
J. Fluid Mech. (2020), vol. 902, A22. © The Author(s), 2020.
Published by Cambridge University Press

902 A22-1

doi:10.1017/jfm.2020.599

Isolated buoyant convection in a two-layered
porous medium with an inclined permeability

jump

K. S. Bharath1,†, C. K. Sahu2 and M. R. Flynn1

1Department of Mechanical Engineering, University of Alberta, Edmonton T6G 1H9, Canada
2BP Institute for Multiphase Flow, University of Cambridge, Madingley Rise, Cambridge CB3 0EZ, UK

(Received 20 November 2019; revised 14 June 2020; accepted 19 July 2020)

The migration of dense fluid through a saturated, layered porous medium leads to two
end-member examples of buoyancy-driven flow, namely plumes and gravity currents.
Herein we develop an integrated theoretical model to study this scenario for the special
case where the boundary between the permeable layers, in a two-layered porous medium,
is inclined at an angle to the horizontal. Far from being a routine detail, the inclination of
the permeability jump leads to a symmetry-breaking: up- and downdip flows have different
volume fluxes and travel different distances, possibly substantially different distances,
before becoming arrested at the point where plume inflow balances basal draining.
Our model predicts these associated run-out lengths and the transient approach thereto.
Predictions are validated with measurements from similitude laboratory experiments, in
which the upper and lower layers are comprised of glass beads of different diameters.
Experiments are conducted for a range of inclination angles and also a range of plume
source conditions. The experimental data suggest a complicated structure for the gravity
currents, whose boundaries are blurred by dispersion in a manner not captured by our
(sharp interface) model. This observation has particular significance in predicting the
lateral spread of contaminated fluid through real geological formations, particularly in
instances where for example groundwater contamination is of particular concern.

Key words: convection in porous media, porous media, gravity currents

1. Introduction

Geological strata represent a valuable resource, not only in terms of the mineral wealth
that they may contain, but also in terms of their ability to (seasonally) store internal
energy (MacKay 2009) and to (permanently) store anthropogenic pollutants. In this latter
capacity, much attention has been paid to the sequestration of supercritical carbon dioxide
(CO2) in various locales, e.g. China, Canada, Norway, Australia, the United States and the
United Kingdom (Tang, Yang & Bian 2014). Less thoroughly studied in the academic
literature, though still important, is the disposal of acid gas in depleted oil and gas
reservoirs or deep saline aquifers. Acid gas injection often occurs in land-locked regions
located on sedimentary basins, such as Labarge, Wyoming, USA (Parker et al. 2011)
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and in the Alberta Basin in Western Canada (Bachu et al. 2008b). In either case, acid
gas injection operations are often thought to represent a small-scale analogue of CO2

sequestration. To this end, and for both acid gas and CO2 sequestration, concerns persist
related to the long-term confinement of fluid injected deep underground. Such concerns
are exacerbated by the difficulty and expense of monitoring injectate migration and the
uncertainties inherent with forward-simulating numerical models (Bachu et al. 2008a).
Thus, there is an ongoing need for comparatively simple analytical models that provide
qualitative and quantitative insights into the nature of buoyancy-driven flow in porous
media.

When a light or dense fluid is injected into a porous medium, its subsequent migration
depends on various factors, such as pressure and temperature, solubility, the interplay
between hydrodynamic and buoyancy forces and the heterogeneity of the medium. When,
as is typical, density differences arise, the injectate may migrate in the form of a vertical
plume or in the form of horizontal or sloping gravity current(s). Indeed, one may feed
the other as when a plume strikes an impermeable boundary (Sahu & Flynn 2015) or
permeability jump (Sahu & Flynn 2017) or when a gravity current drains from the edge
of an impermeable lens (Hesse & Woods (2010), and see also figures 10.10 and 10.11 of
Woods (2014)).

Gravity currents in porous media have been studied widely in the past decades both
experimentally and theoretically. One of the earliest investigations was conducted by
Huppert & Woods (1995), who examined the short- and long-term spreading behaviour
of gravity currents along both horizontal and inclined impermeable boundaries. Since the
publication of this pioneering work, numerous follow-up studies have been conducted to
explore the effect of, for example, a time-varying source (Vella & Huppert 2006), density
stratification within the gravity current (Pegler, Huppert & Neufeld 2016) and vertical
confinement (Nordbotten & Celia 2006; Zheng et al. 2015). Also, and although it is
theoretically and experimentally expedient to assume the boundaries confining the gravity
current to be impermeable, there are numerous practical situations wherein leakage may
occur through large faults or high-permeability zones in cap rock (Fitts & Peters 2013;
Espinoza & Santamarina 2017); in such cases drainage must be considered. To this end,
studies have focused on the case of an isolated (Vella et al. 2011) versus a distributed
sink. In the latter case, Pritchard, Woods & Hogg (2001), Neufeld & Huppert (2009) and
Farcas & Woods (2009) studied the flow of a gravity current over a thin permeable layer.
The extension to the thick lower layer case has been explored by Goda & Sato (2011)
and Sahu & Flynn (2017) among others. Whatever the lower layer thickness, the draining
flow from the underside of the gravity current has been modelled by considering the flow
to be driven by the hydrostatic head of the overlying gravity current (Acton, Huppert &
Worster 2001; Pritchard et al. 2001; Goda & Sato 2011). In case of a thick lower layer, the
source fluid is pulled both along and across the interface between the two layers, which
we call the permeability jump, and the gravity current ultimately reaches a terminal or
run-out length. As suggested by the name, the run-out length is the horizontal distance
at which the volume of fluid supplied to the gravity current is just balanced by that
draining from underneath. Whereas the case of a horizontal permeability jump has been
studied by Goda & Sato (2011) and Sahu & Flynn (2017), there are numerous geological
examples where the permeability jump makes a non-trivial angle to the horizontal. These
examples include the Wabamun groups (Bachu et al. 2008a) in Western Canada, which
are used as repositories for acid gas, the Entrada and Weber formations in the United
States Rocky Mountain region (McPherson & Matthews 2013) and China’s Shiqianfeng
group in the Ordos Basin (Jing et al. 2019) all of which are used as repositories for
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(infinite layer height)
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FIGURE 1. Schematic of discharged plume fluid propagating as a pair of leaky gravity currents
along an inclined permeability jump. The colourbar on the right-hand side indicates the variation
in density as the source fluid migrates within the porous medium.

supercritical CO2. For the examples just cited, the regional dip angles vary from as little
as 0.4◦ to as much as 20◦.

In light of the above examples, it is surprising that more attention has not been paid
to the (asymmetric) problem of gravity current propagation along a sloping, permeable
boundary. Adding to the flow complexity is the possibility that the up- and downdip
gravity currents are fed by a plume rather than by an isolated source located along the
permeability jump itself. A schematic of this flow is illustrated in figure 1. Here, and
consistent with the laboratory experiments to be described later, we consider a source of
dense fluid located significantly above the permeability jump that leads to the formation
of a descending plume in the upper layer. On the other hand, such details of orientation
are irrelevant provided that density differences are modest so that the flow is Boussinesq.
Note also from figure 1 that the plume and gravity currents feed back upon each other and
the composite problem is therefore more nuanced than either constituent part.

Addressing the above described open problem is the primary objective of the present
study. Precise goals include (i) characterizing the relative up- versus downdip flow as a
function of θ , the permeability jump angle, and (ii) resolving the time-dependent advance
of the up- and downdip gravity currents until the respective run-out lengths are reached.
As part of the analysis, key differences with the horizontal permeability jump case will
be highlighted. Complementing the above analysis, our study also includes similitude
laboratory experiments. Although their ostensible purpose is to provide data to corroborate
the theoretical model, we shall see that the experimental images reveal behaviour that
highlights the limitations of considering a sharp interface in the gravity current model.

The rest of the paper is organized as follows. In § 2, we derive a theoretical model for the
flow in question and discuss some of the key model predictions in § 3. Section 4 describes
the laboratory experiments and the techniques used to analyse experimental images along
with a qualitative comparison with the theory. Quantitative comparisons are reserved for
§ 5. Section 6 presents an overarching summary in which ideas for future study are briefly
outlined.
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FIGURE 2. Definition schematic showing the propagation of discharged plume fluid in the up-
and downdip directions along the inclined permeability jump. Draining into the lower layer is
also indicated.

2. Theoretical modelling

2.1. Problem description
To theoretically model the flow described in figure 1, we consider a two-layer porous
medium with notation as illustrated schematically in figure 2. The permeability and
porosity in the upper layer are k1 and φ1, respectively, while the corresponding values
in the lower layer are k2 and φ2, respectively. The permeability jump makes a constant
angle θ with the horizontal. The natural coordinate system in two-dimensional space is
represented by (X, Z), where the vertical Z-axis is aligned anti-parallel to the gravitational
acceleration g. For reference, note that the coordinate system (x, z) associated with the
along- and cross-jump directions is obtained from (X, Z) by a clockwise rotation of θ
about the Y -axis, Y being the direction normal to the page. Coordinate rotation can be
expressed mathematically using a transformation matrix, i.e.[

x
z

]
=

[
cos θ sin θ

− sin θ cos θ

] [
X
Z

]
. (2.1)

We position the origin of both coordinate systems on the permeability jump, directly below
the dense line source, which is itself is positioned at (X = 0, Z = H), see figure 2.

Our theoretical model is predicated on the following simplifying assumptions.
(i) Although the upper and lower layers are assumed to support different permeabilities,
the porosities are assumed equal, i.e. φ1 = φ2 ≡ φ. (ii) The upper and lower layers are
assumed to be very deep in vertical extent (Goda & Sato 2011); the consequences of
assuming otherwise will be briefly highlighted in § 4. (iii) Initially, the entire porous
medium is assumed to be uniformly saturated with ambient fluid of density ρo. (iv) The
source and ambient fluids have equal dynamic viscosities and are assumed to be fully
miscible so that effects due to capillarity can be ignored. (v) When the plume strikes
the permeability jump at x = 0, all of its fluid is then discharged in the form of flows
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propagating up- and down-dip; this assumption is defensible provided k2/k1 � 1, see for
example figure 3 of Sahu & Flynn (2017). (vi) The so produced up- and downdip gravity
currents remain long and thin. (vii) Consistent with Bear (1972), Woods & Mason (2000),
Pritchard et al. (2001) and De Loubens & Ramakrishnan (2011), gravity current fluid is
at all times separated from overlying ambient fluid by a sharp interface. (viii) The density
difference between the source fluid and the ambient fluid is moderate and the flow remains
Boussinesq everywhere in the domain. (ix) Spatial variations in the density within the up-
and downdip gravity currents and within the contaminated fluid consisting of discharged
plume fluid that has drained into lower layer are modest and can be ignored to leading
order.

The plume line source discharges fluid of density ρs > ρo at a constant volume flux
per unit width, qs. The source buoyancy flux per unit source width is Fs = qsg′

s, where
g′

s = g(ρs − ρo)/ρo � g is the source reduced gravity. As the dense fluid falls downwards,
entrainment occurs as a result of which the volume flux of the resulting plume increases
with the vertical distance from the source. Using a boundary layer approximation,
Wooding (1963) derived an expression to predict this variation in the limit of small Péclet
number, i.e. Pe = Udoτ/Dm � O(1), where U is a characteristic velocity, do is the mean
grain diameter, Dm is the molecular diffusivity. Further, τ > 1 is the (hydraulic) tortuosity,
which is defined as the square of the hydraulic flow path length to the corresponding
straight line length (Carman 1937) or as the product of porosity and a formation factor
(Clennell 1997; Ghanbarian et al. 2013). Later, Sahu & Flynn (2015) derived a similar
relation for Pe � O(1) and also proposed a relation for the variation of the plume reduced
gravity with Z. Herein, we model the flow assuming Pe � O(1), see § 2.4.

When the plume strikes the permeability jump, discharged plume fluid is divided into
equal (θ = 0◦) or unequal (θ /= 0◦) flows to the right and left. The discharged plume
fluid propagates as a pair of leaky gravity currents under a balance of buoyancy and
viscosity with simultaneous draining into the lower layer. The pressure is continuous
along z = h(x, t) where h denotes the gravity current height, measured perpendicular
to the permeability jump, see figure 2. Because of the continual addition of fluid from
above, h steadily increases with time, t. Consequently, and because the density, ρp,
and plume volume flux per unit width, qp, vary with the vertical coordinate due to
entrainment, the fluid feeding the gravity current has a density that slowly increases
with time and a volume flux that slowly decreases with time. The influx density is
denoted by ρp(h0) with a corresponding volume flux per unit width denoted by qp(h0)
where h0 ≡ h(x = 0, t) ≡ h0(t) is the time-dependent gravity current height measured
directly below the plume source. The volume influx qp(h0) is obviously the same qc. In
a similar spirit, and neglecting spatial variations of the gravity current density, we have
that ρc = ρp(h0) where ρo < ρc < ρs. Although the spatially uniform approximation is
clearly a theoretical simplification relative to the real flow, we expect internal stratification
effects to be relatively minor provided H is not small. With this assumption to hand, the
average density difference between the up- and downdip gravity currents and the ambient
fluid is Δρc = ρc − ρo and the corresponding reduced gravity is g′

c = g(Δρc/ρo).
Below the permeability jump, there is a draining of discharged plume fluid into the

lower layer. The draining flow displaces less dense ambient fluid thereby creating an
unstable interface leading to Rayleigh–Taylor type fingering (Saffman & Taylor 1958;
Homsy 1987), see figure 1. Occurrence of similar fingering phenomena has been observed
previously for gravity currents propagating along a horizontal permeability jump (Sahu
& Flynn 2017) or along the underside of a sloping, impermeable boundary (MacMinn &
Juanes 2013). A consequence of the fingers is that some mixing of draining discharged
plume fluid and ambient fluid must occur. To distinguish the less dense discharged plume
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fluid in the lower layer from that more dense discharged plume fluid in the upper layer,
we shall, in the lower layer, make reference to contaminated fluid, which in figure 2 is
characterized by a depth l. By contrast, when we refer to discharged plume fluid, it should
hereafter be understood that we refer specifically to the upper layer.

As a further consequence of the mixing described above, we cannot, strictly speaking,
assume a sharp interface in the lower layer, cf. figure 1. Nonetheless, and for theoretical
expediency, we assume a spatially uniform mixing process in the lower layer and thereby
define an average interface location for the contaminated fluid relative to the ambient, see
figure 2. The average density of the contaminated fluid is ρd < ρc and the corresponding
density difference with the ambient fluid is Δρd = ρd − ρo. Thus the mean reduced gravity
of the draining fluid is expressed as g′

d = g(Δρd/ρo) < g′
c. Determination of ρd and g′

d will
be discussed below.

2.2. Gravity currents
Consider, as in figure 2, a two-dimensional flow of the gravity currents propagating along
the permeability jump in the upper layer along the up- and downdip directions. Let the
Darcy velocity of the gravity currents be uc ≡ (uc, wc), with components uc and wc in
the along- and cross-jump directions, respectively. As noted above, the gravity currents
are assumed long and thin (small aspect ratio, ε = height/length � 1). As a consequence,
and consistent with the Dupuit approximation (see Bear (1972) and appendix A.3) wc can
be considered small compared with uc and the cross-layer pressure gradient within each
gravity current can be considered approximately hydrostatic (Huppert & Woods 1995).
Considering the along-jump flows in a rotated coordinate system for θ > 0◦, we define the
hydrostatic pressure in the cross-flow direction as

Pc(x, z, t) = pc(x, t) − ρcgz cos θ. (2.2)

Here, pc(x, t) is given by

pc(x, t) = Po + (ρc − Δρc)gx sin θ + Δρcgh cos θ, (2.3)

where Po is the pressure measured at the origin. Using Darcy’s law, it can be shown that
the along-jump flow velocities with the up- and downdip gravity currents are

uc = −k1Δρcg
μ

⎧⎪⎪⎨
⎪⎪⎩

∂h
∂x

cos θ + sin θ, [updip,−xNu < x < 0]

∂h
∂x

cos θ − sin θ, [downdip, 0 < x < xNd ]
(2.4)

where μ is dynamic viscosity and xNu and xNd are the nose locations in the up- and
downdip directions, respectively, see figure 2. The velocities prescribed by (2.4) apply for
z < h. Because the upper layer is assumed semi-infinite, the velocity within the ambient
is considered negligible (cf. De Loubens & Ramakrishnan 2011). To derive an evolution
equation for h, we take the depth average of the mass conservation equation, similar to
(2.6) of Huppert & Woods (1995), and consider mass loss due to draining from the gravity
current undersides. Upon substituting (2.4) into the resulting depth-averaged equation, we
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obtain

φ
∂h
∂t

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k1g′
c

ν

∂

∂x

(
h
∂h
∂x

cos θ + h sin θ

)
+ wdrain, [updip,−xNu < x < 0]

k1g′
c

ν

∂

∂x

(
h
∂h
∂x

cos θ − h sin θ

)
+ wdrain, [downdip, 0 < x < xNd ]

(2.5)

where ν = μ/ρo denotes the kinematic viscosity and wdrain is the draining velocity, an
expression for which is provided in the following subsection.

2.3. Draining flow in the lower layer
Here, we evaluate the time evolution of the average position of the interface between
the contaminated and the ambient fluids in the lower layer. The Darcy velocity of the
contaminated fluid in the lower layer is ud ≡ (ud, wd), having components ud and wd in
the along- and cross-jump directions, respectively. For θ = 0◦, the along-jump velocity in
the lower layer ud is considered by Acton et al. (2001) to depend only on the horizontal
gradient of the hydrostatic pressure exerted by the gravity current, i.e. ∂h/∂x . Meanwhile,
the cross-jump component of velocity, wd, depends not on ∂h/∂x but rather on h. Because
∂h/∂x can be shown to be both approximately constant and small compared with unity,
|ud| � |wd|. Consequently, the influence of ud on the draining velocity has typically
been ignored in previous works. However, for inclined permeability jumps (θ /= 0◦), the
along-jump velocities may be significant because they include gravitational acceleration
projected into the along-jump direction. Using Darcy’s law, the along-jump velocities just
below the jump boundary are given by

ud = −k2Δρdg
μ

⎧⎪⎪⎨
⎪⎪⎩

∂h
∂x

cos θ + sin θ, [updip,−xNu < x < 0]

∂h
∂x

cos θ − sin θ, [downdip, 0 < x < xNd ].
(2.6)

Meanwhile, the cross-jump component is given by

wd = −k2Δρdg
μ

(
1 + h

l′

)
cos θ, (2.7)

where l′ is the depth of the contaminated fluid as measured below and perpendicular to the
permeability jump, see figure 2. In contrast to the case of a horizontal permeability jump,
|ud| ≈ |wd| tan θ , so that |ud| can be neglected only for relatively modest θ . For larger
θ , ud becomes significant and needs to be considered when modelling the draining flow.
In such cases, the net draining flow velocity wdrain is influenced by both the along-jump
velocity and the hydrostatic head in the cross-jump direction. To evaluate wdrain , we take
the resultant of these two velocities, i.e.

√
u2

d + w2
d. Consistent with figure 2, it can be

shown that for draining lengths significantly greater than the gravity current height, the
direction of wdrain remains vertical and its length is given as l = l′/ cos θ . Taking these
factors into consideration, the draining velocity can be written as

wdrain = −k2Δρdg
μ

(
1 + h

l
cos θ

)
. (2.8)

In the limiting case when θ = 0◦, (2.8) reverts back to the expression used in previous
works (Goda & Sato 2011; Sahu & Flynn 2017).
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At the contaminated–ambient fluid interface, the volume flow rate per unit width, qentr,
of the ambient fluid that mixes into the draining gravity current fluid can be expressed in
terms of wdrain as

qentr = Δρc − Δρd

Δρd

∫ xNd

−xNu

wdrain dx, (2.9)

see appendix A.1. The entrainment prescribed by qentr is important because it, along
with wdrain , dictates the time rate of increase of the draining fluid length, l. Following
the derivation of appendix A.1 and incorporating (2.8), it can ultimately be shown that l
satisfies the following evolution equation:

φ
∂l
∂t

= −g′
c

g′
d

wdrain = k1g′
c

ν

k2

k1

(
1 + h

l
cos θ

)
. (2.10)

As with (2.5), (2.10) is valid in the range −xNu < x < xNd .

2.4. Gravity currents and draining flows fed by a descending plume
Recall that the density of the fluid supplied to the gravity currents slowly increases with
time as a result of the gradual increase of h. Wishing to account for this fact in the
governing equations (2.5) and (2.10) we adopt (2.25) of Sahu & Flynn (2015), and write

g′
c =

[(
πFsν

16k1

)2 1
φα(H + Zs − h0 cos θ)

]1/4

. (2.11)

Here, the source correction term Zs = (1/φα)(πν/16Fsk1)
2q4

s is evaluated considering the
volumetric flow rate qs at the plume source. Also, α is the transverse dispersivity, whose
connection to the porous medium grain size is discussed below in § 5.1. Substituting (2.11)
into (2.5) and (2.10) yields, after some simplification,

∂h
∂t

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

β(1 − χh0− cos θ)−1/4

[
∂

∂x

(
h
∂h
∂x

cos θ + h sin θ

)
− KG′

(
1 + h

l
cos θ

)]
,

[updip,−xNu < x < 0],

β(1 − χh0+ cos θ)−1/4

[
∂

∂x

(
h
∂h
∂x

cos θ − h sin θ

)
− KG′

(
1 + h

l
cos θ

)]
,

[downdip, 0 < x < xNd ],
(2.12)

and

∂l
∂t

= βK

⎧⎪⎪⎨
⎪⎪⎩

(1 − χh0− cos θ)−1/4

(
1 + h

l
cos θ

)
, [updip,−xNu < x < 0],

(1 − χh0+ cos θ)−1/4

(
1 + h

l
cos θ

)
, [downdip, 0 < x < xNd ].

(2.13)

Here β is a velocity parameter, χ is a source parameter, K is the ratio of the lower to
upper layer permeabilities and G′ is the ratio of the lower to upper layer reduced gravities.
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More precisely, and in symbols,

β = k1

φν

[(
πFsν

16k1

)2 1
φα(H + Zs)

]1/4

, χ = 1
H + Zs

, K = k2

k1
, G′ = g′

d

g′
c

.

(2.14a–d)

Regarding the permeability jump angle θ as a further independent parameter, there are a
total of five variables in the governing equations (2.12) and (2.13).

2.5. Initial and boundary conditions
Recalling the initial condition of the porous medium to be uniformly saturated by
ambient fluid, we initialize the gravity current height and draining length to zero,
i.e. h = l = 0 at t = 0. For t > 0, (2.12) and (2.13) are solved using an influx boundary
condition, which requires the time rate of volume increase of the up- and downdip gravity
currents to balance the volume of fluid supplied by the descending plume. The plume
volume flux per unit width, qc, supplied at x = 0, increases with distance from the source.
Analogous to (2.11), qc can be expressed in terms of h0 using

qc =
[(

16Fsk1

πν

)2

φα(H + Zs − h0 cos θ)

]1/4

, (2.15)

see (2.24) of Sahu & Flynn (2015). The qc in (2.15) is divided into unequal up-
and downdip components for θ /= 0◦. To this end, and borrowing the notation of
Rayward-Smith & Woods (2011), we consider that the dimensionless fraction of the flow
propagating downdip is fa, while the remaining fraction travelling updip is 1 − fa. The
influx boundary conditions are then represented as

β2
(

h
∂h
∂x

cos θ + h sin θ

)∣∣∣∣
0−

= −(1 − fa)Γ (1 − χh0− cos θ)1/2, [updip,−xNu < x < 0],

β2
(

h
∂h
∂x

cos θ − h sin θ

)∣∣∣∣
0+

= −faΓ (1 − χh0+ cos θ)1/2, [downdip, 0 < x < xNd ],

⎫⎪⎪⎬
⎪⎪⎭

(2.16)

where Γ = (k1Fs)/(φ
2ν) is a buoyancy flux factor. The two components of (2.12) are

coupled by insisting that the gravity current height remains continuous at x = 0, i.e.

h0− = h0+ . (2.17)

By enforcing this condition at each time step, fa can be determined as a function of time t.
A final boundary condition is applied at the noses of the up- and downdip gravity currents,
such that

h−xNu
= l−xNu

= 0 and hxNd
= lxNd

= 0. (2.18a,b)
Finally, the global mass balance equation can be written symbolically as∫ xNd

−xNu

(h + |l|) dx =
[
Γ

β
(1 − χh0 cos θ)1/4 + βK(1 − G′)

∫ xNd

−xNu

(
1 + h

l
cos θ

)
dx

]
t.

(2.19)

The former term on the right-hand side represents the volume of fluid discharged by
the plume while the latter term corresponds to the volume of lower layer ambient fluid
entrained into the contaminated fluid.
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2.6. Dimensionless governing equations
Following Goda & Sato (2011), we define characteristic spatial and temporal variables, Πx

and Πt, as follows:

Πx = qc|h=0

φβ
and Πt = qc|h=0

(1 − δ cos θ)−1/4φβ2 , (2.20a,b)

where

δ = 16
π

(
φα

H + Zs

)1/2

. (2.21)

Note that Πx characterizes the distance measured along the permeability jump, whereas
Πt characterizes the speed of draining into the lower layer. Using the above characteristic
variables, we non-dimensionalize other variables as follows:

x∗ = x

Πx
, h∗ = h

Πx
, l∗ = l

Πx
, t∗ = t

Πt
(2.22a–d)

Thus (2.12) and (2.13) may be rewritten, respectively, as

∂h∗

∂t∗
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − δh∗

0− cos θ

1 − δ cos θ

)−1/4 [
∂

∂x∗

(
h∗ ∂h∗

∂x∗ cos θ + h∗ sin θ

)
− KG′

(
1 + h∗

l∗
cos θ

)]
,

[updip,−x∗
Nu

< x∗ < 0],(
1 − δh∗

0+ cos θ

1 − δ cos θ

)−1/4 [
∂

∂x∗

(
h∗ ∂h∗

∂x∗ cos θ − h∗ sin θ

)
− KG′

(
1 + h∗

l∗
cos θ

)]
,

[downdip, 0 < x∗ < x∗
Nd

],
(2.23)

and

∂l∗

∂t∗
= K

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 − δh∗

0− cos θ

1 − δ cos θ

)−1/4 (
1 + h∗

l∗
cos θ

)
, [updip,−x∗

Nu
< x∗ < 0],

(
1 − δh∗

0+ cos θ

1 − δ cos θ

)−1/4 (
1 + h∗

l∗
cos θ

)
, [downdip, 0 < x∗ < x∗

Nd
].

(2.24)

The initial condition reads h∗ = l∗ = 0. Meanwhile, the boundary conditions (2.16)
become(

h∗ ∂h∗

∂x∗ cos θ + h∗ sin θ

)∣∣∣∣
0−

= −(1 − fa)(1 − δh∗
0− cos θ)1/2, [updip,−x∗

Nu
< x∗ < 0],(

h∗ ∂h∗

∂x∗ cos θ − h∗ sin θ

)∣∣∣∣
0+

= −fa(1 − δh∗
0+ cos θ)1/2, [downdip, 0 < x∗ < x∗

Nd
].

⎫⎪⎪⎬
⎪⎪⎭

(2.25)

Note that the choice of scalings associated with (2.20a,b) eliminates the factor of Γ
present in (2.16) but absent directly above. The height continuity and nose conditions,
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Isolated buoyant convection in a two-layered porous medium 902 A22-11

respectively, read as
h∗

0− = h∗
0+ (2.26)

and
h∗

−x∗
Nu

= l∗−x∗
Nu

= 0 and h∗
x∗

Nd
= l∗x∗

Nd
= 0. (2.27a,b)

Also, the global mass conservation equation (2.19) now reads∫ x∗
Nd

−x∗
Nu

(h∗ + |l∗|) dx∗ = 1
(1 − δ cos θ)−1/4

[
(1 − δh∗

0 cos θ)1/4

+K(1 − G′)
∫ x∗

Nd

−x∗
Nu

(
1 + h∗

l∗
cos θ

)
dx∗

]
t∗. (2.28)

Equations (2.23)–(2.28) contain four dimensionless variables, namely θ , δ, K and G′. Here,
θ defines the left to right asymmetry of the flow; δ defines the influence of the plume
source; K defines the cross-flow resistance at the permeability jump; and G′ defines the
degree of entrainment experienced by the draining fluid. The first three of these variables
are easily estimated for a given porous medium and plume source location. However, G′,
defined as the ratio of the reduced gravity in the lower versus upper layers, remains to
be determined. We adopt an empirical approach in estimating G′ as described in § 5.1.
(In § 5.1 it will be shown that G′ depends on the plume source conditions and θ . The
ramifications of this observation are deferred to § 5.3 where we draw comparisons between
theory and experiment.) With this value (plus θ , δ and K) to hand, (2.23)–(2.28) may be
solved numerically, for example using the explicit finite difference scheme described in
appendix A.2.

3. Analytical predictions

Sample model output is illustrated in figure 3(a), which shows the evolution of the
discharged plume fluid for a permeability jump angle θ = 15◦. In the large time limit, the
up- and downdip gravity currents reach their respective run-out lengths. Similar behaviour
was predicted by Goda & Sato (2011) and was also observed in laboratory experiments by
Sahu & Flynn (2017), but both of these previous studies focused on the case of a horizontal
permeability jump. The asymmetry that follows from setting θ > 0◦ is evident not only in
figure 3(a), but also in figure 3(b) which tracks nose positions for both the up- (x∗

N < 0)
and downdip (x∗

N > 0) currents for 0◦ ≤ θ ≤ 20◦. As this latter panel makes clear, run-out
lengths are achieved when t∗ � 102. Meanwhile, and as is true for other permeability jump
angles, the former panel confirms that the gravity current aspect ratio remains relatively
modest. The implications of this observation vis-á-vis Dupuit’s approximation are outlined
in appendix A.3.

The asymmetry between the up- and downdip flows may be further understood by
plotting the downdip flow fraction fa as a function of time, shown in figure 4(a). As
expected, when θ = 0◦, fa has a fixed value of 0.5 and remains time invariant; however,
for θ > 0◦, fa is a monotone increasing function of time that plateaus only as run-out is
approached. Steady-state values of fa are plotted versus θ in figure 4(b) where a monotone
increasing trend is seen.

The magnitude of the steady-state run-out lengths, L∗
N , for both up- and downdip flows

are plotted as a function of θ in figure 5(a–c). When θ = 0◦, up- and downdip run-out
lengths are equal, but the disparity grows with θ . Furthermore, the influence of the other
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FIGURE 3. (a) Spatial–temporal evolution of the discharged plume fluid for θ = 15◦, (b) nose
positions, both up- (x∗

N < 0) and downdip (x∗
N > 0), compared for various θ . Results are shown

assuming δ = 0.1, K = 0.1 and G′ = 0.4.
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FIGURE 4. Variation of the downdip flow fraction fa as a function of (a) time t∗, compared
for various θ , and (b) permeability jump angle θ , at steady-state. Results are shown assuming
δ = 0.1, K = 0.1 and G′ = 0.4.

three dimensionless variables, i.e. δ, K and G′, on the run-out lengths are illustrated in each
of the panels. Regarding figure 5(a) and the influence of δ, smaller δ is associated with
larger H, smaller ρc and therefore (moderately) larger L∗

N . In like fashion, L∗
N increases

as K decreases and the resistance to drainage increases (figure 5b). Finally, figure 5(c)
shows that large L∗

N is also associated with small G′ whereby draining is retarded and
discharged plume fluid therefore propagates greater distances along the permeability jump
before crossing into the lower layer.

The retention of discharged plume fluid in the upper layer is analysed by defining, as
with Goda & Sato (2011) and for arbitrary time t∗, a storage efficiency E∗

h . This storage
efficiency is defined as the ratio of the volume (per unit width) of the discharged plume
fluid retained in the upper layer, i.e. within the up- and downdip gravity currents to the
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FIGURE 5. Variation of gravity current run-out lengths as a function of permeability jump angle
θ compared for various dimensionless parameters, i.e. (a) δ for constant K = 0.1 and G′ = 0.4;
(b) K for constant δ = 0.1 and G′ = 0.4; and (c) G′ for constant δ = 0.1 and K = 0.1. Up- and
downdip run-out lengths are shown with the dashed and solid lines, respectively.

total volume (per unit width) that has been discharged by the plume to the gravity currents
over this same time interval. Figure 6 shows E∗

h for different K and G′. At early times, little
of the discharged plume fluid has drained contributing to a rapid initial increase in length
of the gravity currents. However, as the gravity currents approach their respective run-out
lengths, more and more of the fluid discharged by the plume drains into the lower layer
and E∗

h falls more steeply. At later times, E∗
h asymptotically approaches zero.

4. Experiments

4.1. Experimental set-up
A transparent acrylic box 118 cm long × 7.6 cm wide × 60 cm deep filled with spherical
glass beads (Potters Industries A Series Premium) and tap water served as the experimental
tank. Glass beads were d1 = 3.0 ± 0.2 mm and d2 = 1.0 ± 0.2 mm in diameter and were
used to construct the two layer porous medium in the manner depicted in figure 7, with
the larger beads in the upper layer and the smaller beads in the lower layer. The beads
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FIGURE 6. Time variation of the storage efficiency, E∗
h . The comparisons in (a) are for various

K and constant values of θ = 15◦, δ = 0.1 and G′ = 0.4; those in (b) are for various G′ and
constant values of θ = 15◦, δ = 0.1 and K = 0.1.
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FIGURE 7. Schematic of the set-up for the laboratory experiments.

had a density of 1.54 g cm−3 as compared with ρo = 0.998 g cm−3 for the tap water. The
porosity of the tank was measured and found to be φ = 0.38 ± 0.05. Permeabilities were
determined based on the empirical relationship proposed by Kozeny and Carman, which
is discussed in Dullien (1979), i.e.

ki = d2
i φ

3

180(1 − φ)2
, (4.1)

where i = 1, 2. For all experiments conducted here, the value of the permeability ratio,
K = k2/k1 ∝ d2

2/d2
1 was kept fixed at 0.11.
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Isolated buoyant convection in a two-layered porous medium 902 A22-15

θ (deg.) Height (cm)

HLupper HLlower HRupper HRlower

0 26.0 22.0 26.0 22.0
5 21.3 26.7 31.5 16.5

10 16.0 32.0 36.6 11.4
15 8.6 39.4 40.0 8.0

TABLE 1. Porous media dimensions. (The notation is described in figure 7.)

Flow combination Qs g′
s Fs

(cm3 s−1) (cm s−2) (cm3 s−3)

1 0.51 ± 0.02 20.1 ± 1.0 1.3 ± 0.2
2 0.51 ± 0.02 80.2 ± 1.0 5.3 ± 0.2
3 1.02 ± 0.02 20.1 ± 1.0 2.6 ± 0.2
4 1.02 ± 0.02 80.2 ± 1.0 10.6 ± 0.2

TABLE 2. Conditions at the plume source.

As depicted in figure 7, source fluid was supplied at the top of the upper layer using a
line nozzle that spanned the tank width. The nozzle was designed in such a manner that
it produced a uniform flow along its length even at small flow rates (Roes 2014). For all
of the experiments to be reported upon below, the nozzle was located at the centre of the
tank and at a vertical height of H = 18.3 cm from the permeability jump. Shown in table 1
are the different values of θ used and the corresponding maximum and minimum layer
heights of the upper and lower layers.

Dense source fluid supplied through the nozzle was prepared by mixing a precalculated
mass of salt into tap water in a 100 l reservoir, whose density was measured to an accuracy
of 0.00005 g cm−3 using an Anton Paar DMA 4500 density meter. Moreover, for the
purpose of flow visualization, a small amount of cold-water dye (Procion MX) was added
to the saltwater in the reservoir. The dye concentration (determined from the calibration
curves of appendix B.1) was small enough that it did not significantly alter the plume
source density. The dyed, saltwater was then pumped into an overhead bucket using a
hydraulic pump (Little Giant Pump Co.). The bucket contained a cylindrical weir that
helped to maintain a constant hydrostatic pressure. Moreover, a manual flow control valve
and a flowmeter (Gilmont GV-2119-S-P) were used to ensure a constant flow rate through
the nozzle.

4.2. Experimental parameters and flow visualization
Experiments were conducted for four permeability jump angles as listed in table 1 and four
source conditions as listed in table 2. For each jump angle, all four source conditions were
considered such that we performed 16 experiments in total. It took approximately one hour
for each experiment to complete.

For flow visualization, experimental images were captured using a Canon Rebel
EOS T2i 18.0 PM with an 18–55 mm IS II zoom lens, which collected images every 30 s.
Uniform intensity backlighting was achieved using a 3M 1880 overhead projector and by
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covering the back side of the acrylic box with tracing paper, which served to diffuse the
incoming light. The images captured were standard RGB , 720 × 400 pixels in size and
had a resolution of 72 dpi. They were post-processed in MATLAB where all of the images
corresponding to a particular experimental set were first cropped to remove unwanted
regions outside of the flow domain. The images were then corrected by subtracting away
the reference image (collected before the initiation of flow) to remove any systematic
spatial variations in the light intensity. Finally, the images were converted to false colour
and the pixel intensities were normalized and so ranged from 0 to 1. Images so processed
were then compared to categorize various experimental phenomena.

4.3. Experimental observations and interface detection
For qualitatively analysing the experimental results, comparison is made between results
obtained with θ = 15◦ and a source flow rate of Qs = 1 cm3 s−1, but exhibiting two
different source reduced gravities – g′

s = 20 cm s−2 and 80 cm s−2 – corresponding to
flow combinations 3 and 4, respectively, from table 2. Representative snapshot images are
presented in figure 8(a–c) for g′

s = 20 cm s−2 and figure 8(d–f ) for g′
s = 80 cm s−2. As

expected, the plume, after striking the permeability jump, propagated as an asymmetric
pair of gravity currents while simultaneously draining into the lower layer. From our
previous discussion, we anticipate that the discharged plume fluid, as it crosses the
permeability jump and mixes with lower ambient fluid, will lose its sharp interface.
Interestingly, figure 8 suggests that a similar behaviour arises even in the upper layer where
dispersion, not accounted for in the model of § 2, results in a blurring of the boundary
between discharged plume fluid and ambient fluid. Motivated by this observation, two
distinct interfaces were identified in all our experimental images. These are indicated
by the red and yellow contours and are defined as the bulk and dispersed interfaces,
respectively. (Our method for determining the precise shape of the bulk and dispersed
interface is described below.) Within the bulk interface, the pixel intensity is both high
and very nearly uniform in space and time. Because pixel intensity is a surrogate for
fluid density, we surmise that the density (or reduced gravity) of the fluid within the
red contour, which we shall refer to as the bulk fluid, is also approximately uniform.
Conversely, the dispersed interface separates the ambient fluid from either discharged
plume fluid or from contaminated fluid that has been more substantially diluted through
a process of dispersion. The region in-between the bulk and dispersed interfaces shows a
non-trivial variation of pixel intensity, suggesting a reduced gravity that varies, not always
monotonically, in space. In turn, the fluid located between the red and yellow contours
is referred to as the dispersed fluid. Note finally that the bulk interface or red contour
was defined by considering pixels having an intensity of 0.85. Meanwhile, the dispersed
interface or yellow contour was defined by considering pixels having an intensity of 0.005.
These threshold values were chosen such that they gave consistent results while processing
all our experimental images.

In order to analyse the bulk and dispersed interfaces in greater detail, we plot an inclined
time series image, which is, in turn, derived from snapshot images. An example appears
in figure 9, which is constructed from 390 snapshot images collected from the experiment
depicted in figure 8(a–c). Inclined time series images are produced by considering the time
evolution of the flow along a sloping line located two to three pixels above the permeability
jump. Pixel intensities along this sloping line (shown as dotted lines in figure 8a–c) are
extracted as a function of t from the start to the end of the experiment. In figure 9, the
abscissa, x ′′, is normalized by the along-jump length where x ′′ = 0 coincides with the
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FIGURE 8. False colour experimental images showing discharge along, and draining through,
the permeability jump, which here makes an angle θ = 15◦ to the horizontal. Panels (a–c)
correspond to flow combination 3 and panels (d–f ) correspond to flow combination 4, see table 2.
Red, blue and yellow contours are as described in the text. The significance of the dotted lines
drawn along the permeability jump in each of panels (a–c) is explained in relation to the inclined
time series described below.
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FIGURE 9. Inclined time series image for the experiment considered in figure 8(a–c). The red
contour shows the nose position of the bulk interface whereas the yellow contour shows the nose
position of the dispersed interface. The normalized intensity bar indicated on the right shows the
transition from pure discharged plume fluid (intensity of 1) to pure ambient fluid (intensity of 0).
Time intervals are marked by the horizontal dashed lines to identify different stages of the flow
dynamics, which are described in text. The analogue theoretical prediction is indicated by the
blue contour.

origin, indicated schematically in figure 2. Thus x ′′ < 0 corresponds to the updip flow
while x ′′ > 0 to the downdip flow. In figure 9, and consistent with figure 8, the red and
yellow contours show the nose positions of the bulk and dispersed interfaces, respectively.

The flow dynamics of the up- and downdip gravity currents are analysed by tracking
in time the position of the noses corresponding to the bulk and dispersed interfaces
represented in inclined time series plots such as figure 9. Accordingly, we can describe
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the evolution of the flow as follows. At t∗ ≡ t/Πt = 0, plume fluid first reaches the
permeability jump. For t∗ > 0, gravity currents consisting of discharged plume fluid
propagate up- and downdip and simultaneously drain into the lower layer. The nose
corresponding to the bulk interface of the downdip gravity current becomes arrested at
t∗ = t∗1 at which point the downdip run-out length LNd is reached. By contrast, the updip
run-out length LNu is reached at an earlier point in time because LNu is so often substantially
less than LNd , see figures 3 and 5. For t∗ > t∗1 discharged plume fluid continues to drain into
the lower layer during which time the noses of the bulk interface, both up- and downdip,
remain fixed. Eventually, given the finite height of our experimental box, contaminated
fluid makes contact with the bottom (impermeable) boundary. We designate this point in
time as t∗2. For t∗ > t∗2, there form a pair of secondary (horizontal) gravity currents at the
base of the lower layer. The left and right propagation of these secondary-gravity currents
has the effect of remobilizing the previously arrested gravity currents in the upper layer. In
figure 9, for instance, such a remobilization occurs at a non-dimensional time just larger
than 103. The associated details and dynamics of the flow post-run-out are beyond the
scope of the present inquiry and shall be explored in a forthcoming study. In the present
analysis, all the results discussed below correspond to dimensionless times strictly below
t∗2, this is to ensure the contaminated fluid has not made contact with the bottom boundary.

4.4. Qualitative comparison between theory and experiment for the gravity current
shapes

Figure 8 suggests that non-trivially different flow behaviour may be observed depending
on g′

s. For g′
s = 20 cm s−2, a larger volume of discharged plume fluid propagates along

the permeability jump, whereas for g′
s = 80 cm s−2, a larger fraction drains into the

lower layer. These observations are consistent with the efficiency curves presented in
§ 3, see figure 6(b). This leads to longer up- and, more especially, downdip gravity
currents in the former case versus the latter. Also shown in each of the images in
figure 8 are complementary theoretical results predicted using the (sharp interface) model
of § 2. These are plotted as the blue contours where, consistent with the experimental
measurements to be summarized in § 5.3, we have considered G′ values of 0.43 and 0.66
in panels (a–c) and (d–f ), respectively. In general, we find good correspondence with the
red contours, particularly in the upper layer. However, and as we will explore in further
detail in § 5.3, theory slightly overpredicts the length of the gravity currents, both up- and
downdip. In the lower layer, the agreement is typically less robust. At least part of the
reason for this discrepancy comes from the general neglect of dispersion by the analytical
model which is more prominent in the lower layer because of flow instabilities. With this
being the case, we cannot everywhere expect good overlap of the blue and red contours
because, in practice, some non-trivial fraction of the dense fluid that drains into the lower
layer is mixed into the ambient and so appears between the red and yellow contours. This
is especially true in figure 8(d–f ).

5. Results and discussion

5.1. Determination of G′ and α

To make quantitative predictions with the theory of § 2, we first need to specify the values
for the reduced gravity ratio G′ and the transverse dispersivity α. Finding the value of G′

theoretically is challenging and we therefore adopt an empirical approach. The reduced
gravity ratio was previously determined experimentally by Sahu & Flynn (2017) for the
case of a horizontal permeability jump, and an average value of 0.6 ± 0.1 was reported.
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FIGURE 10. Reduced gravity ratio G′ versus the source reduced gravity g′
s. The open symbols

correspond to a source flow rate of 0.5 cm3 s−1 while the solid symbols consider 1 cm3 s−1.
The square, circle and diamond symbols show θ = 0◦, 5◦ and 15◦, respectively. A representative
error bar is shown in the bottom-right corner.

However, no exhaustive estimate has ever been made regarding the dependence of G′

on either the source conditions or on the details of the porous medium, for example the
magnitude of the permeability jump angle. Herein, we seek to address this shortcoming
and thereby categorize the variation of G′ with θ , the source volume flux, Qs, and the
source reduced gravity, g′

s. The value of G′ is computed by taking the ratio of the reduced
gravities in the lower and upper layers. The non-intrusive procedure for estimating these
reduced gravities is outlined in appendix B.2. On the basis of this approach, we find that
G′ is basically independent of time, at least for t∗ < t∗2. Figure 10 shows the variation of
G′ with g′

s for θ = 0◦, 5◦ and 15◦ and for two different Qs, i.e. 0.5 and 1 cm3 s−1. For
prescribed Qs, G′ exhibits a monotone increasing dependence on g′

s. Meanwhile, G′ values
corresponding to the lower source flow rate of 0.5 cm3 s−1 were found to exceed those
corresponding to 1 cm3 s−1. Considering separately these two source volume flow rates,
we determine empirical relations of the following form:

G′
0.5 = 4.51 × 10−3g′

s − 6.03 × 10−4θ + 0.546,

G′
1 = 3.82 × 10−3g′

s − 6.08 × 10−4θ + 0.386.

}
(5.1)

In both the above relations, it can be seen that G′ depends much more sensitively on g′
s

than it does on θ . Hence, for all practical purposes and for the range of θ values defined
in table 1, we can, in the comparisons to follow, eliminate the θ dependence and consider
G′ only as a function of g′

s and Qs. Fortunately, it is more straightforward to estimate the
value of the transverse dispersivity, α, which appears in the definition of β in (2.14a), of
qc in (2.15) and of δ in (2.21), i.e. α is set by the upper layer bead diameter, d1. From (4b)
of Delgado (2007) and consistent with the range prescribed by Freeze & Cherry (1979),
we take α ≈ 0.025d1.
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5.2. Dispersion effects
To quantify the degree of dispersion from experimental snapshot images such as those of
figure 8, and to simultaneously confirm that our methods for flow visualization account
for all of the dense fluid supplied by the source, we proceed by separately calculating
the buoyancy (evaluated per unit tank width) B and the area (volume per unit width) A
within the bulk and dispersed phases. Suppose, for instance, that we were to evaluate the
buoyancy within the bulk phase. First we would determine the area enclosed by the red
contour above and also below the permeability jump. We would then multiply the two
areas in question by their respective averaged reduced gravities, i.e. (g′

c)bulk for the upper
layer and (g′

d)bulk for the lower layer. Symbolically,

Bupper,bulk = (A × g′
c)upper,bulk and Blower,bulk = (A × g′

d)lower,bulk. (5.2a,b)

Adding these estimates of the layer specific buoyancy allows us to estimate, from the
experimental images, the total buoyancy within the bulk phase, i.e. Bbulk = Bupper,bulk +
Blower,bulk. The analogous equations for the dispersed phase read

Bupper,disp = (A × g′
c)upper,disp and Blower,disp = (A × g′

d)lower,disp. (5.3a,b)

The total buoyancy within dispersed phase is obtained from, Bdisp = Bupper,disp + Blower,disp.
It is understood that, while evaluating the buoyancy within the dispersed phase, we
consider only the region enclosed between the yellow and red contours. The total
buoyancy is obtained by summing the constituent parts, i.e. B = Bbulk + Bdisp. Further, we
non-dimensionalize the individual buoyancies using the variables defined in (2.20a,b) and
thereby multiply by Π 2

t /Π 3
x . In figure 11, and considering both g′

s = 20 cm s−2 (figure 11a)
and g′

s = 80 cm s−2 (figure 11b), B∗ matches well the analogue value obtained directly
from the conditions at the plume source, i.e. by evaluating F∗

s × t∗. Figure 11 shows that,
as expected, B∗

bulk, B∗
disp and their sum, B∗

bulk + B∗
disp, are all monotone increasing functions

of time. Nonetheless, it is clear that the bulk phase retains a disproportionate share of the
dense fluid within the box. To quantify matters more precisely, we make the following
definitions for the buoyancy fractions:

〈B∗
bulk〉 = B∗

bulk

B∗
bulk + B∗

disp
and 〈B∗

disp〉 = B∗
disp

B∗
bulk + B∗

disp
. (5.4a,b)

Time series of 〈B∗
bulk〉 and 〈B∗

disp〉 are shown as squares in figure 12. Results are presented
for both g′

s = 20 cm s−2 (figure 12a) and g′
s = 80 cm s−2 (figure 12b). It can be seen that,

except at very early times, 〈B∗
s,bulk〉 always exceeds 〈B∗

s,disp〉 and that the difference grows
with time, particularly for larger g′

s.
Analogous to (5.4a,b), we also quantify the fractions corresponding to the

non-dimensional area, A∗, occupied by either of the bulk or dispersed phases, i.e.

〈A∗
bulk〉 = A∗

bulk

A∗
bulk + A∗

disp
and 〈A∗

disp〉 = A∗
disp

A∗
bulk + A∗

disp
, (5.5a,b)

which have their terms defined implicitly in (5.2a,b) and (5.3a,b). Representative data
appear as circles in figure 12. As with buoyancy, the area fractions also evolve in time. For
low source reduced gravity (figure 12a), an asymptotic state is reached at approximately
t∗ = t∗1 wherein 〈A∗

disp〉 exceeds 〈A∗
bulk〉. For g′

s = 80 cm s−2, no asymptotic state is achieved
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FIGURE 11. Time series of the buoyancy for (a) flow combination 3 and (b) flow combination 4,
both for θ = 15◦. Thin open symbols, buoyancy within the dispersed phase (B∗

disp); solid
symbols, buoyancy within the bulk phase (B∗

bulk); thick open symbols, total buoyancy (B∗ =
Bbulk + Bdisp). For comparison, the total buoyancy as estimated from the (steady) plume source
conditions is indicated by the solid line. Meanwhile the vertical dashed lines show the time when
the run-out length of the downdip gravity current is reached. Representative error bars are shown
on the symbols for the total buoyancy.
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FIGURE 12. Fractions of buoyancy, 〈B∗〉 (in squares), and area, 〈A∗〉 (in circles), plotted as
functions of time. Solid and open symbols correspond to the bulk and dispersed phases,
respectively. Panel (a) corresponds to flow combination 3, while panel (b) corresponds to flow
combination 4, both for θ = 15◦. Meanwhile, the vertical dashed lines show the time when the
run-out length of the downdip gravity current is reached. A representative error bar is shown in
the bottom-right corner in each of the panel.
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FIGURE 13. Bulk fluid buoyancy fraction 〈B∗
bulk〉 (in squares) and area fraction 〈A∗

bulk〉
(in circles), measured at t∗ = t∗1 and plotted versus the permeability jump angle θ . Solid
symbols correspond to flow combination 3; open symbols correspond to flow combination 4.
A representative error bar is shown in the bottom-right corner.

before t∗2 and so the long-term behaviour is less clear. Even so, and as with figure 12(a),
figure 12(b) confirms that 〈A∗

disp〉 exceeds 〈A∗
bulk〉 at least over the time interval of interest.

Complementing the data of figure 12, figure 13 shows the variation of the buoyancy
and area fractions for the bulk phase as functions of θ . The data (and others like them,
not shown) confirm that 〈B∗

bulk〉 and 〈A∗
bulk〉, though dependent on the source conditions,

are effectively independent of θ . For all considered values of θ , it is observed that
〈B∗

bulk〉 � 0.7, suggesting that most of the source fluid injected into the porous medium
remains within the bulk phase. Figure 13 also suggests, however, that typical values for
〈A∗

bulk〉 are significantly smaller, i.e. less than 0.5. This suggests that the boundary of the
discharged plume fluid/contaminated fluid may extend well beyond the predictions of the
sharp interface model derived in § 2. The implications of this observation are discussed in
conjunction with figure 14 below.

5.3. Up- and downdip gravity currents: transient and steady-state analysis of the nose
position

The transient nose positions corresponding to the up- and downdip gravity currents are
shown in figure 14. Comparisons are made between two different values of θ . The panel
pairs (a,b) and (c,d) consider flow combinations 3 and 4, respectively. At early times,
solid symbols (indicating the bulk interface) nearly coincide with the open symbols
(indicating the dispersed interface). However, at later times and more especially when
t∗ > t∗1, substantial deviations are observed as more of the dispersed fluid propagates
ahead of the arrested (bulk interface) front. It is observed that the dispersion intensity
and, correspondingly, the degree of spread between the solid and open symbols depends
on g′

s and θ . Not surprisingly, greater spreads are observed downdip than they are updip.
Theoretical predictions of nose propagation for both up- and downdip gravity currents

are also plotted in figure 14. In all cases, the theoretical curves typically lie between the
solid and open symbols. It is evident that the theoretical predictions align better with
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FIGURE 14. Nose propagation for up- (x∗
N < 0, diamonds) and downdip (x∗

N > 0, squares)
gravity currents as functions of time. The solid symbols correspond to the bulk interface, while
the open symbols correspond to the dispersed interface. Analogue theoretical results are shown
by the dashed (for updip) and solid (for downdip) curves. The source conditions and permeability
jump angles are as specified in each of the panels. Meanwhile, the vertical dashed lines show the
time when the run-out length of the downdip gravity current is reached. A representative error
bar is shown in the bottom-right corner of each panel.

the bulk interface. Further to figure 8, these observations confirm that the model of § 2
is generally reliable when considering the advance of the bulk interface, less so for the
dispersed interface.

Comparisons between theory and experiment may also be made when the gravity
currents reach their run-out lengths. Figure 15 shows experimentally determined run-out
lengths attained by the bulk phase on the downdip side (solid squares) and on the
updip side (solid diamonds) for a range of θ . Meanwhile the open symbols indicate the
progression of the dispersed phase. Because the nose of the dispersed phase does not
become arrested in the manner of the bulk phase, the open symbols specifically consider
nose positions measured at t∗ = t∗1. The region between the bulk and dispersed noses
is shaded in red on the downdip side, and in green on the updip side. The breadth
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FIGURE 15. Gravity current run-out lengths, L∗
N , plotted versus θ . Up- and downdip results

are indicated by solid symbols in diamonds and squares, respectively. Also shown (by open
symbols) are the positions of the nose of the dispersed phase, measured at t∗ = t∗1. The region
between the solid and open symbols are filled with green and red for the up- and downdip
directions, respectively. Theoretical predictions are shown with the dashed (for updip) and solid
(for downdip) curves. Source conditions are as specified, and a representative error bar is drawn
in the bottom-right corner in each of the panels.

of these shaded regions is a measure of the thickness of the dispersed phase at t∗1.
The panels in figure 15 also include analogue theoretical predictions. As expected, the
up- (L∗

Nu
) and downdip (L∗

Nd
) run-out lengths show a monotone decrease and increase with

θ , respectively. In all cases, the theoretical predictions lie within the (admittedly broad)
shaded bands. Usually, especially when g′

s = 20 cm s−2 (panels a and b), model predictions
are closer to measurements of the bulk interface. Also, and whether considering up- or
downdip flow, measured run-out lengths are longer when Qs is large and g′

s is small.
Theoretical predictions are in good agreement with this experimental finding.
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6. Summary and conclusions

We have developed a mathematical model describing the propagation of gravity current
flow along an inclined permeability jump in a heterogeneous porous medium consisting
of two layers of different permeabilities, see figure 2. Convection originates from a source
located at the top of the upper layer from where the dense fluid first falls vertically in
the form of a plume and then, upon reaching the adverse permeability jump, divides
into an unequal pair of up- and downdip gravity currents. The volume influx supplied to
the gravity currents is modelled as a time-dependent parameter that decreases as the up-
and downdip gravity currents grow in height. The parameter fa quantifies the fraction of
discharged plume fluid going up- versus downdip. We solve the dimensionless governing
equations by defining four dimensionless parameters namely the permeability jump angle,
θ , plume source factor, δ, permeability ratio, K, and reduced gravity ratio, G′ – the
dynamical significance of each of these parameters is emphasized in § 2. Note that G′

is unique in that it depends on the plume source conditions and (very weakly) on θ , see
(5.1). Key theoretical conclusions derived from the model predictions are as follows. (i)
Here, fa is a monotone increasing function of time that attains a constant value when the
up- and downdip gravity currents reach their run-out lengths. (ii) Run-out lengths depend
on all the four dimensionless parameters, and their relative importance in determining the
magnitude of the run-out length is discussed in § 3. For 0◦ ≤ θ ≤ 20◦, run-out lengths
were predicted to occur when t∗ � 102.

To validate our theoretical model, laboratory experiments were conducted in a two-layer
porous medium created using spherical beads of two different sizes. Experiments were
performed for four different combinations of plume source volume flow rate and source
reduced gravity (see table 2); also, we considered the following four different permeability
jump slope angles: θ = 0◦, 5◦, 10◦ and 15◦. In contrast with the theory which, consistent
with Bear (1972), Huppert & Woods (1995), Pritchard et al. (2001), Goda & Sato (2011),
Sahu & Flynn (2015) and many others, assumes a sharp interface, our experimental
images reveal the appearance of two distinct interfaces, categorized as bulk and dispersed
interfaces – see the red and yellow contours of figures 8 and 9. A careful analysis of
laboratory images shows that the volume occupied by the dispersed phase may match
or exceed the volume occupied by the bulk phase (figure 12). However, because the
concentration of discharged plume fluid within the dispersed phase is often small, most
(�0.7) of the fluid that originated in the plume remains behind the bulk interface
(figure 13).

As in previous works (Huppert & Woods 1995; Sahu & Flynn 2015; Pegler et al.
2016), the dynamics of the gravity currents were characterized by measuring their speed
of advance. Here, measurements were made in both the up- and downdip directions and
with reference to both the bulk and dispersed interfaces, see figure 14. Not surprisingly,
downdip gravity currents propagated a greater distance compared with their updip
counterparts anytime that θ > 0◦. The run-out lengths are plotted as a function of θ in
figure 15. Our theoretical model predicts run-out lengths that lie between measured nose
positions for the bulk and dispersed interfaces for all the experiments performed in this
study. In general, theoretical predictions are closer to the bulk interface measurements
than they are to the dispersed interface measurements.

Through this work we indirectly attempt to address some of the key uncertainties in
the field of groundwater contamination (Khondaker, Al-Layla & Husain 1990) and acid
gas injection (Bachu et al. 2008b). These uncertainties include predicting the short- and
longer-term dynamics, i.e. the transient and steady-state behaviour of a plume impinging
on a leaky and sloping boundary. Equally important is to classify the respective volumes
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of discharged plume fluid that (i) propagate up- versus downdip (cf. fa in figure 4), and
(ii) later experience dilution by Rayleigh–Taylor type mixing (cf. G′ in figure 10) versus
dispersion (cf. figures 11–13).

Our theoretical model is obviously constrained by a number of limiting assumptions, the
relaxation of which is a topic of on-going/future study. For instance, we have assumed that
the reduced gravity, g′

c, within the gravity currents evolves with plume length. However,
our sharp interface model neglects the effect of mixing/dispersion across the gravity
current-ambient interface (cf. a recent work by Sahu & Neufeld (2020), who consider
the dispersive interface in porous media gravity currents). Dispersion, in particular, is
significant in that it allows discharged plume fluid to appear further downstream than is
properly accounted for by a sharp interface model – compare for example the blue and
yellow contours of figure 8. Our theoretical model furthermore assumes that the lower
layer is infinitely deep. However, in the geophysical scenarios cited above, finite depth
effects will be important, for example in remobilizing a gravity current arrested at its
run-out length. Experiments confirming this behaviour are already underway and will be
reported upon in a forthcoming publication.
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Appendix A. Details of the theoretical model

A.1. Derivation of the evolution equation for l
The contaminated fluid region is continuously fed by the draining of gravity current
fluid along the permeability jump and also the ambient fluid entering across the
contaminated–ambient fluid interface, see figure 2. The time rate of change in the mass of
contaminated fluid is expressed mathematically as

d
dt

(ρd

∫ xNd

−xNu

φl dx) = −
(

ρc

∫ xNd

−xNu

wdrain dx + ρoqentr

)
. (A 1)

Expanding the time-derivative term on the left-hand side of the above expression gives

ρd
d
dt

∫ xNd

−xNu

φl dx + dρd

dt

∫ xNd

−xNu

φl dx = −
(

ρc

∫ xNd

−xNu

wdrain dx + ρoqentr

)
. (A 2)

For the conditions relevant to our analysis, the latter term from the left-hand side is three
orders of magnitude smaller than the former term and can therefore be neglected. Applying
Leibniz’s rule in conjunction with the boundary conditions specified by (2.18a,b) allows
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us to write

ρd

∫ xNd

−xNu

φ
∂l
∂t

dx = −
(

ρc

∫ xNd

−xNu

wdrain dx + ρoqentr

)
. (A 3)

Meanwhile if (A 1) is integrated in time then

ρd

∫ xNd

−xNu

φl dx = −
∫ t

0

(
ρc

∫ xNd

−xNu

wdrain dx

)
dt −

∫ t

0
ρoqentr dt. (A 4)

Note, however, that the left-hand side of (A 4) denotes the total volume of contaminated
fluid and can therefore be written as∫ xNd

−xNu

φl dx = −
∫ t

0

(∫ xNd

−xNu

wdrain dx + qentr

)
dt. (A 5)

Substituting (A 5) in (A 4), we get

−ρd

∫ t

0

(∫ xNd

−xNu

wdrain dx + qentr

)
dt = −

∫ t

0

(
ρc

∫ xNd

−xNu

wdrain dx

)
dt −

∫ t

0
ρoqentr dt.

(A 6)

Consistent with the previous argument it is appropriate to regard the time variation of ρd
as small whereby

∫ t

0

[
−ρd

(∫ xNd

−xNu

wdrain dx + qentr

)
+ ρc

∫ xNd

−xNu

wdrain dx + ρoqentr

]
dt = 0. (A 7)

Because this result is valid for arbitrary t, then

ρd

(∫ xNd

−xNu

wdrain dx + qentr

)
= ρc

∫ xNd

−xNu

wdrain dx + ρoqentr. (A 8)

Rearranging the terms in (A 8) and expressing qentr in terms of wdrain yields

qentr = Δρc − Δρd

Δρd

∫ xNd

−xNu

wdrain dx . (A 9)

Combining this result with (A 3), we obtain the desired result, namely

φ
∂l
∂t

= −Δρc

Δρd
wdrain. (A 10)

This last equation is, of course, the same as (2.10).

A.2. Method of solution
An explicit finite difference algorithm is used to discretize (2.23)–(2.27a,b). The variables
corresponding to updip flow are denoted by a subscript u while those corresponding to
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downdip flow downdip are denoted by d. Thus equations (2.23)–(2.27a,b) may be rewritten
in discrete form as

h∗
u

n+1
i = h∗

u
n
i +

(
1 − δh∗

u
n
1 cos θ

1 − δ cos θ

)−1/4 [
Δt∗ cos θ

2Δx∗2 (h∗
u

n
i−1

2 − 2h∗
u

n
i

2 + h∗
u

n
i+1

2
)

+Δt∗ sin θ

2Δx∗ (h∗
u

n
i−1 − h∗

u
n
i+1) − KG′

(
1 + h∗

u
n
i

l∗u
n
i

cos θ

)
Δt∗

]
, (A 11a)

l∗u
n+1
i = l∗u

n
i +

(
1 − δh∗

u
n
1 cos θ

1 − δ cos θ

)−1/4

K
(

1 + h∗
u

n
i

l∗u
n
i

cos θ

)
Δt∗, (A 11b)

where n and i are non-negative integers, denoting the number of time steps and the index of
the discretized elements, respectively. Similarly, the discretized equations on the downdip
side read

h∗
d

n+1
i = h∗

d
n
i +

(
1 − δh∗

d
n
1 cos θ

1 − δ cos θ

)−1/4 [
Δt∗ cos θ

2Δx∗2 (h∗
d

n
i−1

2 − 2h∗
d

n
i

2 + h∗
d

n
i+1

2
)

−Δt∗ sin θ

2Δx∗ (h∗
d

n
i−1 − h∗

d
n
i+1) − KG′

(
1 + h∗

d
n
i

l∗d
n
i

cos θ

)
Δt∗

]
, (A 12a)

l∗d
n+1
i = l∗d

n
i +

(
1 − δh∗

d
n
1 cos θ

1 − δ cos θ

)−1/4

K
(

1 + h∗
d

n
i

l∗d
n
i

cos θ

)
�t∗. (A 12b)

For pragmatic reasons, and to avoid the appearance of unphysical singularities, we do not
allow l∗u

n
i and l∗d

n
i to be identically zero, but rather initialize with some small value.

The expressions in (A 11) and (A 12) apply for i ≥ 1. When i = 1, h∗
u

n
0 and h∗

d
n
0 are

resolved with reference to the influx boundary condition in (2.25), such that

(h∗
u

n
0)

2 = (h∗
u

n
2)

2 + 4Δx∗h∗
u

n
1 tan θ +

[
4Δx∗(1 − fa)

cos θ

]
(1 − δh∗

u
n
1 cos θ), (A 13a)

(h∗
d

n
0)

2 = (h∗
d

n
2)

2 − 4Δx∗h∗
d

n
1 tan θ +

(
4Δx∗fa

cos θ

)
(1 − δh∗

d
n
1 cos θ). (A 13b)

Analogously, (2.26) becomes
h∗

u
n
1 = h∗

d
n
1. (A 14)

Finally for i = Nu and Nd, the nose positions up- and downdip in (2.27a,b), we require that

h∗
u

n
Nu

= h∗
d

n
Nd

= 0, (A 15a)

l∗u
n
Nu

= l∗d
n
Nd

= 0. (A 15b)

Here, Δx∗ and Δt∗ denote the grid spacing and the time step, respectively. The values of
Δx∗ and Δt∗ were chosen as 2.5 × 10−2 and 0.5 × 10−3, respectively. Grid independence
checks were performed to ensure that the solutions were insensitive to the magnitude of
Δx∗. For purposes of validating our numerical code, we confirmed that, in all cases, the
prediction for up- and downdip run-out lengths match those anticipated from (2.23) and
(2.24) with ∂h∗/∂t∗ = 0. Results were also compared with those of Sahu & Flynn (2017)
for the special case θ = 0◦.
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FIGURE 16. Time variation of the gravity current aspect ratio on (a) the updip side and (b) the
downdip side. Results are derived using (2.23) and assume δ = 0.1, K = 0.1 and G′ = 0.4.

A.3. Validation of Dupuit’s approximation
Measured in the x − z coordinate system of figure 2, the slopes of the up- and downdip
gravity currents are found to be spatially uniform, see for example figure 3(a). The
gravity current slopes therefore prescribe the aspect ratios; symbolically, ε = ∂h∗/∂x∗.
In figure 16, we plot these aspect ratios versus time for various permeability jump
angles, θ . The values of ε are found to be smaller than unity, i.e. they vary, in the
long-time limit, between 0.22 and 0.46 on the updip side, and between 0.11 and 0.22 on the
downdip side. Note that larger values for ε are realized at early times; however, this limit
is of comparatively lesser significance of the context of self-similar models of the type
described by our (2.23). Note also that for θ > 0◦, aspect ratios are larger updip because
the nose travels a comparatively shorter distance before becoming arrested at run-out.

The results of figure 16 suggest that, in general, it is appropriate to consider the
gravity currents as long and thin such that the along-jump component of velocity remains
notably smaller than its across-jump counterpart. Under these circumstances, Dupuit’s
approximation can be considered to be valid such that pressure gradients can be considered
hydrostatic as in (2.2).

Appendix B. Dye calibration and estimation of reduced gravities

B.1 Dye calibration procedure
The concentration of dye to be mixed into the source fluid was inferred from calibration
experiments conducted in the general manner of Dong & Selvadurai (2006). These were
performed to determine the correlation between the dye concentration and the pixel
intensity. Separate correlations were, of course, derived for the upper and lower layers,
which are comprised of glass beads of different diameters and which therefore transmit
a different fraction of the light from the overhead projector located behind the box of
figure 7. Calibration experiments were carried out by completely filling the heterogeneous
porous medium with dyed (fresh) water of known concentration after which images were
collected using the Canon Rebel EOS T2i 18.0 PM camera. This process was repeated
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for various dye concentrations ranging from 0 to 0.14 g l−1. The resulting data were used
to construct calibration curves. We observe that, due to the smaller permeability of the
lower layer, the pixel intensity saturates comparatively quickly. The dye concentration in
all our experiments was therefore set by the shape of the lower layer calibration curve.
Note finally that different calibration curves were constructed for different θ .

B.2. Estimation of reduced gravities
To determine values for g′

c and g′
d, we defined two interrogation windows within

experimental snapshot images, one each for the upper and lower layers. These windows
could either encompass fluid within the bulk phase or within the dispersed phase. However,
and when computing the value of G′, we had to be consistent with the sharp interface
assumption applied in § 2. As such, the interrogation windows in both the upper and
lower layers were defined so that they enclosed only fluid within the bulk phase. Once
the windows were defined, we then computed the pixel intensity averaged over area. The
averaged values so obtained were compared with the corresponding calibration curves for
the upper and lower layers. These calibration curves were obtained using the procedure
described in appendix B.1 but were constructed specifically with reference to the above
interrogation windows. In this fashion, we were able to convert from an average pixel
intensity to an average dye concentration and then finally to an average salt concentration
and fluid density, dye and salt having been mixed into the source fluid in fixed proportion.
An implicit assumption in this latter step is that salt and dye are transported at roughly
equal speeds, which is justified given the large Péclet numbers of interest here (Sahu &
Flynn 2017). By this procedure, we thereby estimate the average reduced gravities in the
upper and lower layers separately.
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