
Artificial Intelligence for
Engineering Design, Analysis
and Manufacturing

cambridge.org/aie

Research Paper

Cite this article: Beirão J, Duarte JP (2018).
Generic grammars for design domains.
Artificial Intelligence for Engineering Design,
Analysis and Manufacturing 32, 225–239.
https://doi.org/10.1017/S0890060417000452

Received: 25 October 2017
Revised: 19 June 2017
Accepted: 20 June 2017

Key words:
CIM; generic grammars; parametric design;
shape grammars; urban design

Author for correspondence:
José P Duarte, SCDC, Stuckeman School of
Architecture and Landscape Architecture,
Penn State University, 150 Stuckeman Family
Building, University Park, PA 16802, USA.
E-mail: jxp400@psu.edu

© Cambridge University Press 2018

Generic grammars for design domains

José Beirão1 and José P. Duarte2

1CIAUD, Faculdade de Arquitetura, Universidade de Lisboa, R. Sá Nogueira, 1349-063 Lisboa, Portugal and 2SCDC,
Stuckeman School of Architecture and Landscape Architecture, Penn State University, 150 Stuckeman Family
Building, University Park, PA 16802, USA

Abstract

Shape grammars have been developed to codify a specific type of artifact – Queen Anne
houses, Buffalo bungalows – or the style of a particular designer – Andrea Palladio, Frank
Lloyd Wright, or Álvaro Siza Vieira. However, these specific grammars fail to encode recur-
rent design moves or features that are above the particularities of a specific design style or the
idiosyncrasies of a specific designer and, therefore, are common to a larger category of designs
and maybe reutilized and incorporated in the definition of new, specific design languages. To
overcome these limitations, the notion of generic grammars for defining design domains is
introduced. Its application to the urban design domain is illustrated by showing a generic
grammar implementation resulting in a City Information Modeling platform composed of
a parametric design interface connected to a geographic database.

Introduction

In recent years, several researchers have addressed the development of generic grammars in
different fields of design, including urban design (Beirão et al., 2010), the design of public
spaces in social housing developments (Mendes et al., 2013), housing design (Benrós et al.,
2014), chair design (Garcia & Barros, 2015), and tableware design (Castro e Costa &
Duarte, 2013). In these works, generic grammars are considered to define meta-design lan-
guages that can be applied generically in a design domain independently of local specifications
or particular idiosyncrasies of a specific design language. By constraining the domain applica-
tion of a generic grammar, the grammar becomes specific, meaning either style-specific,
context-specific, customized, or any combinations of these. The purpose of this paper is to
provide a formal definition for generic grammars and show their use and utility to generate
designs in a particular design domain.

Historically, the use of rule-based systems have been considered appropriate for four different
levels of use: (1) at an analytical level as a way of understanding design rules, design processes
and historic settlements within a design domain or a design language, such as in (Stiny &
Mitchell, 1978; Koning & Eizenberg, 1981), to name some early examples; (2) as synthesis
tools that can be used in the generation of designs (Knight, 1992); (3) as regulations or regulatory
devices controlling the generation of new instances to be kept within the limitations of some
domain (or sub-domain) (Lehnerer, 2009; Marshall, 2011); and (4) as predictive devices in
the development of simulation algorithms with the aim of simulating the effects of hypothetical
sets of rules in particular contexts (Shea & Cagan, 1997; Caldas & Norford, 2002).

In this paper, we introduce the concept of “Generic Grammar” as a set of production sys-
tems (Gips & Stiny, 1980) acting at the four aforementioned levels, using rules as the genera-
tive element and operating within the particular frame of a well-defined design domain. The
concept of “Generic Grammar” is analytical to the extent that any generic grammar is inferred
from specific grammars that resulted from the analysis of different corpi in the same design
domain. It is synthetic because it may be used to define specific grammars that differ from
those used in the inference. It is regulatory as the resulting specific grammars may be used
to define new objects in the same design domain, thereby implicitly setting the boundaries
of the domain. Finally, it is predictive because the resulting specific grammars can generate
designs that match predefined criteria or performance, according to the given viewpoints.
Below we show an application of the concept to the urban design domain, which can be
applied to different design domains, as shown by the works by Castro e Costa and Duarte
(2013), Benrós et al. (2014), and Garcia and Barros (2015).

The paper is divided into eight main sections. Section 2 addresses the concept of “Design
Domain,” showing how it can be defined with enough accuracy using an ontological approach
complemented by a production system. Section 3 reviews the concept of production system
focusing on patterns and shape grammars and postulates some basic notions on how various
grammars can be correlated through formal relationships defined within a design domain to
develop generic grammars. As a way of illustrating the proposed conceptual and methodolog-
ical framework, Section 4 presents a simplified version of a generic grammar for the urban

https://doi.org/10.1017/S0890060417000452 Published online by Cambridge University Press

https://www.cambridge.org/aie
https://doi.org/10.1017/S0890060417000452
mailto:jxp400@psu.edu
https://doi.org/10.1017/S0890060417000452


design domain, and Section 5 shows its implementation as a para-
metric design platform and its application to a particular urban
context. Section 6 provides a formal definition of generic gram-
mars for specific design domains, and Section 7 discusses meth-
odological issues to take into account in the implementation of
generic grammars. The paper ends with a concluding section
that summarizes these issues and draws some concluding remarks
regarding the purpose of generic grammars.

Design domains, ontologies, and generic grammars

The term “design domain” refers to a formal or conceptual field
that may be the subject of a design activity, such as urban design,
chair design, or bottle design. The main difficulty, however, lies in
the formal definition of a design domain. Such definition should
be able to clarify which are the objects of a design domain, classify
them correctly by clearly stating their types, parts, and relations.
This is important to enable a structured look into the morpholo-
gical and topological aspects of the domain, and to develop rules
acting on such objects and relations, either symbolic relations or
spatial relations.

Such a structured description of a design domain can be ac-
complished by characterizing the domain’s ontology. In computer
science and specifically in the field of knowledge representation,
ontology is the set of specifications of a domain’s conceptualiza-
tion (Gruber, 1993). More accurately, ontology describes a
domain in terms of the “objects” (or individuals) of which it is
composed, object arrangements in terms of a structured classifica-
tion identifying the “classes” and “subclasses” of objects compos-
ing the domain (taxonomy), their “attributes,” and the expressed
“relationships” among them (topology).

“Objects” or individuals are singularly identifiable entities that
may be instantiated or manipulated as such. In a shape grammar-
based (Stiny, 1980) representational structure, objects may be
represented by labeled shapes which typically have a geometric
component (a shape S) and a symbolic component (a label L).
The shape part or the label part of a labeled shape may be
empty. Labels without a shape part are simply abstract classifiers
or symbols, concepts that may or may not be related with shapes.
Unlabeled shapes are abstract shapes without semantic value other
than their geometric properties. Labeled shapes are geometric enti-
ties attached to a concept and therefore we say they are semantically
meaningful shapes. In addition, in the case of more complex
objects, labeled shapes may be articulated and complemented by
descriptions, adding other layers of information (Stiny, 1981).

“Classes” are types of objects organized in terms of a depen-
dency structure based on object typology. Objects with shared
characteristics are organized into common classes. Complex
objects in a class may be composed of simpler objects belonging
to a subclass or several subclasses thereby defining dependency
relationships. Objects which are not composed of other objects
are called primitives. Furthermore, objects in classes can be repre-
sented by shapes, labels, or labeled shapes depending on the kind
of representational criteria used for classification in the ontology
structure. Hence, a class C is represented by a vocabulary of
shapes S and labels L. Formally,

Ci = {Si, Li} (1)

where i is a class identifier index.
“Attributes” are characteristics, properties, or parameters of

objects in a class. To avoid confusion, note that attributes

correspond to properties that may be common to objects in
several classes of the ontology (e.g., point coordinates), while
labels are specific of a particular class in ontology (e.g., positions
of protected arboreal species may be given by attaching a label or a
symbol representing a particular tree species to a point in the
right location).

“Relationships” express the dependency structure between objects
and consequently also between classes.

In geometrical terms, primitives are points, lines, surfaces, and
solids, with zero, one, two, or three dimensions, respectively. Each
of these primitives is bounded by primitives of the dimension
immediately below. As such, solids are bounded by surfaces, sur-
faces by lines, and lines by points. Points have no boundary, so, at
the end, all primitives are defined by points, considered the pri-
mal of the primitives. The main attribute of primitives is their
positions in the design space, defined by coordinates in a given
reference system.

In the “urban design domain,” the ultimate object is the city,
its parts, and the relations among parts. This structure should
contain all the concepts needed to describe cities as they are
and cities as we intend them to be, in other words, describe the
transformations that may be applied or that we admit possible
within a city while following some goal, which we will call “devel-
opment vision.” The term “urban design” stresses that the domain
describes not just the urban space “as it is,” but also “as it is
planned or envisioned to be,” including the actions and processes
that acting upon existing objects transform them into new objects
according to established planning rules. Figure 1 shows a classifi-
cation structure developed for the domain of urban design. The
larger object – the city – is divided into five main groups of object
classes, which are called systems. These systems represent differ-
ent ways of seeing the city and contain the main urban elements,
which we are able to deal with, more or less independently from
one another: (1) the city seen as a street system; (2) the city as a
built system; (3) the city as a property system; (4) the city as a
physical system; and (5) the city as a system of focal points.
These systems can be independent topics of analysis involving
subjects that are usually addressed in a reasonably autonomous
fashion, such as network analysis (Hillier et al., 1987; Marshall,
2005) and urban morphology analysis (Muratori, 1967; Coelho
et al., 2013), to list the most common. Each system is composed
of object classes organized according to their expressed relation-
ships. For instance, considering the street (or public open
space) system, we have as a top class axial representation of the
network (AN) followed by classes which are pure classifiers of
streets: transportation network (TN) and street nomenclature
(SN). We call pure classifiers to classes with an empty shape
set, containing only labels which describe concepts that should
be classified independently, even though such concepts may be
attributed to shapes by means of rules. For instance, the class
TN represents street classification seen for their role in the TN,
and we may find class object instances such as high-speed
roads, distribution streets or, more specifically, local distribution
or local access streets (Fig. 2). The class SN represents street
types as usually identified in common languages,1 such as

1Note that this class is language dependent from the cultural context and, therefore,
should be adapted accordingly. The same can be said of TN because transportation
types are usually dependent on local planning definitions. However, in the latter case it
would be easier to establish a widely accepted standard. It can also be added that language
brings an intense cultural value into the ontology.

226 J. Beirão and J. P. Duarte

https://doi.org/10.1017/S0890060417000452 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000452


“alley”, “boulevard”, and so on (Fig. 3). Each street type in TN
and SN classes has a street description (SD) consisting of the
minimum set of street components (SC) indicating the number
of car lanes, sidewalk areas, or other components of a street
section. In other words, this is a formal description of a street sec-
tion. The street section may be enlarged according to permissions
set in terms of vicinity rules between SCs and within a variation
range established for each parameter in a SC (Fig. 4). For instance,
“canal” (⑩) is included in the set to cover streets in The
Netherlands, where canals may participate in the definition of
street profiles.

The structure explained above defines relationships among all
objects in the ontology and consequently also relationships
among classes. The relational structure between objects and
classes predefines the way objects may be used in design rules.

Production systems, patterns and grammars

Gips and Stiny (1980) proposed a uniform characterization of
Post’s production systems (Post, 1943) by underlining that their
common structure was composed of: (1) the objects they process,
(2) their definitions, (3) their interpretative mechanism, and (4)

Fig. 1. Ontology proposed for the urban design environment, which is one among many that can possibly be developed for this domain. Primary relationships are
indicated by a continuous line. Secondary relationships are represented by a dashed line.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 227

https://doi.org/10.1017/S0890060417000452 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000452


Fig. 2. Generic grammar for urban design: transportation network (TN) and street descriptions (SD) for selected street types within TN. This ontology allows for
variations and comparison with Marshall’s classification in terms of stratification by speed and connectivity route types according to structural role of streets within
the network.

Fig. 3. Generic grammar for urban design: street nomenclature (SN) and street descriptions (SD) for selected street types in SN, and its comparison with Marshall’s
route classification in terms of stratification by speed and connectivity route types according to their structural role in the network.

228 J. Beirão and J. P. Duarte

https://doi.org/10.1017/S0890060417000452 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000452


the objects they generate. Through this uniform characterization
we can see most algorithmic structures as production systems
defined by rules with the format u→ v, where u and v are objects
from a uniform class C of well-defined objects, and C may be seen

as any subclass of labeled shapes of the form Ci = {Si, Li} in an
ontology defining a particular design domain or part of a design
domain (sub-ontology). In such cases, the production systems are
shape grammars (Stiny & Gips, 1972) operating with shapes

Fig. 4. Generic grammar for urban design: street components (SC). This table shows the 12 street components that once combined allow for the generation of
almost any street type within a city network (only three are shown). The table includes details of the variable parameters and rules to combine them according
to the permissions set as street descriptions (SD) – see the two previous tables.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 229

https://doi.org/10.1017/S0890060417000452 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000452


belonging to a particular class of well-defined objects in a design
domain. In fact, they are discursive grammars (Duarte, 2005) as
we will explain below. Technically, a discursive grammar consists
of a shape grammar, a description grammar (Stiny, 1981), and a
set of heuristics, which are used to guide design generation toward
designs with desired properties, by comparing the description of
the evolving design with the description of the desired design,
and then deciding which rule to apply next.

Another form of algorithmic structure was introduced in the
late 1970s by Alexander et al. (1977) through the concept of a pat-
tern language. At an abstract level, each pattern is composed of a
predicate condition for which a set of generic time-tested solu-
tions may be applied as a consequent action. The predicate con-
dition is also said to correspond to recurrent phenomena in a
design domain (urban or architectural design), hence implying
that typical design problems within these design domains may
have already typical, generic time-tested solutions. In this defini-
tion, the form u→ v is transformed into a more ambiguous for-
mat, predicate→ consequent, where u and v become more
complex concepts involving some, also complex, set of transfor-
mations of the predicate conditional state into a consequent
state. Patterns in this context describe generic design operations
and designs are arguably the results of the application and instan-
tiation of particular sequences of patterns. Sequences are not pre-
defined but desirable relations with other patterns are described,
both in the predicate and in the consequent parts of each pattern,
thereby reinforcing the algorithmic structure of the pattern
language.

Such particular forms of algorithmic design, patterns and
shape grammars are said to encode languages of design because
they define formally the syntactic rules of a particular design
space in a design domain. These rules can be used to generate
designs and the set of all the designs that can be generated
from such rules form a design language. Both forms have their
strengths and weaknesses. The accuracy and focus on syntactic
rules in shape grammars (such as in linguistics) raises many issues
regarding semantics (Fleisher, 1992) as well as difficulties in com-
puter implementation (Gips, 1999), while the vague descriptions
of patterns lack accurate formalization but are open to semantic
interpretation and to varied forms of implementation. Two par-
ticular aspects of patterns may be underlined. First, the compu-
ter implementation of a pattern can be often defined by a shape
grammar and, surely, by some form of the production system,
although such a production system may need a rather complex
interpretative mechanism to encode all the semantic subtleties
of the pattern. Second, semantics in a pattern language is also
guaranteed by the relational structure defined among patterns.
We may say that there is a specific ontological structure under-
lying a particular pattern language. As a result of the preceding
observations, we propose that a generic grammar is composed
of a set of different kinds of production systems operating on
objects from an ontology describing a particular design domain.
In the following sections, we will illustrate the concept of
generic grammar by describing one for the domain of urban
design.

Generic grammars for the urban design domain

In 2012, Duarte and Beirão (2012) described an algorithmic
approach to urban design that used Alexander’s et al. (1977)
Pattern Language and Stiny and Gips’ (1972) shape grammars
that they had been using in teaching and in practice. The basic

idea was that following contextual analysis, certain patterns
would be triggered, forming a program for urban intervention,
and then such patterns could be formalized in a flexible urban
plan using shape grammars. Later on, in “City Induction”
Duarte et al. (2012) formalized the underlying methodology
with the aim of developing a supporting computer platform. In
addition to the use of patterns and grammars, it was proposed
the development of an ontological structure (Gruber, 1993) to
describe the urban environment and the development processes,
and space syntax (Hillier & Hanson, 1984) to characterize affor-
dances of urban solutions.

In CItyMaker (Beirão, 2012), Beirão defines a common struc-
ture for Urban Induction Patterns (UIPs). UIPs are presented as
algorithms for urban design involving a structure inspired by
Gamma et al. (1995) that include shape grammars as template
codes for describing typical urban design operations. Inspired by
Alexander and more closely by Gamma et al. (1995), an UIP is
composed by the following parts: “Name/Intent/Also Known As/
Known Uses/Description/Structure/Predicate/Consequent/Discursive
Grammar/Related Patterns” (Beirão, 2012, Appendix 2 – A
Library of Urban Induction Patterns).

Name/Intent/Also Known As correspond to Gamma’s defini-
tions. Name states the pattern’s algorithmic behavior in a reason-
ably self-explanatory short statement; Intent gives a brief
explanation of the pattern’s algorithmic principles; and Also
Known As gives an alternative name also short and self-
explanatory. Known Uses illustrates the algorithm’s application
in a way similar to Alexander’s “archetypal illustration” including
an additional explanatory statement or summary. Description
gives a simplified verbal description of the pattern’s algorithm.
Structure provides a visual relation of the object classes used by
the algorithm and a short graphic pseudo-code stressing the algo-
rithm’s main purpose. Predicate describes the underlying con-
ditions upon which the pattern can be applied. In other words,
it accurately describes the initial conditions for the application
of the UIP, giving information on which class Ci to find the initial
shapes and labels upon which rules may be applied – the match-
ing conditions. Consequent gives a description of the expected
results. Gamma’s sample codes are replaced in this structure by
a Discursive Grammar, which formally gives the rules regulating
the generative behavior of the pattern – the design action itself.
Related Patterns work much in the same way as in Alexander
et al. (1977) and Gamma et al. (1995), but in this case the state-
specific relationships between object classes or, in other words, to
what object classes can a pattern be applied and what patterns
may be applied to objects resulting from a pattern’s application.
These are, in fact, general matching conditions stated at the
class level.

By using this formalism, CItyMaker presents a generic gram-
mar for designing urban plans. The author argues that this
generic grammar is composed of 45 UIPs that combined in differ-
ent ways can produce different urban plans involving different
languages of design. Each pattern can be constrained within the
set of options defined by its rules and also within the variation
range of their parameters. It can be argued that this set of patterns
constitutes a pattern language involving a wide spectrum of
design solutions approximately in the same way as proposed by
Alexander et al. (1977). A specific urban design language may
be obtained by choosing particular arrangements of patterns.
A specific design instance may be obtained by choosing from
this specific urban design language, a particular rule sequence,
and specific values to assign to their parameters.

230 J. Beirão and J. P. Duarte

https://doi.org/10.1017/S0890060417000452 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000452


Note that the term “language” has slightly different meanings
in the context of Alexander’s pattern language and Stiny’s shape
grammars, but they both hold and are related in our concept of
generic grammars. For Alexander, a set of patterns forms a lan-
guage that can be used to specify the ingredients of designs that
are appropriate for given contexts whose features trigger just cer-
tain patterns. Once made, a pattern is triggered and included in
the design brief, it may be instantiated in the design. For Stiny
(1980), the set of designs that can be generated following the
rules of a given shape grammar form a design language. We
manipulate the pattern language associated with a generic gram-
mar to define a less generic pattern language by choosing to use
just some patterns. Then, we use this sub-pattern language to
formulate the design brief. Then, we manipulate the generic sub-
grammars associated with the selected patterns, by selecting some
rules and constraining rules’ parameters to define specific sub-
grammars. Finally, we use these specific grammars to derive the
design. These steps do not necessarily need to be performed in
this rigid linear order, as designing might imply to proceed
back and forth, until the problem, the solution, and the language
are defined. The meta-language for designing defined by a generic
grammar defines a very large design language formed by all the
designs that can be generated by all the sub-pattern languages
and all the specific grammars that can be defined from the generic
grammar.

As a way of illustration, let us consider just a few patterns and
some basic urban design operations. In a urban design, a designer
needs to pass through a long sequence of design decisions.
Roughly, designers follow four different levels of design decision
which may or may not be applied consecutively (Beirão &
Duarte, 2009) but are somehow scale dependent: (1) the wider
level involves rules defining the plan guidelines through broad
compositional guidelines that anchor together some significant
landmarks in the territory; (2) another level lays down the grids
ruled by the compositional guidelines; (3) the next level defines
rules for defining urban units, such as neighborhood, urban
blocks, and urban plots, together with minimum program
requirements of neighborhoods regarding public facilities and
open spaces; (4) the last level involves rules for qualifying the
urban environment, such as public space design and façade design
constraints, including material aspects in both cases, among other
aspects. If we look simply at the street layout without much con-
sideration for other aspects of the design, we will be applying rules
involving objects taken from the “network” part of the ontology
(Fig. 1). Therefore, rules will operate on objects from classes
AN, SN, TN, NO, SD, CR, and SC. Rules are arranged in the
form of UIPs with the structure and algorithmic description
found in Table 6 in CItyMaker (Beirão, 2012, pages 117–121).
This table contains a structure that embeds the typical procedures
designers need to follow to develop an urban plan. The structure
can be found in the subsections of the table which give subliminal
information on the sequence of decisions that should be taken to
design a complete urban plan: (A) creating compositional guide-
lines, (B) creating grids, (C) street network transformations, (D)
creating public spaces, (E) creating urban units, and (F) detailing
spaces. The amount of possible combinations is potentially very
large, so developing an example requires reducing the full poten-
tial of the grammar. Still, the grammar allows designing from very
generic plans to detailed representations of public spaces, depend-
ing on which UIPs are used.

In the development of an urban plan, a designer starts from a
set of representations depicting preexisting conditions, which

usually are available from a geographic information system
(GIS). Such representational structure is usually very complex
but for the purpose of a design process we will consider it a set
of preexisting labeled shapes – the context – represented as set
E. One may imagine an entire representational structure within
the bounds of set E that could be used to trigger different sets
of transformation rules based on existing attributes of the context.
In fact, the representational structure is that of the GIS system and
it provides information regarding the pre-existing environment.

In any kind of urban plan, designers use contextual elements
as references for making design decisions. While selecting these
elements, according to some criteria, including idiosyncratic
intentions, the designer interprets the context and assigns mean-
ing to the place. In our generic grammar, references are used as
initial shapes of the design process. The first patterns (UIPs)
that can be used are those that contain rules whose left-hand
sides match on a reference shape Ref. The designer may consider
preexisting shapes as erasable shapes (e.g., buildings to be demol-
ished) and label them with Eer., or as reference shapes, that is
shapes to support the initial moves of the design process, and
label them with Ref. These shapes are so marked by using simple
selection methods. Embedded in the selection process there is a
classification rule which transforms an object e∈ E into either
an Eer shape or a Ref shape, where Eer, Ref ∈ E. Additionally, a
closed polygon I is set by the user to define the limits of an inter-
vention area. This polygon represents the rule application space
or, to be more precise, new shapes can only be generated inside I,
although rules may act based on references found outside the
intervention area. The intervention area I can also be used as
an initial shape.

Implementing and applying a generic grammar for urban
design

In this section, we will present the implementation of the simpli-
fied grammar presented above into a computer platform, and pro-
vide a short example of its application to a possible design
situation, starting from a preexisting context where an interven-
tion area I has been defined. The design shown and described
on the following pages was generated using the interactive inter-
face available in CItyMaker. This software translates patterns
firstly encoded as shape grammars and converts them to para-
metric design patterns, a necessary step to facilitate computer
implementation. This conversion sacrifices embedding, an impor-
tant property of shape grammars, by which shapes that were not
explicitly designed can be identified (e.g., a square resulting from
the intersection of two squares). The obtained parametric design
patterns are reusable in different types of context and amenable
for designers to produce their own solutions. Nonetheless, such
a conversion still allows us to demonstrate how the concept of
generic grammars provides a valid theoretical framework for
structuring the urban design process.

Figure 5 shows the initial steps of a design session using
CItyMaker to apply the simplified generic grammar to a particu-
lar site. Figure 5a shows only shapes from E, the shape set repre-
senting the context, and I, the intervention area. The area pictured
in Figure 5 is an industrial area close to the World Heritage town
of Sintra, located some 30 km to the west of Lisbon, Portugal. This
industrial area has long been famous for its stone quarries and
stone transformation industries. Over time, such activities
attracted several other industries, mainly in the construction
field. However, the initial rural structure of the territory is still

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 231

https://doi.org/10.1017/S0890060417000452 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000452


Fig. 5. Initial steps of a design session using the computer platform to apply the simplified generic grammar to a particular site: (a) Design context: the intervention
area is shown in light gray and buildings that can be erased in dark gray. (b) A “buffer” zone around existing houses to be maintained is subtracted. (c) Addition of
new streets defining a grid of ”islands” using the ManualGrid pattern. (d) Application of a regular grid pattern to each “island.” Each grid is rotated according to the
longest edge of the corresponding “island.” (e) Plots along the streets are retained, whereas others are filtered out. (f) A possible solution following the selection of
two village centers and the connecting street as attractors and a growth input expressed in terms of the number of dwellings.

232 J. Beirão and J. P. Duarte

https://doi.org/10.1017/S0890060417000452 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000452


patent in the organic tissue of the three village centers contained
in the area as well as the regular original latifundium structure.
Nowadays, these village centers define a polycentric nuclei struc-
ture gravitating around the industrial areas. The regular property
structure still underlying the industrial areas is not the outcome of
a planning operation but simply the result of the occupation on
demand of the old rural structure (latifundia). However, the occu-
pation of the rural structure by the industry followed no plan and
created several quarry spaces resulting in an overall chaotic
appearance. At present, the local industry is traversing a period
of economic crisis resulting in the abandonment of some quarries
and factories. The municipality seeks solutions for these spaces
but finds no secure answers due to the crisis and especially to
the overall shrinking scenario (population decrease, aging, and
investment shortage). Some of the development visions that
seem more sustainable gravitate around environmental requalifi-
cation toward a mixed industrial–recreational park and/or the
promotion of housing for the elderly and public facilities, inte-
grated into a large green park.

The criteria used for defining polygon I shall not be ques-
tioned here, although it could be the result of some sequence of
analytical procedures on the context using available GIS informa-
tion. In fact, it is not the aim of this paper to explain the motiva-
tions and principles behind design solutions, nor the results as
responses to such principles, but simply to illustrate the opera-
tional aspects of the generic grammar and its field of application.
The first steps of the design process are a subject of human deci-
sion based on the available information or the result of program-
matic specifications defined by a programming algorithm
(Montenegro et al., 2011). Some existing buildings found inside
the intervention area are preserved and others are demolished
based on information available in the GIS database (DB). For
instance, buildings with a footprint smaller than 20 m2 or in rui-
nous condition or abandoned factory plants are to be filtered out
or erased2 from set E and, therefore, buildings in such conditions
will not constitute a limitation for the next design steps. This
selection is performed through simple query procedures like
those used in common GIS software, here replicated using filter-
based design patterns as explained further below. The buildings to
integrate into the design define buffer areas, which are subtracted
from the intervention area I (Fig. 5b). Alternatively, one could
simply subtract the corresponding plot areas.

The design described on the following pages was developed in
a design environment composed of CAD software and a para-
metric visual programming interface (VPI). In this case, the
CAD software was Rhinoceros with the plug-in Grasshopper as
the VPI. The VPI was extended with the plug-in Slingshot to
establish communication with a Postgres DB, connected to a
GIS, and to an urban measures calculator (UMC). The design
was obtained using a sequence of parametric design patterns pro-
grammed in Grasshopper corresponding to the following
descriptions:

Geographic information import patterns (GeoInfoPatterns)

These patterns import information and geometry available in a
geographic DB. They establish the connection between the DB
and the design environment, with the geometry being previewed
in Rhinoceros and data accessed in Grasshopper. They are defined
by rules that read information on one site and write information
on another, in the same way as rules in parallel grammars. Their
role is to make available preexisting shapes, that is, set the context
E. Each of these patterns is composed of two sub-patterns. The
first sub-pattern imports objects’ geometry to the VPI. The geom-
etry can then be previewed in the CAD environment. The second
sub-pattern imports data related to each object; to be more pre-
cise, these sub-patterns are a kind of QueryPatterns (see descrip-
tion below), because they have no mapping function. Once objects
are imported, the user can select a column of information in the
object’s table. Then mapping functions may be added to visualize
data in the CAD environment much as in a GIS environment.

ImportBuildings – As the name suggests, this pattern imports
information concerning buildings and as described above it is
composed of two sub-patterns. The first sub-pattern imports
building geometry to the VPI and the second the data related
to each building.

ImportStatisticSub-Sections – Imports information provided by
the Portuguese National Statistics Institute (INE) organized into
statistic sub-sections. Again, the pattern is divided into two
parts: one for importing the geometry and the other to associate
information regarding each statistic sub-section with the corre-
sponding geometry.

ImportStreetCenterLines – Similar functionalities.
ImportStreetSurfaces – Similar functionalities.
The various geometry import patterns mentioned above use,

in fact, the same generic geometry import pattern, customized
for each table in the DB. Consequently, for each table there is a
customized data import pattern. This is a generic pattern that
sets the existing context – shapes with attached information –
from which the following steps can be implemented.

Basic analysis patterns (BAnalysisPatterns)

These patterns allow querying and mapping the data found in the
DB.

QueryPattern – The query pattern imports information found
in a particular column in a table and, by using a mapping device,
called MappingPattern, it maps the information onto the site,
more or less as in a GIS system. For instance, when one selects
NumberOfFloors, this QueryPattern will select this feature for
each building in the Buildings table and map it, thereby enabling
one to preview the number of floors of each building on site.

Main composition patterns (MCompositionPatterns)

ManualGrid – This pattern is used to open a street in a district
area. The pattern is said to be “manual” because it requires action
by the designer. The designer is supposed to draw the street axis
(a curve or a polyline) and specify the street width. The pattern
then generates the street surface and subtracts it from the district
surface. However, the pattern allows the generation of multiple
streets by assigning multiple curves or polylines to the pattern,
hence generating a grid, where each street can be reshaped by
manipulating the defining line’s control points (Fig. 5c).

2In practical terms, ‘filtering out’ means moving a set of objects from set E to one hid-
den layer allowing the system to keep track of design history. The reader should keep in
mind that set E is a complex structure of information, also part of the urban design
domain ontology. As such, what happens here is the moving of several objects from dif-
ferent classes in the ontology into a unique class of ‘demolished’ objects represented as
labeled shapes, where the label indicates the class to which the ‘demolished’ object
used to belong, hence keeping a track of design history. The term ‘erasing’ is used here
as a simplification, more in tune with what goes on in the designer’s mind.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 233

https://doi.org/10.1017/S0890060417000452 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000452


Grid patterns (GridPatterns)

Grid patterns are structured in a way that they can be used mean-
ingfully by urban designers. In particular, they all share two fea-
tures: (1) all inputs are meaningful in terms of urban design
rationale and (2) all outputs produce the grid street center lines
and urban blocks, represented as closed polygons.

OrthogonalGrid – This pattern generates an orthogonal grid
within a given area. The pattern inputs are: (1) a polygonal area
or a set of polygonal areas; (2) the dimensions of the urban blocks
in meters (u × v directions); (3) the street width in the grid also in
meters; and (4) the rotation angle to align the grid within the
respective polygonal area. Figure 5d shows the application of
the OrthogonalGrid pattern to several large “islands” subdividing
them into smaller rectangular blocks. An additional algorithm,
used before the pattern is applied, sets differentiated rotations
of the grids according to the longest side of each “island”.
Another algorithm, applied after the pattern, intersects the grid
with the “island” and erases the inner plots, leaving only those
along streets (Fig. 5e).

VoronoiGrid – The Voronoi grid pattern is based on a Voronoi
algorithm. The inputs are: (1) the average block area in square
meters and (2) the street width set in meters.

MergeGrids – MergeGrids intersects two grids. The result can
become rather complex. However, this is the method to use
every time the designer wants to merge different grids, grid streets
with different widths, or to open one street over a grid (like the
diagonal in Barcelona). In the latter case, the output of an
OrthogonalGrid pattern is merged with the output of a
ManualGrid pattern.

Filter-based patterns

The filter-based patterns work all in the same way. The embedded
algorithms apply to a given grid and require placing a point or a
set of points as additional inputs, or an additional Boolean con-
dition, which work as selection devices. The filter separates the
set of input urban blocks in two different sets: (1) one set with
blocks to be treated as standard blocks in the grid and (2) one
set with blocks to be treated with different development rules.
Depending on the algorithm associated with each specific filter,
squares may be opened, exceptional buildings may be generated
or simply different rules may be applied to the filtered blocks.
The following sample names are reasonably self-explanatory:
SquareInGrid and ExceptionalBlock.

IgnoreSmallAreas – This pattern filters grid blocks whose areas
are smaller than a certain value specified as the minimum accep-
table area for an urban block.

Planning patterns (PlanningPatterns)

The main idea behind planning patterns is to apply planning reg-
ulations according to conditions, defined in relation to preexisting
elements or to a selected grid or set of urban blocks. The typical
condition used in these examples is based on an AttractorPattern.
The AttractorPattern sets an attraction field defined by one or
more geometric inputs (e.g. a line or a point). Then, some plan-
ning regulations may be distributed according to the attraction
field. For instance, construction rules regarding the maximum
building height acceptable for blocks in a grid can be set in
terms of their distance to the main street set as an attractor. As
a result, each block in an urban plan may have a unique set of

development rules that stem from the planning conditions
defined in such a manner. The regulations are, in fact, generated
by the algorithm and can be fed back to the DB as a table of rules
and subjected to analytical procedures, as described in Analysis
Patterns. Please note that these planning procedures can be
applied to a grid being generated from scratch or to an already
existing grid. The names of patterns in this category are self-
explanatory: AttractorPattern, HeightBasedDistribution, and
CoverageBasedDistribution.

Analysis patterns (AnalysisPatterns)

Analysis patterns are of particular interest in terms of planning
because they supply real-time information on the properties of
the design being generated. In addition, any urban analysis that
can be defined using the representation model provided by the
DB can be set in the design interface by programming it in the
available VPI as an AnalysisPattern. The patterns implemented
so far calculate the most common indicators that inform decision-
making while designing. The most essential of such patterns are
density-based patterns. These patterns were based on
Spacematrix by Berghauser-Pont and Haupt (2010) and they cal-
culate urban indicators, such as building intensity (FSI – floor
space index), coverage (GSI – ground space index), average build-
ing height (L), spaciousness (OSR – open space ratio), and net-
work density (N). We started by implementing patterns that
calculated these indicators because most plans and regulations
use density-based indicators to express goals and constraints.

The use of the indicators mentioned above requires knowledge
of the Spacematrix theory. The patterns can be applied to calcu-
late density indicators at “district” or “island” aggregation levels.
For instance, as a typical workflow, embodying a contextualized
design vision, we could consider the following procedural
sequence: (1) calculate the average density of the existing blocks
or islands (FSI and GSI) and average block size; (2) generate
new urban blocks with identical density indicators set as block
regulations; (3) define a phased occupation based on three
urban elements set as attractors [e.g., two village centers – two-
point attractors – and a road connecting both – a curve attractor
(Fig. 5f)]. Attractors may influence design features differently by
having different weights assigned. Figure 6 shows a design varia-
tion for the same site based on changes of attractor weights.

Data writing patterns (DataWritePatterns)

The regulations set by the algorithms mentioned above can be
written back into the DB using new patterns to create new tables
and columns in a table and populate them with the generated
data. The pattern names are self-explanatory: CreateTable,
CreateColumn, and PopulateColumn. In this case, the algorithms
resort to SQL coding to write the new information in the DB.

Street profile patterns (StreetProfilePatterns)

During a visit to Palmbout office in Rotterdam, after showing the
previous patterns to Frits Palmboom, he mentioned that usually,
after setting down the plan’s layout, he would start sketching the
street profile for each street type and then fine tune the street
width according to the feedback retrieved from the sketches. In
our terms, this means that he was invoking the implementation
of patterns to design objects found in the ontological classes SD
and SC (Figs. 3 and 4). At that time, this set of patterns had

234 J. Beirão and J. P. Duarte

https://doi.org/10.1017/S0890060417000452 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000452


not been implemented yet, but is now implemented. This feature
has been implemented making full use of the ontology’s expressed
relationships resorting to xml coding and the interface was devel-
oped for a regular user without programming knowledge. This
topic will be addressed in a specific paper. The ontological struc-
ture is shown in Figures 2–4 provides some preliminary informa-
tion on how the implementation of these patterns was defined.

Formal definition of generic grammars

After providing basic definitions of generic grammars and the
underlying concepts and showing how these grammars can be
implemented and applied in the urban design domain, we are in
a better position to introduce more elaborate, formal definitions.
As mentioned in Section 3, rules have the generic format

predicate→ consequent,
or, in a notation more familiar to the domain of production
systems, the format
if→ then.

Shape grammars, as stated by Gips and Stiny (1980), are pro-
duction systems where u and v are labeled shapes and u→ v
applies a transformation t(u) to any similarity transformation of
u (translation, symmetry, rotation, or scale) found in a design d
such that

d1 = [d − t(u)] + t(v) (2)

in other words, the design d1 is the result of subtracting a similarity
transformation of the shape u from a design d and adding the cor-
responding transformation of the shape v. In a parametric environ-
ment, the shape u corresponds to any assignment of values g(u) to

the parameters of shape u (Stiny, 1980). Therefore equation [2]
becomes

d1 = [d − t(g(u))] + t[g(v)]. (3)

Parametric shape grammars may operate on objects found in
the ontology shown in Figure 1. They are constrained by the
semantic structure embedded in it, producing semantically consis-
tent designs where representations are composed of shapes and
symbols representing parts of the urban environment and other
descriptions that convey semantic consistency to the overall design.
Typically, urban design patterns are defined by shape grammars
operating within a single class of the ontology. These are algebras
of the format γi = {Si, Li, R, Ii}, where Si and Li are shapes and labels
from an object class Ci, Ii is an initial labeled shape in the same
class, R is a set of rules R of the form u→ v that apply to objects
u and v from class Ci. Designs produced by such patterns are
kept within the same class of the ontology (γi→ γi). An urban
design pattern is triggered when its initial shape is placed in the
design as a result of the instantiation of previous patterns by the
corresponding shape grammar. These are the most common
urban design patterns in an Urban Grammar Γ′ (Fig. 7). Patterns
initiating the design generation process are called initial patterns.
In urban design, initial patterns have as their initial shapes a preex-
isting object E in the existing urban context, set as a reference object
Ref. Rules of these kind transform E into some object u where u is a
labeled shape belonging to a class Ci.

E � u, u 1 Ci = {Si, Li}. (4)

These rules allow the start of design generation from a particu-
lar object class Ci(E→ γi); in other words, they initialize a specific

Fig. 6. Variations of planned block distribution according to changes in the weight of the attractors.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 235

https://doi.org/10.1017/S0890060417000452 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000452


type of urban objects in the design. It also means that the patterns
that were previously referred to, those operating within the same
object class, can now be applied. In addition to patterns of the
form (4), some patterns can transform objects from one class
into objects of another class. For instance, urban blocks (BL)
can be transformed into buildings (BD). There are two types of
these patterns. The difference between them lies in whether the
rules transform objects from an upper level of the ontology (or
level of abstraction) into those of a lower or vice versa, that is,
whether they have the format (γi→ γj) or (γj→ γi). The former
defines the semantic relation u has v; while the latter defines
the relation v is part of u. In the former, rules assume the format:

u � v, u 1 Ci ^ v 1 Cj | pr(Ci,Cj) (5)

where pr stands for the primary relations given in Figure 1 con-
straining Ci to be of a higher level of abstraction than Cj, the
semantic relation is u has v and the algebra γi permits one to
apply a new algebra γj allowing for further detailing of the design.
Conversely, the relation v is part of u produces rules of type:

u � v, u 1 Cj ^ v 1 Ci | pr(Ci,Cj) (6)

where an algebra γj allows to further develop parts of the design
pertaining to an upper level of abstraction by generating new
objects from an already opened algebra γi. These rules allow for
fine-tuning the design enabling what in “design thinking” theory
could be called corrective feedback loops. The several classes in
the ontology help keeping the semantic structure clear but they
also provide a clear means to separate design phases.

The idea behind the “Pattern Language” concept (Alexander
et al., 1977) was to define an algorithmic approach to architectural
and urban design by providing common design instructions to
solve well-known design problems. These instructions define ver-
bal descriptions of the conditions required to apply a solution,
also described verbally. In this paper, patterns describe typical
urban design operations both verbally and algorithmically in
the form of a discursive grammar (Duarte, 2005) by specifying
the rules (R) that generate such design operations. In this case,
patterns specify the objects they operate on, the classes they
belong to, the class of objects they can generate and sometimes
some constraints on shape attributes, thereby defining predicate
conditions for pattern application and providing semantic guid-
ance to rule application. Furthermore, patterns also state that
their consequents belong to specific classes or are constrained
to specific objects, attributes, or parameter ranges. The whole

Fig. 7. The Universal Urban Patterns Grammar and all its sub-grammars.

236 J. Beirão and J. P. Duarte

https://doi.org/10.1017/S0890060417000452 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000452


set of urban design patterns forms a generic grammar for urban
design which can be applied in, possibly infinite, many different
contexts.

In more detail, the complete set of patterns defines a generic
grammar for urban design – the Urban Patterns Grammar Γ.
Considering a hypothetical system where additional design patterns
γ′ may be customized by the grammar user, the union of all gram-
mars in the Urban Patterns Grammar Γ with all customizable
grammars γ′ defines a theoretically infinite set of grammars that
can generate any kind of urban design – the Universal Urban
Patterns Grammar, Γ∞. The Urban Design Patterns, called UIP
in CItyMaker (Beirão et al., 2012) replicate with a fair degree of
flexibility a typical urban design operation. They are given by a
discursive grammar of the format

gi = {G,D,U ,H, Si, Li,W,R, F, Ii}. (7)

The discursive grammar format addresses the complexity that
semantic contextualization brings to urban design problems. U
is a set of urban design regulations, that is, of constraints inherited
from upper-level plans or from local or national legislation. G is a
set of symbolic descriptions used to describe contexts, design
goals, and designs. D is a set of description rules either used to
generate the design goals from a context or to describe the designs
being generated. Goals are the result of an urban program formu-
lation procedure using tools and methods described in
(Montenegro et al., 2011). Designs are obtained starting from
an initial shape Ii, and applying rules R on objects taken from a
class Ci in the urban ontology composed of shapes and labels
{Si, Li} where Si and Li may sometimes be an empty shape and
an empty label, depending on the class they represent. The gen-
eration of designs is guided toward the defined goals by resorting
to a set of heuristics H based on the sequence of decisions defined
at the beginning of Section 4. W is a set of weights, symbolic, or
visual markers used to qualify formal descriptions, in order to
assign meaning to shapes or to provide control devices over the
generations of designs. F is a set of functions used to impose con-
straints on the way both description and shape rules can be
applied, thereby providing additional control devices over design
generation. For instance, they may relate regulations in U to
symbolic descriptions in D or shape descriptions in S.

Implementation and methodological issues

Shape grammar implementations are usually confronted with
difficulty in finding interpreters advanced enough to provide
a friendly interactive environment for designing and for develop-
ing complex designs involving complex semantic conditions.
Furthermore, any shape grammar implementation requires a
deep discussion of the role of emergence within the design envi-
ronment, and especially on the semantic control of emergent
shapes in the design. Contrarily, parametric design interfaces
are well developed and provide very interactive platforms, some
of them quite in tune with what has been established through
“design thinking” theory as responsive practice – continuous
cyclical responses to trial design moves. Schön’s see-move-see
cycle (1983) shows with particular accuracy the importance of
visual stimuli to design decision. Considering that parametric
design environments generally provide the required stimuli that
most designers request from a design platform, we decided to
adapt the generic shape grammar concept to a generic parametric
pattern concept as described in Section 4. The obtained structure

forms what we could call a City Information Modeling (CIM)
platform because it comprises the access to geographic informa-
tion, spatial analysis tools, and parametric design tools.

Following an analogy with BIM (Building Information
Modeling), CIM integrates into a single platform, urban design,
and assessment tools. Broadly, a CIM platform is in accordance
with the structure diagrammed in Figure 8 and described in the
following. DB is a geographical database that can be read by a
GIS or by a design interface composed of CAD software and a
VPI that reads data from and writes data to DB. The two shaded
areas represent the distinction between existing contextual data
(light gray) and new design data generated by the design interface
(dark gray). The CAD + VPI platform is structured as a program-
mable parametric design interface that uses a generic grammar for
the generation of urban designs. The generic grammar is defined
as described in the previous sections and is composed of several
“urban design patterns” implemented as parametric design
patterns in the VPI. Different combinations of “urban design pat-
terns” with different input data produce different urban plans
which can then be subjected to an evaluation in context using
the UMC module. The UMC module, in association with the
VPI, calculates the urban indicators that correspond to the urban
models being generated. This process occurs in real time as indica-
tors are immediately updated whenever changes to the design are
introduced by changes in the input.

The implementation described above calculates density indica-
tors of plans following the premises defined by Berghauser-Pont
and Haupt (2010). The parametric platform described above
allows the user to generate urban plans by composing urban pat-
terns and by choosing the values of parameters associated with
the patterns. It also provides the user with immediate feedback
expressed in terms of urban indicators, thereby enabling a control
of the outcome. The urban plans produced with this platform
are flexible as the platform can be used to regenerate alternative
solutions by manipulating patterns and parameters.

Discussion and conclusion

This paper proposes, describes and defines the concept of generic
grammar and illustrates its implementation with the development
of a generic grammar for urban design. The goal was not to auto-
mate the design process but to provide a platform to support and
facilitate the designers’ work. However, the platform has built-in
features that speed up the process of generating designs and
assessing their impact, thereby allowing the designer to make
more informed design decisions, which might revert in design
quality.

Fig. 8. Diagram of the basic structure of a City Information Modeling (CIM) platform:
DB, date base; GIS, Geographic information system; CAD, computer-aided design; VPI,
visual programming interface, UMC, measures and calculations unit.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 237

https://doi.org/10.1017/S0890060417000452 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000452


A generic grammar includes an ontology describing the
domain to which the generic grammar is applied and a set of
grammar based patterns. It is argued here that the generic gram-
mar framework as defined in Section 5 can be applied to other
design domains following similar definitions. For such purposes,
domain-specific ontologies need to be created as well as specific
patterns.

The proposed generic urban grammar was converted into a
parametric design model and then implemented using Rhinoceros
and Grasshopper as the core implementation environments.
This conversion was necessary to facilitate implementation as
there are no robust shape grammar interpreters currently available
and our concern was to test the validity of the proposed generic
framework. Given this conversion of the grammar into a para-
metric design model, one may ask why not proceed directly to
the parametric model. However, our experience shows that devel-
oping the grammar is a necessary first step. The grammar para-
digm provides a very useful knowledge-representation model
that combines both visual and symbolic information. Moreover,
it allows one to proceed incrementally by encoding partial knowl-
edge into one or more sets of rules, that is, into small grammars. It
was this affordance of shape grammars that triggered the idea of
encoding patterns as small grammars and, therefore, led to the
concept of generic grammars. In summary, shape grammars pro-
vide the necessary technical apparatus – shapes, descriptions,
labels, parameters, and so on, – to organize in an incremental
fashion the various types of information associated with design
knowledge.

When applied to the urban design domain, the generic gram-
mar framework provides a CIM environment. The main charac-
teristic of such platform is joining analysis, synthesis, and
evaluation in a unique design environment. As such, the CIM envi-
ronment embedded in the implemented computer platform is
simultaneously a design platform that supports the generation of
design scenarios, a simulation platform that permits to assess
such scenarios, and a decision support platform that allows deci-
sion makers to discuss and evaluate the consequences of proposals.
For this reason, it can also constitute an instrument of dialogue
between the various stakeholders. It is curious to note that the para-
metric implementation favors its use as a simulation tool because
some, possibly judiciously chosen indicators are available to show
the impacts of design changes, hence keeping a register of alterna-
tive designs and the results of their assessment. Nevertheless, it
should be stressed that the platform does not replace the role of
interpretation from the specialized urban designer and team. It
only provides information in real time while testing design scenar-
ios facilitating the understanding of the relation between design
solutions and their performance attributes.

In summary, the concept of generic grammars seems to pro-
vide a useful paradigm for the development of the next generation
of CAD platforms. Future work will be concerned with extending
the urban design platform and with continuing work on the
application of the concept to other design domains.

References

Alexander C, Ishikawa S and Silverstein M (1977) A Pattern Language.
Oxford: Oxford University Press.

Beirão JN (2012) City Maker: designing grammars for urban design, PhD
Dissertation, Delft University of Technology, The Netherlands.

Beirão JN and Duarte JP (2009) Urban design with patterns and shape rules.
In EH Stolk and Brömmelstroet M (eds). Model Town: Using Urban

Simulation in New Town Planning. Almere, The Netherlands: New Town
Institute, pp. 148–165.

Beirão JN, Duarte JP and Stouffs R (2010) Creating generic grammars from
specific grammars: towards flexible urban design. Nexus Network Journal
13(1), 73–111.

Beirão JN, Duarte JP, Stouffs R and Bekkering H (2012) Designing with
urban induction patterns: a methodological approach. Environment and
Planning B 39, 665–682.

Benrós D, Duarte JP and Hanna S (2014) The inference of generic housing
rules: a methodology to explain and recreate Palladian Villas, Prairie Houses
and Malagueira Houses. In Gero J and Hanna S (eds). Design Computing
and Cognition DCC’14. The Netherlands: Springer, pp. 439–458.

Berghauser-Pont B and Haupt P (2010) Spacematrix: Space, Density and
Urban Form. Rotterdam: NAI Publishers.

Caldas L and Norford L (2002) A design optimization tool based on a genetic
algorithm. Automation in Construction 11(2), 173–184.

Castro e Costa E and Duarte JP (2013) Mass customization of ceramic table-
ware through digital technology. In Bártolo MH, Bártolo P, Alves N,
Mateus N, Almeida H, Lemos A, Craveiro F, Reis C, Reis I, Durão L,
Ferreira T, Duarte JP, Roseta F, Castro e Costa E, Quaresma F and
Neves JP (eds). Green Design, Materials, and Manufacturing Processes.
The Netherlands: CRC Press/Balkema, pp. 467–471.

Coelho C, Costa J, Leite J, Silva J, Trindade L, Pereira P, Proença S,
Fernandes S and Monteys X (2013) Cadernos de Morfologia Urbana: Os
Elementos Urbanos. Lisboa: ed. Argumentum.

Duarte JP (2005) A discursive grammar for customizing mass housing: the case
of Siza’s houses at Malagueira. Automation in Construction, 14(2), 265–275.

Duarte JP and Beirão JN (2012) Towards a methodology for flexible urban
design: designing with urban patterns and shape grammars. Environment
and Planning B 38(5), 879–902.

Duarte JP, Beirão JN, Montenegro N and Gil J (2012) City induction: formu-
lating, generating, and evaluating urban plans. In Müller Arisona S, Wonka P,
Aschwanden G, Halatsch J (eds). Digital Urban Modeling and Simulation.
Communications in Computer and Information Science (CCIS), vol. 242.
Berlin, Heidelberg: Springer, pp. 79–104.

Fleisher A (1992) Grammatical architecture? Environment and Planning B
19(2), 221–226.

Gamma E, Helm R, Johnson R and Vlissides J (1995) Design Patterns: Elements
of Reusable Object-Oriented Software. Reading, MA: Addison-Wesley.

Garcia S and Barros M (2015) A grammar-based system for chair design: from
generic to specific shape grammars. In Martens B, Wurzer G, Grasl T,
Lorenz WE and Schaffranek R (eds). Real Time - Proceedings of the 33rd
ECAADe Conference - Volume 1, Vienna University of Technology, Vienna,
Austria, 16–18 September 2015, pp. 427–436. CUMINCAD. http://papers.
cumincad.org/cgi-bin/works/paper/ecaade2015_233

Gips J (1999) Computer implementation of shape grammars. Proc. Workshop
on Shape Computation, Cambridge, MA, June.

Gips J and Stiny G (1980) Production systems and grammars: a uniform char-
acterization. Environment and Planning B 7(4), 399–408.

Gruber T (1993) A translation approach to portable ontology specifications.
Knowledge Acquisition 5(2), 199–220.

Hillier B and Hanson J (1984) The Social Logic of Space. Cambridge:
Cambridge University Press.

Hillier W, Hanson J and Peponis J (1987) Syntactic analysis of settlements.
Architecture and Behaviour 3(3), 217–231.

Knight T (1992) Designing with grammars. In Schmitt G (ed.). CAAD Futures
’91, Computer Aided Architectural Design Futures – Education, Research,
Applications. Braunschweig and Wiesnaden: Friedrich Vieweg & Sohn
Verlagsgesellschaft mbH, pp. 19–34.

Koning H and Eizenberg J (1981) The language of the prairie: Frank Lloyd
Wright’s prairie houses. Environment and Planning B 8, 295–323.

Lehnerer A (2009) Grand Urban Rules. Rotterdam: OIO.
Marshall S (2005) Streets & Patterns. London and New York: Spon Press.
Marshall S (2011) Urban Coding and Planning. Introduction. Oxfordshire,

UK: Routledge.
Mendes L, Beirão J, Duarte J and Celani G (2013) A Bottom-Up Social

Housing System Described with Shape Grammars. Proc. eCAADe 2013
Conf., Delft, The Netherlands, September 18–20.

238 J. Beirão and J. P. Duarte

https://doi.org/10.1017/S0890060417000452 Published online by Cambridge University Press

http://papers.cumincad.org/cgi-bin/works/paper/ecaade2015_233
http://papers.cumincad.org/cgi-bin/works/paper/ecaade2015_233
https://doi.org/10.1017/S0890060417000452


Montenegro N, Gomes J, Urbano P and Duarte J (2011) 4CitySemantics:
GIS-Semantic Tool for Urban Intervention Areas. Proc. 7VCT Conf.,
October 11–13.

Muratori S (1967) Civiltà e territorio. Roma: Centro studi di storia
urbanistica.

Post E (1943) Formal reductions of the general combinatorial decision prob-
lem. American Journal of Mathematics 65(2), 197–215.

Schön D (1983) The Reflective Practitioner: How Designers Think in Action.
New York: Basic Books.

Shea K and Cagan J (1997) Innovative dome design: applying geodesic pat-
terns with shape annealing. Artificial Intelligence for Engineering, Design
and Manufacturing, 11(5), 379–394.

Stiny G (1980) Introduction to shape and shape grammars. Environment and
Planning B 7(3), 343–351.

Stiny G (1981) A note on the description of designs. Environment and
Planning B, 8(3), 257–267.

Stiny G and Gips J (1972) Shape grammars and the generative specification of
painting and sculpture. Proc. Int. Conf. Information Processing 71.
Amsterdam: NorthHolland.

Stiny G and Mitchell W (1978) The Palladian grammar. Environment and
Planning B 5(1), 5–18.

José Beirão obtained a professional degree in Architecture from the Technical
University of Lisbon, Portugal, in 1989, and worked at Gonçalo Byrne and

Falcão de Campos offices, thereafter. In 1998, he founded the architecture
firm Bquadrado architects together with Miguel Braz. He obtained a Master
degree in Urban Design from ISCTE-IUL, the University Institute of Lisbon,
in 2005 and completed his PhD in Urbanism at TU Delft, The Netherlands,
in 2012. The theme of his dissertation is the development of design patterns
for the establishment of computational platforms for urban design. His current
research interests focus on the use of parametric systems and geographic data-
bases to investigate the following concepts: (1) measuring parameters of
urbanity and morphological studies, (2) development of urban design evolu-
tionary systems, (3) customizable systems for social housing including actions
at the urban level, and (4) developing strategies for the Portuguese dispersed
territories.

José P. Duarte holds a professional degree in Architecture from the Technical
University of Lisbon, Portugal, a Master’s degree in Design Methods, and a
PhD in Design and Computation from MIT, USA. Currently, he is Chair in
Design Innovation and Director of the Stuckeman Center for Design
Computing at Penn State University, USA. He was Dean and Professor at
the Faculty of Architecture, University of Lisbon, and President of eCAADe
– education and research in computer-aided architectural design in Europe.
The main focus of his research is the use of new technologies as conceptual
tools in architectural, urban, and product design. He was PI of the City
Induction research project funded by the Portuguese Foundation for Science
and Technology (FCT).

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 239

https://doi.org/10.1017/S0890060417000452 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000452

	Generic grammars for design domains
	Introduction
	Design domains, ontologies, and generic grammars
	Production systems, patterns and grammars
	Generic grammars for the urban design domain
	Implementing and applying a generic grammar for urban design
	Geographic information import patterns (GeoInfoPatterns)
	Basic analysis patterns (BAnalysisPatterns)
	Main composition patterns (MCompositionPatterns)
	Grid patterns (GridPatterns)
	Filter-based patterns
	Planning patterns (PlanningPatterns)
	Analysis patterns (AnalysisPatterns)
	Data writing patterns (DataWritePatterns)
	Street profile patterns (StreetProfilePatterns)

	Formal definition of generic grammars
	Implementation and methodological issues
	Discussion and conclusion
	References


