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In this numerical and theoretical work, we study the turbulent channel flow of
Newtonian and elastoviscoplastic fluids. The coherent structures in these flows are
identified by means of higher order dynamic mode decomposition (HODMD), applied
to a set of data non-equidistant in time, to reveal the role of the near-wall streaks and
their breakdown, and the interplay between turbulent dynamics and non-Newtonian
effects. HODMD identifies six different high-amplitude modes, which either describe
the yielded flow or the yielded–unyielded flow interaction. The structure of the
low- and high-frequency modes suggests that the interaction between high- and
low-speed streamwise velocity structures is one of the mechanisms triggering the
streak breakdown, dominant in Newtonian turbulence where we observe shorter
near-wall streaks and a more chaotic dynamics. As the influence of elasticity and
plasticity increases, the flow becomes more correlated in the streamwise direction,
with long streaks disrupted for short times by localised perturbations, reflected in
reduced drag. Finally, we present streamwise-periodic dynamic mode decomposition
modes as a viable tool to describe the highly complex turbulent flows, and identify
simple well-organised groups of travelling waves.

Key words: nonlinear instability, viscoelasticity, turbulent boundary layers

1. Introduction
Near-wall turbulence is responsible for significant drag penalties in many flows of

engineering relevance, and because of this, many researchers are studying various
ways to be able to properly control the flow (Choi, Moin & Kim 1993; Dubief et al.
2004; Orlandi & Leonardi 2008; Rosti & Brandt 2017; Rosti, Brandt & Pinelli 2018b;
Shahmardi et al. 2019). Among the many control strategies, the use of polymers has
been demonstrated to be very efficient to reduce drag in pipelines (Virk 1971). Less
attention has been given to more complex non-Newtonian fluids which can be found
in a wide range of applications, including biological fluids and various industrial
processes. One of the main features of these types of flows is the nonlinear relation
between the shear stress and the shear rate. Here, we focus on fluids that can exhibit
simultaneously elastic, viscous and plastic properties, usually called elastoviscoplastic
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(EVP) fluids (Balmforth, Frigaard & Ovarlez 2014). In particular, they behave as
solids when the applied stress is below a certain threshold, the yield stress, while
for stresses above it, they start to flow as liquids. The objective of this study is
to apply recently developed tools from system dynamics, in particular higher order
dynamic mode decomposition (HODMD), to turbulent channel flows to understand
how the underlying turbulence dynamics is modified by plastic and elastic effects
in the flow. By doing this, we will also show that HODMD is able to extract the
relevant dynamics in Newtonian wall-bounded turbulence, a configuration so far quite
elusive to this type of analysis owing to the complex interplay between the different
temporal and spatial scales of the problem. Indeed, unlike homogeneous turbulence
and free shear flows, production and dissipation of energy are associated with similar
scales in wall-bounded flows (Cimarelli, De Angelis & Casciola 2013; Cimarelli et al.
2016).

In classical Newtonian flows, a regeneration cycle based on the growth and
breakdown of streamwise elongated structures is known to sustain wall-bounded
turbulence. This consists of the continuous extraction and momentum transfer from
the outer region (high-velocity core) to the inner region (near wall, low velocity) and
final dissipation into internal energy as an effect of the viscous forces. In particular,
streamwise velocity streaks, which are elongated and narrow regions of excess or
defect streamwise velocity, are generated by streamwise vortices via the lift-up effect
(Moffatt 1967; Landahl 1980; Brandt 2014). These streaks break down and generate
streamwise vorticity, completing the regeneration cycle which enables a turbulent
flow to be sustained (Hamilton, Kim & Waleffe 1995; Jiménez & Pineli 1999). The
self-sustained mechanism is quantified statistically with the turbulent fluctuations and
the Reynolds shear stress. Nevertheless, understanding the origin and stability of these
coherent structures becomes important also to model and manipulate turbulence. Two
key ingredients of this self-sustaining cycle are the lift-up mechanism and the streak
breakdown. The lift-up mechanism has been found to be robust and ubiquitous in
wall-bounded flows and it is associated with the generation of large energetic near-wall
structures. The streaks, on the other hand, become unstable and break down via a
rapid inviscid inflectional mechanism (Waleffe 1995; Kawahara et al. 1998; Reddy
et al. 1998; Andersson et al. 2001). This instability has been initially treated as a
modal secondary instability of long steady streaks, however, several authors proposed
bypass mechanisms active also at lower streak amplitude, comparable to those found
in turbulent flows. Schoppa & Hussain (2002) suggested that the streak instability is
indeed related to the transient growth of secondary perturbations, disrupting modally
stable streaks (see also Höpffner, Brandt & Henningson (2005)); moreover, Brandt
& de Lange (2008) show that, in a noisy environment, the interactions of finite
length between streaks moving at different velocities is also able to initiate the streak
breakdown, leading to vortical structures similar to those observed in simulations
of turbulent channel flows. More recently, Cossu et al. (2011) studied the nonlinear
stability of laminar sinuously bent streaks in a plane Couette flow, showing that the
transition to turbulence is induced by the initial transient amplification of streamwise
vortices, forced by the decaying sinuous mode. This process is followed by a new
growth of the streaks and their final breakdown. Here, we want to understand how
the near-wall cycle is modified in an EVP fluid.

Significant attention has been given to viscoelastic flows to study turbulence
modulation and near-wall structures in drag-reducing polymeric fluids. It has been
shown that polymers can alter flow instabilities and transition to turbulence. Regarding
stability, Biancofiore, Brandt & Zaki (2017) examined the secondary instability of
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streaks in viscoelastic flows, showing that the streaks reach a lower average energy
with increasing elasticity due to a resistive polymer torque that opposes the streamwise
vorticity and, as a result, opposes the lift-up mechanism. Dubief et al. (2005) studied
the intermittency in turbulent viscoelastic flows, showing that the drag-reducing
property of polymers is closely related to coherent turbulent structures. Polymers
dampen near-wall vortices but also enhance streamwise kinetic energy in near-wall
streaks. The net balance of these two opposite actions leads to a self-sustained
drag-reduced turbulent flow. Recently, Xi & Graham (2010, 2012a,b) provided new
insight into the mechanism by which polymer additives reduce the drag: they proposed
that a turbulent flow is characterised by an alternate succession of strong and weak
turbulence phases, the first characterised by flow structures showing strong vortices
and wavy streaks, the latter weak streamwise vortices and almost streamwise-invariant
streaks. In the Newtonian flow, the so-called active turbulence dominates, while active
intervals becomes shorter while the so-called hibernating intervals are unaffected and
become relatively more important with increasing viscoelasticity.

The stability of yield stress fluids has received increased attention during the last
two decades (Nouar & Frigaard 2001; Metivier, Nouar & Brancher 2005; Nouar et al.
2007; Nouar & Bottaro 2010; Bentrad et al. 2017). Among these authors, Nouar et al.
(2007) found that, in a plane channel, the flow of an EVP fluid is always linearly
stable. They showed that the unyielded regions (stress below the yield stress) always
remain unyielded in a linear stability analysis, while the optimal disturbance for
moderate or high Bingham number consists of an oblique wave, which is associated
with the lift-up effect (Schmid 2007). Nouar & Frigaard (2001) carried out a nonlinear
stability analysis, showing that the critical Reynolds number for the transition from a
laminar to turbulent flow increases with the Bingham number (the ratio between the
yield and viscous stresses) and the nonlinear energy stability analysis has been recently
extended to multi-layer flows of yield stress and viscoelastic fluids (Moyers-Gonzalez,
Frigaard & Nouar 2004; Hormozi & Frigaard 2012).

Efficient mixing of yield stress fluids is a difficult fundamental problem, because the
solid regions are often merely convected by the surrounding fluid as rigid or elastic
plugs. Previous studies of yield stress fluids have focused on the steady state at a low
Reynolds number. However, despite that the actual flow in industrial applications and
natural phenomena is often inertial and unsteady, numerical studies of turbulent yield
stress fluids have appeared only recently (Rosti et al. 2018a). These authors studied
the pressure drop and statistics of the turbulent channel flow for increasing values
of the Bingham number and weak elasticity, from essentially Newtonian turbulence
(Bi= 0) to relaminarisation. Velocity correlations show that the size of the near-wall
streaks increases with the Bingham number, while it was suggested that the streaks
are responsible for the interaction between the yielded and unyielded regions in the
EVP flow.

Here, we will employ the results by Rosti et al. (2018a) together with additional
direct numerical simulations to disentangle the near-wall dynamics in turbulent
elastoviscoplastic and viscoelastic fluid flows. To do so, we use the model proposed by
Saramito (2007) to simulate the elastoviscoplastic fluid and the widely used FENE-P
model (Peterlin 1966) for the viscoelastic fluid. While the latter is the most common
choice for turbulent flows with polymers (Shahmardi et al. 2019), the former was
chosen to allow for the efficient three-dimensional and time evolving computations
needed in a turbulent flow, which are currently not feasible with the pure Bingham
model. Furthermore, the model proposed by Saramito (2007) revealed the ability to
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capture additional relevant physics (Cheddadi et al. 2011; Fraggedakis, Dimakopoulos
& Tsamopoulos 2016) and to properly match experimental results and observations
(Holenberg et al. 2012) (common materials used to study this type of EVP fluid are
Carbopol solutions and liquid foams (Firouznia et al. 2018; Zade et al. 2019)).

Via a nonlinear dynamic mode decomposition approach, we first identify the
structures associated with the streak regeneration cycle in Newtonian turbulence, this
being the first analysis of this kind to the authors’ knowledge. These structures consist
of a group of travelling waves located near the channel wall. We then investigate how
the near-wall streaks and coherent structures evolve as a function of the Bingham
number, and determine which structures are characteristic of the unyielded and yielded
regions. In particular, we wish to understand the relation between the flow coherent
structures of different scales, and the relaminarisation found at high Bingham numbers,
also looking at drag reduction in purely elastic fluids.

The method used for the analysis presented here is based on a variant of the
now well-known dynamic mode decomposition (DMD) (Schmid 2010), denoted as
HODMD (Le Clainche & Vega 2017a). This technique allows us to identify the
nonlinear temporal dynamics in a non-Newtonian fluid, analysing data which are
non-equidistant in time; also, the main benefit of HODMD lies in its ability to clean
noisy data or filter small-amplitude frequencies (Le Clainche, Vega & Soria 2017b;
Le Clainche et al. 2018b), which makes this method suitable for the analysis of
transient (Le Clainche & Vega 2017b; Le Clainche, Pérez & Vega 2018c) or highly
complex nonlinear flows. Similarly to DMD, HODMD decomposes spatio-temporal
data into a group of modes that oscillate either in time, space or in time and space
representing the leading flow dynamics as groups of travelling waves.

The article is organised as follows. Section 2 presents the description of the flow
under investigation and § 3 introduces the HODMD algorithm and the methodology
used to carry out the spatio-temporal analysis to detect the flow patterns. Sections 4
and 5 present our main results, with a comparison to a purely viscoelastic flow in § 6.
Finally, § 7 presents the main conclusions of the present work.

2. Numerical simulations and flow description

This article presents the analysis and studies the flow structures of data from a
direct numerical simulation of a turbulent channel flow of an incompressible fluid.
We investigate three types of fluid: a Newtonian fluid, an elastoviscoplastic fluid in
the limit of small elasticity, as in Rosti et al. (2018a), and a purely viscoelastic fluid.
This allows us to separate the effects of plasticity and elasticity on the turbulent wall
cycle.

We consider an incompressible fluid governed by the Navier–Stokes equations

∇ · v = 0, (2.1)

ρ

(
∂v

∂t
+ v · ∇v

)
=−∇p+∇ ·µf (∇v +∇vT)+∇ · τ , (2.2)

where v and p are the velocity and pressure fields, ρ and µs are the density and
the solvent viscosity of the fluid and τ is an extra stress tensor describing the
non-Newtonian behaviour. In the present study, the viscoelastic and elastoviscoplastic
effects in the flow are reproduced by the extra stress tensor τ described by the
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FENE-P (Peterlin 1966) and Saramito models (Saramito 2007), respectively, with a
generic transport equation as(

∂B
∂t
+ v · ∇B−B · ∇v −∇vT

·B
)
=

a
λ

I −
F
λ

B, (2.3)

where λ and µp are the relaxation time and polymeric viscosity, respectively. The
left-hand side of the equation is the so-called upper convective derivative, while the
right-hand side represents the stretching of the polymers and the yielding criterion.
In particular, B, F and a are equal to τλ/µp + I , max(0, 1 − τ0/|τ

d
|) and F in

the Saramito model, τ d being the deviatoric stress tensor, while they equal (τλ/µp+

aI)/F , L2/(L2
− trace(B)) and L2/(L2

− 3) in the FENE-P model. A fluid described by
the Saramito model is subject to recoverable Kelvin–Voigt viscoelastic deformations
when the local stress is below the yield stress τ0, while when the local stress exceeds
the yield value the fluid behaves as an Oldroyd-B viscoelastic fluid (F = a = 1, i.e.
the right-hand side of the previous equation is null). The FENE-P fluid on the other
hand is the natural extension of the Oldroyd-B valid for a higher level of elasticity,
with the introduction of the parameter L, which represents the maximum extensibility
of the polymers and is defined as the ratio of the length of a fully extended polymer
dumbbell to its equilibrium length.

The numerical implementation used for solving elastoviscoplastic flows is presented
and validated in full in Izbassarov et al. (2018). This problem is characterised by
five non-dimensional numbers. To ensure a fully developed flow, the bulk Reynolds
number is fixed to Reb = Uh/µ0 = 2800, which corresponds to Reτ = 180 in the
Newtonian case. The Bingham number, Bi= τ0h/µ0U, characterising the ratio between
the yield stress and the viscous forces, is varied in the range from Bi= 0 (Newtonian
flow) to Bi = 2.1, to study the effect of plasticity on the coherent structures in
this turbulent flow. Here, τ0 is the yield stress of the EVP fluid, U is the mean
velocity (averaged over time and the spatial domain), h is the half-channel height
and µ0 =µf +µp is the total kinematic viscosity, where µf is the fluid viscosity and
µp the polymeric contribution to dissipation. In these simulations, elastic effects are
intentionally kept small by fixing the remaining parameters close to their Newtonian
values: the Weissenberg number Wi= λU/h= 0.01, where λ is the polymer relaxation
time, and the fluid to total viscosity ratio is large (α = µf /(µf +µp) = 0.95). It is
remarkable that on keeping the same Bi (in bulk units) and increasing Re, eventually
the Newtonian results should be recovered, since Bi in plus units (see Rosti et al.
2018a) is decreasing with Re and for a sufficiently small value, it should not affect
the flow anymore. The computational domain has the size 6h × 2h × 3h in the
streamwise, wall-normal and spanwise directions, respectively. Periodic boundary
conditions are imposed in the wall-parallel planes and there is no slip at the walls.
For a full description of the numerical simulation set-up and algorithms, please
consult Rosti et al. (2018a) and Izbassarov et al. (2018). The viscoelastic flows are
obtained using the same numerical set-up and numerical method, with the FENE-P
viscoelastic model replacing the EVP model.

In the following, we describe the main features of the elastoviscoplastic turbulent
channel flow; the purely viscoelastic counterpart is well known from previous
works, and some of them are mentioned in § 1. To provide a sense of the flow
under consideration, figure 1 shows the variations of the streamwise vorticity in a
representative wall-normal plane for the three Bingham numbers under investigation.
The black region represents the unyielded regions of the EVP fluid. As the Bingham
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(a) (b) (c)

FIGURE 1. Contours of the instantaneous spanwise vorticity in the XY plane (X horizontal
and Y vertical axes). Dark colour represents the areas where the flow is not yielded.
(a–c) Bi= 0, 1.4 and 2.1. Colours scale from −3Ub/h (blue) to 3Ub/h (red).

number is increased from zero, the areas where the flow is not yielded (solid regions)
increase. At the same time, the complexity of the flow decreases, up to Bi = 2.8,
when the flow is fully laminar (see Rosti et al. (2018a) for more details). Note
that the yielded regions are composed by small-scale structures, which maintain the
complexity of the flow also at higher values of Bi.

Figure 2(a–c) displays the iso-surfaces of the streamwise velocity fluctuations at
the lower wall of the channel for the three Bingham numbers studied. At Bi= 0, it is
possible to identify thin and elongated streaks, which are moving at either high or low
speed (red and blue colour, respectively). When increasing the Bingham number, the
number of high- and low-speed streaks decreases. The low-speed streaks seem to form
a new single structure with a larger width, extending throughout the computational
domain. The same type of structures are found close to the upper wall of the
channel, as shown by the three cross-stream planes presented in figure 2(d–f ). Rosti
et al. (2018a) found that these high-speed streaks penetrate to smaller wall-normal
distances than their low-speed counterparts. The former are generally associated
with wall-normal velocities towards the wall and with regions where the fluid is not
yielded. In contrast, the fluid close to the low-speed streaks remains fully yielded.
This description provides a general idea about the main flow structures present in the
elastoviscoplastic flow, but it is necessary to carry out a more detailed analysis in
order to deepen our understanding of the flow physics. In particular, we are interested
in how and why the turbulent cycle is modified (and in some cases attenuated) in the
non-Newtonian elastoviscoplastic and viscoelastic flows, compared to a Newtonian
flow. This requires finding the interaction between the yielded and unyielded regions,
the frequency of the flow leading modes, the phase velocity of structures travelling
along the streamwise direction and the modification of the high- and low-speed
streaks in these non-Newtonian flows.

3. Methodology
3.1. HODMD

Higher order dynamic mode decomposition (Le Clainche & Vega 2017a) is an
extension of DMD (Schmid 2010) that has been recently introduced for the analysis
of complex flows, i.e. transition to turbulent flows in zero-net-mass-flux jets (Le
Clainche et al. 2017b), identifications from noisy experimental data (Le Clainche
et al. 2017a,b, 2018b) or for the analysis of data acquired in a limited number of
spatial locations (for example, field measurements, Le Clainche et al. (2018b), Le
Clainche, Lorente & Vega (2018a)).

Similarly to DMD, this method decomposes spatio-temporal data v(x, y, z, tk),
collected at time instant tk (for convenience expressed as vk), as an expansion of M
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(a) (b) (c)

(d) (e) (f)

FIGURE 2. Contours of the instantaneous streamwise velocity fluctuations (from the
middle to the bottom part of the channel). The flow is from left to right. From left to
right: Bi= 0, 1.4 and 2.1. (a–c) Streamwise velocity three-dimensional iso-surfaces in the
lower channel wall. (d–f ) YZ plane (Z horizontal and Y vertical axes) extracted at x=Lx/2.
Data normalised with their maximum value. Colour scales from −0.6Ub to 0.6Ub.

modes um, which are weighted by an amplitude am as

v(x, y, z, tk)'

M∑
m=1

amum(x, y, z)e(δm+iωm)tk , (3.1)

for k = 1, . . . , K. These modes oscillate in time with frequency ωm and may grow,
decay or remain neutral in time according to the growth rate δm. To compute the
HODMD algorithm, also called DMD-d, it is necessary firstly to collect and group
together a set of K time-equidistant snapshots vk into a snapshot matrix of dimensions
J × K, where J is the total number of grid points defining the spatial domain (in
three-dimensional computational domains, assuming a uniform and structured mesh,
J=Nx×Ny×Nz, where Nx, Ny and Nz are the number of points along the streamwise,
normal and spanwise directions), in the following way:

V K
1 = [v1, v2, . . . , vk, vk+1, . . . , vK−1, vK]. (3.2)

The HODMD algorithm can, for simplicity, be encompassed by two main steps, which
will be reported briefly below. A more detailed description of the procedure can be
found in Le Clainche & Vega (2017a), Le Clainche et al. (2017b).

3.1.1. Step 1: dimension reduction via singular value decomposition (SVD)
In order to remove spatial redundancies, filter out noise, etc., SVD is applied to

the snapshot matrix (3.2). Based on a certain tolerance ε1, the spatial dimension J of
the original snapshot data set is reduced to a set of linearly independent vectors of
dimension N (N < J is the spatial complexity) as

V K
1 'W Σ T T, (3.3)

where the diagonal matrix Σ contains the singular values σ1, . . . , σN and W TW =T TT
are N × N-unit matrices. The tolerance ε1 is a tuneable parameter set by the user,
effectively determining the number N of SVD modes retained as

σN+1/σ1 6 ε1. (3.4)
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The reduced snapshot matrix, of dimension N ×K, is then defined from (3.3) as

V̂
K
1 =Σ T T, (3.5)

with V K
1 =WV̂

K
1 .

3.1.2. Step 2: the DMD-d algorithm
The following high-order Koopman assumption is applied to the reduced snapshot

matrix:
V̂

K
d+1 ' R̂1V̂

K−d
1 + R̂2V̂

K−d+1
2 + · · · + R̂dV̂

K−1
d , (3.6)

where R̂k = W TRkW for k = 1, . . . , d. This equation divides the snapshot matrix
into d blocks. Each block contains K − d snapshots, but time delayed. The previous
equation is rewritten in terms of the modified snapshot matrix Ṽ 1

K−d+1
and the

modified Koopman matrix R̃ as

Ṽ
K−d+1
2 = R̃ Ṽ

K−d
1 , (3.7)

which can also be presented in the following way:
V̂

K−d+1
2
. . .

V̂
K−1
d

V̂
K
d+1

=


0 I 0 . . . 0 0
0 0 I . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . I 0
R̂1 R̂2 R̂3 . . . R̂d−1 R̂d

 ·


V̂
K−d
1

V̂
K−d+1
2
. . .

V̂
K−1
d

 . (3.8)

This matrix is expected to also exhibit redundancies that are eliminated by a new
dimension reduction via truncated SVD using the tolerance ε1 as

σ̃N′+1/σ̃1 < ε1, (3.9)

where N ′ > N is the number of retained SVD modes. In other words, the matrix
organises the snapshot blocks identified in the high-order Koopman assumption in
columns. In this way, it is possible to increase the spatial complexity of the data
from N to N ′, consequently extending the number of DMD modes calculated in the
next step (defined as M = min(K, N ′)). For a sufficiently large number of snapshots
K (which is the common case), in cases in which the spatial complexity N is smaller
than the spectral complexity M (for K > N), the high-order Koopman assumption
completes the lack of spatial information (reduced to N) and ensures the good
performance of the DMD method.

At this step, the modified snapshot matrix becomes

Ṽ
K−d+1
1 ' ŨΣ̃ T̃

>

' ŨT
K−d+1
1 , (3.10)

with T
K−d+1
1 = Σ̃ T̃

>

, where Ũ
>

Ũ= Ṽ
>

Ṽ are the N ′×N ′-unit matrices, and the diagonal
of matrix Σ̃ contains the singular values σ̃1, . . . , σ̃N′ . This step is completed via pre-
multiplication of (3.7) by Ũ

>

, which invoking (3.10) yields

T
K−d+1
2 = R T

K−d
1 . (3.11)
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The new N ′×N ′-Koopman matrix is related to R̃ by R' Ũ
>

R̃Ũ. Instead of computing
this expression, we use the pseudoinverse in (3.11) by first applying SVD (no
truncation) to the matrix T

K−d
1 , as

T
K−d
1 = UΛV>, (3.12)

where UU>=U>U=V>V are the N ′×N ′-unit matrices and the diagonal of Λ contains
the N ′ singular values. The following equation

R = T
K−d+1
2 VΛ−1U> (3.13)

can be obtained substituting (3.12) into (3.11) and post-multiplying by VΛ−1U>. The
N ′ eigenvalues µm and eigenvectors qm of R permit computing of the reduced DMD
expansion for the reduced snapshots (3.5) as follows:

v̂k '

M∑
m=1

âmûme(δm+iωm)tk , (3.14)

for k= 1, . . . ,K. We obtain the reduced DMD modes ûm (dimension Nd) by retaining
only the first N components of the vectors q̂m = Ũqm. The frequencies ωm and the
damping rates δm are given by

δm + iωm = log(µm)/1t. (3.15)

Finally, the amplitudes âm are obtained via least squares fitting of (3.14), as in
optimized DMD (Chen, Tu & Rowley 2012), which provides a suitable representation
of the influence of each DMD mode on the general flow dynamics.

The original DMD expansion (3.1) is obtained, invoking (3.5), upon pre-multiplication
of (3.14) by the matrix W , and rescaling both the modes um and the amplitudes am
such that the modes exhibit unit norm.

Finally, the number of retained modes in the expansion (3.1), M, which is the
spectral complexity, is determined using a second tolerance ε2, also tuneable, as

aM+1/a1 6 ε2. (3.16)

The error made in the calculations is measured by the root mean square (r.m.s.)
error of the HODMD reconstruction (3.1), calculated as

RMSE=

√∑K
k=1 ||vk − vDMD

k ||2∑K
k=1 ||vk||

2
, (3.17)

where || · || is the usual Euclidean norm.

3.2. Some remarks on the HODMD algorithm
The algorithm previously presented is similar to standard DMD (Schmid 2010) when
the parameter d= 1 in the high-order Koopman assumption (3.6). HODMD provides
the same results as DMD in the analysis of periodic solutions, linear flows (Gómez
et al. 2012) or experimental saturated flows (Schmid 2011). Thus the main goal of
this high-order algorithm is to serve as an extension that should be used in cases in
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d d

VK
d+1

V1
K-d

V2
K-(d+1)

FIGURE 3. Sketch representing the snapshot matrix and the DMD-d sliding window
process defined in (3.6).

which standard DMD experiences some difficulties (i.e. noisy experimental data, see
Le Clainche et al. 2017b), or even fails, in particular when the spectral complexity M
is larger than the spatial complexity N (more details in Le Clainche & Vega 2017a).

The tolerance ε1 determines the number N of SVD modes retained in Step 1 of the
algorithm. This tolerance varies with the type of analysis carried out. For example,
in noisy data, this tolerance should be equivalent to the level of noise. In complex
flows (i.e. transitory or turbulent) the level of tolerance filters out the small-amplitude
modes. As will be detailed in § 4.1, it is necessary to calibrate the parameters (ε1, ε2,
d) before applying the method. This step is crucial for obtaining robust and accurate
results.

The proved high efficiency of HODMD is due to the sliding window process applied
to the snapshot matrix (3.2) by the DMD-d algorithm, see equation (3.6) and the
sketch in figure 3. This window shift can be related to the well-known technique
of power spectral density (PSD), which divides the data into several small segments,
also known as windows, to perform fast Fourier transform (FFT) locally in each one
of the segments. Then, the group of frequencies calculated locally in each segment
is promediated. The result is a single group of averaged frequencies, representing
all the FFT analyses carried out in the several segments. These average values are
representative of the complete data set (this result is comparable to the frequencies
calculated applying FFT to the complete data set, but the average values calculated
with the PSD algorithm provides smoother results). In HODMD, d represents the
number of segments. Solving the eigenvalue problem of a matrix containing the d
Koopman operators, which connect the different groups of snapshots (3.8), supplies
the modified Koopman matrix with some specific properties: (i) noise cleaning, (ii)
higher accuracy calculations, (iii) the ability to approximate solutions when the data
analysed are not equispaced in time. Similarly to PSD, the search for a single and
common solution satisfying simultaneously all the snapshot groups allows for averaged
values, which are robust and suitably describe the main flow dynamics.

In order to clean the data analysed and obtain high accuracy solutions, the
algorithm HODMD is applied iteratively. In other words, once the main DMD
modes, frequencies, growth rates and amplitudes are calculated, the original data
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are reconstructed as in the expansion (3.1). Then, the method is applied again over
this reconstruction, which in principle only contains the main (filtered) dynamics.
The same process is repeated several times, until the number of modes retained
in the expansion (3.1) is kept constant. For the data analysed in this article, this
iterative process is combined with the multi-resolution DMD-d algorithm. This
algorithm, described in Le Clainche et al. (2017b), presents a more efficient version
of HODMD, suitable for the analysis of multi-dimensional complex data. This
multi-resolution DMD-d algorithm uses a high-order singular value decomposition
(HOSVD) (Tucker 1966) instead of classic SVD in Step 1 of the method. In detail,
instead of organising the data in the snapshot matrix (3.2), they are organised in
tensor form V (xi, yl, zr, tk)= V ilrk (for i= 1, I; l= 1, L; r = 1, R; k = 1, K with I, L
and R the number of grid points related to the spatial components x, y, z and where
K is the snapshot number). By applying standard SVD to the four matrices whose
columns are formed by each one of the 4 data variables (similar to the fibres of a
tensor), this method provides the following decomposition

V ilrk '

P1∑
p1=1

P2∑
p2=1

P3∑
p3=1

N∑
n=1

Sp1p2p3nW (x)
ip1

W (y)
lp2

W(z)
rp3

T kn, (3.18)

where Sp1p2p3n is a fourth-order tensor (called the core tensor) and the columns of the
matrices W (x), W (y), W (z) and T are known as the modes of the decomposition (three
spatial modes and one temporal mode, respectively). The reduction in equation (3.4)
is then applied to each one of these modes, allowing for a better cleaning in every
spatial and temporal direction. Finally, Step 2 is applied over the temporal modes T .

3.3. Spatio-temporal modal decomposition
The main goal of this DMD decomposition is to study the spatio-temporal structures
in terms of travelling waves ûmn with defined spatial wavenumbers αmn and νmn, which
oscillate and grow/decay in time,

v(xj, y, z, tk)'

M,N∑
m,n=1

amnûmn(y, z)e(δm+iωm)tk+(νmn+iαmn)xj, (3.19)

for k = 1, . . . , K and j= 1, . . . , J. This expansion can be easily obtained by simply
applying HODMD to the DMD modes in (3.1), resulting in the following DMD
expansion

um(xj, y, z)'
N∑

n=1

anûmn(y, z)e(νmn+iαmn)xj, (3.20)

for j = 1, . . . , J. Equation (3.19) is obtained by combining this solution with (3.1),
where the spatio-temporal amplitudes are defined as amn = aman. In a similar way, it
is possible to obtain spatio-temporal expansions along the remaining spatial directions.
For example,

v(x, y, zr, tk)'

M,N∑
m,n=1

amnūmn(x, y)e(δm+iωm)tk+(λmn+iβmn)zr , (3.21)

for k = 1, . . . , K and r = 1, . . . , R, where λmn and βmn are the growth rates and
wavenumbers related to the spanwise direction. Using this expansion, it is also
possible to describe the data analysed as a group of travelling waves whose phase
velocity is defined as cmn = ωm/βmn. A more detailed description of the method can
be found in Le Clainche et al. (2018c), Le Clainche & Vega (2018).
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FIGURE 4. Variations of the time interval between snapshots in toy model (3.22).

3.4. Modified Koopman operator for the analysis of data non-equidistant in time
The properties of the modified Koopman matrix for the analysis of data non-
equidistant in time is illustrated by the following toy model

f (t)=
√

cos(ω1t) sin(ω2t)+ 2, (3.22)

where ω1 =
√

2 and ω2 = 1, which exhibit the incommensurable fundamental
frequencies ω1 ± ω2 and their multiple harmonics. The spatial dimension and
complexity of this toy model is 1 (single point in space), while the spectral complexity
(number of frequencies) is incommensurable, and it will be approximated by the M
terms retained in the DMD expansion (3.1).

Applying HODMD, using the tolerances ε1 = ε2 = 3 × 10−3, to a set of data
composed by K = 400 snapshots (spectral dimension), equidistant in time 1t= 10−1,
the method approximates the original solution with the r.m.s. error ∼4.5 × 10−3

(order of the tolerances) retaining M= 9 modes. These are the 4 frequencies ω1+ω2,
ω1 − ω2, 2ω1 and 2(ω1 − ω2), which are calculated exactly until the fifth decimal
point (in good agreement with the values of ε1 and ε2), their conjugate complex
and the mode with zero frequency, ω0. In these calculations d = 120, although it is
remarkable that similar results are obtained using values of 1006 d 6 290. For values
of d 6 10 the method miscalculates the frequencies and may add spurious elements
(i.e. using d= 10 the reconstruction error is ∼10−1).

Next, the method is applied to analyse the same amount of data (K=400 snapshots),
but not-equidistant in time. The time interval at which the data are collected varies
randomly between each snapshot, from 1tmin = 5 × 10−3 to 1tmax = 1.97 × 10−1, as
seen in figure 4. However, the HODMD algorithm considers a set of data equidistant
in time. To satisfy this constraint, the approximated time interval is calculated
as the average between the minimum and maximum values of the varying time
interval, 1t = (1tmax + 1tmin)/2 ' 10−1. The temporal-disparity ratio, defined as
TDR= (1tmax−1tmin)/1t' 1.9, shows the diversity in the collection of the snapshots
in time. The HODMD has been applied using the same tolerance as in the previous
case for d = 100, d = 200 and d = 290. In all these cases, the method is able to
capture the dominant frequencies ω1±ω2, but it also calculates some spurious modes.
These modes are easily distinguishable, since their values change with the value
of d, as shown in figure 5(a) that compares the exact solution with the present
results. The original function is reconstructed using only the 2 modes ω1 ± ω2 and
the mode ω0 with an r.m.s. error of 1.2× 10−2 for the three values of d considered.
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FIGURE 5. Results of DMD-d applied to 400 snapshots with variable time interval for the
toy model (3.22). Black, red, blue and pink colours correspond to the exact solution, and
to the solution obtained using d = 100, 200 and 290. (a) Frequency versus amplitude of
the DMD modes. (b) Reconstruction of the toy model signal using the frequencies ω1±ω2
and ω0.

M modes ω1 −ω2 Relative error ω1 +ω2 Relative error

d= 100 33 2.3911 10−2 0.4103 10−2

d= 200 21 2.3919 10−2 0.4100 10−2

d= 290 17 2.3918 10−2 0.4104 10−2

TABLE 1. Results of the DMD-d used to approximate the toy model in (3.22). The data
consist of 400 snapshots with time interval varying as in figure 4. The table shows the
number of modes retained in the calculations, the values of the fundamental frequencies
and their relative errors compared with the exact solutions ω1−ω2' 2.4142 and ω1+ω2'

0.4142.

Figure 5(b) compares the function with the aforementioned reconstructions and table 1
summarises the number of modes computed in each case and the relative error made
in the frequency calculations, which is ∼10−2 in all cases.

It is also possible to note from figure 5(a) that the modes with frequencies 2ω1
and 2(ω1 −ω2) are approximated in the 3 analyses with a relative error smaller than
∼10−2. Although the error made in the calculations of the mode amplitudes is much
larger than for the frequencies (∼3 × 10−1), it should be considered that the order
of magnitude of the amplitudes is ∼10−3, meaning that these differences are almost
negligible when reconstructing the original solution, with the r.m.s. error being ∼10−2

in all cases. Table 2 summarises the frequency of the two smaller-amplitude modes
for the three analyses carried out; in some cases the error made in the calculations is
even smaller than ∼10−2.

The previous analysis has been repeated adding 10 % of random noise to the toy
model (3.22) to show how the analysis can capture the underlying signal. The distance
between snapshots is maintained as shown in figure 4 and the parameters used are the
same as before (ε1 = ε2 = 3× 10−3 and d = 100, 200, 290). As in the previous case,
the method retains a large number of spurious modes; nevertheless, it is possible to
distinguish the two fundamental frequencies ω1±ω2 from the remaining modes, since
they are the only consistent frequencies in all three analyses. However, due to the
large level of noise, the method is not able to retain the two lower-amplitude modes.
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2ω1 Relative error 2(ω1 −ω2) Relative error

d= 100 2.8294 2× 10−3 1.9995 2× 10−4

d= 200 2.7952 10−2 1.9830 8× 10−3

d= 290 2.7812 10−2 1.9815 5× 10−3

TABLE 2. Same as table 1 for the two smaller amplitude modes with frequencies
2ω1 ' 2.8302 and 2(ω1 −ω2)' 1.9993.

2.0
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1.6

1.4

1.2

1.0

1.8

1.6

1.4

1.2

1.00.8

f(
t)

0 10 20 30 40 10 15 20
t t

(a) (b)

FIGURE 6. DMD-d applied in the toy model (3.22) with variable time interval between
snapshots and 10 % of additional random noise. (a) Black dashed line: original clean
solution, red line: original signal with noise and blue line: reconstruction using ω1 ± ω2
with 100 6 d 6 300. (b) Zoom of the left figure.

M modes ω1 −ω2 Relative error ω1 +ω2 Relative error

d= 100 16 2.3932 10−2 0.4123 5× 10−3

d= 200 20 2.3888 10−2 0.4105 10−2

d= 290 17 2.3932 10−2 0.4123 5× 10−3

TABLE 3. Same as table 1 for the signal with random noise.

The signal is reconstructed using the modes ω1 ± ω2 and ω0, with a r.m.s. error of
1.2× 10−2 for the three values of d, as shown in figure 6, which compares the clean
and noisy signal with the DMD-d reconstruction. Table 3 summarises the total number
of modes and the relative error made in the frequency calculations for the noisy signal,
which is ∼10−2, despite the noise added.

Note finally that more calculations have been carried out using different non-
equidistant time intervals to construct the snapshot matrix of the toy model (3.22) and
the results obtained for the clean and noisy signals are similar to the one presented
here. In addition, the same test has been successfully performed for variations of the
toy model (3.22), although not reported here for the sake of brevity. To summarise,
the example presented in this section shows that HODMD is suitable to study data
that are non-equidistant in time. HODMD is able to (i) calculate the leading modes
with high accuracy and (ii) approximate the frequencies of the lower-amplitude
modes.
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4. Coherent structures in the Newtonian and elastoviscoplastic turbulent channel
flows

4.1. Initial calibration and parameter selection
The large number of frequencies and spatio-temporal scales typical of turbulent
flows complicate the detection of flow patterns. It is therefore important to assess
the robustness of the results, as in the toy model above. Thanks to the favourable
properties of the modified Koopman operator, which defines a solution that is satisfied
in all the sub-groups of data (snapshots) analysed simultaneously, it is possible to
identify the large-scale and large-amplitude modes from a number of fairly disparate
frequencies found in the flow. To this end, DMD-d is applied with different tolerances
and various values of the parameter d. In the problem studied in this paper, two
distinct regions exist, defined by yielded and unyielded flow, where the flow moves
at different velocities and presents different properties. This distinction encourages us
to normalise the DMD modes with two norms, related with the maximum and the
average values of the velocity field: the infinity norm (L∞) and the L2 norm. The
modes related to large-scale structures describing the flow physics will therefore be
sought using different tolerances, values of d and different types of normalisation
(see also Le Clainche et al. (2018b)).

Figure 7 shows the frequency versus the amplitude of the different modes obtained
with DMD-d using several different parameters for the three Bingham numbers studied.
Even though it is possible to obtain a large number of modes for each case, only a
few are robust; in other words, only a few frequencies are found in all the calculations
performed: these form clusters of modes, as highlighted in the figure. To identify these
clusters it is necessary that, in at least 8 (75 %) of a total of 12 calculations performed
using HODMD, the solution provides modes with a frequency value defined as |fmi−

fmj|<ε, where fmi and fmj represent the frequencies obtained in two different test cases,
and ε is a tolerance defined by the user. This tolerance is set to ε = 10−3 (one order
of magnitude larger than the largest ε1 set in HODMD) for the cases Bi= 0 and 1.4
(for which we use 66 snapshots) and ε = 2× 10−3 for the case Bi= 2.1 (for which
we use 35 snapshots). The high complexity of the flow and the fact that the data are
not equidistant in time complicates the calculation of these modes, which is reflected
in small differences in the values of the amplitudes and frequencies computed. The
relative error assumed in the calculations of these frequencies is ∼10−2 (relative to the
mean frequency of each group of robust modes) for the cases at Bi= 0 and Bi= 1.4
and ∼3.5 × 10−2 for Bi = 2.5. Variations in the amplitudes are larger, nevertheless,
these do not affect the DMD modes (they present similar shape and small variations
in the order of magnitude), but only their weight in the DMD expansion (3.1). Since
the purpose of this article is to gain insight into the flow physics, rather than to build
a reduced-order model based on (3.1) (see Le Clainche & Vega (2017b) for more
details), the error made in the amplitude calculations is not further considered. The
amplitude associated with each mode is estimated as the mean value for each cluster
of modes. Considering the small error made in the frequency calculations and the
similarities in the shape and the order of magnitude of the DMD modes calculated
for each case (variations ∼10−2), this average value is considered to be sufficiently
good to represent the influence of each mode on the flow dynamics.

It is noteworthy that increasing the Bingham number reduces the flow complexity,
so that similar solutions are obtained using a smaller number of snapshots. Although
the accuracy of the estimated frequency decreases and its value is more sensitive to
the choice of d, obtaining good results using a smaller number of snapshots (yet in a
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FIGURE 7. DMD-d calibration. Amplitude normalised with the maximum value (âm =

am/a0) versus frequency ( fm=ωm/(2π)) obtained with different tolerances and order d for
Bi= 0 (a), Bi= 1.4 (b) and Bi= 2.1 (c). For all cases, ε2 = 10−3. Squares and triangles
correspond to ε1= 10−6, circles and crosses correspond to ε1= 10−4. Blue, black and red
colours correspond to d= 15, 20, 25 for Bi= 0 and 1.4 (K= 66 snapshots) and d= 8, 10,
15 for Bi= 2.1 (K= 35 snapshots). Circles and squares denote modes normalised with the
L∞ norm. Crosses and triangles: modes normalised with the L2 norm.

turbulent flow) enables us to obtain a good compromise between computational cost
and accuracy. Four main points should be emphasised from the calibration: (i) the
number of snapshots used in each one of these calculations is K = 66 for the cases
with Bi = 0 and Bi = 1.4, and K = 35 for the case with Bi = 2.1, (ii) the parameter
d is proportional to the number of snapshots used in the analyses (if the number of
snapshots is reduced by half, d should be reduced by half, see more details in Le
Clainche & Vega 2017a), (iii) in all cases, the time interval between snapshots varies
within (1tmin, 1tmax)' (1.8× 10−31S, 2.1× 10−31S), where 1S = 4000 is the time
step interval at which the snapshots are saved during the numerical simulations, and
the temporal-disparity ratio is ∼0.12 (much smaller than in the toy model example),
(iv) the averaged time interval 1t determines the frequencies calculated. The flexibility
of this iterative multi-resolution HODMD algorithm, which is able to provide robust
results using data that are non-equidistant in time, makes it possible to use results
from simulations using variable time steps and the data saved at fixed time step
intervals. The large computational cost of these simulations makes it expensive to
repeat the calculations. Therefore, the ability to use existing data constitutes a clear
advantage.

4.2. Global temporal modes
The spectrum of the temporal DMD modes identified in the calibration process
presented in the previous section is shown in figure 8, which compares the frequencies
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FIGURE 8. Frequency versus amplitude from the DMD-d analysis of EVP fluids at Bi= 0,
1.4 and 2.1; also displayed with ∗ is the result of the analysis carried out on the EVP
function for Bi= 2.1.

Mode — Bi= 0 Bi= 1.4 Bi= 2.1 Bi= 2.1-EVP

S1 fm — 4.96× 10−3 6.27× 10−3 6.66× 10−3

âm — 2.6× 10−2 2.9× 10−2 7.42× 10−2

F1 fm 2.46× 10−2 2.49× 10−2 2.37× 10−2 2.48× 10−2

âm 5.1× 10−3 5.1× 10−3 7.6× 10−3 9.6× 10−3

F1-double fm 2.22× 10−2 — — —
âm 6.1× 10−3 — — —

S2 fm — 3.22× 10−2 3.01× 10−2 3.17× 10−2

âm — 1.2× 10−3 4.6× 10−3 2.1× 10−2

S3 fm — 3.78× 10−2 3.59× 10−2 3.83× 10−2

âm — 3.3× 10−3 3.8× 10−3 2.4× 10−2

F2 fm 4.71× 10−2 4.86× 10−2 — —
âm 6.9× 10−3 8.1× 10−3 — —

F3 fm 5.22× 10−2 5.44× 10−2 5.64× 10−2 5.28× 10−2

âm 5.6× 10−3 6.3× 10−3 2.6× 10−3 3.6× 10−3

TABLE 4. Frequencies and amplitudes of the DMD modes presented in figure 8. The
modes are organised from lower to higher frequency from top to bottom.

and the amplitudes of the modes calculated for Newtonian flow (Bi= 0) and for two
finite Bingham numbers.

From figure 8 it is possible to identify six groups of modes. Table 4 summarises
the frequencies and amplitudes of the modes. For the Newtonian turbulent flow, we
obtain three types of modes named F1, F2 and F3 (where F stands for fluid), while at
finite Bingham number we also find three new type of modes, S1, S2 and S3 (where
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S stands for solid); S1 is characterised by a lower frequency than F1, confirming
that streaks are on average sustained longer. The amplitude of the S modes increases
with the Bingham number, meaning that their activity becomes stronger when the
volume of the unyielded flow increases. In contrast, the amplitude of mode F3
slightly increases from Bi = 0 to Bi = 1.4, but strongly decreases at Bi = 2.1. A
similar behaviour is found for mode F2, whose amplitude also increases from Bi= 0
to Bi= 1.4; however, the mode is missing at Bi= 2.1, suggesting that its amplitude
has sharply decreased below levels of the order of the tolerance set for the DMD-d
analysis (ε2 = 10−3). The behaviour of the low-frequency mode F1 differs from the
other F modes. At Bi= 0, we find two modes with similar frequency, whereas there
is only one mode for the two remaining Bingham numbers, with increasing amplitude,
suggesting that mode F1 is more representative of the relevant flow structures when
the size of the unyielded areas increases.

Additional calculations have been performed at Bi= 2.1 considering the EVP colour
function instead of the velocity fields. This function identifies the areas of yielded and
unyielded flow, assuming the value zero for unyielded flow and the value one in the
yielded regions. The modes obtained by the EVP colour function are also reported
in the figure. Finally, we note that the amplitude of the S modes is significantly
larger when considering the EVP function instead of the velocity vector field. This is
consistent with the fact that the S modes are only found for Bi> 0, suggesting their
strong connection with the presence of unyielded flow.

Figure 9 shows a three-dimensional view of the DMD modes as function of the
Bingham number to provide a first general overview, whereas figure 10 displays a
cross-stream plane of the same modes. We start by considering the Newtonian flow. At
Bi=0, it is possible to identify small-scale high- and low-speed structures located near
the walls, suggesting the connections with the near-wall streaks presented in figure 2.
Also, we note that the structures with lowest frequencies (left-most panels) tend to
extend further into the core of the channel, while the high-frequency modes are more
localised near the walls (walls are aligned vertically in the plots).

Next, we examine the EVP flow. In contrast to the Newtonian case, a single large-
scale high-speed structure is found in the middle part of the channel for the F-modes
at Bi= 2.1, complementary to other low-speed large-size structures found in the upper
part of the channel (near the wall). This large-scale structure is associated with the
large gradients surrounding it, indicative of a solid region of a complex shape forming
and disrupting the bulk of the channel. The S-modes, appearing in the EVP flow, are
characterised by relatively large gradients in the near-wall regions. In addition, the
near-wall structures found at Bi= 0 for the higher-frequency modes are still present
at finite Bi, but their size has substantially increased. Finally, the modes pertaining
the flow at Bi = 1.4 show the transition between the two extreme cases discussed
above, with near-wall high-speed structures as a main feature, but of slightly larger
size and better defined than in the case at Bi= 0. These results suggest that the large
structures found at Bi = 2.1 emerge from these near-wall structures, which recover
strength as the Bingham number is increased. In other words, the flow becomes less
turbulent when the Bingham number increases, and consequently the size of the near-
wall structures increases. Also, the large-scale structure found at Bi= 2.1 in the mid-
part of the channel represent the effect on the flow of the interactions between yielded
and unyielded regions. To summarise, the modes identified by the DMD suggest the
evolution from the thinner streaks found at Bi= 0 to the large-size streaks found at
Bi=2.1. Further analysis is carried out to shed more light on the physical mechanisms
at play.
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S1 F1 - double F1 S3 F2 F3S2

Bi = 2.1

Bi = 1.4

Bi = 0

FIGURE 9. Three-dimensional iso-surfaces of streamwise velocity in the lower wall (from
middle to bottom) of the channel of the DMD modes presented in figure 8. In each
panel the flow moves from the lower part to the upper part of the channel. Contours of
streamwise velocity component normalised with their maximum value. Streamwise velocity
iso-values aUb (blue) and 0.6Ub (red), at Bi= 2.1: a= 0.15; at Bi= 1.4: a= 0.1; and at
Bi= 0: a= 0.3.

5. Spatio-temporal coherent structures and travelling waves

One of the key elements for the generation of low-speed streaks usually found in
turbulent wall-bounded flows is the presence of spanwise-dependent vortical motions,
or streamwise vorticity (Landahl 1980). The theory of non-modal growth (Schmid
& Henningson 2011) successfully explains the amplification of the streaks, which
finally break down in the presence of higher-frequency noise or by interacting
with each other and forming regions of high local shear. In this section, we study
the turbulent structures focusing on the evolution of the streaks from Newtonian
turbulence to non-Newtonian turbulent (smoother) flows by a spatio-temporal DMD
analysis. More specifically, two types of analyses have been carried out in order to
examine the near-wall streaks and their breakdown: first, we look at spanwise-periodic
modes (spanwise-spatial DMD analysis) to describe streak intensity and size. Second,
we examine streamwise-travelling structures, (streamwise-spatial DMD analysis), to
describe the streak breakdown by streamwise-travelling localised disturbances as
discussed, among others, in Brandt & de Lange (2008).
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S1 F1 - double F1 S3 F2 F3S2

Bi = 2.1

Bi = 1.4

Bi = 0

FIGURE 10. Module of the streamwise velocity of DMD modes presented in figure 8
extracted in a plane YZ (Y horizontal and Z vertical axes) at x = 0.5Lx. Contours
of streamwise velocity component normalised with their maximum value. Modes are
organised from lower to higher frequency from left to right. The top and bottom channel
walls are located in the left and right parts of each panel, respectively. Colour scale ranges
from 0 (blue) to 1 (red).

5.1. Spanwise-periodic modes: streaky signature of turbulence
To quantify the streaky signature of near-wall turbulence, the spanwise-spatial DMD
analysis is applied to the temporal DMD modes of figure 8. The calculations use 84
snapshots, equidistant along the spanwise direction (1z' 3.61× 10−2), with tolerances
ε1 = 10−4, ε2 = 10−2 and d = 1. As a result, we obtain modes of a fixed spanwise
wavenumber, with a frequency corresponding to that of the temporal analysis and a
general streamwise and wall-normal dependency. Assuming spanwise periodicity, it is
therefore more relevant to look at low-frequency modes that characterise the streaks.
In the next section, on the contrary, we will assume periodicity in the streamwise
direction to look at perturbations localised in the cross-stream planes, which are
typically responsible for the streak breakdown.

First, we show in figure 11 the spatio-temporal amplitude as a function of the
wavenumber, for each temporal mode, and two values of the Bingham number, Bi= 0
and Bi = 2.1. Each amplitude represents the relative importance of the different
spanwise harmonics of the different temporal modes discussed above, see section
4.2. For the spanwise DMD, the minimum wavenumber is fixed by the width of the
computational domain, βmin = 2π/Lz ' 2.09.

For nearly all modes shown, the lowest spanwise wavenumber has the largest
amplitude. This is most evident in the EVP flow, Bi= 2.1, indicating a more regular
streaky structure. The only exception is the two F1-modes calculated at Bi = 0
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FIGURE 11. Wavenumber versus spatio-temporal amplitude. (a) Bi= 0; (b) Bi= 2.1. The
legend shows the modes in decreasing order from low to high frequency.

(Newtonian flow), whose leading wavenumber is the third harmonic, β ' 3βmin. This
reflects the complexity of the flow in the Newtonian case, composed of a larger
number of different temporal and spatial scales. For a similar Reynolds number, the
flow becomes less chaotic in the EVP fluid when the Bingham number is increased.
In this regime, the flow structures are more correlated, and their size is larger than
in a Newtonian turbulent flow. This justifies the presence of long streaks in the EVP
fluid, as observed for a drag-reducing viscoelastic fluid. As discussed below, these
long streaks break down, resulting in smaller-size flow structures as we find in the
turbulent (Newtonian) flow, however, less frequently in EVP fluids.

Let us now analyse in detail how the modes develop when the Bingham number
(plasticity) increases. To this end, we display in figure 12(a) the first spanwise
harmonic of all the different modes versus the Bingham number. The data clearly
show that the low-frequency modes become more important when increasing Bi,
and these are associated with the plastic modes, the S-modes in the figure. This
confirms the ability of the method proposed here to identify dominant structures in
wall-bounded turbulent flows, something which would not be so distinct with more
traditional DMD and proper orthogonal decomposition analyses. Figure 12(b) reports
the different spanwise harmonics of the low-frequency streaky modes. The figure
confirms in a quantitative way the observations from the flow visualisations above,
i.e. the streaks become more stable and energetic when plastic effects increase, i.e. at
higher Bi.

In addition to the amplitude, the analysis proposed here provides information about
the spatial distribution of the flow structures and about the relative importance of the
different velocity components. Figure 13 shows the three-dimensional reconstruction
of the first harmonics of modes F1 and F3, using iso-surfaces of the streamwise and
spanwise velocities. As deduced above by the amplitude analysis, at high Bingham
number, the structures are large and well defined, whereas they are more irregular in
the Newtonian case (the larger-size flow structures found in the non-Newtonian flow
are related to the relaminarisation of the flow, as shown experimentally by Esmael
et al. 2010). In all flows investigated, one can recognise that modes F3 and F1
consists of two parts: (i) thick elongated streamwise velocity streaks (red) located
in the near-wall region, and (ii) localised high-speed spanwise velocity structures
(blue) penetrating to higher wall-normal distances and reaching the mid-part of the
channel. The former may be connected with the low-speed streaks, as noted by
Rosti et al. (2018a), located in the near-wall regions, where the flow is fully yielded.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

31
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.31


888 A5-22 S. Le Clainche and others

0 1 32

Bi

amn
^

10-2

10-3

10-4

10-2

10-3

10-4
0 5 10

ımn

F1
F1-2
F2
F3
S1
S2
S3

F1 Bi = 0
F1-2 Bi = 0
S1 Bi = 1.4
F1 Bi = 1.4
S1 Bi = 2.1
F1 Bi = 2.1

(a) (b)

FIGURE 12. Wavenumber versus spatio-temporal amplitude. (a) Modes of the first
spanwise harmonic for the different values of the Bingham number under consideration.
(b) Different harmonics of the low-frequency streaky modes.

Additionally, these structures cover areas from the wall to the middle of the channel,
suggesting that the movement of these structures (from top to bottom and vice versa)
may be related with a continuous interaction between yielded and unyielded regions
(localised in the wall and middle channel) when Bi 6= 0. The localised high-speed
spanwise velocity structures, instead, represent localised perturbations bending and
disrupting the near-wall streaks. The streaks become longer when increasing the
Bingham number and they occupy the whole length of the computational domain
also for mode F3. When decreasing the Bingham number until the flow is Newtonian
(Bi= 0), the elongated high-speed streamwise structure becomes shorter, not only in
the case of high-frequency modes, but also for mode F1. This effect corresponds to
the increase of the streamwise coherence of the flow for increasing Bi reported by
Rosti et al. (2018a).

The occurrence of shorter high- and low-velocity streaks indicates that the
streak–streak interactions/collisions constitute one main mechanism responsible for
their breakdown, as an effective way to induce regions of localised high shear
among approaching streaks. This is consistent with the work by Brandt & de Lange
(2008), who studied controlled streak interactions in a Newtonian wall-bounded
flow, showing that collisions among finite-length streaks are able to initiate their
breakdown, as previously suggested by the analysis of turbulent fields in Johansson
& Alfredsson (1991). Our analysis indeed suggests that streak collisions are relevant
in Newtonian turbulence whereas EVP turbulence is characterised by the disruption
of longer structures by localised disturbances, see the analysis in Cossu et al. (2011)
under controlled conditions.

The analysis of the DMD modes reveals that the most energetic low-frequency
structures (the streaks) are shorter in Newtonian turbulence, whereas they are more
stable and larger in size as we increase the Bingham number in the EVP fluid. On
the other hand, the higher-frequency structures, associated with travelling disturbances,
are more localised in the case of Newtonian turbulence, while they take the form
of meandering streaks in the EVP fluid. This leads to the conclusion above, that
streak collisions are relevant in Newtonian turbulence whereas EVP turbulence is
characterised by the disruption of longer structures by localised disturbances. Note
that the interaction between streamwise streaks and localised disturbances is naturally
captured by the DMD modes, showing for the first time to the authors’ knowledge
different mechanisms triggering the streaks’ breakdown from simulations of a turbulent
flow.
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F1 F3

Bi = 2.1

Bi = 1.4

Bi = 0

(a) (b)

(c) (d)

(e) (f)

FIGURE 13. Reconstruction of the module of modes F1 and F3 with β ' 2 obtained
in the spanwise-spatial analysis at Bi = 0, 1.4 and 2.1. The flow is from left to right.
Iso-surfaces, in the bottom part of the channel, of streamwise velocity with value 0.6Ub
(red) and spanwise velocity with value 0.6Ub (blue) coloured by streamwise velocity (blue
and red scale as 0 and 1, respectively, in the streamwise velocity). Iso-surfaces of the
mode representing the mean flow (β=0) are in grey (translucent). The data are normalised
with their maximum value.

To further discuss the potential of HODMD for the analysis of turbulent flows,
we depict in figure 14 the real and imaginary parts of two characteristic modes with
β ' 2 at low and high Bingham numbers. The plot reveals that, at Bi = 0, the real
and imaginary part of mode F1 are dissimilar. This implies that the flow changes
during half a period from the two different configurations shown, i.e. the dominant
dynamical mode corresponds to short streaks travelling and meandering. The same
is true for mode F3, displaying localised high-frequency structures moving with
the underlying elongated structures. On the contrary, the proportionality between
the real and imaginary part of the modes found at Bi = 2.1 reveals that, in the
viscoplastic fluid, mode F1 becomes a standing mode. Mode F3, instead, displays a
short-time disruption of the streaky flow, localised in the streamwise direction. Finally,
figure 15 shows the real and imaginary part of the low- and high-frequency S modes,
characteristic of the viscoplastic flows. As seen the mode S1 is standing, while mode
S3 has a travelling character.

To summarise, the spanwise spatio-temporal DMD analysis carried out in this
section reveals the role of the interactions between high- and low-speed streaks in
near-wall turbulence, which can be related to the mechanism responsible for the
reduced drag of the EVP flow. Nevertheless, a spatio-temporal analysis focusing
on streamwise modes is also relevant to deepen the understanding of the travelling
character of the DMD modes, as presented in the following section.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Re(F1) Im(F1) Re(F3) Im(F3)

Bi = 0

Bi = 2.1

FIGURE 14. Reconstruction of the real (Re) and imaginary (Im) parts (from left to right)
of the modes F1 and F3 with β ' 2 calculated at Bi= 0 and 2.1. The flow is from left
to right and the iso-surfaces are displayed only in the bottom part of the channel. The
data are normalised with their maximum value.

(a) (b) (c) (d)

(e) (f) (g) (h)

Re(S1) Im(S1) Re(S3) Im(S3)

Bi = 1.4

Bi = 2.1

FIGURE 15. Same as figure 14 for modes S1 and S3.

5.2. Streamwise-periodic streaks: travelling waves
The spatio-temporal DMD analysis has also been carried out along the streamwise
direction, in order to describe the flow in terms of travelling waves. DMD-d has
been applied using the tolerances ε1 = 10−4, ε2 = 10−2 and d = 1 to a group of 168
snapshots that are equidistant along the streamwise direction with 1x ' 3.6 × 10−2.
The leading wavenumber in all the cases is the minimum wavenumber obtained for
the computational domain adopted, defined as αmin = 2π/Lx ' 1.04.

Figure 16 shows the amplitude of the different spatio-temporal modes as a function
of the wavenumber for the three Bingham numbers investigated. The mode with
highest spatio-temporal amplitude at Bi= 0 is F2, as in the spanwise-spatial analysis.
At Bi= 1.4, this mode increases its amplitude; as the complexity of the flow decreases
when increasing the Bingham number (i.e. the flow is more regular), the flow can
be decomposed into fewer modes (fewer different scales). At Bi= 1.4, the amplitude
of mode S3 is larger than that of mode F2, where the former is the new leading
spatio-temporal mode, and in general the S modes become the most important. Finally,
at Bi= 2.1, the amplitude of mode S3 strongly decreases, mode F2 is not found (as
its amplitude is even smaller) and the leading mode is S1, followed by S2 and F1.
These two S modes were also found as the most relevant in the spanwise-spatial
analysis, however, the third most relevant mode was F3. This again indicates that the
dominant dynamics at the highest Bingham considered, just before the laminar flow
found at Bi= 2.8 in Rosti et al. (2018a), is the weak meandering of long streaks.

Finally, figure 17 presents a visualisation of modes F1 and F3 from the simulations
at Bi= 0 and Bi= 2.1. The figure shows the three-dimensional reconstruction of the
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FIGURE 16. Wavenumber versus spatio-temporal amplitude. (a) Bi= 0, (b) Bi= 1.4 and
(c) Bi= 2.1. The legend shows the modes in decreasing order from low to high frequency.

leading mode with α ' 1.04, again using iso-surfaces of the high-speed streamwise
velocity (red structures) and iso-surfaces of positive spanwise velocity, representing the
low-speed streamwise velocity structures (blue structures). The spatially steady mode
with α=0 is depicted on top with grey transparent contours, to indicate the underlying
streaky structures for the low-frequency mode.

First, we note that the steady mode forms large-size structures, especially at Bi=
2.1, where a single large streak is identified in the middle part of the channel for
F1, whereas three large streaks are found for F3. As the latter is a high-frequency
mode, the presence of 3 structures is not significative of the underlying streaks, but
rather suggests that the high-frequency modes disrupting the streaks are localised on
the streak flanks. These 3 structures travel at higher frequency than the low-frequency
streaks, so they indicate a modulation of the low-frequency streaks. Note that, as we
are performing a Fourier analysis, a localised disturbance, which is characterised by
a high spanwise wavenumber mode, once plotted as done here, appears as a short-
wavelength modulation of the flow over the full span of the computational domain.

The streamwise-travelling structures reveal, therefore, the modes of streak breakdown.
These are more localised in the Newtonian flow, while they extend over longer
distances in the viscoplastic flows, confirming the description above of the two
different flows. In both cases, these modes are associated with the high shear regions
between streaks. At Bi=2.1, it is possible to distinguish two well-defined wavepackets
in the middle of the channel, decomposed into groups of high- and low-speed
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F1 F3

Bi = 2.1

Bi = 1.4

Bi = 0

(a) (b)

(c) (d)

(e) (f)

FIGURE 17. Same as figure 13 but for the streamwise-spatial analysis using the leading
wavenumber α ' 1.04. Iso-surfaces of the mode representing the mean flow (α = 0) in
grey (translucent).

structures. In summary, these travelling waves simplify the description of the very
complex processes in turbulent flows, representing the mechanisms responsible for
the streaks breakdown.

6. Comparison to a purely viscoelastic flow
The purely viscoelastic, turbulent channel flow is here considered to elucidate

similarities and differences between the two different types of non-Newtonian
turbulence. All parameters are the same as previously, except that Bi = 0, and
two finite Weissenberg numbers are considered: Wi= 4 and Wi= 8.

The temporal frequencies and amplitudes of the DMD modes are shown in
figure 18. We start by considering the Wi = 4 case. By comparing the structures
and the frequencies to the Newtonian flow, the fluid modes F1, F2 and F3 have
been identified with similar frequencies as in Newtonian and EVP flows. We also
identify a low-frequency mode E1 that is not present in the Newtonian flow, and
is the counterpart of S1 in the EVP case. The E1 mode originates in the fact that
streaks are sustained over longer periods in the viscoelastic flow than in Newtonian
flow (similarly for S1 in the EVP case). This is well aligned with the observation
that the viscoelastic flow is hibernating between turbulent and laminar states; periods
of laminar flow can be observed in between the turbulent flow cycles. Due to this,
streaks are on average sustained longer, resulting in a low-frequency DMD mode. At
Wi= 8, new modes at even lower frequencies are observed, E0 (two modes) and F0
(subharmonics of E1 and F1), consistently with an increased tendency of the flow to
hibernate, leading to an even larger drag reduction.
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FIGURE 18. Frequencies versus amplitudes from the DMD-d analysis of viscoelastic fluids
at Wi= 4 (a) and Wi= 8 (b).

(a) (b)

(c) (d)

E1 F0

F1 F2

FIGURE 19. Reconstruction of the module of modes E1, F0, F1, and F2 with β '
2 obtained in the spanwise-spatial analysis at Wi = 8. The flow is from left to right.
Iso-surfaces in the bottom part of the channel of the streamwise velocity with value
0.6Ub (red) and the spanwise velocity with value 0.6Ub (blue) coloured by the streamwise
velocity (blue and red scale as 0 and 1, respectively, in the streamwise velocity).

Let us now analyse the spatio-temporal structures of each mode. Figure 19 shows
the spatio-temporal reconstruction in the spanwise direction of modes E1, F0, F1
and F2 at Wi = 8. The spatial structure of these modes depicts meandering motions
of long streaks, which is qualitatively similar to the EVP case, and very different
from the Newtonian case. The structures associated with streak breakdown are also
different from the Newtonian case. Instead of short streaks that interact, creating large
fluctuations in the Newtonian case (figure 13e, f ), the streaks in the viscoelastic flow
break down only locally. This is confirmed by the spatio-temporal reconstruction in
the streamwise direction of modes F0 and F1, as shown in figure 20. These structures
are again longer than in the Newtonian flow (figure 17e, f ), although somewhat thinner
and more elongated than in the EVP flow at high Bingham number (figure 17a,b).

There is, however, one difference between the EVP and viscoelastic flows at the
chosen parameters. The flow at Wi = 8 is drag reducing but highly unsteady; the
flow is hibernating between turbulent and laminar phases. This is in contrast to
the elastoviscoplastic flow analysed in the previous sections, which becomes more
laminar with increasing Bi, and steady at Bi = 2.8. Remarkably, the DMD mode
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(a) (b)E1 F0

FIGURE 20. Streamwise-spatial analysis using the leading wavenumber α ' 1.04, for
modes F0 and F2 at Wi = 8. The flow is from left to right. Iso-surfaces in the bottom
part of the channel of the mode representing the mean flow (α= 0) in grey (translucent).

amplitudes seem to capture this difference. In the EVP case, the amplitude of the
low-frequency mode (S1) indicating long persistent streaks increases with Bi, and
clearly dominates the modes that are associated with streak breakdown (F2, F3).
This indicates that the turbulent cycle is being broken in the EVP case. For the
viscoelastic case, however, all the modes have similar relative amplitudes, and similar
to the modes in the Newtonian case. The flat amplitude distribution indicates that,
while the turbulent cycle is modified by long periods of hibernation, the breakdown
modes are still comparatively strong compared to the streaks in the case considered
here (i.e. at this Wi, the polymers redistribute the energy within the turbulent cycle
but do not kill the turbulence).

7. Conclusions
We have carried out a HODMD to study the evolution of the flow structures in

turbulent channel flow of Newtonian and non-Newtonian (elastoviscoplastic) fluids,
where the HODMD is a more robust extension of DMD. The analysis retains six
high-amplitude modes, representing the well-known elongated streaky structures
characteristic of near-wall turbulence as well as high-frequency localised modes,
responsible of the streak breakdown. Spatio-temporal HODMD analysis has also
been carried out in order to describe in detail the streaks and their breakdown. In
particular, spanwise-periodic modes show that the interaction between high- and
low-speed structures (mainly in the streamwise velocity component) can trigger
the streak breakdown. Indeed, streak breakdown occurs by the amplification of
background noise in the regions of high local shear forming when two streaks moving
at different velocities approach each other. Streamwise-periodic coherent structures
show that this highly complex flow can be described as a group of travelling waves
moving with and on the streaks.

The results indicate HODMD as a viable methodology to understand the dynamics
of wall-bounded turbulence, so far often elusive to similar approaches. Here, we
have considered plastic effects on turbulent channel flow, and examined how the flow
changes when increasing the yield stress, i.e. the Bingham number. In a Newtonian
flow, near-wall high- and low-speed streaks have finite length and generate large
velocity fluctuations by interacting with each other, as shown by the fact that
high-frequency modes are localised mainly at the edges of these streaks (Johansson
& Alfredsson 1991). When increasing the flow plasticity, the overall drag decreases
and the flow dynamics is obviously altered. The streaks become longer and move
with lower frequency. These larger structures are disrupted locally by high-frequency
streamwise-travelling modes while meandering, and soon form anew. The flow is
therefore more regular, which explains the reduced drag and the relaminarisation at
Bingham numbers slightly above those considered here (Rosti et al. 2018a).
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As for viscoelastic fluids, we do not believe the streak generation and regeneration
process change in an EVP fluid; an analysis like that in Zhang et al. (2013) would
confirm such a hypothesis. Also, we show here the mechanism of streak breakdown
is not different in Bingham fluids, rather the streak shape is, which causes a different
breakdown path, cf. the studies by Andersson et al. (2001) and Brandt & de Lange
(2008) for the case of infinitely long and relatively short streaks in a Newtonian fluid.

Finally, we have applied the same analysis to drag-reducing viscoelastic flow, and
shown that the turbulent cycle is modified by long periods of hibernation; however,
the breakdown modes are still comparatively strong compared to the streaks in the
viscoelastic cases considered here.
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