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This paper is concerned with rapid distortion theory on transversely sheared mean
flows that (among other things) can be used to analyse the unsteady motion resulting
from the interaction of a turbulent shear flow with a solid surface. It expands on a
previous analysis of Goldstein et al. (J. Fluid Mech., vol. 824, 2017, pp. 477–512)
that uses a pair of conservation laws to derive upstream boundary conditions for planar
mean flows and extends these findings to transversely sheared flows of arbitrary cross-
section. The results, which turn out to be quite general, are applied to the specific case
of a round jet interacting with the trailing edge of a flat plate and are used to calculate
the radiated sound field, which is then compared with experimental data taken at the
NASA Glenn Research Center.
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1. Introduction
Many engineering problems involve the interaction of turbulent shear flows with

solid surfaces (Ross 2009; Bilka et al. 2014; Tufts, Wang & Wang 2018). Tufts
et al. (2018) used large eddy simulation (LES) to study the sound generated by the
interaction of an aerofoil with a turbulent shear layer and Ross (2009) measured the
acoustic radiation from these flows. However, this type of interaction can also be
studied analytically by using rapid distortion theory (RDT).

RDT uses linearized equations to analyse rapid changes in turbulent flows such as
those that occur when the flow interacts with a solid surface. It applies whenever
the turbulence intensity is small and the length (or time) scale over which the
changes take place is short compared to the length (or time) scale over which the
turbulent eddies evolve (Batchelor & Proudman 1954; Hunt 1973; Goldstein 1978a,
1979a; Sagaut & Cambon 2018). When interpreted asymptotically, these assumptions
imply, among other things, that it is possible to identify a distance/time that is very
(infinitely) large on the scale of the interaction, but still small on the distance/time
scale over which the turbulent eddies evolve. The RDT assumptions also imply that
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the resulting flow is inviscid and non-heat conducting and is, therefore, governed by
the linearized Euler equations, i.e. the Euler equations linearized about an arbitrary,
usually steady, solution to the full nonlinear equations – customarily referred to
as the base flow. But these equations can sometimes be used even when the RDT
assumptions are not satisfied (e.g. for the prediction of Mach wave radiation at
relatively low supersonic Mach numbers). A more detailed discussion of the validity
of RDT can be found in Hunt & Carruthers (1990) who also give some examples of
the types of problems to which it can be applied.

RDT was originally developed to study incompressible, locally homogeneous
turbulence (Taylor 1938; Batchelor & Proudman 1954; Moffatt 1967; Xie, Karimi &
Girimaji 2017; Sagaut & Cambon 2018). Extensions to non-homogeneous turbulence
were developed by Hunt (1973) and by Goldstein (1978a,b, 1979a,b), who further
extended the theory to include compressibility and thereby allowed it to be used
in aeroacoustic applications. The locally homogeneous assumption obviates the
need for an upstream boundary condition, but the focus of the present paper in on
non-homogenous RDT, which usually provides a much more realistic representation of
the turbulent interactions. Or more specifically, it is concerned with non-homogenous
RDT on transversely sheared mean flows.

The general theory was developed in a series of papers by Goldstein (1978b, 1979b)
who showed that the solutions to the latter class of RDT problems can be expressed
in terms of the Rayleigh equation Green’s function and two convected quantities
that can be specified arbitrarily. Goldstein, Afsar & Leib (2013a), Goldstein, Leib
& Afsar (2017) showed that the pressure and transverse velocity fluctuations can be
represented by a convolution product of the Rayleigh equation Green’s function and
one of the arbitrary convected quantities, which allowed them to represent the Fourier
transforms of these quantities as the product of a space–time Fourier transform of the
Green’s function and the Fourier transform of the convected quantity. They used this
result to predict the acoustic spectrum of the sound produced by the interaction of a
planar jet with the trailing edge of a flat plate and thereby established the applicability
of RDT to this problem (which was only partially done in earlier work by Goldstein
(1979b) and Olsen & Boldman (1979)). The low-frequency, Fourier-transformed
Green’s function – which turns out to be independent of the mean flow velocity
profile for the zero mean surface velocity case considered in that reference – was
used to calculate the acoustic field, since the experiments show that most of the sound
is generated at low frequencies. (The RDT analysis remains valid at low frequencies
because, as noted above, the RDT assumptions ensure the existence of a time scale
that is large compared to the scale of the interaction but still small relative to the
decay time of the turbulent eddies.) One of the purposes of this paper is to extend
these ideas to jets of arbitrary cross-section and use the results to predict the noise
radiated by a round jet interacting with the trailing edge of a flat plate.

An important consequence of the disparate length scales is that boundary conditions
can be imposed in a region that lies infinitely far upstream on the scale of the
interaction but is still close to the interaction site on the evolution scale of the
undisturbed turbulence. The two arbitrary convected quantities, which do not decay
at upstream infinity, can, therefore, be determined from these upstream conditions.

However, a major problem with this is that these quantities do not correspond to
physically measurable variables, which must decay at large upstream distance when
calculated from RDT. But Goldstein et al. (2017) showed that appropriate gradients
of these variables do not decay at upstream infinity and used this finding to relate
these gradients to the arbitrary connected quantities and thereby developed physically
realizable upstream boundary conditions for planar mean flows.
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FIGURE 1. Supersonic cruise concept aircraft with top-mounted engines. Ramakrishnan
et al. NASA CR-2018-219936 (photo provided by Dr J. Bridges).

The present paper extends these findings to transversely sheared mean flows
of arbitrary cross-section, uses the results to relate the pressure spectrum to the
second-order turbulent velocity spectrum at upstream infinity and develops an
appropriate model for the latter quantity. The results show that the streamwise
Fourier transform of the low-frequency Green’s function is again independent of the
mean velocity profile for a large class of zero surface velocity mean flows with
non-planar cross-sections. This means that the low-frequency Green’s function is the
same as the low-frequency limit of the zero-mean-flow Green’s function, which can
frequently be computed by using well-known standard techniques (Noble 1958).

The final formula is used it to predict the sound field produced by a circular
jet interacting with the trailing edge of a semi-infinite flat plate. But this result is
quite general and is expected to apply to any sufficiently localized flow configuration
(such as the multiple-jet configuration shown in figure 1) whose velocity field can be
represented by level surfaces in an appropriate orthogonal coordinate system.

Linear theories have also been used to study shock–turbulence interactions and are
often referred to as linear interaction approximations (LIA) in this context (see for
example, Ribner (1953), Moore (1954), Wouchuk, Huete Ruiz de Lira & Velikovich
(2009), Huete Ruiz de Lira (2010), Huete Ruiz de Lira, Velikovich & Wouchuk
(2011) and Huete, Wouchuk & Velikovich (2012), as well as an extensive discussion
of the subject by Sagaut & Cambon (2018)). Compressible RDT and LIA share some
common features (Huete Ruiz de Lira 2010; Huete Ruiz de Lira et al. 2011; Huete
et al. 2012, and others). For example, both approaches decompose the flow into
hydrodynamic and non-hydrodynamic components and both use transform methods to
eliminate the time dependence.

Similar types of linear analyses are also used in fields beyond fluid mechanics and
acoustics, such as astrophysics. The monograph by Sagaut & Cambon (2018) contains
a comprehensive discussion of these analyses and of their application to a wide range
of problems in physics and engineering.

A pseudo-linear approach called resolvent analysis, which was originally developed
to study wall turbulence (see McKeon & Sharma 2010), has recently been used to
predict the noise generation from turbulent flows. This approach decomposes the
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problem into forcing and response modes and seeks to determine dominant source
modes for the development of reduced-order models of the sound field. An example
of its application to the trailing-edge problem is given in Abreu et al. (2019).

The outline of the paper is as follows: it begins in § 2 by summarizing and
reformulating the results obtained in Goldstein et al. (2013a) for the formal solution
to the complete inhomogeneous RDT problem. Formulas are written down for the
pressure fluctuation and a kind of particle displacement, both of which depend on
one of the convected quantities alluded to above. These quantities are related by a
conservation law which was originally derived in Goldstein (1979b) and in Goldstein,
Afsar & Leib (2013b) and rearranged into a more convenient form in the present
paper.

The solutions are Fourier transformed in § 3 and the results are used in § 4 to
obtain specific formulae for the pressure and particle displacement spectra, which
are then combined with a result obtained in Goldstein et al. (2017) to show that
the pressure fluctuations and particle displacement drop out of the conservation law
at upstream infinity where the flow is uninfluenced by the solid surface interaction.
This result is then used to obtain an upstream boundary condition that relates the
unknown convected quantity (or more specifically its spectrum) to the experimentally
measurable transverse velocity spectrum and a parametrized model for this quantity
is introduced. The low-frequency Green’s function is discussed in § 5 and a generic –
but incomplete – formula for its Fourier transform is derived for flow configurations
that can be conformally mapped into a doubly infinite strip.

The specific case of an arbitrary cross-section jet or shear layer interacting with
the trailing edge of a flat plate is discussed in § 6 and an explicit solution for the
Green’s function is given in this case. As already mentioned this result turns out
to be independent of the mean velocity profile and is therefore the same as the
low-frequency limit of the zero-mean-flow Green’s function, which can frequently
be calculated by well-known classical methods. We expect this finding to be quite
generic and to apply to many low frequency transversely sheared RDT problems.

The Green’s function solution is substituted into the formula for the pressure
fluctuation which is then used to obtain a relatively simple expression for the far-field
acoustic spectrum. And finally, this result is used in § 7 to obtain numerical predictions
of the radiated sound field. The higher-frequency predictions are greatly improved
when the O(1) frequency zero-mean-flow Fourier transformed Green’s function is
used in place of its low-frequency approximation. Some concluding remarks are
given in § 8.

2. Basic equations
The flow is assumed to be inviscid and non-heat conducting and the fluid is

assumed to be an ideal gas so that the entropy is equal to cv ln(p/ργ ) and the
squared sound speed is equal to γ p/ρ, where p denotes the pressure, ρ the density,
γ the specific heat ratio cp/cv and cp, cv are the specific heats at constant pressure and
volume, respectively. Then the pressure p′= p− p0 and mass flow (or density-weighted
velocity) perturbations

u= {u1, u2, u3} ≡ ρ{v
′

1, v
′

2, v
′

3}, (2.1)

(where v′ = {v′1, v
′

2, v
′

3} denotes the velocity perturbation and ρ = ρ( yT) denotes the
mean density) on a transversely sheared mean flow with mean pressure p0 = const.,
velocity v = {U( yT), 0, 0} and mean sound speed squared c2( yT), decouple from the
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entropy fluctuations and are governed by the linearized momentum and continuity
equations

D0ui

Dτ
+ δ1iuj

∂U
∂yj
+

∂

∂yi
p′ = 0, i= 1, 2, 3 (2.2)

and
D0p′

Dτ
+

∂

∂yj
c2uj = 0, (2.3)

where D0/Dτ ≡ ∂/∂τ + U∂/∂y1 is the convective derivative and, y = {y1, y2, y3} =

{y1, yT} with y1 in the streamwise direction and yT = {y2, y3}.
Goldstein et al. (2013a) show that the pressure fluctuation p′ produced at the

observation point x = {x1, x2, x3} by the interaction of the arbitrary convected
disturbance ω̃c(τ − y1/U( yT), yT) with any mean-flow-aligned solid surface embedded
in this flow is given by

p′(x, t)=
∫ T

−T

∫
V

G( y, τ | x, t)ω̃c

(
τ −

y1

U( yT)
, yT

)
dy dτ , (2.4)

where ω̃c(τ − y1/U( yT), yT) can be specified as an upstream boundary condition and
G( y, τ | x, t) denotes the Green’s function that satisfies the inhomogeneous Rayleigh
equation

LG( y, τ | x, t)=
D3

0

Dt3
δ( y− x)δ(τ − t), (2.5)

where

L≡
D0

Dτ

(
∂

∂yi
c2 ∂

∂yi
−

D2
0

Dτ 2

)
− 2

∂U
∂yj

∂

∂y1
c2 ∂

∂yj
(2.6)

is the well-known compressible Rayleigh operator. The first two arguments of
G( y, τ | x, t) represent the dependent variables and the second two represent the
source variables, T denotes a very large but finite time interval, V is a region of
space bounded by cylindrical (i.e. parallel to the mean flow) surface(s) S that can
be finite, semi-infinite or infinite in the streamwise direction and n̂ = {n̂i} is the
outward-drawn unit normal to S. The operator

D0

Dt
≡
∂

∂t
+U(xT)

∂

∂x1
(2.7)

denotes the convective derivative in the x coordinate system, and G( y, τ | x, t) satisfies
the boundary condition

Λ( y, τ | x, t)= 0 for y ∈ S, (2.8)

where Λ is determined to within an arbitrary convected quantity by

D2
0Λ( y, τ | x, t)

Dτ 2
≡ n̂jc2 ∂G( y, τ | x, t)

∂yj
, (2.9)

on any solid (impermeable) surfaces S that are present in the flow, along with the
jump conditions

∆[G] =∆[Λ] = 0, for yT ∈ S0 (2.10)
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across any surfaces S0 of discontinuity of the mean velocity profile that may be
present in the flow. The notation ∆[·] denotes the jump in the indicated quantity
across these surfaces, which can represent downstream wakes (or vortex sheets) and
can support spatially growing instability waves that can be generated by imposing
a Kutta condition at the trailing edge or suppressed by imposing a boundedness
requirement. It is worth noting that the analysis is somewhat unconventional in that
the direct Green’s function, G, now plays the role of an adjoint Green’s function in
the solution (2.4) for p′ (Goldstein et al. 2017).

The results given in Goldstein (1979b) and Goldstein et al. (2013a, 2017) show
that the mean-density-weighted velocity perturbation ui is given in terms of the mean-
density-weighted pseudo-velocity perturbation

ũi ≡
D0

Dτ
λi − δ1i

∂U
∂yj
λj, for i= 1, 2, 3 (2.11)

by

ui = ũi + εijk
1
c2

∂U
∂yj

∂

∂yk
ϑ
(
τ −

y1

U
, yT

)
, (2.12)

where ϑ(τ − y1/U, yT) is a second arbitrary convected quantity and the ‘particle
displacement’ λi is given by

λi =−

∫ T

−T

∫
V

G̃i( y, τ | x, t)ω̃c

(
τ −

y1

U( yT)
, yT

)
dy dτ , for i= 1, 2, 3, (2.13)

with G̃i( y, τ | x, t) determined in terms of the Green’s function derivative ∂G( y, τ |
x, t)/∂xi of G( y, τ | x, t) by

D2
0

Dt2
G̃i( y, τ | x, t)=

∂

∂xi
G( y, τ | x, t), for i= 1, 2, 3. (2.14)

Equation (2.12) shows that mean-density-weighted transverse velocity perturbation u⊥
and the divergence of the velocity perturbation can be determined from the mean-
density-weighted pseudo-velocity perturbation ũi by

u⊥ ≡
1
|∇U|

∂U
∂yi

ui =
1
|∇U|

∂U
∂yi

ũi (2.15)

and
∂c2ui

∂yi
=
∂c2ũi

∂yi
. (2.16)

Goldstein et al. (2013b) show that the arbitrary convected quantity ω̃c(τ − y1/U, yT) is
related to the pressure, transverse particle displacement λj and ũi by the conservation
law

∂

∂y1

(
ω̃c − p′ −

∂Ni

∂yi

∂U
∂yj
λj

)
=−εijk

∂

∂yi
(ω̃jNk), (2.17)

where

ω̃i ≡ εijk
∂ ũk

∂yj
(2.18)
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is the mean-density-weighted vorticity based on the pseudo-velocity and

Ni ≡
c2

|∇U|2
∂U
∂yi
, (2.19)

denotes a scaled mean velocity gradient. Differentiating by parts and using the well-
known tensor identity

εjikεjlm = δilδkm − δimδkl (2.20)

shows that (2.17) can also be written as

∂

∂y1

(
ω̃c − p′ −

∂Ni

∂yi

∂U
∂yj
λj

)
=NkΓ̃k +

(
∂Nk

∂yi
−
∂Ni

∂yk

)
∂ ũk

∂yi
, (2.21)

where
Γ̃k( y, τ )≡∇2ũk −

∂

∂yk
∇ · ũ. (2.22)

As noted in Goldstein et al. (2013a, 2017), the present formalism can be thought of as
a generalization of a result obtained by Orr (1907) for the small-amplitude, unsteady,
two-dimensional motion on an incompressible flow with uniform mean shear, with the
most important difference being that the arbitrary convected quantity, ω̃c, no longer
corresponds to an actual physical variable.

There have been many attempts in the literature to decompose the small-amplitude
unsteady motion on non-uniform mean flows into acoustic and hydrodynamic
components. But it is impossible to unambiguously decompose the unsteady motion on
an arbitrary transversely sheared mean flow into such components. We can, however,
identify a hydrodynamic component of the motion by requiring that it not radiate
any sound at subsonic Mach numbers, with all the acoustic radiation being accounted
for by the remaining non-hydrodynamic component. This can be accomplished by
dividing the Rayleigh equation Green’s function G( y, τ | x, t) that appears in the
solution (2.4) into two components, say

G( y, τ | x, t)=G(0)( y, τ | x, t)+G(s)( y, τ | x, t), (2.23)

where G(0)( y, τ |x, t) denotes a particular solution of (2.5), which can either be defined
on all space or be required to satisfy homogeneous boundary conditions on extensions
of the bounding surfaces S that range from minus to plus infinity in the streamwise
direction. This decomposition implies the decomposition

G̃i( y, τ | x, t)= G̃(0)
i ( y, τ | x, t)+ G̃(s)

i ( y, τ | x, t) (2.24)

of the Green’s function derivative (2.14) and the decomposition

p′(x, t)= p′(0)(x, t)+ p′(s)(x, t) (2.25)

for the pressure fluctuation, where p′(0)(x, t), which is given by (2.4) and (2.5)
with G( y, τ | x, t) replaced by G(0)( y, τ | x, t) and, since there are no edges in
this (streamwise-homogeneous) flow, does not produce any acoustic radiation at
subsonic Mach numbers. The corresponding solution can, therefore, be identified
with the hydrodynamic component of the unsteady motion. The remaining ‘scattered
component’ G(s)( y, τ | x, t) of (2.23), satisfies the homogeneous Rayleigh equation
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along with appropriate inhomogeneous boundary and jump conditions on the
streamwise discontinuous surfaces S and S0 and the corresponding ‘scattered solution’
p′(s)(x, t), therefore, accounts for all of the acoustic radiation.

The decomposition (2.24) also implies the decompositions

λi(x, t)= λ(0)i (x, t)+ λ(s)i (x, t), ũi(x, t)= ũ(0)i (x, t)+ ũ(s)i (x, t) (2.26a,b)

for the transverse particle displacement λi(x, t) and the mean-density-weighted pseudo-
velocity perturbation ũi, where λ(0)i (x, t) is given by (2.13) with G̃i( y, τ | x, t) replaced
by G̃(0)

i ( y, τ | x, t).

3. The pressure spectrum
Taking the Fourier transform of (2.4), applying the definitions (2.23)–(2.25), using

the convolution theorem and noting that G satisfies the inhomogeneous Rayleigh
equation (2.5), and therefore depends on τ and t only in the combination t − τ ,
shows that

p(σ )(x :ω)= (2π)2
∫

AT

eiωx1/U( yT )G(σ )( yT | x :ω, ω/U( yT))Ω( yT, ω) dyT, σ = 0, s,

(3.1)
where AT denotes the cross-sectional area of the volume V , α(x : ω)= limT→∞ α(x :
ω; T) for α = p′, Ω

p(σ )(x :ω, T)≡
1

2π

∫ T

−T
eiωtp′(σ )(x, t) dt σ = 0, s (3.2)

Ω( yT :ω, T)≡
1

2π

∫ T

−T
eiωzω̃c(z, yT) dz, (3.3)

and

G(σ )( yT | x; k1, ω)

≡
1

(2π)2

∫
∞

−∞

∫
∞

−∞

ei[k1(y1−x1)+ω(t−τ)]G(σ )( y, τ | x, t) dτ dy1 σ = 0, s (3.4)

satisfy the Rayleigh equations

LG(0)
= 0, LG(s)

=ω2 δ(xT − yT)

(2π)2
(3.5a,b)

in which

L≡
∂

∂yj

c2

(k1U/ω− 1)2
∂

∂yj
+ω2

[
1−

c2(k1/ω)
2

(k1U/ω− 1)2

]
j= 2, 3 (3.6)

denotes the reduced Rayleigh operator and G(0)( yT | x : ω, k1) is either defined on all
space or is required to satisfy

n̂j

[ω− k1U( yT)]
2

∂

∂yj
G(0)( yT | x :ω, k1)= 0, for yT ∈CT, (3.7)

where CT denotes the bounding curve/curves that generate the doubly infinite
surface/surfaces that extend S from y1 = −∞ to y1 = +∞. The streamwise-
homogeneous Green’s function G(0)( yT | x : ω, k1) will then depend on y1 and x1
only in the combination x1 − y1 and we can, therefore, write

G(0)( yT | x :ω, k1)=G(0)( yT | xT :ω, k1). (3.8)
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4. Upstream boundary conditions
Taking the Fourier transform of (2.13), applying the definitions (2.23), (2.26) and

(3.4), using the convolution theorem and recalling that G(0) depends on τ and t only
in the combination t− τ shows that

λ(0)i (x, ω)=−
(2π)2

iω

∫
AT

eiωx1/U( yT )
U( yT)G

(0)
i ( yT | xT :ω, ω/U( yT))

U(xT)−U( yT)
Ω( yT :ω) dyT,

(4.1)
where

λ(0)i (x, ω)≡ lim
T→∞

1
2π

∫ T

−T
eiωtλ(0)i (x, t) dt (4.2)

and the Green’s function G(0)
i ( yT | xT : ω, k1) also depends on y1 and x1 only in the

combination x1 − y1 and is, therefore, given by

G(0)
i ( yT | xT :ω, k1)≡

1
i(k1U(xT)−ω)

∂

∂xi
G(0)( yT | xT :ω, k1), i= 2, 3. (4.3)

The integral in (4.1) has the same singularity as that in (4.13) of Goldstein et al.
(2017) (the corresponding the formula is for ∂λ(0)i (x, ω)/∂x1) which means that it has
to be interpreted as a Cauchy principal value and the procedure used in appendix C
of that paper (which applies to any transversely sheared mean flow) can be applied
to this equation to show that

λ(0)i (x, ω)→
eiωx1/U(xT)

x1
Li(xT, ω), for i= 2, 3 as x1→−∞ (4.4)

when causality is imposed, which, in turn, implies that

λ(0)i (x, t)→
1
x1
Li(t− x1/U(xT), xT), for i= 2, 3 as x1→−∞, (4.5)

where the purely convected quantity Li(t− x1/U(x2), xT) is a function of the indicated
arguments and Li(xT, ω) is its Fourier transform.

Inserting (4.5) into (2.11) shows that

ũ(0)i (x, t)→
1
x2

1
Ũ i(t− x1/U(xT), xT), for i= 2, 3 as x1→−∞ (4.6)

and, therefore, that

ũ(0)i (x :ω) ≡ lim
T→∞

1
2π

∫ T

−T
eiωtũi(x, t) dt

→
eiωx1/U(xT )

x2
1

U i(xT, ω), for i= 2, 3 as x1→−∞, (4.7)

where, Ũ i(t− x1/U(x2), xT) and U i(xT, ω) have the obvious meanings.
Inserting (4.6) into (2.12) and using the result in the momentum equation (2.2)

shows that

∂p′(0)(x, t)
∂xi

→
2
x3

1
U(xT)Ũ i(t− x1/U(xT), xT), as x1→−∞, for i= 2, 3. (4.8)
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And it therefore follows from (4.5) and (4.6) that the conservation law (2.21) and
(2.22) becomes

∂ω̃c

∂y1
→NkΓ̃

(0)
k , as y1→−∞, (4.9)

where
Γ̃
(0)

k ( y, τ )≡∇2ũ(0)k −
∂

∂yk
∇ · ũ(0). (4.10)

But using (2.16) and the continuity equation (2.3) in (4.10) shows that

Γ̃
(0)

k ( y, τ )=∇2ũ(0)k +
∂

∂yk

[
c−2

(
D0p′(0)

Dτ
+ ũ(0)j

∂c2

∂yj

)]
. (4.11)

And it therefore follows from (4.6) and (4.8) that

Γ̃
(0)

k ( y, τ )→∇2
⊥

ũ(0)k for k= 2, 3 as y1→−∞, (4.12)

where

∇
2
⊥
≡
∂2

∂y2
2
+
∂2

∂y2
3
. (4.13)

Equations (2.15), (4.6), (2.19) (4.9) and (4.12) then imply that

∂ω̃c

∂y1
=

c2

|∇U|2
∇

2
⊥

(
∂U
∂yk

u(0)k

)
+O

(
1
y1

)
=

c2

|∇U|2
∇

2
⊥

[
1
y2

1

∂U
∂yk

U k(τ − y1/U, yT)

]
+O

(
1
y1

)
→

c2

U4

∂U
∂yk

∂2

∂τ 2
U k(τ − y1/U, yT), as y1→−∞, (4.14)

which shows, among other things, that ω̃c can be expressed in terms of the
hydrodynamic component u(0) of the physical velocity u instead of the hydrodynamic
component of the pseudo-velocity ũ at upstream infinity and thereby provides the
required upstream boundary condition that relates ω̃c to an actual physical quantity.
Equation (4.14) can also be written as

∂ω̃c

∂y1
→

c2

U4

dU
du

∂2

∂τ 2
|∇u|U⊥(τ − y1/U(u), yT), as y1→−∞, (4.15)

where
U⊥ ≡

∂u
∂yk

U k

|∇u|
(4.16)

when the level surfaces of U =U(u), say u( yT)= const., are more or less concentric
and form an orthogonal coordinate system with some function v( yT); u⊥ then denotes
the velocity component perpendicular to these surfaces.

These equations imply that the upstream boundary condition (4.15) will be satisfied
when Ω( yT :ω, T) is related to the Fourier transform

U⊥( yT;ω, T)≡
1

2π

∫ T

−T
eiωξU⊥(ξ , yT) dξ (4.17)
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Transversely sheared mean flows of arbitrary cross-section 561

of the upstream transverse velocity coefficient U⊥(ξ , yT) (in the, as yet, arbitrary
orthogonal curvilinear coordinate system {u, v}( yT)) by

iω
U
Ω( yT :ω, T)=−ω2 c2

U4
|∇u|

dU
du

U⊥( yT;ω, T), (4.18)

which determines the Fourier transform Ω( yT : ω, T) of ω̃c(z, yT), and therefore the
unknown convected quantity ω̃c(τ − y1/U( yT), yT) itself, in terms of the Fourier
transform U⊥( yT; ω, T) of U⊥(ξ , yT), which is related to the upstream limit of the
physical variable u(0)k by (4.14).

Since the focus of this paper is on fully developed turbulent flows it is reasonable to
assume that the source function ω̃c(τ , yT) is a stationary random function of τ (Wiener
1938; Pope 2000) and it then follows from (2.4) that the pressure fluctuation p′(t, x)
should also be a function of this type. The spectrum of the scattered component of
the pressure fluctuation, which is usually of primary interest in aeroacoustics and
structures problems is then given by (Wiener 1938)

Iω(x)≡
1

2π

∫
∞

−∞

eiωτ̃
〈p′(x, t)p′(x, t+ τ̃ )〉 d τ̃ = (2π) lim

T→∞

p(s)(x :ω, T)[p(s)(x :ω, T)]∗

2T
,

(4.19)
where the 〈·〉 bracket denotes the time average and * denotes the complex conjugate

〈p′(x, τ )p′(x, τ + τ̃ )〉 ≡ lim
T→∞

1
2T

∫ T

−T
p′(x, τ )p′(x, τ + τ̃ ) dτ . (4.20)

Inserting the solution (3.1) for the scattered component of the pressure fluctuation into
(4.19) and using (4.18) shows that its spectrum depends on the turbulent fluctuations
only through source spectrum

S( yT | ỹT)≡
1

2π

∫
∞

−∞

eiωτ̃
〈ω̃c(t, yT)ω̃c(t+ τ̃ , ỹT)〉 d τ̃

= (2π) lim
T→∞

Ω( yT :ω, T)[Ω(ỹT :ω, T)]∗

2T

=ω2 c2( yT)c
2(ỹT)

U3(u)U3(ũ)
dU(u)

du
dU(ũ)

dũ
|∇u||∇̃ũ| lim

T→∞

U⊥( yT;ω, T)[U⊥(ỹT;ω, T)]∗

2T
,

(4.21)

when the level surfaces of U =U(u), say u( yT)= const., are more or less concentric
and form an orthogonal coordinate system with some function v( yT).

The spectrum of the gradient-wise velocity coefficient limT→∞ U⊥( yT; ω, T) ×
[U⊥(ỹT; ω, T)]∗/2T must be modelled in order to use this equation to predict the
source spectrum S. An appropriate model for this quantity that is consistent with the
transversely sheared model for the mean flow is given in appendix B. The results
show that the corresponding model for the source spectrum is given by

S(u, ũ : v, ṽ) = l4
2(ρ∞c2

∞
)2A(u, v | ũ, ṽ)

[
dU/du
U2(u)

dU/dũ
U2(ũ)

ω2
|∇u||∇̃ũ|

]
×

1
2π

∫
∞

−∞

eiω(τ̃−[ỹ1/U(ũ)−y1/U(u)])
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× exp
s
−

√
[ f (η2/l2, η3/l3)]2 + {τ̃ − [ỹ1/U(ũ)− y1/U(u)]}2/τ 2

0

{
d τ̃

= l4
2A(u, v/ũ, ṽ)(ρ∞c2

∞
)2
[

dU/du
U2(u)

dU/dũ
U2(ũ)

|∇u||∇̃ũ|ω2

]
×

τ0f

π
√

1+ ω̃2
K1

(
f
√

1+ ω̃2
)
, (4.22)

where
ω̃≡ωτ0, (4.23)

and K1 denotes the modified Bessel function of the second kind.

5. The Fourier-transformed Green’s function

It is of course necessary to determine the Fourier-transformed Green’s function
before (3.1) can be used to carry out numerical computations. This must, in general,
be done numerically and the calculations, which tend to be very sensitive to the
boundary conditions, frequently require great care, especially when the mean flow is
discontinuous downstream of the trailing edge and therefore contains shear layers that
can support spatially growing instability waves. The Wiener–Hopf technique (Noble
1958) can often be used to minimize these difficulties, but numerical computations
are in most cases still required. Baker & Peake (2019) developed efficient numerical
algorithms for carrying these out these computations. However, as noted as noted in
the introduction, the sound generated by the solid surface interactions turns out to
be of low frequency in most applications of technological interest – which means
that the low-frequency Green’s function can be used in the calculations. The required
computations can often be facilitated by first mapping the transverse geometry of the
problem into an appropriate rectangular region.

5.1. Conformal mapping

To this end we suppose, with little loss of generality, that the level surfaces of c2

coincide with the level surfaces u= const. introduced below (4.16) (i.e. U=U(u) and
c2
= c2(u)) and further restrict u and the orthogonal variable v by requiring that

W(z)= u( yT)+ iv( yT) (5.1)

be an analytic function of the complex variable

z= y3 + iy2 (5.2)

that transforms the upper half-z-plane into the strip, −∞ < u < 0, −π 6 v 6 π, in
the W-plane. (A specific example is given in appendix A.) We also suppose that the
impermeable surface S is infinitely thin.

Transforming the linear operator and delta function in (3.5) and (3.6) leads to the
following equation for G(u, v | x :ω, k1)≡G( yT(u, v) | x :ω, k1)

LWG(u, v | x :ω, k1)=
( ω

2π

)2
δ(u( yT)− u(xT))δ(v( yT)− v(xT)), (5.3)
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where

LW ≡
∂

∂u
c2(u)

[U(u)k1/ω− 1]2
∂

∂u
+

c2(u)
[U(u)k1/ω− 1]2

∂2

∂v2

+ω2

∣∣∣∣dW
dz

∣∣∣∣−2 {
1−

c2(u)(k1/ω)
2

[U(u)k1/ω− 1]2

}
. (5.4)

The appropriate boundary conditions for G are that it be periodic in v and remain
bounded for all values of u.

The decomposition (2.23) now implies that

G(u, v | x :ω, k1)=G(0)(u, v | xT :ω, k1)+G(s)(u, v | x :ω, k1). (5.5)

And the scattered component of the Green’s function can be expressed as the sum
of its symmetric, [G(s)(u, v | x1, x2, x3 : ω, k1) + G(s)(u, v | x1, x2, −x3 : ω, k1)]/2, and
antisymmetric, [G(s)(u, v | x1, x2, x3 : ω, k1) − G(s)(u, v | x1, x2, −x3 : ω, k1)]/2, parts,
which we now consider separately. These quantities have the representation

[G(s)(u, v | x1, x2, x3 :ω, k1)±G(s)(u, v | x1, x2,−x3 :ω, k1)]/2

=

∫
∞

−∞

1
2
(eik3x3 ± e−ik3x3)G(s)(u, v | x1, x2 :ω, k1, k3) dk3

=

∫
∞

−∞

eik3x3G(s)
±
(u, v | x1, x2 :ω, k1, k3) dk3, (5.6)

where we have put

G(s)
±
(u, v | x1, x2 :ω, k1, k3)≡

1
2 [G

(s)(u, v | x1, x2 :ω, k1, k3)±G(s)(u, v | x1, x2 :ω, k1,−k3)]
(5.7)

and the three overbars denote the Fourier transform

G(σ )(u, v | x1, x2 :ω, k1, k3)≡
1

2π

∫
∞

−∞

e−ik3x3G(σ )(u, v | x :ω, k1) dx3 (5.8)

for σ = 0, s, where the hydrodynamic component

G(0)(u, v | x1, x2 :ω, k1, k3)=G(0)(u, v | x2 :ω, k1, k3) (5.9)

is independent of x1 and satisfies the wall boundary condition

∂G(0)(u, v | x2 :ω, k1, k3)

∂u
= 0, for u= 0,−π6 v 6π. (5.10)

5.2. Solution for the low-frequency Green’s function
We now consider the low-frequency limit ω, k1� 1, and assume that all lengths are
normalized by some characteristic length scale, such as the distance h between the
nozzle centreline and the plate, all velocities by the sound speed at infinity, say c∞,
and the time by h/c∞. The solution then divides into two regions: an outer region
where k1y2, k1y3 =O(1) and an inner region where y2, y3 =O(1).
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Outer region

Outer region radius = O(k1)

O(1/k1)Inner region

Inner region

Bounding surface(s)/
vortex sheet

Bounding surface(s)/
vortex sheet

( jet location)

y3

y2

-π π √

u

(a)

(b)

FIGURE 2. (Colour online) Inner and outer regions for jet/trailing-edge interaction (a) in
yT plane, (b) in W-plane.

Figure 2 shows how these regions are transformed into the u, v plane by a
conformal mapping of the type (A 1). The unconventional asymptotic structure shown
in figure 2(b) is consistent with (A 7) which implies that the mapping ‘reverses’ the
usual orientation of the inner and outer regions in the u, v plane.

Then since the delta function can always be set to zero when v( yT) > v(xT), the
lowest-order solutions (i.e. less than O(k2

∞
− k2

1 − k2
3)) can be obtained by replacing

(5.3) and (5.8) with

LWG(σ )(u, v | x1, x2 :ω, k1, k3)= 0, σ = 0, s (5.11)

for v =O(1), k∞|xT | =O(1) and approximating LW by

LW ∼
∂

∂u
c2(u)

[M(u)k1/k∞ − 1]2
∂

∂u
+

c2(u)
[M(u)k1/k∞ − 1]2

∂2

∂v2
+O(k2

∞
), (5.12)
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with
M(u)≡U(u)MJ, k∞ ≡ωMJ, MJ ≡UJ/c∞. (5.13a−c)

Multiplying (5.11) by e−inv and integrating the result from −π to π shows that

G(σ )(u, v | x1, x2 :ω, k1, k3)=

∞∑
n=−∞

einvG(σ )
n (u | x1, x2 :ω, k1, k3), σ = 0, s, (5.14)

where

G(α)
n (u | x1, x2 :ω, k1, k3)

≡
1

2π

∫ π

−π

e−invG(α)(u, v | x1, x2 :ω, k1, k3) dv, α = 0, s (5.15)

satisfies the following infinite set of second-order ordinary differential equations

LnG(α)
n (u | x1, x2 :ω, k1, k3)= 0, (5.16)

where

Ln ≡
d

du
c2(u)

[M(u)(k1/k∞)− 1]2
d

du
−

c2(u)n2

[M(u)(k1/k∞)− 1]2
+O(k2

∞
) (5.17)

and
G(0)

n (u | x1, x2 :ω, k1, k3)=G(0)
n (u | x2 :ω, k1, k3). (5.18)

The solution to (5.11) with σ = s must match the spanwise Fourier transform of the
outgoing wave outer solution, say G(s)( y

⊥
| x; k1, ω), which applies in outer the region

where xT

√
k2
∞
− k2

1 − k2
3·, yT

√
k2
∞
− k2

1 − k2
3 =O(1). Equations (A 9) and (A 10) suggest

that the solution in this region should be expressed in the rectangular coordinates y2, y3
and therefore satisfy the inhomogeneous Rayleigh equation (3.5) where L denotes the
reduced Rayleigh operator (3.6) which can now be replaced by

L=
∂2

∂y2
2
+
∂2

∂y2
3
+ k2
∞
− k2

1. (5.19)

Appendix C shows that the lowest-order inner solution for the Fourier-transformed
symmetric component of the Green’s function that satisfies the wall boundary
condition (2.8) for all values of y3 is given by

1
2
[G(0)(u, v | x2 :ω, k1, k3)+G(0)(u, v | x2 :ω, k1,−k3)]

=
1
2
[G(0)(0∓, 0 | x2 :ω, k1, k3)+G(0)(0∓, 0 | x2 :ω, k1,−k3)]

=
−k2
∞

e∓
√

k2
1+k2

3−k2
∞x2

(2π)3
√

k2
1 + k2

3 − k2
∞

H(x2y2)[1+O(k2
∞
)], for x2 ≷ 0. (5.20)

A similar analysis for the antisymmetric component shows that the inner solution

G(0)(u, v | x2 : ω, k1, k3) − G(0)(u, v | x2 : ω, k1, −k3) turns out to be at least
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O(k∞)e∓
√

k2
1+k2

3−k2
∞x2 and the antisymmetric contribution to G(0)(u, v | x2 :ω, k1, k3) can

consequently be neglected. It therefore follows from (5.6) and (5.7) that the scattered

component G(s)(u, v | x1, x2 : ω, k1, k3) of the Fourier-transformed low-frequency

Green’s function G(u, v | x1, x2 :ω, k1, k3) is given by

G(s)(u, v | x1, x2 :ω, k1, k3) = G(s)
+
(u, v | x1, x2 :ω, k1, k3)+G(s)

−
(u, v | x1, x2 :ω, k1, k3)

= G(s)
+
(u, v | x1, x2 :ω, k1, k3)+O(k2

∞
). (5.21)

Appendix D shows that the Fourier transform of the symmetric component of the
scattered component of the Green’s function is of the form

G(s)
+
(u, v | x1, x2 :ω, k1, k3)= A(s)≷

{
1∓ 2a≷

∫ u

0

[M(u)k1/k∞ − 1]2

c2(u)
du

−

√
k2

1 + k2
3 − k2

∞

∞∑
n=−∞

einvP̂≷
n (u :ω, k1)+O(k2

1 + k2
3 − k2

∞
)

}
, for u ≷ 0.

(5.22)

6. An application of the general theory: interaction of a jet and other shear flows
with a trailing edge

6.1. Formulation
The scattered component of the Fourier-transformed Green’s function can usually
be found by using the Wiener–Hopf technique (Noble 1958). We illustrate this by
considering the specific case of a three-dimensional jet-like shear flow interacting
with an impermeable flat plate that lies at u = 0, −∞ < y1 6 0 and suppose for
definiteness that the mean velocity, say U(u), vanishes at u→ 0 and that the distance
between the nozzle exit and the trailing edge is of the same order as the decay scale
of the turbulent eddies. The disparate length scales then ensure that the upstream
boundary conditions can be imposed in a region that is at a finite distance from the
nozzle flow field while still being at an infinite distance upstream of the trailing edge
on the scale of the interaction. This region may still be affected by the details of
the downstream influence of the nozzle exit flow, such as the level and nature of the
disturbances, as well the initial momentum thickness of the wall shear layers. But
these effects are now accounted for by specifying the mean velocity profile U(u), the
distribution A(u, v | ũ, ṽ) and structure of the upstream turbulence spectrum (4.22).

A typical configuration for which the W→ z mapping (A 1) (see figure 10) applies
is shown in figure 3.

6.2. The Fourier transformed Green’s function
We begin by setting

Ĝ≷(u, v | x1, x2 :ω, k1, k3,)≡ eik1x1G(s)
±
(u, v | x1, x2 :ω, k1, k3), for u ≶ 0, (6.1)

where the + sign corresponds to the symmetric case and the − sign to the
antisymmetric case alluded to above, and are unrelated to the ≷ subscript. The
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x
y

z

FIGURE 3. Round jet surface interaction.

functions G(s)
± (u, v | x1, x2 :ω, k1, k3), for u≶ 0, denote specific homogeneous solutions

of the spanwise Fourier transform of (5.3) that have outgoing wave behaviour as
y2 =±∞, respectively.

The hydrodynamic component G(0)(u, v | x1, x2 :ω, k1, k3) can be identified with the
inhomogeneous solution of (5.3) that satisfies the homogeneous boundary condition
(5.10) and can, without loss of generality, be required to vanish for ux2 > 0 so that

G(0)(u, v | x1, x2 :ω, k1, k3)=G(0)(u, v | x2 :ω, k1, k3)= 0, for ux2 > 0. (6.2)

Applying the boundary condition (2.8) and the jump conditions (2.10) and using (2.9),
(3.4) and (6.1) now leads to the following Wiener–Hopf problem for Ĝ≷∫

∞

−∞

e−ik1y1Ĝ′>(0, v | x1, x2 :ω, k1, k3) dk1 = 0, −∞< y1 < 0, (6.3)∫
∞

−∞

e−ik1y1 [Ĝ′>(0, v | x1, x2 :ω, k1, k3)

− Ĝ′<(0, v | x1, x2 :ω, k1, k3)] dk1 = 0, −∞< y1 <∞, (6.4)

and ∫
∞

−∞

e−ik1y1[Ĝ>(0, v | x1, x2 :ω, k1, k3)− Ĝ<(0, v | x1, x2 :ω, k1, k3)] dk1

+
1
2

∫
∞

−∞

eik1(x1−y1)∆[G(0)(0, v | x2 :ω, k1, k3)±G(0)(0, v | x2 :ω, k1,−k3)] dk1

= 0, 0< y1 <∞, (6.5)

with the notation ∆[·] being defined below (2.10) and Ĝ′≷(0, v | x1, x2 : ω, k1, k3) ≡

∂Ĝ≷(u, v | x1, x2 :ω, k1, k3)/∂u|u=0.

6.3. Low-frequency limit
For reasons given above, we now consider the low-frequency limit. It then follows
from (5.22) and (6.1) that (6.4) will be satisfied if

A(s)> (x1, x2; k1, k3, k∞)=−A(s)< (x1, x2; k1, k3, k∞) (6.6)
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and
a> = a<, (6.7)

while inserting (D 3) into (5.22), closing the integration contour in the upper half –
k1-plane and using Cauchy’s theorem shows that (6.3) will be satisfied if (see (6.1))

2eik1x1A(s)> (x1, x2; k1, k3, k∞)/Γ0(k1, k3, k∞)=H+(x1, x2; k1, k3, k∞) (6.8)

and
eik1x1A(s)> (x1, x2; k1, k3, k∞)a> = H̃+(x1, x2; k1, k3, k∞), (6.9)

where H+(x1, x2; k1, k3, k∞), H̃+(x1, x2; k1, k3, k∞) denote analytic functions in the upper
half-k1-plane and

Γ0 ≡−
2√

k2
1 + k2

3 − k2
∞

. (6.10)

Then, since (Lighthill 1964)

lim
u→0

∞∑
n=−∞

einv±|n|u
=

∞∑
n=−∞

einv
= 2πδ(v) (6.11)

inserting (6.6), (6.8) and (5.22) into (6.5) leads to the following standard Wiener–Hopf
problem ∫

∞

−∞

e−ik1y1H+Γ0[1+O(k2
1 + k2

3 − k2
∞
)] dk1

=−
1
2

∫
∞

−∞

eik1(x1−y1)∆ [G(0)(0, v | x2 :ω, k1, k3)

±G(0)(0, v | x2 :ω, k1,−k3)] dk1, for y1 > 0 and 0< |v|6π, (6.12)

which is formally the same as the one given by (B 2) and (B 3) of Goldstein et al.
(2013a) and it therefore follows from (B.9) and (B.12) of that reference and (5.20) of
the present paper that

H+(x1, x2 : k∞, k1, k3)

≡ −
1

4πi

∫
∞

−∞

eik̃1x1
κ−(k̃1, k3, v)∆[G(0)(0, v | x2 :ω, k̃1, k3)+G(0)(0, v | x2 :ω, k̃1,−k3)]

κ+(k1, k3, 0)(k̃1 − k1)
d k̃1,

=
k2
∞

sgn x2

(2π)4i

∫
∞

−∞

eik̃1x1
κ−(k̃1, k3, 0)e∓

√
k̃2

1+k2
3−k2

∞x2

(k̃1 − k1)κ+(k1, k3, 0)
√

k̃2
1 + k2

3 − k2
∞

d k̃1, for x2 ≷ 0, (6.13)

where the integration contour must be deformed to lie below the poles of the integrand
in order to satisfy causality, κ±(k1, k3, v) denote bounded analytic functions in the
upper/lower half-k1 planes that satisfy the factorization condition

κ+(k1, k3, v)/κ−(k1, k3, v)= Γ0(k∞, k1, k3)≡−
2√

k2
1 + k2

3 − k2
∞

(6.14)

on the real k1-axis with the k̃1-integration contour in (6.13) being deformed to pass
below the pole at ω/U(u) = k1. But this integral can be interpreted as a Cauchy
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principal value when evaluating the far-field behaviour of (5.6), since the contribution
from that pole produces a term that behaves like exp[iωx1/U(u)], which produces the
non-radiating hydrodynamic disturbance p(0)(x :ω, T) at subsonic speeds.

The O(k2
1+ k2

3− k2
∞
) error term in (6.12) is important because it shows that the error

on the left-hand side is consistent with the right-hand side error implied by (5.20).
Causality considerations (Briggs 1964; Bers 1975) then require that

κ−(k1, k3,0)=

√
k1 −

√
k2
∞
− k2

3+· · · , κ+(k1, k3,0)=
−2√

k1 +
√

k2
∞
− k2

3

+· · · , (6.15)

where the branch cuts are chosen so that arg
√

k2
1 + k2

3 − k2
∞
=−(π/2)H(k2

1+ k2
3− k2

∞
).

Goldstein et al. (2017) found that the lowest-order approximation to the low-
frequency Green’s function for the planar jet is independent of the mean flow and is
therefore equal to low-frequency limit of the zero-mean-flow Green’s function. The
lowest-order approximation to the Fourier-transformed Green’s function (5.22) must
also reduce to the zero-mean-flow Green’s function, and therefore to the low-frequency
Green’s function obtained by Goldstein et al. (2013a), when the mean flow goes to
zero. But this can only occur if a≷ = o(k∞) and equations (5.6), (5.7), (5.22) and
(6.8) therefore show that the lowest-order approximation to Fourier transform of the
scattered component of the Green’s function G(s)

=G(s)
+ +G(s)

− ≈G(s)
+ is given by

G(s)(u, v | x :ω, k1)= e−ik1x1

∫
∞

−∞

eik3x3(Γ0/2)H+(x1, x2 : k∞, k1, k3) dk3, for u< 0.

(6.16)
As in Goldstein et al. (2017) the Green’s function (6.13), (6.15) and (6.16) is
independent of the mean flow and the wall normal coordinate and is therefore the
same as the low-frequency limit of the zero-mean-flow Green’s function which can
be calculated by well-known classical methods. We expect this finding to be quite
universal and to apply to all low-frequency transversely sheared RDT problems. The
present Green’s function also becomes independent of the spanwise coordinate y3 in
the source region which is now confined to the spanwise location where y3 =O(1).

6.4. The pressure spectrum
Inserting (6.13) into (6.16), using the result into (3.1) and (2.25), changing the
integration variables from y2, y3 to u, v and noting that the Green’s function is
independent of v shows that

p(s)(x, ω)= sgn x2

∫ 0

−∞

R(u, x, ω)Ω̃(u, ω) du, (6.17)

where we have put

R(u, x, ω)

≡
k2
∞

4πi

∫
∞

−∞

∫
∞

−∞

eiΨ

√
k̃1 −

√
k2
∞
− k2

3 dk̃1 dk3√
ω/U(u)−

√
k2
∞
− k2

3

√
k̃2

1 − k2
∞
+ k2

3[k̃1 −ω/U(u)]
,

(6.18)
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Ω̃(u, ω)≡
1

2π

[∫ π

−π

Ω(u, v, ω)
∣∣∣∣dW

dz

∣∣∣∣−2

dv

]
(6.19)

and
Ψ ≡ k3x3 + k̃1x1 ∓

√
k2
∞
− k̃2

1 − k2
3x2. (6.20)

6.5. Far-field behaviour of the low-frequency acoustic spectrum
Equation (6.20) can be written as

Ψ = ϑ |x|, (6.21)

where
ϑ ≡ k1 cos θ + i

√
k2

1 + k2
3 − k2

∞
sin θ sinψ + k3 sin θ cosψ, (6.22)

|x|2 ≡ x2
1 + x2

2 + x2
3 and we have introduced the polar coordinate system x =

|x|{cos θ, sin θ sin ψ, sin θ cos ψ} with the polar angle θ being measured from
the downstream direction.

The integrals in (6.18) can be evaluated by sequentially applying the method of
stationary phase to obtain

R(u, x, ω)

/
k(s)3

|x|
ei|x|k∞

√
k(s)1 −

√
k2
∞
− (k(s)3 )

2√
ω/U(u)−

√
k2
∞
− (k(s)3 )

2
√
(k(s)1 )

2 − k2
∞
+ (k(s)3 )

2[k(s)1 −ω/U(u)]

=
k∞ei|x|k∞M3/2√β − cos θ

2|x|
√

1− βM(u)[1−M(u) cos θ ]
(6.23)

as |x|, x2→±∞, where

k(s)3 = k∞ sin θ cosψ, k(s)1 = k∞ cos θ (6.24a,b)

denote the stationary phase points, the local Mach number M(u) is given by (5.13)
and

β ≡

√
1− sin2 θ cos2 ψ. (6.25)

Using (6.17) along with (6.23), (4.21), (6.19) and (6.21) in (4.19) therefore shows that
the far-field acoustic spectrum is given in terms of the source spectrum by

Iω(x) =
(

k∞
4π|x|

)2

×

∫ 0

−∞

∫ 0

−∞

(β − cos θ)[M(u)M(ũ)]3/2S(u, ũ, ω) du dũ√
[1− βM(ũ)][1− βM(u)][1−M(ũ) cos θ ][1−M(u) cos θ ]

,

(6.26)

where

S(u, ũ, ω)≡
∫ π

−π

∫ π

−π

S(u, ũ : v, ṽ)
∣∣∣∣ dz
dW

∣∣∣∣2 ∣∣∣∣ d z̃

dW̃

∣∣∣∣2 dv dṽ (6.27)
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and the source spectrum S is given by (4.21). These results are independent of the
actual form of the conformal mapping z→ W and are therefore expected to apply
to any sufficiently localized flow configuration (such as the multiple jet configuration
shown in figure 1) that can be conformally mapped into a strip similar to the one
shown in figure 10. In fact, it can probably be extended to zero surface velocity flows
with arbitrary cross-section by replacing |dz/dW|2 with the Jacobian ∂(y2, y3)/∂(u, v)
of the transformation of the rectangular y2, y3 coordinate system into any orthogonal
coordinate system for which U( yT)=U(u).

6.6. Extension to higher frequencies
The practical utility of the low-frequency solution (6.26) and (6.27) can be increased
by extending it to higher frequencies. To this end we note that the Fourier transform
of the O(1) frequency zero-mean-flow Green’s function only differs from its
low-frequency limit by a factor of exp(−

√
k2
∞
− k2

1 − k2
3|y2|) (as can easily be seen

by replacing the outgoing wave solution P>(y2 | x1, x2 : ω, k1, k3) in the Wiener–Hopf
solution (6.13), (6.15) and (6.16) with the zero-mean-flow outgoing wave solution
exp(−

√
k2
∞
− k2

1 − k2
3y2)). We therefore expect that (6.26) will perform better at higher

frequencies if we replace (6.27) with

S(u, ũ, ω)→
∫ π

−π

∫ π

−π

Q(u, v)Q(ũ, ṽ)S(u, ũ : v, ṽ)
∣∣∣∣ dz
dW

∣∣∣∣2 ∣∣∣∣ d z̃

dW̃

∣∣∣∣2 dv dṽ, (6.28)

where
Q(u, v)≡ e−k∞

√
1/M2(u)−β2y2(u,v) (6.29)

and

y2(u, v)=
1
2

1− e2u

1− 2eu cos v + e2u
. (6.30)

7. Numerical results

Measurements of the noise generated by the interaction of a circular jet with the
trailing edge of a flat plate were carried out by Brown (2013, 2015a,b) in the Small
Hot Jet Acoustic Rig (SHJAR) at the Aero-Acoustic Propulsion Laboratory (AAPL)
at NASA Glenn Research Center (Bridges & Brown 2005; Brown & Bridges 2006).
The experimental configuration along with the relevant geometric parameters are
shown in figure 4. Our interest here is in comparing the present analysis with these
measurements and it seems reasonable to assume that the mean surface velocity is
zero in this set-up, so that, as indicated above, the model problem considered in §§ 6
and 7 can be used to represent this interaction. The analysis is basically inviscid but
accounts for viscous effects by imposing a Kutta (or minimum singularity) condition
at the trailing edge (Goldstein et al. 2013a,b). Similar but more complicated analyses
would be required to deal with the case where the mean surface velocity is non-zero.

It is also reasonable to suppose that the constant velocity surfaces can be
represented by the conformal mapping (A 1) for a single jet configuration of this
type. And we assume in the calculations that the mean density ρ is constant and the
mean velocity profile U(y2, y3) can be represented by a symmetric function of the
form

U(u)=Ud(1− e−κu2
−κ1u4

), (7.1)
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‘Reflected’ observer

‘Shielded’ observer

xTE/Dj

h/Dj

FIGURE 4. Experimental configuration. From Brown (2013), used with permission.

where κ and κ1 are constants. And since the amplitude factor A(u, v | ũ, ṽ) in (4.22)
must vanish at the jet boundaries and is determined by strength of the turbulence at
the source location, we expect it to be proportional to the turbulence intensity at u, v
which is roughly proportional to the mean velocity gradient at that point. We therefore
set

A(u, v | ũ, ṽ)= A(u | ũ)= A0

√
(uũ)5(dU/du)(dU/dũ)|dW/dz|v=0| dW̃/d z̃|ṽ=0, (7.2)

where A0 is a positive constant. Jet flow measurements suggest that is also reasonable
to choose the arbitrary function f (η2/l2, η3/l3) in the velocity correlation model (5.7)
to be f (η2/l2, η3/l3)= |η2/l2 + η3/l3|, where, l2 and l3 denote (constant) length scales.

Brown (2013, 2015a,b) considered many combinations of the axial and radial
locations of the plate trailing edge relative to the nozzle exit and a wide range of jet
flow conditions. Their nozzle diameter Dj was approximately equal to two inches and
noise measurements were made on both the shielded and reflected observer locations
(see figure 4). We decided to use the unheated jet results for the three jet exit acoustic
Mach numbers Ma = 0.5, 0.7, 0.9 and selected the configuration where the plate was
located at one nozzle diameter from the jet centreline and the trailing edge was
located six diameters downstream of the nozzle exit as an initial test case for the
theory, since this configuration resulted in some of the highest levels of trailing-edge
noise observed in the experiments. The scale factor h, which was taken to be the
distance between the nozzle centreline and the plate, was equal to the nozzle diameter
Dj in this case.

The numerical results were computed from the formula (6.26) for the acoustic
spectrum, with S determined from (6.28)–(6.30) and (A 5), and S given by the source
model (4.22). The u and ũ integrations were carried out by using Simpsons rule,
truncating the lower limits at ‘large’ but finite negative values of these quantities
and using the fact that the integrands vanish at u, ũ = 0. The lower limits of the
integrations were set equal to −2.0 in the calculations shown in the figures. The
u-integrals were computed with 100 mesh points while 128 points were used to
evaluate the v-integrals, which were also computed from Simpson’s rule. Numerical
testing was carried out to ensure that these integration parameter values were sufficient
to produce results that differed by less than hundredths of a dB.

The mean velocity parameters κ and κ1 were both set equal to 0.5 in the
computations and the resulting profile shape is shown in figure 5.

Figure 6 is a contour plot of the amplitude function (7.2) used in the computation.
It clearly shows that the turbulence level vanishes at the edge of the jet and that its
maximum intensity roughly coincides with the region of maximum shear.
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FIGURE 5. Normalized mean velocity profiles calculated from (7.1) with κ = κ1 = 0.5,
(a) altitude plot, (b) profile shape at y3 = 0.
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FIGURE 6. Contour plot of amplitude function (7.2) with A0 = 0.035.

Figures 7 through 9 are quantitative comparisons of the measurements of
Brown (2013, 2015a,b) with theoretical predictions obtained from composite RDT
solution (6.26), (6.28) and (6.29). Results for the power spectral density of the
far-field pressure fluctuation versus Strouhal number, St = fh/UJ , in dB scale
PSD= 10 log(4πIωUJ/hp2

ref ) (referenced to pref = 20 µpa) are shown at several polar
angles measured from the downstream jet axis. The experimental trailing-edge noise
was educed by subtracting the noise measured in the corresponding free jet (i.e. in
the absence of a plate) from the total measured noise. The remaining parameters used
in the predictions shown in the figures are τ0 = 2.8, l2 = 2.13 and l3 = 0.75.
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FIGURE 7. Comparisons of noise predictions using the composite RDT solution (6.26)
and (6.28)–(6.30) (solid lines) with experimental data. Ma= 0.5.

These comparisons show that the theoretical predictions are in reasonable agreement
with the data – especially at frequencies near and below the spectral peaks – and that
the experimental results are well captured at all Mach numbers considered. The zero-
mean flow-based high-frequency correction reduces the spectral levels at frequencies
beyond the peak and causes the slope of the roll-off to more closely follow the data.
But the accuracy of the predictions is relatively unimportant in this region, since the
edge noise is well below the jet noise at these frequencies. The agreement seems to
be worse at the highest Mach number (Ma= 0.9) shown in the figures, but there is
significant scatter in the data for this case, which may be due to the difficulty in
extracting the edge noise at this higher Mach number, where the jet noise starts to
become comparable to the trailing-edge noise – even at the lower frequencies.

The accuracy of the predictions in figures 7–9 at frequencies near and below the
spectral peaks is comparable to that obtained by Goldstein et al. (2017) for the case
of a planar jet. Differences can perhaps be attributed to uncertainty in the source
parameter values and more scatter in the extracted experimental edge noise data in
the present round jet case.

The numerical results in figures 7–9, along with our previous results for a planar jet
(Goldstein et al. 2017), show that the RDT can be used to predict the noise generated
by the interaction of a turbulent jet with the trailing edge of a flat plate. This flow
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FIGURE 8. Comparisons of noise predictions using the composite RDT solution (6.26)
and (6.28–6.30) with experimental data. Ma= 0.7.

configuration models the situation encountered when a jet engine is tightly integrated
into an airframe (as illustrated in figure 1) and the relatively simple formula for the
acoustic spectrum allows a quick assessment of the additional noise generated by the
surface interaction.

8. Concluding remarks

This paper is based on the formal solutions (2.4) and (2.11)–(2.14) to the linearized
Euler equations (2.2) and (2.3) for transversely sheared mean flows which, like the
classical (Kovasznay 1953) result for the unsteady motion on uniform flows, involve
two arbitrary convected quantities ϑ(τ − y1/U, yT) and ω̃c(τ − y1/U, yT), that can
be associated with the hydrodynamic component of the flow and can, therefore, be
used to specify upstream boundary (i.e. initial) conditions for RDT problems that
involve the interaction of turbulence with solid surfaces. The results were applied to
the specific case of a round jet interacting with the trailing edge of a flat plate and
an explicit low frequency solution was obtained. The low-frequency Green’s function
that appears in this result is independent of the mean flow when evaluated in terms
of the streamwise wavenumber k1 just as it was for the two-dimensional mean flow
considered in Goldstein et al. (2017). This means that these low-frequency Green’s
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FIGURE 9. Comparisons of noise predictions using the composite RDT solution (6.26)
and (6.28–6.30) (solid lines) with experimental data. Ma= 0.9.

functions are the same as the low-frequency limit of the zero-mean-flow Green’s
function which can usually be found by using well-known standard techniques
(Noble 1958). This finding appears to be quite generic and probably applies to
many transversely sheared RDT problems. The final formula (6.26) turns out to be
independent of the actual form of the conformal mapping z→W and can probably
be extended to any sufficiently localized flow (such as the multiple jet configuration
shown in figure 1) by replacing |dz/dW|2 with the Jacobian ∂(y2, y3)/∂(u, v) of an
appropriate mapping.
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Appendix A. Conformal mapping

The specific realization

W = ln
z− i
z+ i

(A 1)

of the transform (5.1), (5.2) that maps the strip −π 6 v 6 π, −∞< u<∞ into the
entire z plane can be inverted to obtain

z= i
1+ eW

1− eW
=−i coth

W
2
. (A 2)

And it follows from Abramowitz & Stegun (1964, p. 85, #4.5.67) that

z→−i
(

2
W
+

W
3
−

W3

360
+O(W5)

)
+ · · · as W→ 0, (A 3)

dz
dW
=

i
2sinh2(W/2)

, (A 4)∣∣∣∣ dz
dW

∣∣∣∣2 = 4
(e−u − 2 cos v + eu)2

(A 5)

and therefore that

iv = ln
y3 − i
y3 + i

=−i2 tan−1(1/y3) (A 6)

when u= 0, which shows that v→ 0 as y3→−∞ and v→∓π as y3→ 0± on the
plate surface.

Equation (A 1) implies that

W→−2i/z=−2iz∗/y2
T, as |z|→∞ (A 7)

and
u/|W|2→−y2/2, v/|W|2→−y3/2 as |W|→ 0, (A 8a,b)

which shows that

u→ 0, v fixed implies y2→ 0, y3 fixed (A 9)

and
v =O(1) implies y3 = (1), (A 10)

where
yT ≡ |z|, y3 = yT cosψ, y2 = yT sinψ. (A 11a−c)

This behaviour is consistent with the contour plots shown in figures 10 and 11.

Appendix B. Modelling of physically realizable source spectra

The cross-correlation

Λ( yT, ỹT : τ̃ ) ≡ 〈U⊥(τ − y1/U( yT), yT)U⊥(τ − ỹ1/U(ỹT)+ τ̃ , ỹT)〉

= 〈U⊥(τ , yT)U⊥(τ + τ̃ − [ỹ1/U(ỹT)− y1/U( yT)], ỹT)〉 (B 1)
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of U⊥(τ − y1/U( yT), yT) will exist and be independent of τ when U⊥ is a stationary
function of τ and hence also of τ − y1/U( yT) (Wiener 1938). It therefore follows that

(2π) lim
T→∞

U⊥( yT;ω, T)[U⊥(ỹT;ω, T)]∗

2T

=
1

2π

∫
∞

−∞

exp iω(τ̃ − [ỹ1/U(ỹT)− y1/U( yT)])Λ( yT, ỹT : τ̃ ) d τ̃ (B 2)

so that the cross-correlation Λ( yT, ỹT : τ̃ ) of the upstream normal gradient-wise
velocity coefficient needs to be specified before the source spectrum (4.21), and
therefore the pressure spectrum (4.19), can actually be calculated. We are unaware
of any actual measurements of this quantity, but it is well known that the transverse
velocity correlation 〈v′

⊥
( y, τ )v′

⊥
(ỹ1, y2, ỹ3, τ + τ̃ )〉/U( yT)U(y2, ỹ3), which has been

extensively measured, can be well represented by the exponential form

〈v′
⊥
( y, τ )v′

⊥
(ỹ1, y2, ỹ3, τ + τ̃ )〉

U( yT)U(y2, ỹ3)

= A( yT) exp−
√
{τ̃ − [(ỹ1 − y1)/Uc]}

2/τ 2
0 + [(y3 − ỹ3)/l3]

2, (B 3)
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where l3 is a constant and Uc denotes an empirically determined constant convection
velocity. This is consistent with Taylor’s hypothesis (Taylor 1938) which assumes
that the changes in v′

⊥
at a fixed point are due to an unchanging pattern of turbulent

motion over that point and can be formulated as v′(y1, τ ) = v
′(y1 − Ucτ̃ , τ + τ̃ )

(Townsend 1976). Dennis & Nickels (2008) show that the optimal approximation is
obtained when Uc is set equal to the local mean velocity U( y) (which is equal
to U( yT) for transversely sheared mean flows). But Taylor’s hypothesis is an
approximation which, as shown by Lin (1953) is only valid when the turbulence
level is low, viscous effects are negligible and the mean shear is small. The first two
conditions are also required for the validity of RDT but the third is definitely not.

The important point is that (B 3) is consistent with the requirements of transversely
sheared mean-flow RDT when Uc is set equal to U(y2). But this consistency also
requires (see (B 1)) that the fully three-dimensional correlation 〈v′

⊥
( y, t)v′

⊥
(ỹ, t +

τ̃ )〉/U( yT)U(ỹT) be represented by the exponential form
A( yT, ỹT) exp −

√
[ f (η2/l2, η3/l3)]2 + {τ̃ − [ỹ1/U(ũ)− y1/U(u)]}2/τ 2

0 , where τ0, l2, l3

are constants,
η2 ≡ u− ũ, η3 ≡ v − ṽ (B 4a,b)

and A( yT, ỹT), f (η2/l2, η3/l3) are, as yet, unspecified functions of the indicated
arguments, rather than by the commonly used form
A( yT) exp −

√
[ f (η2/l2, η3/l3)]2 + {τ̃ − [(ỹ1 − y1)/Uc]}

2/τ 2
0 – a result that would

certainly be worth checking experimentally.
It therefore seems appropriate to represent Λ( yT, ỹT : τ̃ ) = limy1,ỹ1→−∞(y1ỹ1)

2

〈u⊥(y1, yT, t)u⊥(ỹ1, ỹT, t+ τ̃ )〉 = limy1,ỹ1→−∞(y1ỹ1)
2
〈ρv′

⊥
(y1, yT, t)ρv′

⊥
(ỹ1, ỹT, t+ τ̃ )〉 by

Λ( yT, ỹT : τ̃ )= A( yT, ỹT)l
4
2ρ( yT)U( yT)ρ(ỹT)U(ỹT)

× exp−
√
[ f (η2/l2, η3/l3)]2 + {τ̃ − [ỹ1/U(ũ)− y1/U(u)]}2/τ 2

0 , (B 5)

where the amplitude A( yT, ỹT) is expected to vanish as yT, ỹT→ 0,∞.
And since ρc2 is constant in transversely sheared flows, inserting this into (B 2),

inserting the result into (4.21) and using (27) of Leib & Goldstein (2011) shows that
(4.22) provides an appropriate model for the source function S (Campbell & Foster
1948, p. 111 equation no. 867).

Appendix C. The gust component of the low-frequency Green’s function

The spanwise Fourier transform

G̃(0)(y2 | x2 :ω, k1, k3)≡
1

2π

∫
∞

−∞

ei(y3−x3)k3G(0)( yT | xT; k1, ω) dx3 (C 1)

of the gust component G(0)( yT | xT; k1, ω) of the streamwise Fourier transform of the
reduced Green’s function G( yT | x; k1, ω) is expected to be independent of y3 and
therefore determined by[

d2

dy2
2
+ (k2

∞
− k2

1 − k2
3)

]
G̃(0)(y2 | x2 :ω, k1, k3)=

k2
∞

(2π)3
δ(y2 − x2) (C 2)
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in the outer region where
√

k2
∞
− k2

1yT,
√

k2
∞
− k2

1xT =O(1) when G(0)( yT | xT; k1, ω)

depends on x3, y3 only in the combination x3− y3 (which we will show to be the case
in the low-frequency limit) and is therefore given by Goldstein (1976, p. 282)

G̃(0)(y2 | x2 :ω, k1, k3)=H(y2x2)
e−
√

k2
1+k2

3−k2
∞|x2|k2

∞
w2(y2, k3, k1)

∆(k1, k3)
(C 3)

for |x2|> |y2|, where H denotes the Heaviside function

w2(y2, k3, k1)= e−
√

k2
1+k2

3−k2
∞|y2| + be

√
k2

1+k2
3−k2

∞|y2|, (C 4)

b is an O(1) constant and it follows from Abel’s theorem that

∆(k1)=−2(2π)3b
√

k2
1 + k2

3 − k2
∞
. (C 5)

For simplicity, we only consider the symmetric case (which is usually the case

of principal interest). The outer solution G(0)(y2, y3 | x2 : ω, k1, k3) + G(0)(y2, y3 | x2 :

ω, k1,−k3) (where G(0)(y2, y3 | x2 :ω, k1, k3)≡G(0)(u(y2, y3), v(y2, y3) | x2 :ω, k1, k3) see
(5.8)) must then behave like

G(0)(y2, y3 | x2 :ω, k1, k3)+G(0)(y2, y3 | x2 :ω, k1,−k3)= e−ik3y3G̃(0)(y2 | x2 :ω, k1, k3)

+ eik3y3G̃(0)(y2 | x2 :ω, k1,−k3)= (e−ik3y3 + eik3y3)G̃(0)(y2 | x2 :ω, k1, k3)

= 2G̃(0)(y2 | x2 :ω, k1, k3)+O(k3y3)
2, as k3y3→ 0 (C 6)

since (C 3)–(C 5) show that

G̃(0)(y2 | x2 :ω, k1, k3)= G̃(0)(y2 | x2 :ω, k1,−k3). (C 7)

And it, therefore, follows that the inner limit of the outer symmetric part of the
Fourier-transformed Green’s function is

G(0)(y2, y3 | x2 :ω, k1, k3)+G(0)(y2, y3 | x2 :ω, k1,−k3)

→
−k2
∞

e−
√

k2
1+k2

3−k2
∞|x2|

(2π)3b
√

k2
1 + k2

3 − k2
∞

H(y2x2)

×

{[
(1+ b)+ (b− 1)

√
k2

1 + k2
3 − k2

∞
|y2|

]
+O(y2

2(k
2
1 + k2

3 − k2
∞
))

}
,

as y2

√
k2

1 + k2
3 − k2

∞
→ 0. (C 8)

This result will satisfy the wall boundary condition in the outer region where k3y3=

O(1) if we set b = 1. When yT is in the inner region and xT is in the outer region
(5.11) and (5.12) possess a solution of the form

1
2 [G

(0)(u, v | x2 :ω, k1, k3)+G(0)(u, v | x2 :ω, k1,−k3)]

= a±0 (x2, k1, k3, ω)(1+O(k2
∞
)) for x2 ≷ 0, (C 9)
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which is symmetric in k3 satisfies the spanwise transform of the zero derivative wall
boundary condition and will match onto the outer solution (C 6) to within an error of
O(k2

1 + k2
3 − k2

∞
) in the overlap domain where u, v→ 0, y2

√
k2

1 + k2
3 − k2

∞
, k3y3→ 0 if

we set b= 1 and

a±0 (x2, k1, k3, ω)=
−k2
∞

e∓
√

k2
1+k2

3−k2
∞x2

(2π)3
√

k2
1 + k2

3 − k2
∞

H(x2y2). (C 10)

The lowest-order inner solution for the Fourier-transformed Green’s function that
satisfies the wall boundary condition (2.8) for all values of y3 is therefore given by
(5.20).

Appendix D. The scattered component of the low-frequency Fourier-transformed
Green’s function

Equations (5.7), (5.8), (6.1) and (5.15)–(5.17) show that the inner solution for the

Fourier transform G(s)
+ (u, v | x1, x2 :ω, k1, k3) of the scattered component of the Green’s

function must be of the form

G(s)
+
(u, v | x1, x2; k1, k3, ω) =

∞∑
n=−∞

einvG(s)
n (u | x1, x2 :ω, k1, k3)

=

∞∑
n=−∞

einvA(s)n (x1, x2; k1, k3, ω)P̂≷
n (u :ω, k1), (D 1)

where

P̂≷
0 (u)= c≷0 + c≷1

∫ u

0

[M(u)k1/k∞ − 1]2

c2(u)
du, (D 2)

and P̂≷
n (u : ω, k1) for n=±1,±2, . . . , denote specific solutions of (5.16) and (5.17)

that behave like
P̂±n (u :ω, k1, k3)→ e±|n|u as u→ 0. (D 3)

And in order to ensure that G(s) behaves like the Fourier transform of the zero-mean-
flow flat plate Green’s function in the outer region where k3y3, y2 =O(1), we require
that the inner solution (D 1) match onto the outgoing wave outer solution

G(s)
+
(y2, y3 | x1, x2 :ω, k1, k3) = A(s)≷ (x1, x2 | k1, k3, k∞)P̂≷( yT :ω, k1, k3)

+O(k2
1 + k2

3 − k2
∞
), for y2 ≷ 0, (D 4)

where G(s)
+ (y2, y3 | x1, x2 :ω, k1, k3)≡G(s)

+ (u(y2, y3), v(y2, y3) | x1, x2, ω, k1, k3) and

P̂≷( yT :ω, k1, k3)=
1
2 exp

(
∓

√
k2

1 + k2
3 − k2

∞
y2

)
[exp(ik3y3)+ exp(−ik3y3)] + o(k∞)

(D 5)
is an outgoing wave solution of the Helmholtz equation (see (5.19))

LP̂≷( yT :ω, k1, k3)= 0 (D 6)
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in the outer region where
√

k2
1 + k2

3 − k2
∞

y2, k3y3 =O(1). The ∓ sign in the exponent
comes from the requirement that this solution have outgoing wave behaviour as y2→

±∞.
An appropriate choice for P̂≷( yT :ω, k1) is

P̂≷( yT :ω, k1, k3)=
1
2 exp

(
∓

√
k2

1 + k2
3 − k2

∞
y2

)
[exp(ik3y3)+ exp(−ik3y3)]

+ a≷(k1, k3, k∞)π
√

k2
∞
− k2

1

×

[
e±iϕH(1)

1

(
yT

√
k2
∞
− k2

1

)
+ e∓iϕH(1)

−1

(
yT

√
k2
∞
− k2

1

)]
y2 ≷ 0, (D 7)

where H(1)
ν denotes the Bessel function of the first kind and a(k1, k3, k∞) is a function

of the indicated arguments.
It now follows from (D 2), (A 2) and #9.1.8 on p. 360 of Abramowitz & Stegun

(1964) that the inner limit of the outer solution (D 5) is

P̂≷(u :ω, k1, k3)→ 1∓
√

k2
1 + k2

3 − k2
∞

y2 − a≷(e±iϕ
− e∓iϕ)i

2
yT
+O(k2

1 + k2
3 − k2

∞
)

→ 1∓
√

k2
1 + k2

3 − k2
∞

y2 ± 2a≷Re
2i
z
+O(k2

1 + k2
3 − k2

∞
)

= 1∓
√

k2
1 + k2

3 − k2
∞

Re
(

eW
+ 1

1− eW

)
∓ 2a≷Re W +O(k2

1 + k2
3 − k2

∞
)→ 1−

√
k2

1 + k2
3 − k2

∞

×

(
1+ 2Re

∞∑
n=1

e±nW

)
∓ 2a≷u+O(k2

1 + k2
3 − k2

∞
)→ 1

−

√
k2

1 + k2
3 − k2

∞

∞∑
n=−∞

einv±|n|u
∓ 2a≷u+O(k2

1 + k2
3 − k2

∞
), (D 8)

as
√

k2
1 + k2

3 − k2
∞

y2, k3y3→ 0. And since it follows from (D 1)–(D 3) that the inner
solution behaves like

G(s)
+
(u, v | x1, x2; k1, k3, ω)→ c≷0 + c≷1 u+

∞∑
n=−∞

einvÃ(s)n (k1, k3, ω)e±|n|u (D 9)

as u, v→ 0, the inner and outer expansions will only match if

c≷0 = 1, c≷1 =∓2a≷, Ã(s)n =−

√
k2

1 + k2
3 − k2

∞
, n= 0,±1,±2. (D 10a−c)

It then follows from (D 1) and (D 2) that the Fourier transform of the scattered
component of the Green’s function is of the form (5.22).
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