
Robotica (2018) volume 36, pp. 1701–1727. © Cambridge University Press 2018
doi:10.1017/S0263574718000668

Design and application of an adaptive backstepping
sliding mode controller for a six-DOF quadrotor
aerial robot
Mohd Ariffanan Mohd Basri∗

Department of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti
Teknologi Malaysia, Skudai 81310, Johor, Malaysia

(Accepted July 11, 2018. First published online: August 3, 2018)

SUMMARY
The quadrotor aerial robot is a complex system and its dynamics involve nonlinearity, uncertainty,
and coupling. In this paper, an adaptive backstepping sliding mode control (ABSMC) is presented for
stabilizing, tracking, and position control of a quadrotor aerial robot subjected to external disturbances.
The developed control structure integrates a backstepping and a sliding mode control approach.
A sliding surface is introduced in a Lyapunov function of backstepping design in order to further
improve robustness of the system. To attenuate a chattering problem, a saturation function is used to
replace a discontinuous sign function. Moreover, to avoid a necessity for knowledge of a bound of
external disturbance, an online adaptation law is derived. Particle swarm optimization (PSO) algorithm
has been adopted to find parameters of the controller. Simulations using a dynamic model of a six
degrees of freedom (DOF) quadrotor aerial robot show the effectiveness of the approach in performing
stabilization and position control even in the presence of external disturbances.

KEYWORDS: Quadrotor aerial robot, Backstepping control, Adaptive control, Sliding mode control,
Particle swarm optimization

1. Introduction
Nowadays, aerial robots are used in different military and civilian applications, such as border
patrolling, geological surveying, traffic monitoring, area mapping, search and rescue, and
reconnaissance missions. Quadrotors are a special class among different types of aerial robots. In
the past few years, research on quadrotor aerial robots has significantly increased. This is due to their
advantages such as their capability to show precise movements, hover and vertical take-off and landing
(VTOL). Quadrotors belong to the helicopter rotorcraft class, which has nonlinear dynamic behavior
and is difficult to stabilize. The main challenges of the aerial robots are mainly due to their unstable
nature and complexity of the dynamic model, thus offering a challenge to design a stabilization and
position control. Many methods have been proposed to control a quadrotor aerial robot, such as
linear quadratic regulator (LQR) control,1−3 proportional–integral–derivative (PID) control,4−6 fuzzy
logic (FL) control,7,8 sliding mode control (SMC),9,10 and backstepping control.11−14 Among these
methods, backstepping control has received great attention because of its systematic and recursive
design methodology for nonlinear feedback control.

The backstepping control scheme is a nonlinear control method based on the Lyapunov theorem.
The advantage of backstepping control technique lies in its design flexibility, which is mainly because
of the recursive use of Lyapunov functions. Unfortunately, the backstepping control system cannot
achieve robustness to model uncertainties and external disturbances. Thus, the motivation of this
work is to design a new backstepping-based robust control approach for a quadrotor aerial robot with
external disturbances. SMC is a type of nonlinear control systems that have proven very robust to
model uncertainties and matched disturbances.15 The SMC has been successfully implemented in
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varieties, forms, and numerous real-world applications, such as satellite,16 rocket,17 aircraft,18 batch
reactor,19 flexible spacecraft,20 robot manipulator,21 shape memory alloy actuator,22 and wheeled
inverted pendulum systems.23 Thus, owing to the merits of backstepping control and SMC, in this
paper, both control schemes are combined for stabilization and position control of a quadrotor aerial
robot. In the design, an SMC scheme is introduced in the final step of backstepping method. To
further improve the backstepping sliding mode control (BSMC) design, an adaptation scheme is
derived to adapt the design parameters of the controller. Therefore, a prior knowledge on the bound
of disturbances is not required. The boundedness of tracking errors and the closed-loop stability of
the system are guaranteed, since the control law is derived in the sense of the Lyapunov theorem.
Compared with the method presented in refs. [14] and [10], the designed controller has the superiority
in robustness and adaptability, respectively. Thus, this approach can be benefited for a wide class of
nonlinear systems with the influences of external disturbances.

In order to determine the parameters of the control design, particle swarm optimization (PSO)
algorithm has been utilized. PSO is one of the modern heuristic algorithms based on the population
optimization algorithm.24 The method is motivated by the behavior of organisms, such as fish
schooling and bird flocking. Generally, PSO has features such as a straightforward algorithm, simple to
execute, computationally efficient, and rapid convergence. PSO also has a flexible and well-balanced
mechanism to enhance the global and local exploration abilities.25 The PSO algorithm has been used
effectively on a wide range of engineering and computer science problems.26,27 Thus, due to these
advantages, PSO is used to compute the optimal control parameters.

The prominent advantage of the proposed control approach is that the structure of the controller
is simple but very effective. Furthermore, no knowledge on the bound of disturbances is needed
in advance. The main contribution of this paper is a successful development of a new nonlinear
control structure that does not require any prior knowledge on the bound of disturbances based on the
backstepping technique augmented with the compensation controller. The effectiveness and merits
of the proposed technique are exemplified by conducting several simulation experiments, including
altitude and attitude stabilization, automatic take-off and landing, and trajectory tracking missions for
a quadrotor aerial robot.

The remainder of this paper is organized as follows. In Section 2, a mathematical model of
the quadrotor is presented. In Sections 3, 4, 5, and 6, a backstepping controller, optimization of
backstepping controller, backstepping sliding mode controller, and adaptive backstepping sliding
mode controller of the quadrotor are described, respectively. The simulation results and their
discussions are given in Section 7. Finally, conclusions are made in Section 8.

2. Quadrotor Systems Modeling

2.1. Quadrotor description
The quadrotor aerial robot, shown in Fig. 1, has four rotors to generate the propeller forces Fi=1,2,3,4.
The four rotors can be thought of as two pairs, (1,3)@(front, back) and (2,4)@(left, right). One
pair rotates clockwise, while the other rotates counter clockwise in order to balance the torques and
produce yaw motion as needed. Yaw motion can be obtained from the difference in the counter torque
between each pair of propellers, (1,3) and (2,4). When all four rotors are spinning with the same
angular velocity, the net yaw is zero, and a difference in velocities between the two pairs creates
either positive or negative yaw motion. To achieve the up (down) motion, the rotor speeds need to
be increased (decreased) altogether with the same magnitude. Forward (backward) motion which is
related to the pitch angle, θ , can be obtained by decreasing the front (back) rotor thrust and increasing
the back (front) rotor thrust. Finally, a sideways motion which is related to the roll angle, φ, can be
achieved by decreasing the right (left) rotor thrust and increasing the left (right) rotor thrust. Figure 2
shows the various movements of a quadrotor due to changes in rotor speeds.

In order to develop a model of the quadrotor, a few assumptions are established in order to
accommodate the controller design. The assumptions are as follows:28

Assumption 1: Quadrotor is a rigid body and has symmetric structure.

Assumption 2: Aerodynamic effects can be ignored at low speed.
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Fig. 1. Quadrotor aerial robot configuration.

Fig. 2. The movements of a quadrotor: the arrow width is proportional to rotor speeds.

Assumption 3: The rotor dynamics are relatively fast and thus can be neglected.

Assumption 4: The quadrotor’s center of mass and body-fixed frame origin coincide.

2.2. Quadrotor kinematic model
Let us consider an earth-fixed frame E = {xe, ye, ze} and a body-fixed frame B = {xb, yb, zb}, as seen in
Fig. 1. Let q = (x, y, z, φ, θ, ψ ) ∈ R6 be the generalized coordinates for the quadrotor, where (x, y, z)
denotes the absolute position of the rotorcraft and (φ, θ, ψ ) are the three Euler angles (roll, pitch, and
yaw) that describe the orientation of the aerial robot. Therefore, the model could be separated in two
coordinate subsystems: translational and rotational. They are defined respectively by the following:

ξ = (x, y, z) ∈ R3 (1)

η = (φ, θ, ψ ) ∈ R3 (2)
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The kinematic equations of the translational and rotational movements are obtained by means of
the rotation R and transfer T matrices, respectively. The expression of the rotation R and transfer T
matrices can be found in ref. [29] and defined accordingly by the following equations:

R =

⎛
⎜⎜⎝

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ

⎞
⎟⎟⎠ (3)

T =

⎛
⎜⎜⎝

1 sφtθ cφtθ

0 cφ −sφ

0 sφ/cθ cφ/cθ

⎞
⎟⎟⎠ (4)

where s(·), c(·), and t (·) are abbreviations for sin(·), cos(·), and tan(·), respectively.
The translational kinematic can be written as

ξ̇ = RV (5)

where ξ̇ and V are, respectively, the linear velocity vectors with respect to (w.r.t.) the earth-fixed frame
E and body-fixed frame B.

The rotational kinematics can be defined as follows:

η̇ = T ω (6)

where η̇ and ω are the angular velocity vectors w.r.t. the earth-fixed frame E and body-fixed frame B,
respectively.

2.3. Quadrotor dynamic model
The dynamic model of quadrotor is derived from the Newton–Euler approach, as formulated in ref.
[30]. It can be useful to express the translational dynamic equations w.r.t. the earth-fixed frame E and
rotational dynamic equations w.r.t. the body-fixed frame B.

Therefore, the translational dynamic equations of quadrotor can be written as follows:

mξ̈ = −mgez + uT Rez (7)

where m denotes the quadrotor mass, g the gravity acceleration, ez = (0, 0, 1)T the unit vector
expressed in the frame E , and uT the total thrust produced by the four rotors.

uT =
∑4

i=1
Fi = b

∑4

i=1
�2

i (8)

where Fi and �i denote, respectively, the thrust force and speed of the rotor i, and b is the thrust factor.
The rotational dynamic equation of quadrotor can be written as follows:

Iω̇ = −ω × Iω − Ga + τ (9)

where I is the inertia matrix, −ω × Iω and Ga are the gyroscopic effect due to rigid body rotation
and propeller orientation change, respectively, while τ is the control torque obtained by varying the
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rotor speeds. Ga and τ are defined as

Ga =
∑4

i=1
Jr (ω × ez ) (−1)i+1�i (10)

τ =

⎛
⎜⎜⎝

τφ

τθ

τψ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

lb
(
�2

4 − �2
2

)
lb

(
�2

3 − �2
1

)
d

(
�2

2 + �2
4 − �2

1 − �2
3

)

⎞
⎟⎟⎠ (11)

where Jr is the rotor inertia, l represents the distance from the rotors to the center of mass, and d is
the drag factor.

Then, by recalling Eqs. (7) and (9), the dynamic model of the quadrotor in terms of position (x, y, z)
and rotation (φ, θ, ψ ) is written as

⎛
⎜⎜⎝

ẍ

ÿ

z̈

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0

0

−g

⎞
⎟⎟⎠ + 1

m

⎛
⎜⎜⎝

cφsθcψ + sφsψ

cφsθ sψ − sφcψ

cφcθ

⎞
⎟⎟⎠ uT (12)

⎛
⎜⎜⎝

φ̈

θ̈

ψ̈

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

θ̇ ψ̇
(

Iyy−Izz

Ixx

)

φ̇ψ̇
(

Izz−Ixx

Iyy

)

θ̇ φ̇
(

Ixx−Iyy

Izz

)

⎞
⎟⎟⎟⎟⎠ −

⎛
⎜⎜⎝

Jr
Ixx

θ̇�d

− Jr
Iyy

φ̇�d

0

⎞
⎟⎟⎠ +

⎛
⎜⎜⎜⎝

1
Ixx

τφ

1
Iyy

τθ

1
Izz

τψ

⎞
⎟⎟⎟⎠ (13)

Consequently, quadrotor is an under-actuated system with six outputs (x, y, z, φ, θ, ψ ) and four
control inputs ( uT , τφ, τθ , τψ ).

Finally, the quadrotor dynamic model can be written in the following form:

ẍ = (
cφsθcψ + sφsψ

) 1

m
u1

ÿ = (
cφsθ sψ − sφcψ

) 1

m
u1

z̈ = −g + (
cφcθ

) 1

m
u1

φ̈ = θ̇ ψ̇

(
Iyy − Izz

Ixx

)
− Jr

Ixx
θ̇�d + l

Ixx
u2 (14)

θ̈ = φ̇ψ̇

(
Izz − Ixx

Iyy

)
+ Jr

Iyy
φ̇�d + l

Iyy
u3

ψ̈ = θ̇ φ̇

(
Ixx − Iyy

Izz

)
+ 1

Izz
u4

with a renaming of the control inputs as

u1 = b
(
�2

1 + �2
2 + �2

3 + �2
4

)
u2 = b

(
�2

4 − �2
2

)
u3 = b

(
�2

3 − �2
1

)
(15)

u4 = d
(
�2

2 + �2
4 − �2

1 − �2
3

)
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and �d is defined as

�d = �2 + �4 − �1 − �3 (16)

3. Backstepping Control System for Quadrotor
The dynamic model (14) with consideration of external disturbance can be represented into a nonlinear
dynamic equation described as follows:

Ẍ = f (X ) + g (X ) u + δ (17)

where u, X, and δ are, respectively, the input, state, and external disturbance vector given as follows:

u = [u1 u2 u3 u4]T (18)

X = [x1 x3 x5 x7 x9 x11]T = [
z φ θ ψ x y

]T
(19)

δ = [δ1 δ3 δ5 δ7 δ9 δ11]T (20)

From Eqs. (14) and (19), the nonlinear dynamic function f (X ) and nonlinear control function g(X )
matrices can be written accordingly as

f (X ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−g

θ̇ ψ̇a1 − θ̇a2�d

φ̇ψ̇a3 + φ̇a4�d

θ̇ φ̇a5

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

g (X ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

uz
1
m 0 0 0

0 b1 0 0

0 0 b2 0

0 0 0 b3

ux
1
m 0 0 0

uy
1
m 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(21)

with the abbreviations a1 = (Iyy − Izz )/Ixx, a2 = Jr/Ixx, a3 = (Izz − Ixx )/Iyy, a4 = Jr/Iyy, a5 =
(Ixx − Iyy)/Izz, b1 = l/Ixx, b2 = l/Iyy, b3 = 1/Izz, ux = (cφsθcψ + sφsψ ), uy = (cφsθ sψ − sφcψ ),
and uz = (cφcθ ).

The control objective is to design a suitable control law so that the state trajectory X of the quadrotor
system can track a desired reference trajectory Xd = [x1d x3d x5d x7d x9d x11d ]T despite the presence of
external disturbance. Since the description of the control system design of the quadrotor is similar for
each one of the six controllable degrees of freedom (DOF), for simplicity only one DOF is considered.

The design of ideal backstepping control (IBC) is designed sequently as follows:

Step 1: The tracking error is assigned as

e1 = x1d − x1 (22)

where x1d is a desired trajectory.
Differentiating Eq. (22), it is obtained that

ė1 = ẋ1d − ẋ1 (23)

The first Lyapunov function is chosen as

V1 (e1) = 1

2
e2

1 (24)
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The derivative of V1 is

V̇1 (e1) = e1ė1 = e1 (ẋ1d − ẋ1) (25)

ẋ1 can be viewed as a virtual control. The desired value of virtual control known as a stabilizing
function can be defined as follows:

α1 = ẋ1d + k1e1 (26)

where k1 is a positive constant and should be determined by the PSO algorithm.
By substituting the virtual control by its desired value, Eq. (25) then becomes

V̇1 (e1) = −k1e2
1 ≤ 0 (27)

Step 2: The deviation of the virtual control from its desired value can be defined as

e2 = ẋ1 − α1 = ẋ1 − ẋ1d − k1e1 (28)

The derivative of e2 is expressed as

ė2 = ẍ1 − α̇1

= f (x1) + g (x1) u1 + δ1 − ẍ1d − k1ė1
(29)

The second Lyapunov function is chosen as

V2 (e1, e2) = 1

2
e2

1 + 1

2
e2

2 (30)

Finding derivative of Eq. (30) yields

V̇2 (e1, e2) = e1ė1 + e2ė2

= e1 (ẋ1d − ẋ1) + e2 (ẍ1 − α̇1)

= e1 (−e2 − k1e1) + e2 ( f (x1) + g (x1) u1 + δ1 − ẍ1d − k1ė1) (31)

= −k1e2
1 + e2 (−e1 + f (x1) + g (x1) u1 + δ1 − ẍ1d − ẍd − k1ė1)

Step 3: Assuming that the external disturbance is well known, an IBC can be obtained as

uIB = 1

g (x1)
(e1 + k1ė1 + ẍ1d − f (x1) − δ1 − k2e2) (32)

where k2 is a positive constant and should be also determined by the PSO algorithm. The term k2e2

is added to stabilize the tracking error e1.
Substituting Eq. (32) into Eq. (31), the following equation can be obtained:

V̇2 (e1, e2) = −k1e2
1 − k2e2

2 = −ET KE ≤ 0 (33)

where E = [e1 e2]T and K = diag(k1, k2). Since V̇2(e1, e2) ≤ 0, V̇2(e1, e2) is negative semi-definite.
Therefore, the IBC in Eq. (32) will stabilize the system.

4. Backstepping Control Parameters Optimization

4.1. Overview of PSO
The PSO is a type of swarm intelligence methods and a population-based algorithm that is normally
used as an optimization tool.24 Each individual (particle) of the population is a candidate solution. In
PSO, each particle navigates around the search (solution) space by updating their velocity according
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Fig. 3. Depiction of the velocity and position updates in PSO.

to its own and also the other particles searching experience. Each particle attempts to imitate the
successful peers’ attributes to improve themselves. Further, each particle has a memory to keep the
track of the previous best position (known as pbest) and corresponding fitness. The particle with
greatest fitness in the population is called gbest.

There are three steps involved in the basic PSO algorithm, namely, producing particles’ positions
and velocities, velocity update, and finally, position update.31 First, by using the design upper, xmax,

and lower, xmin, bound values, the initial positions, xk
i , and velocities, vk

i , of particles are randomly
generated, as expressed in the following equation:

x0
i = xmin + rand (xmax − xmin) (34)

v0
i = xmin + rand (xmax − xmin) (35)

In Eqs. (34) and (35), the subscript and superscript denote the ith particle at iteration k, respectively,
while rand is a uniformly distributed random variable that can take any value between 0 and 1.

The second step is to update the velocities of all particles according to the following expressions:

vk+1
i = w · vk

i + c1 · rand · (
pbest − xk

i

) + c2 · rand · (
gbest − xk

i

)
(36)

Three weight factors, namely, inertia factor, w, self-confidence factor, c1, and swarm confidence
factor, c2, are incorporated in Eq. (36) to effect the particles direction. The following inertia weight
is used:32

w = wmax − (wmax − wmin) k/kmax (37)

where k and kmax are the current number of iterations and the maximum number of iterations,
respectively. wmax and wmin are the maximum and minimum weights, respectively. Appropriate values
for wmin and wmax are 0.4 and 0.9, respectively.33

Finally, velocity vector is used to update the position of each particle, as shown in the following
equation and illustrated in Fig. 3:

xk+1
i = xk

i + vk+1
i (38)

Repeat the three steps of (i) velocity update, (ii) position update, and (iii) fitness calculations until
a stopping criterion is reached. The pseudo-code of the PSO algorithm is shown in Fig. 4.

https://doi.org/10.1017/S0263574718000668 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718000668


Adaptive backstepping sliding mode controller for quadrotor aerial robot 1709

PSO pseudo-code

01:   begin   

02:     Randomly initialize particles swarm   

03:     while (number of iterations, or the stopping criterion is not met)   

04:       Evaluate fitness function of particle swarm   

05:       for n = 1 to number of particles   

06:         Find pbest

07:         Find gbest

08:         for d = 1 to numbeDDr of dimension of particle   

09:           update the velocity and position of particles by (36) and (38), respectively   

10:         next d

11:       next n

12:       update the inertia weight value by (37)   

13:     next generation until stopping criterion   

14:   end 

Fig. 4. The pseudo-code of the PSO algorithm.

4.2. Optimal backstepping control system
The dynamic model in Eq. (14) can be divided into two subsystems �1 and �2, listed as follows:

�1 :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ̈ = θ̇ ψ̇
(

Iyy−Izz

Ixx

)
− Jr

Ixx
θ̇�d + l

Ixx
u2

θ̈ = φ̇ψ̇
(

Izz−Ixx

Iyy

)
+ Jr

Iyy
φ̇�d + l

Iyy
u3

ψ̈ = θ̇ φ̇
(

Ixx−Iyy

Izz

)
+ 1

Izz
u4

(39)

�2 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẍ = (
cφsθcψ + sφsψ

)
1
m u1

ÿ = (
cφsθ sψ − sφcψ

)
1
m u1

z̈ = −g + (
cφcθ

)
1
m u1

(40)

�1 in Eq. (39) represents the rotation subsystem related with the dynamics of quadrotor roll motion
φ, pitch motion θ , and yaw motion ψ . �2 in Eq. (40) represents the position subsystem related with
the dynamics of quadrotor longitude motion x, latitude motion y, and altitude motion z. Hence, the
control scheme advocated for the overall system is then logically divided into a rotation controller
and a position controller.

In the previous section, a controller (32) has been designed to stabilize one DOF of the overall
system. The coefficients k1 and k2 are control parameters and need to be positive to satisfy stability
criteria. In conventional backstepping method, these parameters are selected by trial and error. It is
also possible if the parameters are properly chosen, but it cannot be said that the optimal parameters
are selected. To overcome this drawback, the PSO is used off-line for determining the optimal value of
the backstepping control parameters. The performance of the controller varies according to adjusted
parameters. Since the optimal backstepping control (OBC) aims to improve the control performance
yielded by a backstepping controller, it keeps the simple structure of the backstepping controller. As
aforementioned, both the rotation and position subsystems are comprised of three DOF. Then, there
are in sum six control parameters that need to be selected simultaneously for each subsystem.
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In the present study, an integral absolute error (IAE) is utilized to judge the performance of the
controller. IAE criterion is widely adopted to evaluate the control system dynamic performance.34

The index IAE is defined as follows:

IAE =
t∫

0

|e (t )| dt (41)

Since the system is comprised of two subsystems, a vector IAE for the rotation subsystem is taken as
IAER = [IAEφ IAEθ IAEψ ], where the subscripts are denoted for roll, pitch, and yaw, respectively.
Meanwhile, a vector IAE for the position subsystem is taken as IAEP = [IAEx IAEy IAEz], where
the subscripts are denoted for longitude, latitude, and altitude, respectively.

For the rotation controller, the PSO algorithm is utilized to minimize the fitness function JR,
expressed as

JR = IAER · W (42)

and for the position controller, the PSO algorithm is utilized to minimize the fitness function JP,
expressed as

JP = IAEP · W (43)

where W = [W1 W2 W3]T is weighting vector used to set the priority of the multiple objective
performance index (MOPI) parameters and the value of “W ” varies from 0 to 1. In this case,
equal weights for the three objectives to be met by the each controller are considered as such the
minimizations of the error indexes are equally important. For calculating the fitness function, the
quadrotor system model is simulated for the time period t . In order to enhance the transient response
and steady-state errors, the fitness function has to be minimized. The PSO-based approach to find out
the optimal set of backstepping controller parameters is shown in Fig. 5.

5. Backstepping Sliding Mode Control System
The optimized IBC (32) effort is unrealizable if an unknown external disturbance is present in the
system. Thus, auxiliary control effort is designed to attenuate the effect of the unknown external
disturbance. The auxiliary control effort is referred as switching control effort represented by usw.
The switching control effort is designed such that the system state trajectories are forced toward the
sliding surface and stay on it. This effort is known as sliding mode.

Procedures to design the BSMC can be described by the following steps:
Step 1: Similar as Step 1 in the design of IBC.
Step 2: Define a sliding surface in terms of the error such as

s = e2 = ẋ1 − ẋ1d − k1e1 (44)

Thus, the Lyapunov function (30) can be written as

V2 = 1

2
e2

1 + 1

2
s2 (45)

Differentiating Eq. (45) w.r.t. time leads to

V̇2 = e1ė1 + sṡ
= e1 (−e2 − k1e1) + s ( f (x1) + g (x1) u + δ1 − ẍ1d − k1ė1)
= −k1e2

1 + s (−e1 + f (x1) + g (x1) u + δ1 − ẍ1d − k1ė1)
(46)

Step 3: Since the external disturbance is unknown, a backstepping control can be obtained as

uB = 1

g (x1)
(e1 + k1ė1 + ẍ1d − f (x1) − k2s) (47)
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Fig. 5. The flowchart of the PSO-based backstepping control parameters optimization.

Step 4: Define the switching control signal such as

usw = λ sign (s) (48)

where λ is a constant determined by design parameter and sign(s) is a sign function:

sign (s) =
{

1, s/ρ > 0
−1, s/ρ < 0 (49)
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Totally, the robust BSMC law for nonlinear systems with the presence of external disturbance,
which guarantees stability and convergence, can be represented as

u = uB + usw

= 1

g (x1)
(e1 + k1ė1 + ẍ1d − f (x1) − k2s) + ε1

g (x1)
sign (s) (50)

where ε1 is design parameter to be determined later.
The utilization of discontinuous switching function will excite undesired phenomenon called

chatter. In order to eliminate the chattering problem, a saturation function sat(s/ρ) is utilized. Thus,
replacing sign(s) by sat(s/ρ ) in Eq. (50) implies

u = 1

g (x1)
(e1 + k1ė1 + ẍ1d − f (x1) − k2s + ε1sat (s/ρ )) (51)

The saturation function sat(s/ρ) is defined as follows:

sat (s/ρ) =
{

sign (s/ρ ) , |s/ρ| > 1
s/ρ, |s/ρ| ≤ 1 @ sat (s/ρ ) =

⎧⎨
⎩

1, s/ρ > 1
−1, s/ρ < −1

s/ρ, |s/ρ| ≤ 1
(52)

where ρ is boundary layer around the sliding surface s and its value is a small positive constant.
The BSMC law for one DOF of quadrotor nonlinear systems with the presence of external

disturbance, which guarantees the stability and convergence, can be generally represented as

ui = ui(B) + ui(sw)

u1 = 1

g (x1)
(e1 + k1ė1 + ẍ1d − f (x1) − k2s1 + ε1 sat (s1/ρ1)) ; (for i = 1) (53)

The control laws for the other states or DOF can be obtained by performing the same steps.
Finally, the control inputs u1, u2, u3, and u4 for the quadrotor dynamic systems can be defined as

follows:

u1 = m

cφcθ

(e1 + k1ė1 + ẍ1d + g − k2s1 + ε1 sat (s1/ρ1))

u2 = 1

b1

(
e3 + k3ė3 + ẍ3d − θ̇ ψ̇a1 + θ̇a2�d − k4s2 + ε2 sat (s2/ρ2)

)

u3 = 1

b2

(
e5 + k5ė5 + ẍ5d − φ̇ψ̇a3 − φ̇a4�d − k6s3 + ε3 sat (s3/ρ3)

)
(54)

u4 = 1

b3

(
e7 + k7ė7 + ẍ7d − θ̇ φ̇a5 − k8s4 + ε4 sat (s4/ρ4)

)

Theorem: For the nonlinear dynamic equation of quadrotor with external disturbance as
represented by Eq. (17), if the control law in Eq. (51) is applied, the system will be asymptotically
stable.

Proof: Substituting the BSMC law from Eq. (51), then Eq. (46) becomes

V̇2 = −k1e2
1 − k2s2 + s (ε1 sat (s/ρ ) + δ1)

= −k1e2
1 − k2s2 + ε1 |s| + δ1s

(55)

From the Lyapunov theorem, if V̇2 is negative definite, the system trajectory will be driven and
attracted toward the sliding surface, and remain sliding on it until the origin is reached asymptotically.
Hence, the design parameter should be chosen in such a way that V̇2 < 0 is always satisfied. Let us
assume that δ1 is bounded with β. So, by choosing −ε1 ≥ β, V̇2 < 0 can be guaranteed.
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6. Adaptive Backstepping Sliding Mode Control System
In practical application, the upper bound of external disturbances, which is required in the conventional
BSMC system to guarantee the system stability, is difficult to determine precisely in priori. Hence, an
adaptation scheme is proposed to adapt the design controller parameters. Consequently, knowledge
on the bound of external disturbances is not needed in advance. To derive the adaptation law, the
following Lyapunov function is defined:

V3 = V2 + 1

2
γ ε̃2

1 (56)

where ε̃1 = ε̂1 − ε1 and γ is gain adaptation.
Differentiating Eq. (56) w.r.t. time yields

V̇3 = V̇2 + γ ε̃1 (−ε̇1) (57)

Substituting Eq. (46) into Eq. (57), it is obtained that

V̇3 = −k1e2
1 + s (−e1 + f (x1) + g (x1) u + δ1 − ẍ1d − k1ė1) − γ ε̃1 ε̇1 (58)

By utilizing Eq. (51) and substituting Eq. (55) into Eq. (58), it is obtained that

V̇3 = −k1e2
1 − k2s2 + ε1 |s| + δ1s − γ ε̃1 ε̇1

= −k1e2
1 − k2s2 + (ε̂1 − ε̃1) |s| + β |s| − γ ε̃1 ε̇1

= −k1e2
1 − k2s2 − ε̃1 |s| + (ε̂1 + β ) |s| − γ ε̃1 ε̇1

= −k1e2
1 − k2s2 + (ε̂1 + β ) |s| − ε̃1 (γ + |s|)

(59)

Note that the value of ε̂1 + β can remain negative (i.e., ε̂1 + β = −τ, where τ > 0) by assuming
−ε̂1 ≥ β. By considering that γ ε̇1 + |s| = 0, thus, the adaptation law is designed as

ε̇1 = − 1

γ
|s| (60)

Then, it can be verified that

V̇3 = −k1e2
1 − k2s2 − τ |s| ≤ 0 (61)

The system is negative semi-definite. Therefore, the proposed adaptive BSMC can guarantee the
stability of the system even with external disturbance.

The configuration of the proposed control system is depicted in Fig. 6.

7. Simulation Results
In this section, the performance of the proposed approach is evaluated. The corresponding algorithm
is implemented in MATLAB/SIMULINK simulation environment. The model parameter values of
the quadrotor system are taken from ref. [35] and listed in Table I. Initially, the controller parameter
optimization is searched with the quadrotor control model, and then the identified parameter values are
transferred to the controller in the quadrotor system developed in MATLAB/SIMULINK for further
evaluation.

In this study, the following values are assigned for controller parameters optimization:

1. Dimension of the search space = 6 (i.e., ki=1...6 or ki=7...12);
2. Population/Swarm size = 15;
3. The number of maximum iteration = 20;
4. The self and swarm confident factors, c1 and c2 = 2;
5. The inertia weight factor w is set by Eq. (37), where wmax = 0.9 and wmin = 0.4;
6. The searching ranges for the backstepping parameters are limited to [0, 20];
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Table I. Parameters of the quadrotor.

Parameter Description Value Units

G Gravity 9.81 m/s2

M Mass 0.5 kg
L Distance 0.2 m
Ixx Roll inertia 4.85×10−3 kg • m2

Iyy Pitch inertia 4.85×10−3 kg • m2

Izz Yaw inertia 8.81×10−3 kg • m2

B Thrust factor 2.92×10−6

D Drag factor 1.12×10−7

Table II. The rotation controller parameters and fitness value of each optimal particle.

Iteration No. Optimal parameters Fitness value

1 k1 = 12.82, k2 = 12.46 2.511e − 007
k3 = 13.69, k4 = 15.50
k5 = 15.53, k6 = 13.51

3 k1 = 14.74, k2 = 13.74 1.696e − 007
k3 = 14.00, k4 = 14.29
k5 = 15.44, k6 = 13.49

7 k1 = 14.64, k2 = 14.14 7.312e − 008
k3 = 14.38, k4 = 14.21
k5 = 14.61, k6 = 14.11

20 k1 = 14.64, k2 = 14.14 7.312e − 008
k3 = 14.38, k4 = 14.21
k5 = 14.61, k6 = 14.11

Fig. 6. Block diagram of the robust optimal backstepping control system.

7. The simulation time, t, is equal to 10 s;
8. Optimization process is repeated 20 times.

The finest set of values among the simulation runs is selected as the best optimized controller
value. The parameter and fitness values of each particle during the simulation for the rotation and
position controller are summarized in Tables II and III, respectively. For the rotation controller, the
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Table III. The position controller parameters and fitness value of each optimal particle.

Iteration No. Optimal parameters Fitness value

1 k7 = 14.85, k8 = 13.32 0.1922
k9 = 14.45, k10 = 15.20
k11 = 15.39, k12 = 16.68

5 k7 = 15.45, k8 = 14.74 0.1741
k9 = 15.84, k10 = 16.00
k11 = 15.33, k12 = 16.00

9 k7 = 15.21, k8 = 14.29 0.1543
k9 = 15.01, k10 = 14.75
k11 = 15.42, k12 = 14.95

20 k7 = 15.21, k8 = 14.29 0.1543
k9 = 15.01, k10 = 14.75
k11 = 15.42, k12 = 14.95

Fig. 7. The convergence of fitness function for rotation controller with number of iterations.

best fitness value is 7.312e − 008 appearing in iteration number 7, and the optimal parameters are
k1 = 14.64, k2 = 14.14, k3 = 14.38, k4 = 14.21, k5 = 14.61, and k6 = 14.11. The variation of the
fitness function with number of iterations is shown in Fig. 7. Meanwhile, the variations of backstepping
control parameters w.r.t. the number of iterations are shown in Fig. 8. For the position controller,
the best fitness value is 0.1543 appearing in iteration number 9, and the optimal parameters are
k7 = 15.21, k8 = 14.29, k9 = 15.01, k10 = 14.75, k11 = 15.42, and k12 = 14.95. The variation of the
fitness function with number of iterations is shown in Fig. 9. Meanwhile, the variations of backstepping
control parameters w.r.t. the number of iterations are shown in Fig. 10. As can be seen for both control
parameters optimization, through about 20 iterations, the PSO method can prompt convergence and
obtain good fitness value. These results show that the PSO approach can search optimal backstepping
controller parameters quickly and efficiently.

To explore the effectiveness of the proposed ABSMC, three simulation experiments have been
performed on the quadrotor. In the first experiment, the designed controller is implemented in a
stabilizing problem. In the second, the scheme is used to investigate the altitude tracking performance.
Finally, the x–y position control problem is carried out in order to demonstrate the effectiveness of
the designed controller. The nominal case (Case 1) and the external disturbance case (Case 2) are
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Fig. 8. The variations of rotation controller parameters versus number of iterations.

Fig. 9. The convergence of fitness function for position controller with number of iterations.

provided as a test conditions. The external disturbance is generated as forces produced by wind that
is modeled using the Dryden wind-gust model.36 The wind force profile which externally disturbs the
quadrotor in the vertical, lateral, and longitudinal direction is shown in Fig. 11.

7.1. Simulation experiment 1: Altitude & attitude stabilization
In this simulation experiment, the control objective is to regulate a quadrotor at a certain desired
altitude/attitude, such that the quadrotor can hover at a fixed point. The desired altitude/attitude is
given by xid = [zd , φd , θd , ψd ] = [5, 0, 0, 0]T . The initial states are given by z = 5, φ = 0.2,
θ = 0.2, and ψ = 0.2. In the simulation, first, the OBC system is considered. The simulation results
for stabilizing a quadrotor at Case 1 and Case 2 using the OBC system are depicted in Figs. 12 and
13, respectively. From the simulation results, the OBC system is able to stabilize the quadrotor in
hover mode at Case 1. However, the degenerate performance response shown in Fig. 13 is due to
the occurrence of external disturbance. The same condition is used to simulate the ABSMC system.
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Fig. 10. The variations of position controller parameters versus number of iterations.
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Fig. 11. The external disturbance acting on the quadrotor in the vertical, lateral, and longitudinal direction.
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Fig. 12. Altitude/Attitude of the hovering quadrotor using OBC at Case 1.
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Fig. 13. Altitude/Attitude of the hovering quadrotor using OBC at Case 2.
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Fig. 14. Altitude/Attitude of the hovering quadrotor using ABSMC at Case 1.

The simulation results for stabilizing a quadrotor at Case 1 and Case 2 are depicted in Figs. 14 and
15, respectively. From the simulation results, the robustness of the proposed ABSMC system in the
quadrotor stabilization can be noted. It can be clearly seen that the altitude/attitude of the quadrotor
can be maintained at the desired altitude/attitude, that is, the hovering flight is stable even when the
external disturbance is exerted, as shown in Fig. 15. The control inputs for ABSMC at Case 1 and 2
are shown in Figs. 16 and 17, respectively. For quantitative comparison between two methods, IAE
is used as the criterion. Table IV shows the IAE values of the simulation results using the OBC and
ABSMC approach. From the comparison, it can be seen that the performance is improved in all the
cases when using the ABSMC as compared to the OBC.
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Fig. 15. Altitude/Attitude of the hovering quadrotor using ABSMC at Case 2.
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Fig. 16. Control inputs of the hovering quadrotor using ABSMC at Case 1.

7.2. Simulation experiment 2: Automatic take-off, hovering, and landing mission (altitude tracking)
In this simulation experiment, the control objective is to ensure that the quadrotor can perform a smooth
automatic take-off, hovering, and landing missions. In this mission, the quadrotor is required to climb
up to a position with a 1m height, hover and then land on the ground, which is defined by trapezoidal
trajectory. First, the OBC system is simulated. The tracking responses at the nominal condition (Case
1) and external disturbance condition (Case 2) are depicted in Figs. 18 and 19, respectively. From the
simulation results, the quadrotor can track the desired trajectory at Case 1 with having a small overshoot
by the OBC system, as shown in Fig. 18. However, the degenerate performance response shown in
Fig. 19 is due to the occurrence of external disturbance. Under the same simulation condition, the
ABSMC system is simulated. The simulation results for tracking a specified trajectory at the nominal
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Table IV. Quantitative comparison between OBC and ABSMC for stabilization problem.

IAE

Case 1 Case 2

Control
scheme z φ θ ψ z φ θ ψ

OBC 1.207e−4 2.701e−2 2.610e−2 2.655e−2 4.012e−1 1.147e−1 1.136e−1 4.208e−1
ABSMC 5.987e−5 1.595e−2 1.583e−2 1.790e−2 8.738e−3 1.826e−2 1.819e−2 2.318e−2
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Fig. 17. Control inputs of the hovering quadrotor using ABSMC at Case 2.

and external disturbance condition are shown in Figs. 20 and 21, respectively. From Fig. 20, it can be
seen that the quadrotor can smoothly track the trajectory. Meanwhile, the robustness of the proposed
control scheme in tracking the desired trajectory can be ascertained, as illustrated in Fig. 21. The
control inputs for ABSMC at Case 1 and Case 2 are shown in Figs. 22 and 23, respectively. For a
quantitative comparison, IAE of two methods has been reported. According to Table V, it can be
observed that the proposed ABSMC gives lower IAE value as compared to OBC.

7.3. Simulation experiment 3: Eight-shape trajectory tracking mission (x–y position tracking)
To further highlight the advantage of the proposed control structure, the OBC and ABSMC for the x–y
position tracking are simulated. Considering that the turning curve maneuver is an important practical
trajectory maneuver that the quadrotor needs to perform, the control performance of eight-shape
trajectory tracking is examined. The desired trajectory is generated using the following command:

⎧⎪⎨
⎪⎩

xd = 5 sin

(
2π

5
t

)
,

yd = 5
[
1 − cos

(π

5
t
)] (62)

The initial state of the quadrotor is set to be [x0, y0] = [5, 5] m. The simulation results of the x–y
position tracking for both OBC and ABSMC approach under the occurrence of external disturbance
are, respectively, shown in Figs. 24 and 25. As it can be seen, the proposed control scheme can track
the desired reference trajectory accurately despite external disturbance. It is obvious that the ABSMC
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Fig. 18. Altitude tracking response for automatic take-off, hovering, and landing mission using OBC at Case 1.
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Fig. 19. Altitude tracking response for automatic take-off, hovering, and landing mission using OBC at Case 2.

can give small tracking error and good tracking performance compared to OBC. The control input
for ABSMC at Case 2 is shown in Fig. 26. For a quantitative comparison, IAE of two methods has
been reported. According to Table VI, it can be observed that the proposed ABSMC gives lower IAE
value as compared to OBC. It is evident that the proposed method yields robust and superior control
performances.
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Fig. 20. Altitude tracking response for automatic take-off, hovering, and landing mission using ABSMC at
Case 1.
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Fig. 21. Altitude tracking response for automatic take-off, hovering, and landing mission using ABSMC at
Case 2.

8. Conclusions
In this paper, the application of adaptive BSMC system for maneuvering a quadrotor aerial robot
perturbed by external disturbances is successfully demonstrated. First, a mathematical model of the
quadrotor is introduced. Then, the proposed control system which combines a backstepping and sliding
mode control theory is developed. An adaptation scheme is derived to adapt the control parameters.
The PSO algorithm has been utilized to determine the parameters of the controller. The advantage
of the controller is that the control strategy does not require any prior knowledge on the bound of
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Table V. Quantitative comparison between
OBC and ABSMC for altitude tracking

problem.

IAE

Control scheme Case 1 Case 2

OBC 1. 753e−2 2.556e−1
ABSMC 6.577e−3 1.023e−2

Table VI. Quantitative comparison between OBC and ABSMC for trajectory tracking problem.

Control scheme IAE (Eight-shape trajectory at Case 2)

OBC 2.792
ABSMC 0.6784
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Fig. 22. Control inputs for automatic take-off, hovering, and landing mission using ABSMC at Case 1.

disturbances. Finally, the proposed control scheme is applied for a quadrotor aerial robot to achieve
smooth automatic take-off and landing, hovering, and trajectory tracking missions. Simulation results
have demonstrated the validity and the effectiveness of the proposed control system. In the future, the
possibility of a real-time implementation of the designed controller will be further investigated.
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Fig. 23. Control inputs for automatic take-off, hovering, and landing mission using ABSMC at Case 2.
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Fig. 24. x–y position eight-shape trajectory tracking response using OBC at Case 2.
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Fig. 25. x–y position eight-shape trajectory tracking response using ABSMC at Case 2.
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Fig. 26. Control inputs for eight-shape trajectory tracking using ABSMC at Case 2.
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