY ė(1)YY + 2C(0)

XYXY ė(1)XY]. (4.6c)

Equations (4.6b,c) are obtained after an integration in the Y direction; boundary
conditions are not needed because the domain is infinite and the first-order fields are
periodic.

The right-hand sides of (4.6b,c) represent τ (1)YY and τ (1)XY , respectively. Since pressure
gradients are negligible, these stresses must be spatially uniform for the system to be
in balance. Therefore the first-order product of viscosity and strain rate must sum to
zero; viscosity reduction associated with porosity perturbations (within the first square
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brackets on the right-hand side) is compensated by the strain-rate perturbations (within
the second square brackets).

To facilitate the physical interpretation of (4.6b,c), these equations are re-expressed
as (

C(0)
YYYY C(0)

YYXY

C(0)
XYYY C(0)

XYXY

)(
ė(1)YY

2ė(1)XY

)
=
(
τ
(f )
YY

τ
(f )
XY

)
, (4.7)

with equivalent (‘forcing’) stresses

τ
(f )
YY =−[(C(1)

YYYY − C(1)
YYXX)ė

(0)
YY + 2C(1)

YYXY ė(0)XY], (4.8a)

τ
(f )
XY =−[(C(1)

XYYY − C(1)
XYXX)ė

(0)
YY + 2C(1)

XYXY ė(0)XY]. (4.8b)

Equation (4.7) relates the strain-rate response of the system to the forcing stresses
defined by (4.8). From (4.7), the normal strain rate in the Y direction ė(1)YY (the
component that is most relevant to the perturbation growth) can be expressed as

ė(1)YY = C̃
(0)
YYYYτ

(f )
YY + C̃

(0)
YYXYτ

(f )
XY , (4.9)

where C̃
(0)
YYYY and C̃

(0)
YYXY are the compliances defined by

C̃
(0)
YYYY =

C(0)
XYXY

C(0)
XYXYC(0)

YYYY − C(0)
YYXYC(0)

XYYY

, (4.10a)

C̃
(0)
YYXY =

−C(0)
YYXY

C(0)
XYXYC(0)

YYYY − C(0)
YYXYC(0)

XYYY

. (4.10b)

The forcing stresses, τ (f )YY and τ
(f )
XY , are not externally applied (like those causing

simple shear), nor are they the first-order stress perturbations τ (1)YY and τ (1)XY (these are
both equal to zero). Instead, they are equivalent stresses that are created internally
as a consequence of the base-state flow acting on the viscosity change associated
with porosity perturbations. Moreover, under dynamic anisotropy, these forcing terms
also depend on the strain-rate perturbations and hence (4.9) does not always give
an explicit solution for ė(1)YY . Nonetheless, (4.9) enables us to separate the mechanics
into two simpler parts: the forcing, τ (f )YY and τ

(f )
XY , and the compliance, C̃

(0)
YYYY and

C̃
(0)
YYXY , where the latter represents the system response to forcing with unit amplitude.

This decomposition is helpful to understand the detailed (and rather complicated)
mechanisms of the different models considered here.

4.3. General solution
Equations (4.6) are solved here to obtain an explicit expression for ṡ for the full
model of dynamic anisotropy. The first-order viscosity tensor is written in terms of the
porosity and anisotropy perturbations φ1, α1, β1 and Θ1. The anisotropy perturbations
are then expressed in terms of the porosity and strain-rate perturbations φ1, ė(1)YY and
ė(1)XY . These calculations are sketched in appendix B. The components of the first-order
viscosity tensor are then substituted into (4.6b,c), which are manipulated to solve for
ė(1)YY and ė(1)XY as functions of φ1. The normal strain rate ė(1)YY obtained by this approach
is substituted into (4.6a) to give an expression for the growth rate of perturbations,

ṡ= (1− φ0)λ
[
C̃
(0)
YYYYDp(τ

(0)
YY − qτ (0)XX )+ C̃

(0)
YYXYDq(τ

(0)
XY − pτ (0)XX )

]
, (4.11)
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with the compliances defined by (4.10) and dynamic factors

Dp = (1− pC(0)
XXXY/C

(0)
XYXY)/D, (4.12a)

Dq = (1− qC(0)
XXXY/C

(0)
YYXY)/D, (4.12b)

where

D= 1+ q

(
C(0)

XXXYC(0)
XYYY − C(0)

XYXYC(0)
XXYY

C(0)
XYXYC(0)

YYYY − C(0)
YYXYC(0)

XYYY

)
+ p

(
C(0)

YYXYC(0)
XXYY − C(0)

XXXYC(0)
YYYY

C(0)
XYXYC(0)

YYYY − C(0)
YYXYC(0)

XYYY

)
. (4.13)

The constant coefficients p and q that express the sensitivity of the growth rate to
dynamic anisotropy perturbations are

p= ζ 1− rβ
4

(
2 cos 2θ − α01τ

(0)

ᾰ(τ
(0)
XX − τ (0)YY )

2
sin 2θ sin 4θ

)
, (4.14a)

q= ζ 1− rβ
4

(
2 sin 2θ + α01τ

(0)

ᾰ(τ
(0)
XX − τ (0)YY )

2
cos 2θ sin 4θ

)
+ ζ 1+ rβ

2
, (4.14b)

where ᾰ and ζ are defined by (B 7) and (B 9), respectively. We do not attempt to
physically interpret the detailed form of p and q. It is important to note, however,
that, for the static anisotropy model, p and q are zero, and Dp =Dq = 1.

5. Physical interpretation in various limits
The growth rate in (4.11) is a general result for the full model presented in § 2

above (with the sole assumption of R→∞). To build up a physical understanding
of this equation, we return to the simpler case of static anisotropy, which includes
the simplest case of the Newtonian isotropic model. The static anisotropy model
has previously been studied by Takei & Katz (2013) using linearised analysis.
However, the mathematical complexity of their results precluded a detailed mechanical
interpretation. A reconsideration using the perturbation-oriented coordinate system
enables a physical understanding of the instability mechanism and the rheological
control on the dominant band angle. These are needed to understand the more
complicated, dynamic model. To facilitate this (in §§ 5.1 and 5.2), we make the
simplifying assumption that β = 0, i.e. that there is no contiguity increase in the τ1
direction. The effect of non-zero β is discussed in § 5.3, where we show that its role
is minor compared to that of α, the contiguity decrease in the τ3 direction.

5.1. Static anisotropy
When α1= β1=Θ1= 0, the mechanical equilibrium conditions (4.6b,c) are written as

C(0)
YYYY ė(1)YY + 2C(0)

YYXY ė(1)XY = λφ1τ
(0)
YY , (5.1a)

C(0)
XYYY ė(1)YY + 2C(0)

XYXY ė(1)XY = λφ1τ
(0)
XY . (5.1b)

Comparison with (4.7) shows that the forcing stresses are given by τ (f )YY = λφ1τ
(0)
YY and

τ
(f )
XY = λφ1τ

(0)
XY . These forcing stresses are caused by the base-state tensile and shear

stresses acting on the porosity perturbation by way of porosity-weakening rheology
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(λ > 0) as depicted in figure 2(b,c). In this simple model, τ (f )YY and τ
(f )
XY are given in

terms of the porosity perturbation φ1, and hence (4.9) provides an explicit solution for
ė(1)YY .

It is evident from (4.6a) that the normal strain rate ė(1)YY causes an increase in
the amplitude of porosity perturbations; the shear strain rate ė(1)XY does not cause the
porosity to change. When the viscosity is anisotropic, both the normal and the shear
stress drive ė(1)YY and hence contribute to perturbation growth. This does not occur
under isotropic viscosity.

5.1.1. Instability mechanism in the isotropic system
For an isotropic aggregate (α0=β0=0), C(0)

YYXY =C(0)
XYYY =0 in (4.7) and (5.1), and the

compliance C̃
(0)
YYXY that couples shear stress to normal strain rate is zero. In this case,

ė(1)YY is driven only by the base-state normal stress τ (0)YY . The growth rate ṡ is given by

ṡ= (1− φ0)λ
τ
(0)
YY

C(0)
YYYY

(isotropic model). (5.2)

Perturbations are unstable under tensile stress (τ (0)YY > 0) normal to the perturbation
wavefronts, stable under compressive normal stress (τ (0)YY < 0) and unaffected by shear
stress τ

(0)
XY . We therefore term this the tensile stress-induced instability, or tensile

instability. When band angle θ relative to the simple shear flow is 45◦, the tensile
stress τ (0)YY attains its maximum (figure 3a) and hence the growth rate ṡ is also at a
maximum, as shown in figure 5(a) and by Spiegelman (2003). The occurrence of the
tensile instability in a porosity-weakening two-phase aggregate was first predicted by
Stevenson (1989).

5.1.2. Two instability mechanisms in the anisotropic system
For an anisotropic aggregate (α0 > 0 and/or β0 > 0), there is a coupling between

shear and normal components via C(0)
YYXY =C(0)

XYYY 6=0. In this case, ė(1)YY is forced by both
normal stress across perturbations and shear stress along perturbations. The growth
rate is

ṡ= (1− φ0)λ(C̃
(0)
YYYYτ

(0)
YY + C̃

(0)
YYXYτ

(0)
XY ) (static anisotropy model), (5.3)

using the compliances given by (4.10). The first term on the right-hand side of (5.3)
represents the tensile instability, generalised to the anisotropic aggregate. The second
term represents a shear stress-induced instability that does not occur in the isotropic
system. The total growth rate ṡ versus band angle θ is plotted in figure 5(a–c) for
various anisotropy amplitudes α0 (thick lines). Consistent with previous work, as α0 is
increased, the single growth-rate peak splits into two peaks at low and high angles to
the shear plane (figure 5c). Because the lower-angle peak dominates the higher-angle
peak after a finite time (Katz et al. 2006; Takei & Katz 2013), this result means a
significant lowering of the dominant band angle by the viscous anisotropy – if the
magnitude of anisotropy α is sufficiently close to saturation (α ' 2).

5.1.3. How viscous anisotropy causes lowering of band angle
Although the effect of viscous anisotropy is evident from the total growth rate

shown in figure 5(a–c), it is not immediately obvious why the dominant band
angle is lowered by viscous anisotropy. The physical mechanism can be understood
by considering the tensile and shear components of the growth rate independently
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FIGURE 5. Characteristics of the static anisotropy model as a function of the angle
between porosity perturbations and the shear plane. Each column is for a different value
of α0. In all cases, β0= 0, λ= 27 and φ0= 0.05. (a–c) Growth rate ṡ of perturbations φ1
from (5.3). The heavy line represents the total growth rate. Light lines show the growth
rate decomposed into two parts: the contribution from the tensile instability (first term
of (5.3)) and that from the shear instability (second term). (d–f ) Compliances C̃

(0)
YYYY and

C̃
(0)
YYXY in (5.3).

(first and second terms of (5.3), respectively). In figure 5(a–c), these two growth rates
are plotted separately for various values of α0 (thin solid curve for tensile instability;
thin dashed curve for shear instability). Comparison of figure 5(a–c) reveals that the
peak split occurs through (i) stabilisation of the tensile instability and (ii) emergence
of the shear instability with increasing magnitude of anisotropy α. We consider each
of these in turn.

To understand why viscous anisotropy stabilises the tensile instability, we return to
the systematics of the base-state stress (§ 4.1). Comparison of the three columns of
figure 3 shows that, as α0 increases, the tensile stress τ (0)YY decreases in amplitude and
becomes compressive at all angles. With τ (0)YY 6 0, the first term in (5.3) is always less
than or equal to zero, and hence stable.

To understand why viscous anisotropy destabilises the shear mechanism, we
consider the coupling between the shear stress that drives the instability and the
normal strain rate that is responsible for its growth. As shown by (4.9) with
τ
(f )
YY = λφ1τ

(0)
YY and τ

(f )
XY = λφ1τ

(0)
XY , the shear stress τ

(0)
XY is coupled to the normal

strain rate ė(1)YY via C̃
(0)
YYXY . The angular dependence of C̃

(0)
YYXY is shown by dashed

curves in figure 5(d–f ). If C̃
(0)
YYXYτ

(0)
XY is positive, then ṡ is positive (or ė(1)YY is in

phase with φ1) and the shear mechanism contributes to unstable growth of porosity
perturbations. In fact, this product is positive (or zero) for all θ , enabling us to
name this coupling ‘shear stress-induced expansion’. This non-trivial result comes
from the assumed microstructural behaviour: that stress-induced softening occurs in
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Model C̃
(0)
YYYYτ

(f )
YY (tensile) C̃

(0)
YYXYτ

(f )
XY (shear) Dominant

angle (deg.)λ> 0 τ
(0)
YY > 0 Additional factor

Isotropic Newtonian E E — — 45
Static anisotropy E A — E ∼23
Dynamic anisotropy E A E E ∼10
Isotropic power-law E E E — ∼20

TABLE 1. Summary of band formation models: E, exists; —, does not exist; A, is
modified.

the tensile (τ3) direction, as illustrated in Takei & Katz (2013, figure 7a). So the
porosity perturbation grows because of the shear mechanism, for which the low angle
is favourable.

5.1.4. Summary of static anisotropy model
As a recap and summary, note that, under isotropic viscosity, the growth of bands at

45◦ to the shear plane is caused by a tensile instability (Stevenson 1989; Spiegelman
2003). In contrast, under anisotropic viscosity, the peak growth rate of bands is
controlled by a distinct shear instability. Although the peak growth rate of the shear
instability occurs at θ < 15◦, stabilisation at these low angles by the tensile mechanism
acts to give a maximum in the combined growth rate at θ = 15◦.

The comparison between isotropic and anisotropic systems developed above is
summarised in the first two rows of table 1. The tensile instability is separated into
porosity weakening, λ, which is fundamental to all models, and the tensile stress
across bands, τ (0)YY , which affects both isotropic and anisotropic cases. A shift of
τ
(0)
YY to more negative, compressive values (represented by A) stabilises the tensile

instability. In contrast, the difference in shear instability can be simply shown by its
existence or non-existence (E or —). It is the leading-order terms τ (0)YY and C̃

(0)
YYXY that

are responsible for these differences.
Katz et al. (2006) extended the analysis of isotropic viscosity to include a power-

law dependence of viscosity on strain rate (or equivalently on stress). They showed
that strain-rate weakening viscosity leads to lowering of band angle. In the discussion
section, we compare the angle-lowering mechanism of viscous anisotropy to that of
the power-law viscosity. This is enabled by a reanalysis of the power-law model using
the rotated coordinate system.

5.2. Dynamic anisotropy
We return to the full expression for the growth rate of bands, (4.11), to develop a
physical understanding of why dynamic anisotropy lowers band angles, as observed
in the numerical solutions (figure 1). To do so we take α0 = 1 and again make the
simplifying assumption that β = 0 (though see § 5.3).

The perturbations in Θ and α under dynamic anisotropy are obtained by
linearisation of (2.3) and (2.4) with respect to the stress perturbation τ

(1)
ij . The

expansion is conducted around the base-state values Θ0 and α0. In appendix B,
we show that the sensitivity of α to variations in deviatoric stress is given by the
parameter

ᾰ = ∂α

∂1τ

∣∣∣∣
1τ (0)

= 2
τsat

sech2

(
2(1τ (0) − τoffset)

τsat

)
. (5.4)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

59
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.592


214 Y. Takei and R. F. Katz

0 45 90 135 180
0 45 90 135 180

–5

0

5

–5

0

5

–10

0

10

–1

0

–1

–2

0

1

Shear
Tensile

(a)

(b)

(c)

(d)

(e)

FIGURE 6. Characteristics of the dynamic anisotropy model for various values of ᾰ as a
function of the angle θ between porosity perturbations and the shear plane. In all panels,
α0 = 1, β0 = 0, λ = 27 and φ0 = 0.05. (a) Full growth rate ṡ from (4.11). (b) Growth
rate from (4.11) split into the tensile-instability term (solid lines) and the shear-instability
term (dashed lines). (c) Band-normal forcing stress (solid lines; (4.8a)) and band-parallel
perturbation stress (dashed lines; (B 5)). Both are divided by λφ1. Calculation details are
in appendix B. (d,e) The anisotropy perturbations α1 and Θ1 divided by λφ1, calculated
according to (B 8a,b).

This parameter allows us to write α1= ᾰ1τ (1), and hence to see that static anisotropy
corresponds to the case where ᾰ= 0. The situation for Θ is more complicated because
there is no single parameter that controls its sensitivity to deviatoric stress; variations
of Θ can either be fully considered or fully neglected. Fortunately, numerical and
analytical results show that these variations (Θ1) play an insignificant role in the
understanding of band angles, and hence we need consider only the magnitude
of anisotropy α. This is achieved by looking at the dependence of key quantities
(especially ṡ) on ᾰ.

The growth rate of porosity perturbations ṡ is shown in figure 6(a) for α0=1 and for
values of ᾰ ranging from 0 to 2. Although ᾰ=0 does not exclude linearised variations
in Θ , comparison with the ṡ curve in figure 5(b) confirms that variations in Θ are
ineffectual; with ᾰ = 0 the expected band angle is 45◦. For increasing ᾰ, the growth-
rate peak again splits into peaks at low and high angles. It is important to note that the
mean value of α (α0) is not changed in this exercise – only the amplitude of variations
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about that mean. Consistent with the numerical results of figure 1, dynamic variations
in the magnitude of anisotropy can sharply reduce band angles, even at moderate α0

for which the static anisotropy model predicts a high band angle (45◦).
Figure 6(b) breaks the full growth rate into two parts, each associated with one

of the terms of (4.11). Dashed lines, representing the shear instability, are almost
unaffected by ᾰ. In contrast, the tensile instability is strongly stabilised with increasing
ᾰ. This stabilisation causes the peak of the full growth rate in figure 6(a) to split into
low- and high-angle peaks. To understand why dynamic anisotropy promotes low band
angles, it is therefore sufficient to understand why it stabilises the tensile instability.

The tensile instability is driven by τ
(f )
YY , as discussed in § 5.1. This represents the

normal stress (tension positive) that arises when viscosity perturbations interact with
the base-state strain rate. The detailed form of the forcing stress for the dynamic
anisotropy model is given in (B 4). Figure 6(c) shows that the forcing normal stress
τ
(f )
YY varies significantly with ᾰ (whereas the forcing shear stress, not shown, is almost

unaffected by ᾰ). The system compliances, which are leading-order quantities, are not
affected by dynamic anisotropy. Therefore, it is the variation of τ (f )YY that is responsible
for stabilisation of the tensile instability under dynamic anisotropy.

To develop a physical understanding of the detailed dependence of τ (f )YY on φ1,
α1 and Θ1 (B 4a), focus attention on θ = 45◦, as this is the dominant band angle
when ᾰ = 0. For bands at 45◦, the solid curves in figure 6(c) show that the forcing
stress goes from a positive perturbation (in phase with φ1) to a negative perturbation
(in antiphase with φ1) with increasing ᾰ – hence the forcing stress τ

(f )
YY in the

high-porosity bands goes from tensile to compressive. This change is due to an
increase in the magnitude of anisotropy perturbation α1= ᾰ1τ (1), shown in figure 6(d).
Since τ

(1)
XY = τ (1)YY = 0, the deviatoric stress perturbation 1τ (1) is entirely due to the

band-parallel normal stress perturbation τ (1)XX (according to (B 5)), which is shown by
dashed curves in figure 6(c). Because τ (0)XX < 0, τ (1)XX > 0 signifies a magnitude reduction
of τXX in the high-porosity bands; the largest change occurs for bands at θ = 45◦.
As sensitivity ᾰ to deviatoric stress increases, α1 becomes more negative (figure 6d).
Negative values of α1 (in antiphase with φ1) mean that high-porosity bands have lower
deviatoric stress and weaker anisotropy than the low-porosity inter-band regions. This
is consistent with numerical results in figure 1(d).

Figure 5(d–f ) shows that α0 increases the normal compliance C̃
(0)
YYYY at angles

between zero and 90◦. A negative perturbation to α0 therefore makes the high-porosity
bands in this range of angles less compliant to tensile stress and the low-porosity
inter-bands more compliant. Overall, then, the perturbation in anisotropy amplitude
α1 tends to cancel the direct effect of the porosity perturbation φ1 on the normal
compliance, and hence α1 works to stabilise the tensile instability.

The comparison between the static and dynamic anisotropy models developed in
this section is summarised in table 1. These two models are identical at leading order
but different at first order. Therefore, stabilisation of the tensile mechanism due to
more compressive base-state stress (τ (0)YY ) and destabilisation of the shear mechanism
due to shear stress-induced expansion (C̃

(0)
YYXY) occur in both the static and the dynamic

anisotropy models. These two cases differ, however, in that further stabilisation of
the tensile mechanism occurs due to the dynamic variation of anisotropy magnitude
(α1). This effect hardens the band regions and weakens the inter-band regions under
dynamic anisotropy. This additional factor (E in table 1) significantly lowers the
band angle.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

59
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.592


216 Y. Takei and R. F. Katz

It is interesting to note that dynamic perturbations to the angle of anisotropy Θ1
are not an important control on band angle. Figure 6(e) shows that they are not
affected by ᾰ. More importantly, Θ1 is always zero for bands oriented at θ = 45◦.
This indicates that the stabilisation of the tensile instability and the lowering of band
angle under dynamic anisotropy cannot be attributed to Θ1. In numerical simulations
(figure 1e), the variations of Θ do not contribute to the lowering of band angle that
is observed in figure 1(c), though they are well explained by the stability analysis at
θ ' 10◦ (red dashed line).

5.3. The effect of contiguity increase in the τ1 direction
Until now, we have neglected β and focused on the effects of α, which quantifies
contiguity decrease in the direction of maximum tension. Non-zero α represents a
weakening in the τ3 direction that (i) reduces the magnitude of tensile stress and
leads to (ii) shear strain-induced compression and (iii) shear stress-induced extension
(Takei & Katz 2013). We have shown that the tensile mechanism is stabilised around
θ = 45◦ by the first of these and is stabilised around θ = 0◦ and 90◦ by the second;
we have also shown that the shear mechanism is destabilised by (iii). The parameter
β quantifies the contiguity increase in the direction of maximum compression. Even if
α is zero, a non-zero β creates viscous anisotropy (see (2.2b)), causing the couplings
(ii) and (iii). However, figure 4 shows that β0 does not cause the weakening (i). It
is this weakening, by α only, that is responsible for splitting the growth-rate peak in
both static and dynamic models. On this basis, we expect the effect of β0 to be small.
This is indeed the case: as shown below, β alone does not cause a lowering of band
angle, but it can affect the lowering by α.

Figure 7(a,b) illustrates the effect of β under static anisotropy. Figure 7(a) shows
that, under static anisotropy, ṡ is split into high- and low-angle peaks for any value
of β0= 0 when α0= 2 (solid curves), whereas it is peaked at 45◦ for any value of β0
when α0= 0 (β0= 2 shown by dash-dotted curve). For α0= 2, increasing β0 causes a
modest shift to more compressive τ (0)YY at θ ∼ 0◦ and ∼90◦ and a modest increase in
the amplitude of shear stress τ (0)XY (figure 3c,f,i). Therefore, as figure 7(b) shows, β0
causes stabilisation of the tensile instability and destabilisation of the shear instability
in equal measure. These two effects compensate each other and the solid growth-rate
curves in figure 7(a) are thus all very similar to that for β0 = 0.

Figure 7(c–e) shows how β affects dynamic anisotropy. Figure 7(c) shows that, for ṡ
in the dynamic anisotropy model, a two-peaked growth rate occurs for α0= ᾰ= 1 and
β0= β̆ = 0 (light grey curve) but does not for α0= ᾰ= 0 and β0= β̆ = 1 (dash-dotted
curve). In the former case of non-zero α with a double peak, increasing β0 enhances
the stabilisation of the tensile mechanism at 45◦ and deepens the valley between low-
and high-angle peaks of ṡ (figure 7c,d). This occurs because τ (1)XX is enhanced by the
overall strengthening effect of β0 (figure 7e). The very low band angles that emerge in
the numerical simulation with dynamic anisotropy and rβ = 1 (figure 1) are therefore
a consequence of both the dynamic effect of α and the enhancement by β.

6. Summary and discussion
We have developed and analysed a model of coupled magma–mantle dynamics

with anisotropic viscosity. The anisotropy is controlled by the orientation of principal
stresses and the amount of deviatoric stress. The model presented here introduces
small modifications on that of Takei & Katz (2013). In particular, the parameter β
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FIGURE 7. The effect of β on the growth rate of porosity perturbations for static (a,b)
and dynamic (c–e) anisotropy. (a) Full growth rate ṡ from (5.3) for α0 = 2 and various
values of β0. A single curve for α0 = 0 and β0 = 2 is also shown. (b) Cases with α0 = 2
decomposed into tensile and shear parts. Line grey scale has the same meaning as in (a);
there is no curve for α0= 0. (c) Full growth rate ṡ from (4.11) for α0= ᾰ= 1 and various
values of β0= β̆. A single curve for α0= ᾰ= 0 and β0= β̆ = 1 is also plotted. (d) Cases
with α0 = ᾰ = 1 decomposed into tensile and shear parts. (e) The band-parallel normal
stress perturbation τ (1)XX .

models an increase in contiguity of grains in the direction of maximum compressive
stress and the parameter τoffset allows for a finer control on the magnitude of anisotropy
and its sensitivity to stress (for rβ = const.). This description of viscous anisotropy
is physically consistent with experiments and relatively simple, so its analysis should
clarify the mechanics of rocks for which the assumptions hold. Existing experimental
data, however, are not enough to quantitatively constrain all parameter values. The
parameter studies performed here aim to understand the underlying physics.

It is known from previous theoretical work that anisotropic viscosity lowers the
angle of emergent high-porosity bands. Numerical solutions (figure 1) compare
uniform anisotropy imposed a priori with anisotropy that varies according to local
conditions of stress. They show that dynamic anisotropy leads to lowering of band
angle as compared with uniform anisotropy, where the mean magnitude and angle
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from the dynamic case are used in the static case. Moreover, dynamic anisotropy
produces low-angle bands even when its mean values would not do so if applied
uniformly and held constant. The physical reasons for this have not previously been
clear. Indeed, the question of why anisotropic viscosity lowers band angle at all has
not previously been addressed.

Static viscous anisotropy, in which viscous resistance to extension in the most
tensile direction is decreased, predicts low angles of high-porosity bands for two
reasons: (i) it suppresses the mode of instability in which tension causes extension
across high-porosity bands; and (ii) it creates a mode of instability in which shear
stress causes extension across high-porosity bands. The tensile instability has a
peak perturbation growth rate in the maximum tensile direction (θ = 45◦). When this
instability is suppressed by static anisotropy, the peak growth rate shifts to the smaller
angles that are favoured by the emergent shear instability. Although the growth of
the lowest-angle bands are enhanced by the shear instability, perturbations parallel to
the shear plane (θ = 0◦) are stable because of the compressive stress created by the
base-state flow. Therefore, a low but finite angle of high-porosity bands is predicted
by this model. Allowing for an increase in contiguity and viscosity in the direction of
maximum compression has counterbalancing effects that leave predicted band angles
almost unchanged.

Dynamic viscous anisotropy, in which the anisotropy parameters are allowed to vary
with the local orientation and magnitude of deviatoric stress, tends to further lower
band angles. It does so because it suppresses the tensile instability around θ = 45◦ via
the following dynamic effect. Lower deviatoric stress in viscously weak bands gives
lower anisotropy there, which makes them less compliant to tensile stress across them.
Enhanced anisotropy in the interleaved lower-porosity regions makes those regions
more compliant. This effect overcompensates the compliance variations directly due
to porosity weakening; it favours melt segregation from the bands into the inter-bands.
Allowing for an increase in contiguity and viscosity in the direction of maximum
compressional stress increases the contrast in band-parallel compressional stress
(and deviatoric stress) between bands and inter-bands. This enhances the contrast in
anisotropy and further suppresses the tensile instability. Dynamic anisotropy makes
almost no modification to the shear instability.

The additional effects of dynamic anisotropy and the anisotropic increase of
contiguity are important because they make more robust the prediction of low band
angles. Under static anisotropy, the mean magnitude of anisotropy must be quite
high to produce low-angle bands; moderate levels are insufficient. In contrast, under
dynamic anisotropy with contiguity increase in the direction of maximum compression,
moderate levels of mean anisotropy efficiently produce low-angle bands. This helps
to support the hypothesis that low-angle bands in experiments are due to anisotropic
viscosity because it expands the parameter space in which the theoretical predictions
should hold.

These conclusions were reached by use of stability analysis in a coordinate system
that is rotated with respect to the plane of simple shear; in particular, the coordinate
system is aligned with the wavefronts of the harmonic perturbations. This rotation
leads to simpler expressions for the growth rate of perturbations: the tensile and
shear modes appear as distinct terms that are amenable to physical understanding.
For this reason, our analysis represents a framework in which to test and understand
the family of rheologies that potentially produce low-angle bands in shearing flows.
This includes variants of isotropic and anisotropic viscosity, but also potentially
of dilatational granular rheology, damage, or composite rheologies (e.g. Rudge &
Bercovici 2015).
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An application of the rotated coordinate system to the isotropic power-law creep
model with stress exponent n (Katz et al. 2006) is presented in appendix A. As with
all other models considered here, porosity perturbations reduce viscosity in the bands,
resulting in the enhancement of the normal and shear strain rates, ė(1)YY and ė(1)XY . In
this model, however, the enhanced strain rates further reduce the viscosity, which
feeds back to further enhance the strain rates. The importance of this non-Newtonian
feedback relative to the porosity-weakening feedback is roughly approximated by
n− 1. Both normal and shear strain rates contribute to the non-Newtonian feedback;
the relative importance of the shear component increases with increasing rξ . Therefore,
if n and rξ are sufficiently large, shear strain rate is the key weakening factor and
the growth rate reaches a maximum at a substantially lowered angle. However, in
contrast to anisotropic viscosity, strain-rate weakening viscosity does not give rise
to the shear instability – it merely lowers the most favourable angle for the tensile
instability (comparison in table 1). Although the details differ, both models predict
an important role for shear stress in the lowering mechanism; both predict a low but
finite angle with localised shear strain in the higher-porosity bands.

The model of viscous anisotropy used here seems promising as an explanation
for laboratory experiments on the deformation of partially molten rocks. Although
its detailed form must be considered tentative, we are not aware of another theory
that reproduces the low-angle bands found in experiments (Holtzman et al. 2003)
while respecting the measured stress dependence of creep viscosity (King et al.
2010). Furthermore, radially inward migration of magma in experiments employing
torsional deformation (King, Holtzman & Kohlstedt 2011; Qi et al. 2015) may be
direct evidence of base-state segregation, a feature that arises naturally from viscous
anisotropy (Takei & Katz 2013) but may be impossible to reconcile with isotropic
viscosity. Although the present study focuses on the angle of bands, the growth
rate of bands is also affected by static and dynamic anisotropy. The growth rate is
lowered by static anisotropy and further lowered by dynamic anisotropy (figures 5
and 6). This can also be discerned in the different total strain and different ranges of
porosity in figure 1(a,b). Therefore, a quantitative comparison between the measured
and predicted growth rate becomes important for further refining and testing the
theory.

In the present theory, α, β and Θ are assumed to depend on stress, based on
the experimental results by Daines & Kohlstedt (1997) and Takei (2010). Although
this assumption is considered to be valid at small strain, possible evolution of these
parameters with increasing strain has to be investigated to model the system at large
strains. Indeed, for more than 200 % strain under simple shear, Zimmerman et al.
(1999) observed that the long axis of melt pockets is predominantly oriented at an
angle of 20◦ from τ1; this is difficult to explain by stress alone. It should be noted,
however, that microstructural analysis in laboratory studies has been performed in
terms of shape and orientation of melt pockets. An analysis in terms of observed
contiguity is more appropriate for comparison with and incorporation into the model.
Numerical simulation using dynamic anisotropy and an empirically justified evolution
equation for contiguity will be important in future work.

Acknowledgements
The research leading to these results has received funding from the European

Research Council (ERC) under the European Union’s Seventh Framework Programme
(FP7/2007–2013)/ERC grant agreement 279925. R.F.K. visited the Earthquake

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

59
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.592


220 Y. Takei and R. F. Katz

Research Institute of the University of Tokyo with support from the International
Research Promotion Office; he is grateful for support by the Leverhulme Trust.
Numerical simulations were performed at the Advanced Research Computing facility
of the University of Oxford. The authors are grateful for stimulating discussions with
M. Spiegelman, D. L. Kohlstedt and C. Qi, and for helpful and encouraging reviews
by S. Butler and two anonymous referees.

Appendix A. Power-law creep model by Katz et al. (2006)
The model of band formation under power-law viscosity by Katz et al. (2006) is

formulated by (2.1) and the viscous constitutive relations

Cijkl = η(φ, ėII)×
ij↓ kl→ XX YY XY
XX
YY
XY




rξ + 4
3 rξ − 2

3 0
· rξ + 4

3 0
· · 1


 , (A 1)

where only six of the 16 components of the two-dimensional version are shown due
to the symmetry of Cijkl. The normalised shear viscosity η(φ, ėII) depends on porosity
and the second invariant of the strain-rate tensor, ėII =

√
ėijėij/2, as

η(φ, ėII)= exp[−λ(φ − φ0)/n]ė(1−n)/n
II (A 2)

(Katz et al. 2006; Takei & Holtzman 2009b). Equation (A 2) represents a power-law
viscosity that, to represent deformation by dislocation creep, has an exponent n ≈
3.5 (e.g. Karato & Wu 1993) (n = 1 corresponds to Newtonian viscosity). Under
dislocation creep, the strain rate is highly sensitive to the stress because dislocation
velocity and density both increase with increasing stress. Hence the model of Katz
et al. (2006) incorporates strain-rate weakening in addition to the porosity weakening.

Katz et al. (2006) demonstrated that strain-rate weakening viscosity works to lower
the band angle. Although the mechanism of this lowering is briefly discussed in their
paper, further analysis of their model using the perturbation-oriented coordinate system
is helpful to understand their explanation and to compare it with the mechanism of
viscous anisotropy. For consistency with the foregoing development, ηL= 0 is assumed
here. We can expand (A 2) into base-state and perturbation terms as

η= η0

{
1− ε

[
λφ1

n
+ 2

n− 1
n

(2ė(0)XY ė(1)XY + ė(0)YY ė(1)YY )

]}
, (A 3)

where η0= (ė(0)II )
(1−n)/n= 2(n−1)/n and we have used ė(0)II = 1/2 and ė(1)XX = 0. Combining

(A 1) and (A 3) with stress balance equations (4.6b) and (4.6c), we obtain

C(0)
YYYY ė(1)YY =

[
λ

n
φ1 + 2

n− 1
n

(ė(0)YY ė(1)YY + 2ė(0)XY ė(1)XY)

]
τ
(0)
YY , (A 4a)

2C(0)
XYXY ė(1)XY =

[
λ

n
φ1 + 2

n− 1
n

(ė(0)YY ė(1)YY + 2ė(0)XY ė(1)XY)

]
τ
(0)
XY . (A 4b)

This formulation is not the most amenable to inversion for the strain-rate perturbations,
but it allows for a clear comparison with equations (4.7) and (4.8). We have moved
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FIGURE 8. Characteristics of the power-law isotropic viscosity model as a function of the
angle between porosity perturbations and the shear plane. In both panels, n=5. (a) Normal
strain-rate perturbation, which shows a double peak. (b) Forcing normal stress τ (f )YY due to
porosity weakening (solid curve), strain-rate weakening associated with ė(1)YY (dashed curve)
and strain-rate weakening associated with ė(1)XY (dotted curve). The three curves in (b) sum
to the curve in (a).

terms to the right-hand side that can be considered to comprise the forcing stresses τ (f )YY

and τ (f )XY . Two points are evident. First, the forcing stresses retain the term representing
base-state stress operating on porosity perturbations. Second, there are new terms that
cross-couple the equations (A 4).

The cross-coupling terms in (A 4) arise because normal ėYY and shear ėXY

components both affect ėII and hence modify the viscosity (by way of an increase
in dislocation density). Two feedback mechanisms are thus at work, causing
growth of porosity perturbations. The first of these is a direct effect: when λ > 0,
high-porosity bands are weaker by virtue of their higher porosity. The second is
indirect: porosity-weakened bands have a larger strain rate that, when n > 1, further
weakens them through the nonlinear viscosity. The relative importance of the second
mechanism to the first one increases with increasing n− 1.

Solving (A 4) for ė(1)YY and ė(1)XY and using (4.6a) and (A 1), the growth rate is

ṡ= (1− φ0)
λ

n
τ
(0)
YY

C(0)
YYYY

[
1− 4

n− 1
n

(ė(0)XY)
2 − 2

n− 1
n

(
1− rξ − 2/3

rξ + 4/3

)
(ė(0)YY )

2

]−1

. (A 5)
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Takei & Holtzman (2009b) obtained the identical result for ṡ and showed that a single
peak splits into two at large n. Here, to understand the mechanism of the split, the
forcing stress associated with tension, τ (f )YY , is plotted in figure 8(b) for each of the
three terms on the right-hand side of (A 4a). Although the tensile forcing stress due
to the porosity and normal strain-rate perturbations are maximum at θ = 45◦ (solid and
dashed curves), that due to the enhanced shear strain rate ė(1)XY has peaks at θ ' 10◦

and 80◦ (dotted curve). The sum of these three curves determines the profile of ė(1)YY
in figure 8(a) and hence determines the growth rate. Figure 8(b) confirms that the
weakening of viscosity by the enhanced shear strain rate ė(1)XY is the main cause of the
peak split of the growth rate.

Appendix B. Calculation of the dynamic anisotropy growth rate
To solve the first-order equations of force balance (4.6), we need an expansion of

the viscosity tensor into its base-state and perturbation components. Equation (2.2b)
gives Cijkl as a function of φ, α, β and Θ . Under the dynamic anisotropy model, it is
necessary to account for non-zero perturbations α1, β1 and Θ1. In that case, C(0)

ijkl and
C(1)

ijkl are calculated as

C(0)
ijkl = Cijkl(φ0, α0, β0, Θ0), (B 1a)

C(1)
ijkl =

∂Cijkl

∂φ

∣∣∣∣
0

φ1 +
(
∂Cijkl

∂α

∣∣∣∣
0

+ rβ
∂Cijkl

∂β

∣∣∣∣
0

)
α1 + ∂Cijkl

∂Θ

∣∣∣∣
0

Θ1. (B 1b)

From the equation for anisotropy magnitude (2.4a),

α0 = 1+ tanh
(

21τ (0) − 2τoffset

τsat

)
, (B 2)

where 1τ (0)= 2(1− (α0− β0)/4). Then from (B 1b), the stress perturbation is written
as

τ
(1)
ij = C(0)

ijklė
(1)
kl − λφ1τ

(0)
ij + α1

(
∂Cijkl

∂α

∣∣∣∣
0

+ rβ
∂Cijkl

∂β

∣∣∣∣
0

)
ė(0)kl +Θ1

∂Cijkl

∂Θ

∣∣∣∣
0

ė(0)kl . (B 3)

Using (B 3), (2.2b), (4.3) and Θ0 = π/4 + θ , the mechanical equilibrium conditions
τ
(1)
XY = τ (1)YY = 0 from (4.6) are written as

C(0)
YYYY ė(1)YY + 2C(0)

YYXY ė(1)XY = λφ1τ
(0)
YY +

1− rβ
4

(α1 sin 2θ+2α0Θ1 cos 2θ)+ 1+ rβ
4

α1, (B 4a)

C(0)
XYYY ė(1)YY + 2C(0)

XYXY ė(1)XY = λφ1τ
(0)
XY +

1− rβ
4

(α1 cos 2θ − 2α0Θ1 sin 2θ) , (B 4b)

where the right-hand sides of these equations are the dynamic anisotropy version of
the forcing stresses τ (f )YY and τ (f )XY , respectively. The normal-stress perturbation in the X
direction is

τ
(1)
XX = C(0)

XXYY ė(1)YY + 2C(0)
XXXY ė(1)XY − λφ1τ

(0)
XX

− 1+ rβ
4

α1 + 1− rβ
4

(α1 sin 2θ + 2α0Θ1 cos 2θ). (B 5)
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Microstructural anisotropy is determined by deviatoric stress. From the total
differentials of (2.3) and (2.4a), and from τ

(1)
XY = τ (1)YY = 0, α1 and Θ1 are related

to τ (1)XX as

α1 = ᾰ1τ (1) = ᾰ τ
(0)
XX − τ (0)YY

1τ (0)
τ
(1)
XX , (B 6a)

Θ1 =−sin 4Θ0

4
τ
(1)
XX

τ
(0)
XX − τ (0)YY

, (B 6b)

with

ᾰ = ∂α

∂1τ

∣∣∣∣
1τ=1τ (0)

= 2
τsat

sech2

(
2(1τ (0) − τoffset)

τsat

)
. (B 7)

Then we use the expression (B 5) for τ (1)XX and (B 6) to obtain

α1 = 2ζ
(

C(0)
XXYY ė(1)YY + 2C(0)

XXXY ė(1)XY − λφ1τ
(0)
XX

)
, (B 8a)

Θ1 = ζ1τ (0) sin 4θ

2ᾰ(τ (0)XX − τ (0)YY )
2

(
C(0)

XXYY ė(1)YY + 2C(0)
XXXY ė(1)XY − λφ1τ

(0)
XX

)
, (B 8b)

where

ζ−1 =
(

1+ rβ
2
− 1− rβ

2
sin 2θ

)
+ 21τ (0)

ᾰ(τ
(0)
XX − τ (0)YY )

[
1− (α0 − β0)

8(τ (0)XX − τ (0)YY )
cos 2θ sin 4θ

]
.

(B 9)
Equations (B 8) can be substituted into the stress-balance equations (B 4), giving a
system in which the only first-order quantities are φ1, ė(1)XY and ė(1)YY .
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