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1. Introduction

Approximate groups

A fair proportion of the subject of additive combinatorics is concerned with approximate
analogues of exact algebraic properties, and the extent to which they resemble those
algebraic properties. In this paper we are concerned with approximate groups.
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38 E. Breuillard and B. Green

By an ambient group we simply mean some group in which all the objects being
discussed are contained, so that it makes sense to talk about multiplication of elements,
inverses and the identity element. Suppose that A is a finite set in some ambient group.
What does it mean to say that A is an approximate subgroup?

It is well known to all students of group theory that A is a genuine subgroup if, and
only if, we have xy−1 ∈ A whenever x, y ∈ A. Perhaps the most natural way in which a
set A may be approximately a subgroup, then, is if the set AA−1 = {xy−1 : x, y ∈ A}
has cardinality not much bigger than |A|, perhaps |AA−1| � K|A| for some constant K.

Sets with this property are said to have small doubling and this is indeed a com-
monly encountered condition in additive combinatorics. It is a perfectly workable notion
of approximate group in the abelian setting and the celebrated Frĕıman–Ruzsa theorem
describes subsets of Z with this property (we will state it below). However, in the foun-
dational work of Tao [18] it was noted that in noncommutative settings a somewhat
different, though closely related, notion of approximate group is more natural. We now
give Tao’s definition.

Definition 1.1 (approximate groups). Let K � 1. A set A in some ambient group
is called a K-approximate group if

(i) it is symmetric, i.e. if a ∈ A then a−1 ∈ A, and the identity lies in A;

(ii) there is a symmetric subset X lying in A ·A with |X| � K such that A ·A ⊆ X ·A.

This definition gives rise to some very pleasant properties, and we shall list them in § 3.
In that section we also briefly recall the relation between approximate groups in this sense
and sets with small doubling.

Our aim in this paper is to ‘describe’ the structure of approximate subgroups of torsion-
free nilpotent groups in terms of more explicit algebraic objects. A companion paper [2]
tackles the same question for solvable subgroups of GLd(C). Tao [19] has addressed
questions of this type, working in fact with solvable groups in general. In his paper he
introduces the following rather nice paradigm for ‘describing’ sets by others.

Definition 1.2 (control). Suppose that A and B are two sets in some ambient group,
and that K � 1 is a parameter. We say that A is K-controlled by B, or that B K-controls
A, if |B| � K|A| and there is some set X in the ambient group with |X| � K and such
that A ⊆ (X · B) ∩ (B · X).

This is essentially equivalent to saying that A and B have roughly the same size
and that A is covered by a few left-translates of B and also by a few right-translates
of B. Indeed if A ⊆

⋃k
i=1 xiB and also A ⊆

⋃l
j=1 Byj , then we may take X =

{x1, . . . , xk, y1, . . . , yl} in the definition above; the other direction of the equivalence
is even more obvious.

In § 3 we will discuss (following Tao’s paper extremely closely) how this notion of con-
trol interacts with the aforementioned notions of approximate group and small doubling.

The structure of approximate subgroups of torsion-free abelian groups is described by
the Frĕıman–Ruzsa theorem [7,15]. The bounds in the following version of it, which is
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Approximate groups. I 39

stated in the language introduced above, are due to Chang [3]. Here and for the remainder
of the paper the letter C represents an absolute constant which could be computed
explicitly if desired: different instances of the letter may denote different constants. We
will often use subscripts to indicate dependence on other parameters: for example, Cs is
an absolute constant depending on s.

Theorem 1.3 (Frĕıman–Ruzsa; Chang). Let G be a torsion-free abelian group and
let K � 1 be a parameter. Suppose that A ⊆ Z is a K-approximate group. Then A is
eCKC

-controlled by a set P of the form

P = {l1x1 + · · · + lkxk : |l1| � L1, . . . , |lk| � Lk},

for some x1, . . . , xk ∈ Z, where k � CKC .

A set P of this form is called a generalized arithmetic progression, or progression for
short.∗ The number k is referred to as the dimension of k.

The Frĕıman–Ruzsa theorem is usually stated and proved only for subsets of Z and
not for torsion-free abelian groups in general. Simple modifications allow one to obtain
the more general statement, and we will remark further on this later on.

Let us turn now to nilpotent groups, pausing to recall the definition. Let G be a group
and suppose that s � 1 is an integer. If the lower central series defined by

G0 = G1 = G, G2 = [G, G1], G3 = [G, G2], . . .

terminates with Gs+1 = {idG}, then we say that G is s-step nilpotent. A prototypical
example of a torsion-free nilpotent group G is a group of upper triangular matrices with
ones on the diagonal, such as the Heisenberg group

G =

⎛
⎜⎝

1 R R

0 1 R

0 0 1

⎞
⎟⎠ ,

which is an example of a 2-step nilpotent (Lie) group.
Here is an example of an approximate subgroup of the Heisenberg group. It is also

discussed quite explicitly in Tao’s paper [19].
Take

u1 =

⎛
⎜⎝

1 1 0
0 1 0
0 0 1

⎞
⎟⎠ and u2 =

⎛
⎜⎝

1 0 0
0 1 1
0 0 1

⎞
⎟⎠ ,

and consider also the commutator

[u1, u2] := u−1
1 u−1

2 u1u2 =

⎛
⎜⎝

1 0 1
0 1 0
0 0 1

⎞
⎟⎠ .

∗ There is a very slight difference between the terminology used in this paper and that which is
standard: typically, a progression is a set of the form {x0 + l1x1 + · · · + lkxk : 0 � li < Li}. We have
found it convenient to disallow the presence of x0 in this paper and to use the more symmetric condition
|li| � Li. Note, however, that every progression in our sense is economically contained in one according
to the more standard definition, and vice versa (though one might need to increase the dimension by 1).
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40 E. Breuillard and B. Green

Let L1, L2 � 1 be integers. Then the set A := {ul1
1 ul2

2 [u1, u2]l12 : |l1| � L1, |l2| �
L2, |l12| � L1L2} consists of the matrices⎧⎪⎨

⎪⎩

⎛
⎜⎝

1 x z

0 1 y

0 0 1

⎞
⎟⎠ : |x| � L1, |y| � L2, |z| � L1L2

⎫⎪⎬
⎪⎭

and it is not hard to check that A ∪ A−1 is a K-approximate group for some absolute
constant K.

The set A is obviously a close analogue of the generalized progressions considered
in the abelian setting. The construction may be generalized, but to do this we must
first discuss commutators in more detail. Suppose that G is an s-step nilpotent group
and that u1, . . . , uk ∈ G. We may inductively assign a weight vector χ ∈ Nk

0 to every
(formal) commutator involving the uis by setting χ(ui) = ei and defining χ inductively
on higher commutators via χ([c, c′]) = χ(c) + χ(c′). Thus if k = 4 then χ([u1, u2]) =
(1, 1, 0, 0) and χ([u1, [u2, u4]]) = (1, 1, 0, 1). We follow Hall [10, Chapter 11] in defining
basic commutators. This is a (non-unique) extension of u1, . . . , uk to an ordered list
u1 ≺ · · · ≺ ut in which uk+1, . . . are certain commutators involving u1, . . . , uk. We
suppose that they are ordered so that commutators with the same weight vector are
consecutive, and so that higher-order commutators come before lower order ones. If ci, cj

have already been admitted as basic commutators then ck = [ci, cj ] qualifies as basic if
ci � cj and if, writing ci = [cs, ct], cj � ct.

For example when k = s = 3 we have t = 14, a possible listing of the basic commu-
tators being u1, u2, u3, [u2, u1], [u3, u2], [u3, u1], [[u2, u1], u1], [[u2, u1], u2], [[u2, u1], u3],
[[u3, u1], u1], [[u3, u1], u2], [[u3, u1], u3], [[u3, u2], u2], [[u3, u2], u3]. Note incidentally the
formula of Witt, which states that the number of basic commutators of order r on k

generators is
1
r

∑
d|r

µ(d)kr/d.

Write χ(j) for the weight vector of the commutator uj . If L = (L1, . . . , Lk) is a vector
of positive integers and χ ∈ Nk

0 , we define Lχ := Lχ1
1 · · ·Lχk

k .

Definition 1.4 (nilpotent progressions). Suppose that G is an s-step nilpotent group
and that u1, . . . , uk ∈ G. Let L = (L1, . . . , Lk) be a vector of positive integers. Then the
nilpotent progression P (u1, . . . , uk; L) on generators u1, . . . , uk with lengths L is the set
{ul1

1 · · ·ult
t : |lj | � Lχ(j)}, where u1, u2, . . . , ut is the ordered list of basic commutators

involving the ui.

Any s-step nilpotent progression is the homomorphic image of a nilpotent progression
in Γk,s, the free s-step nilpotent group on k generators. We have found this to be the
right way to think about nilpotent progressions: to study them, one should establish
homomorphism-invariant properties of nilpotent progressions in the free nilpotent group.

Consideration of the free case reveals our reason for involving only basic commutators,
since by restricting to these the elements ul1

1 · · ·ult
t of a nilpotent progression in the free

nilpotent group are all distinct. This follows from the results of [10, Chapter 11].
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Approximate groups. I 41

We are now in a position to state our main theorem, which is the analogue of the
Frĕıman–Ruzsa theorem in the nilpotent setting.

Theorem 1.5. Let Γ be a torsion-free s-step nilpotent group, and suppose that A ⊆ Γ

is a K-approximate subgroup. Then there are elements u1, . . . , uk ∈ Γ , k � KCs , and
lengths L = (L1, . . . , Lk) such that A is eKCs -controlled by the nilpotent progression
P (u1, . . . , uk; L).

The proof of this theorem occupies the majority of the paper. However, in the later
sections we gather some properties of nilpotent progressions which may be of interest in
their own right. We also comment on the connection between our results and those of
Sanders [16].

2. Strategy of the proof

The key idea for establishing Theorem 1.5, already implicit in [18] and described explic-
itly in [6], is to use a little Lie theory. We may clearly suppose, in proving Theorem 1.5,
that Γ is finitely generated. An embedding theorem of Mal’cev [14] states that every
finitely generated torsion-free nilpotent group embeds as a co-compact discrete subgroup
of a simply connected nilpotent Lie group of the same step. It therefore suffices to estab-
lish Theorem 1.5 when Γ is a subgroup of a simply connected s-step nilpotent Lie group,
say G (the Heisenberg group is an example of such a group).

Working in this setting enables us to exploit the Lie algebra g = log G. It is well known
in the theory of simply connected nilpotent Lie groups (see, for example, [1]) that there
are mutually inverse diffeomorphisms exp : g → G and log : G → g between the group
G and its Lie algebra g, which is a vector space Rdim(G) together with an additional
bracket operation [· , ·] : g × g → g which is antisymmetric, bilinear and satisfies the
Jacobi identity.

In the case of the Heisenberg group we may identify g with the vector space
⎛
⎜⎝

0 x z

0 0 y

0 0 0

⎞
⎟⎠ .

The exponential map exp : g → G is then simply the usual exponentiation of matrices.
In the Lie algebra setting it is quite natural to consider a different type of nilpotent

progression which, to distinguish it from the nilpotent progressions already described,
we call a nilbox. To define nilboxes we must first describe commutators in g.

We consider first the free nilpotent Lie algebra nk,s with generators X1, . . . , Xk. We
will be looking at higher-order commutators such as [X1, [X2, X5]], and once again we will
associate a weight vector χ ∈ Nk

0 to each of these. The definition is the same as before (in
the example just given, χ = (1, 1, 0, 0, 1, . . . )). We have a decomposition nk,s =

⊕
χ Vχ

into weight spaces Vχ, where Vχ consists of commutators with a fixed weight χ. Just as
for group commutators, we may extend X1, . . . , Xk to an ordered list X1, . . . , Xt of basic
commutators. The definition of these is precisely the same as for group commutators,
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42 E. Breuillard and B. Green

except that the bracket now refers to the Lie algebra operation rather than the group
commutator.

The reason for introducing basic commutators becomes clear in this context: by a
theorem of Witt [10, Chapter 11] the elements X1, . . . , Xt form a basis for nk,s as a
vector space over C. We call this an adapted basis for nk,s.

Definition 2.1 (free nilboxes). Let k, s � 1 be integers, and let X1, . . . , Xk be
generators for the free nilpotent Lie algebra nk,s. Let L = (L1, . . . , Lk) be a vec-
tor of positive integer lengths. Then the free s-step nilbox with lengths L is the set
B(X1, . . . , Xk; L) ⊆ nk,s defined by

B(X1, . . . , Xk; L) = {l1X1 + · · · + ltXt : |lj | � Lχ(j)},

where X1, . . . , Xt is an adapted basis for nk,s.

Definition 2.2 (nilboxes). Let g be an s-step nilpotent Lie algebra and suppose that
x1, . . . , xk ∈ g. Let L = (L1, . . . , Lk) be a vector of positive integer lengths. Then we
define the nilbox B(x1, . . . , xk; L) to be the image π(B(X1, . . . , Xk; L)), where π : nk,s →
g is the Lie algebra homomorphism induced by mapping Xi to xi, i = 1, . . . , k. It is
convenient to write xi := π(Xi) for i = k + 1, . . . , t also.

As we remarked, it suffices to prove Theorem 1.5 when Γ is a subgroup of a simply
connected s-step nilpotent Lie group G. We may now divide this task into the task of
proving the following two propositions.

Proposition 2.3 (control by nilboxes). Suppose that G is an s-step simply connected
nilpotent Lie group with Lie algebra g, and that A ⊆ G is a K-approximate group. Then
there are x1, . . . , xk ∈ g such that

(i) k � KCs ;

(ii) exp(x1), . . . , exp(xt) lie in the group 〈A〉 generated by A;

(iii) there is a nilbox B(x1, . . . , xk; L) such that exp(B(x1, . . . , xk; L)) eKCs -controls A.

Proposition 2.4 (nilpotent progressions control nilboxes). Suppose that G is an
s-step simply connected nilpotent Lie group with Lie algebra g. Suppose that x1, . . . , xk ∈
G, and write ui := exp(xi). Let L = (L1, . . . , Lk) be a vector of positive integer lengths.
Then the nilpotent progression P (u1, . . . , uk; L) ekCs -controls exp(B(x1, . . . , xk; L)).

Theorem 1.5 clearly follows from the combination of the last two propositions after
we observe that the nilpotent progression P (u1, . . . , uk; L) obtained in Proposition 2.4
entirely lies in Γ and that if A and B are two subsets of the subgroup Γ and A is
K-controlled by B in G, then A must also be K-controlled by B in Γ .

Either proposition is conceivably of independent interest. For example it seems to
be easier to study nilboxes than nilpotent progressions. The proof of Proposition 2.3
is essentially additive–combinatorial and occupies the next four sections. The proof of
Proposition 2.4 requires a certain amount of material on coordinates in nilpotent Lie
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groups: this material is summarized in Appendix B and the proposition itself is confirmed
in § 7.

To conclude this section let us note that there is a certain arbitrariness in the definitions
of nilpotent progression and nilbox, coming from the non-canonical choice of an ordering
for the basic commutators (or indeed for the basic commutators themselves, which are
defined in different ways by different authors). This is not a serious matter and any other
choice would lead to completely equivalent theorems.

3. Preliminaries from multiplicative combinatorics

We take the opportunity to record some basic facts about noncommutative product sets,
and in particular concerning the notions of K-approximate group and K-control defined
in the introduction. This material is all due to Tao [18]; in turn some of that is based
on earlier work of Ruzsa in the abelian setting. See also the book of Tao and Vu [20],
especially § 2.7.

Proposition 3.1 (approximate groups and control). Let K � 1 be a parameter and
let A be a set in some ambient group G. If n � 1 is an integer we write An = {a1 · · · an :
a1, . . . , an ∈ A} and A±n = {aε1

1 · · · aεn
n : a1, . . . , an ∈ A, ε1, . . . , εn ∈ {−1, 1}}.

(i) If π : G → H is a homomorphism and if A ⊆ G is a K-approximate group, then
π(A) is a K-approximate subgroup of H.

(ii) If A is a K-approximate group, then |A±n| = |An| � Kn−1|A| and An is Kn+1-
controlled by A.

(iii) If B, C are further subsets of G and if A is K-controlled by B and B is K-controlled
by C, then A is K2-controlled by C.

(iv) If A and B are K-approximate groups and A is K-controlled by B, then B is
K4-controlled by A.

(v) If the doubling constant |A2|/|A| is at most K, then there is an f1(K)-approximate
group B ⊆ A±3 which f2(K)-controls A. If the tripling constant |A3|/|A| is at most
K, then we may take B = A±3.

(vi) If A is a K-approximate group and if A′ ⊆ A is a subset with |A′| � |A|/K, then
A′±3 is an f3(K)-approximate group which f4(K)-controls A. The same is in fact
true under the essentially weaker assumption that |A3| � K|A|.

All of the quantities f1(K), . . . , f4(K) can be taken to be polynomial in K.

Proof. Part (i) follows immediately from the definition. To prove (ii), suppose that X

is a symmetric set such that |X| � K and A · A ⊆ X · A. Then, since A is symmetric, we
also have A · A ⊆ A · X and hence An ⊆ Xn−1 · A and An ⊆ A · Xn−1 for all n � 1 by
an easy induction, from which the result follows immediately.

Part (iii) is very easy and follows straight from the definitions. Part (iv) follows from
the non-abelian Ruzsa covering lemma [18, Lemma 3.6]. Parts (v) and (vi) may be
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found in [18]: (v) is Theorem 4.6 and Corollary 3.10 of that paper, while (vi) follows
from Lemma 3.6 and Corollary 3.10. �

4. Generalized arithmetic progressions in Lie algebras

Let g be an s-step nilpotent Lie algebra and let p ⊆ g be a progression, thus

p = {l1x1 + · · · + lkxk : |li| � Li}

for some lengths L1, . . . , Lk and some x1, . . . , xk ∈ g. Our aim is to understand ways in
which p can interact with the bracket operation [· , ·].

We begin with a definition.

Definition 4.1 (nilcompletion). Suppose that b ⊆ g is a set. Then by the nilcompletion
b̄ of b we mean the set b + [b, b] + [b, [b, b]] + · · · + [[b, b], [b, [b, b]]] + · · · , where the sum
is over all∗ commutators.

Now it is known from standard Lie theory that if gi := log(Gi) then [gi, gj ] ⊆ gi+j ,
and so any commutator with more than s copies of b vanishes identically. The number
of commutators of order k + 1 is the kth Catalan number

Ck =
1

k + 1

(
2k

k

)
.

We easily see that the total number of such up to order s can be bounded above by 4s.

Lemma 4.2 (properties of the nilcompletion). Let b ⊆ g be a set. Then

(i) for any integer m � 1 we have mb ⊆ msb̄;

(ii) [b̄, b̄] ⊆ b̄.

Proof. The first inclusion is a consequence of the fact that an s-fold commutator is
s-multilinear. For example (when m = 2), [b1 + b′

1, b2 + b′
2] may be written as a sum of

four commutators involving only elements of b. The second is also immediate, and it is
the main reason for introducing this definition of nilcompletion. �

Now if p is a progression then its nilcompletion p̄ need not be in general. Proposition 4.4
below is a good substitute for the failure of this statement, however. Before stating it we
record a simple number-theoretic lemma that we will use several times in the sequel.

Lemma 4.3. Suppose that L1, . . . , Lk are integers. Then every non-negative integer less
than or equal to L1 · · ·Lk can be written as the sum of at most 2k−1 numbers of the
form l1 · · · lk with 1 � li � Li for i = 1, . . . , k.

Proof. This may be established by induction on k from the base case k = 2: to prove
that case, write a given m as qL2 + r, where 0 � q < L1 and 1 � r � L2. �

∗ In this paper we are not concerned with the dependence of our estimates on the step parameter s. If
we were, it might be more efficient at this point to take only nested commutators into account in making
this definition.
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Proposition 4.4. Suppose that p ⊆ g is a progression of dimension k and that p̄ is
its nilcompletion. Then there is a progression q of dimension at most (4k)s such that
[q, q] ⊆ (2k)2sq and p̄ ⊆ q ⊆ (2k)sp̄.

Proof. Suppose as usual that p has generators x1, . . . , xk. Then

b ⊆ p ⊆ kb, (4.1)

where

b :=
k⋃

i=1

{lixi : |li| � Li}.

Let C be the set of all commutators in the xis, such as [[x1, x7], [x3, x5]]. To each c ∈ C
we may assign a weight vector χ(c) ∈ Nk

0 much as described in the introduction; for this
example, χ = (1, 0, 1, 0, 1, 0, 1, 0, 0, . . . ). We first claim that

b̄ ⊆ r ⊆ 2s−1
b̄, (4.2)

where r is the progression defined by

r =
{ ∑

c∈C
lcc : |lc| � Lχ(c)

}
,

where

Lχ(s) :=
k∏

i=1

L
(χ(s))i

i .

The first inclusion is clear. To see the second, we invoke Lemma 4.3. Now b̄ contains
all elements of the form lχ(c)c, provided |li| � Li for all i = 1, . . . , k. Hence by our
observation we must have r ⊆ nb̄ where n = 2s−1. This proves (4.2).

Now from (4.1), (4.2) and Lemma 4.2 (i) we have p̄ ⊆ ksb̄ ⊆ ksr. This last set ksr is
another progression, and this we take to be q. Specifically,

q = ks
r =

{ ∑
c∈C

lcc : |lc| � ksLχ(c)
}

.

The dimension of q is |C|, which is less than or equal to (4k)s, since as we observed earlier,
the total number of bracketing patterns of length at most s is less than or equal to 4s. Now
by construction we have p̄ ⊆ q. Finally, (4.1) and (4.2) yield q = ksr ⊆ (2k)sb̄ ⊆ (2k)sp̄,
as required.

It remains to show that [q, q] is contained in an appropriate multiple of q. This now
follows from the fact that [mb, mb] ⊆ m2[b, b] for any set b ⊆ g and from Lemma 4.2. �
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5. Some nilpotent algebra

In this section we establish some results about nilpotent Lie groups and their interaction
with their Lie algebras via the exponential map. Throughout this section, then, G is a
simply connected s-step nilpotent Lie group.

One of the key tools in this paper is a theorem of Lazard [11,12], given in Lemma 5.2
below, stating that both addition and the bracket operation on g may be expressed using
words in G of length Cs. This consequence of the Baker–Campbell–Hausdorff formula
was discussed in detail in the 1969 thesis of Ian Stewart (see also [17]). Results of this
type were first exploited in the additive–combinatorial setting by Fisher et al . [6].

We shall also need the following lemma on rational powers in nilpotent Lie groups.

Lemma 5.1 (rational powers of products). Suppose that G is an s-step nilpotent
Lie group and that x1, . . . , xt ∈ G. Let η ∈ Q. Then there is an integer t′ and for
j ∈ {1, . . . , t′} there are polynomials Pj(η) ∈ Q[η] drawn from a finite list depending
only on s such that (x1 · · ·xt)η = x

P1(η)
i1

· · ·xPt′ (η)
it′ for some indices ij ∈ {1, . . . , t}.

Proof. This follows from the Hall–Petresco formula as presented, for example, in [10,
Theorem 12.3.1] or [5, Appendix A]. This formula states (for an arbitrary s-step nilpotent
group) that there are words w2(x1, x2, . . . , xt), . . . , ws(x1, x2, . . . , xt) such that wj ∈ Gj

and
(x1 · · ·xt)n = xn

1xn
2 · · ·xn

t w2(x1, . . . , xt)(
n
2) · · ·ws(x1, . . . , xt)(

n
s)

for all positive integers n. By induction on the step of G, this implies that there are
polynomials Pj(n) with coefficients in Q depending only on s such that (x1 · · ·xt)n =∏

1�j�t′ x
Pj(n)
ij

, where ij ∈ {1, . . . , t} for j = 1, . . . , t′. If G is a Lie group then by Ado’s
theorem one can embed G into a group of upper triangular matrices, in which setting
the matrix entries of both sides of the preceding formula are polynomials. It follows that
this formula is in fact valid with n replaced by an arbitrary real number η. �

Lemma 5.2 (Lazard). There is a sequence of rational numbers α1, β1, . . . , αm, βm,
depending only on s, such that, for all x, y ∈ G,

exp(log x + log y) = xα1yβ1 · · ·xαmyβm .

Similarly there is a sequence of rational numbers γ1, δ1, . . . , γm, δm such that, for all
x, y ∈ G,

exp([log x, log y]) = xγ1yδ1 · · ·xγmyδm .

Proof. This is not quite the result stated in [17], for example, where the expressions
obtained are of the form w1(x, y)η1w2(x, y)η2 · · ·wm(x, y)ηm with each wi a word in x

and y (and x−1, y−1) and the ηi rational numbers. However, it follows immediately from
that formulation and Lemma 5.1. �

It follows immediately from the last two lemmas that there is a similar expression for
exp(log x1 + · · ·+log xn). In order to get the right bound for the last part of Theorem 1.5
we will require a certain amount of control over what this expression is.
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Lemma 5.3 (expansion of sums). Let G be an s-step nilpotent Lie group and sup-
pose that x1, . . . , xn ∈ G, where n � 2. Then there is a sequence of rational numbers
α1, . . . , αm depending on n, all of which may be put over a common denominator of size
bounded by nCs , and a collection of indices i1, . . . , im ∈ {1, . . . , n} such that

exp(log x1 + · · · + log xn) = xα1
i1

· · ·xαm
im

.

Proof. It clearly suffices to establish this when n is a power of two: if n is not a power
of two, let n′r be the least power of two greater than n and take xn+1 = · · · = xn′ = idG.
To establish this case we proceed inductively, relating the expansion for n = k to that
for n = 2k. We have

exp(log x1 + · · · + log xk) = xα1
i1

· · ·xαm
im

and

exp(log xk+1 + · · · + log x2k) = xα1
j1

· · ·xαm
jm

,

where the αi may all be put over some denominator Q. Applying the first of Lazard’s
expansions we may expand exp(log x1+· · ·+log x2k) as a product of terms of the preceding
type, each to some rational power over some fixed denominator qs depending only on s.
Now expand each of those using Lemma 5.1: this results in an expansion of exp(log x1 +
· · ·+log x2k) as a product of terms x

βj

ij
, where all of the βj may be put over denominator

Qq′
s for some integer q′

s depending only on s. The result follows immediately by induction.
�

6. Control by a nilbox

In this section we prove Proposition 2.3, the statement that an approximate subgroup of
an s-step nilpotent Lie group G is controlled by a nilbox. Recall that this, together with
Proposition 2.4, implies our main result.

Throughout this section G is a simply connected nilpotent Lie group and A ⊆ G is
a K-approximate group. We write a = log A = {log x : x ∈ A} for the corresponding
subset of the Lie algebra g. Fisher et al . [6] used results close to those of the previous
section to prove that a is close to invariant under both addition and Lie bracket. We
essentially recover this result in Lemma 6.1 below. In their paper it was also remarked
that one might apply the Frĕıman–Ruzsa theorem in this setting, and we shall see how
this suggestion may be realized and used to prove Proposition 2.3. Some of the ideas
here were also anticipated by the foundational work of Tao [18]: in the last part of this
paper he described sets of small tripling in the Heisenberg group as being precisely the
sets that are roughly closed under both addition and commutation, a fact he deduced by
applying what amounts to the Baker–Campbell–Hausdorff formula in this case.

Lemma 6.1 (a is almost invariant under nilcompletion). Let ā be the nilcomple-
tion of a. Then |a + ā| � KCs |a|. More generally, |mā| � KmCs |a| for all m ∈ N.
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Proof. It follows from Lemmas 5.2 and 5.1 that, for any x1, x2, . . . ∈ G, we have

exp(log x1 + log x2 + [log x3, log x4] + [log x5, [log x6, log x7]] + · · · ) = xη1
1 xη2

2 · · ·xηM

M

for some rationals η1, η2, . . . , ηM and M = Cs. Here, all of the commutators appearing
in the definition of nilcompletion are featured. Choose some integer Q = Cs such that
all of the rationals ηi may be put over the common denominator Q, and set B :=
{aQ, aQ2

, . . . , aQs

: a ∈ A} and b = log B. Then every element of exp(b + b̄) lies in ACs ,
and hence by the iterated product set estimate (see Proposition 3.1) we have |b + b̄| �
KCs |A|.

Now suppose that x ∈ a. Then, noting that log(gt) = t log g, we see that all of
Qx, Q2x, . . . , Qsx lie in b. Hence if x1, x2, x3, . . . ∈ a then

Qs(x1 + x2 + [x3 + x4] + [x5, [x6, x7]] + · · · )
= Qsx1 + Qsx2 + [Qs−1x3, Qx4] + [Qs−2x5, [Qx6, Qx7]] + · · ·

lies in b+ b̄, that is to say Qs(a + ā) ⊆ (b + b̄). The dilation map Qs : g → g is, of course,
a bijection and so the result follows immediately. The last claim follows immediately
from the Ruzsa triangle inequality [20, (2.6)] and its associated sum-set estimates [20,
Corollary 2.23]. �

At this point we apply the Frĕıman–Ruzsa theorem, stated as Theorem 1.3 in the
introduction. We will need a slightly stronger version of this theorem than is commonly
stated in the literature.

Theorem 1.3′. Suppose that X is a K-approximate subgroup of Rm. Then there is a
progression

P = {l1x1 + · · · + lkxk : |li| � Li}

with k � KC such that X ⊆ P ⊆ KCX.

Remarks on the proof. There are two slight novelties here. The first is minor and it
is that the Frĕıman–Ruzsa theorem is normally only stated for subsets of Z, not of Rm.
This is certainly addressed by the more general result of the second author and Ruzsa [8],
which is valid in an arbitrary abelian group (very likely a more direct reduction to the
Z-case is also possible). More seriously, the containment P ⊆ KCX is not normally
stated as part of the theorem and indeed we know of no reference in the literature where
it is explicitly mentioned. It may, however, be read without difficulty out of [8]. There
one finds a proof that 2X − 2X contains a progression P0 of size at least exp(−KC)|X|
and dimension at most KC . This is a standard ingredient in ‘Ruzsa-style’ proofs of the
Frĕıman–Ruzsa theorem and may also be found in Ruzsa’s original paper [15] for subsets
of Z. To proceed from such a statement to the Frĕıman–Ruzsa theorem one applies a
‘covering lemma’, and the most efficient one in this context is implicit in Chang [3]. It is
explicitly stated in [20, Lemma 5.31], and using that result one obtains

X ⊆ P0 − P0 + {−1, 0, 1}d · (v1, . . . , vd) + x0,
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for some x0 ∈ X, v1, . . . , vd ∈ X − X = 2X and where d � KC . Let P be the set on the
right. It is a progression of dimension at most KC , and it is fairly clearly contained in
(9 + 2d)X. Also observe that the xis all lie in 4X. �

Putting the tools we have assembled so far together, we obtain the next result, which
is the key to our main result.

Corollary 6.2. Suppose that A ⊆ G is a K-approximate group and let a = log A. Then
a is contained in a progression p of dimension at most KCs whose nilcompletion p̄ is
contained in KCs ā.

Proof. Recall Lemma 6.1. Since a ⊆ ā, the upper bound on |a+ ā| certainly tells us that
|a + a| � KCs |a|. Applying Chang’s version of the Frĕıman–Ruzsa theorem we obtain a
progression p ⊆ KCsa of dimension at most KCs such that a ⊆ p. The fact that p̄ ⊆ KCs ā

follows from Lemma 4.2 (i). �

Now given the progression p = {l1x1 + · · · + lkxk : |li| � Li} it is very tempting to
consider the nilbox B(x1, . . . , xk; L). One cannot quite use this to prove Proposition 2.3,
however, since it is not necessarily the case that exp(xi) ∈ 〈A〉 for i = k + 1, . . . , t. This
may be rectified by the simple expedient of taking suitable dilates M ·xi of the generators
xi, i = 1, . . . , k. For i = k + 1, . . . , t write x

(M)
i := Mχ(i) · xi and note that there is a

Lie algebra homomorphism πM : nk,s → g such that πM (xi) = x
(M)
i for i = 1, . . . , t (this

being the one induced by mapping Xi to M · xi for i = 1, . . . , k).

Lemma 6.3. Suppose that A ⊆ G and that a := log A. Suppose that p is a generalized
progression as above, that p contains a and that p̄ is contained in mā. Let M � 1 be an
integer. Then

(i) the nilbox B(x1, . . . , xk; L) contains a and is contained in (4k)smā;

(ii) there is some M � (2mk)Cs for which the elements exp(x(M)
i ), i = 1, . . . , t, all lie

in the group 〈A〉 generated by A.

Proof. The first part of (i) is totally obvious since p contains a. To establish part (ii)
we employ an argument identical to the one in the proof of Proposition 4.4 to obtain the
inclusions B(x1, . . . , xk; L) ⊆ (4k)sp̄ ⊆ (4k)smā, as required.

Let us turn to (ii). We take M to have the special form Rs for some integer R � 1 to
be specified. Then for each i = 1, . . . , t the element x

(M)
i = Mχ(i) · xi may be written as

the sum of at most 4sm elements of the form Mr[a1, [a2, [· · · ]]], where the ai lie in a and
r � 1. We may each such element as [b1, [b2, [· · · ]]] where the commutator has the same
shape and each bi is Ruiai for some ui � 1.

Now we simply expand exp(x(M)
i ) using Lemmas 5.1, 5.2 and 5.3, obtaining a finite

product yη1
i1

yη2
i2

· · · with yi := exp(bi) in which, it may be confirmed, the rationals ηj may
all be put over some common denominator of size at most (2ks)Cs . Taking R to be this
common denominator it follows that each y

ηj

ij
lies in the group generated by A, which is

what we wanted to prove. �
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We are at last in a position to conclude the proof of Proposition 2.3, at least given a
small result on nilboxes and their dilations from the next section.

Proof of Proposition 2.3. As ever A ⊆ G is a K-approximate group and a := log A.
Applying Corollary 6.2 we obtain a progression p of dimension KCs whose nilcomple-
tion p̄ is contained in KCs ā. Applying Lemma 6.3 (i) we obtain a nilbox B(x1, . . . , xk; L)
of dimension k � KCs which contains a and is contained in KCs ā. It follows from
this last inclusion and Lemma 6.1 that |B(x1, . . . , xk; L)| � eKCs |A|, and hence
exp(B(x1, . . . , xk; L)) eKCs -controls A. Finally, we may apply Lemma 6.3 (ii) to find
an M = KCs such that the generators exp(x(M)

i ), i = 1, . . . , t, all lie in 〈A〉. By Corol-
lary 7.3, exp(B(x(M)

1 , . . . , x
(M)
k ; L)) also eKCs -controls A. This concludes the proof of

Proposition 2.3. �

7. Nilboxes, nilpotent progressions and control

To conclude the proof of our main theorem we must establish Proposition 2.4, which
asserts that the exponential of a nilbox is efficiently controlled by a nilpotent progression.
We use the need for this as an excuse to develop the relationship of nilboxes and nilpotent
progressions more generally.

Let us recall the statement of Proposition 2.4.

Proposition 2.4 (nilpotent progressions control nilboxes). Suppose that G is an
s-step simply connected nilpotent Lie group with Lie algebra g. Suppose that x1, . . . , xk ∈
G, and write ui := exp(xi). Let L = (L1, . . . , Lk) be a vector of positive integer lengths.
Then the nilpotent progression P (u1, . . . , uk; L) ekCs -controls exp(B(x1, . . . , xk; L)).

In fact we shall show that exp(B(x1, . . . , xk; L)) ekCs -controls P (u1, . . . , uk; L) as well.
This notion of mutual control, where two sets A and B in some group K-control one
another, is very useful since if π is a group homomorphism then π(A) and π(B) also K-
control one another. Indeed the inclusions A ⊆ (X ·B)∩(B ·X) and B ⊆ (X ′ ·A)∩(A·X ′)
imply π(A) ⊆ (π(X) · π(B)) ∩ (π(B) · π(X)) and π(B) ⊆ (π(X ′) · π(A)) ∩ (π(A) · π(X ′)),
conditions which automatically imply that |π(A)| � K|π(B)| and |π(B)| � K|π(A)|. In
our setting, the upshot of this together with the commutativity of the diagram

nk,s
exp ��

��

Nk,s

��
g

exp �� G

(7.1)

is that we need only establish Proposition 2.4 in the free setting.
Suppose then that X1, . . . , Xk, Xk+1, . . . , Xt is an adapted basis for the free s-step

nilpotent Lie algebra nk,s, as described in § 2. Let us introduce the shorthand

B(k, s; L) := B(X1, . . . , Xk; L) := {l1X1 + · · · + ltXt : |li| � Lχ(i)}

for the free nilbox on k generators. We will require the variants

B(k, s; L, Q) := {l1X1 + · · · + ltXt : |li| � Lχ(i), Q | li}
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for integers Q � 1. Write ui = exp(Xi), i = 1, . . . , k, and suppose that uk+1, . . . , ut is
the ordered list of basic commutators in the ui described in the introduction. We also
introduce shorthands for the nilpotent progressions based on the ui, thus

P (k, s; L) := P (u1, . . . , uk; L) := {ul1
1 · · ·ult

t : |li| � Lχ(i)}.

Finally, we introduce the variant

P (k, s; L, Q) := {ul1
1 · · ·ult

t : |li| � Lχ(i), Q | li}.

The key proposition linking these two types of object is the following proposition, which
we will establish in the appendix after developing some basic theory of ‘coordinates’ on
the free nilpotent group. Those results ultimately rest on the Baker–Campbell–Hausdorff
formula.

Proposition 7.1. There is some integer Qs and constants c = cs, C = Cs such that for
any positive integer Q divisible by Qs we have

exp(B(k, s; cL, Q)) ⊆ P (k, s; L),

P (k, s; cL, Q) ⊆ exp(B(k, s; L))

and such that uniformly in ρ, ρ′ < 10, we have

exp(B(k, s; ρL, Q)) · exp(B(k, s; ρ′L, Q)) ⊆ exp(B(k, s; (ρ + ρ′ + Cρρ′)L; Q))

and

P (k, s; ρL, Q) · P (k, s; ρ′L, Q) ⊆ P (k, s; (ρ + ρ′ + Cρρ′)L, Q).

In fact,

P (k, s, ρL) · P (k, s, ρ′L) ⊆ P (k, s; (ρ + ρ′ + Cρρ′)L).

Remark. The final inclusion here easily implies that if we set Xρ := P (k, s; (ρ−C ′ρ2)L)
for an appropriate C ′ then Xρ ·Xρ′ ⊆ Xρ+ρ′ . Furthermore, Proposition 7.2 below together
with a little calculation implies that X2ρ is exp(Csk

s)-controlled by Xρ. These two facts
imply that the system (Xρ)ρ�4 forms a Bourgain system in the sense of [9,16], thereby
providing a link between our work and that of Sanders.

Proposition 2.4 follows immediately from Proposition 7.1 and the next result.

Proposition 7.2. Let k, s � 1 be integers and let Q, Q′ � 1 be two integers with Q|Q′

and Qs|Q′, where Qs is the quantity appearing the previous proposition. Let λ < 1
be a positive real number. Then exp(B(k, s, L; Q)) and exp(B(k, s, λL; Q′)) mutually
γ-control one another, as do P (k, s, L; Q) and P (k, s, λL; Q′), where we may take γ =
(1 + (Q′/λQ))Csks

.
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Proof. In view of the third inclusion of Proposition 7.1, there is some λ′ � csλ such
that exp(B(k, s, λ′L; Q′3)) ⊆ exp(B(k, s, λL, Q′)). Hence to conclude the proof it suffices
to show, in view of Proposition 3.1, the bound

|B(k, s, λ′L; Q′)|
|B(k, s, L; Q)| �

(
1 +

Q′

λQ

)−Csks

.

However, one has

|B(k, s, λ′L; Q′)| =
t∏

j=1

(
2
⌊

(λ′L)χ(j)

Q′

⌋
+ 1

)
�

t∏
j=1

(
2
⌊

λ′s

Q′ Lχ(j)
⌋

+ 1
)

,

whereas

|B(k, s, L; Q)| =
t∏

j=1

(
2
⌊

Lχ(j)

Q

⌋
+ 1

)
.

Note, however, the inequality

2�x� + 1 � 2x + 1 � 2
α

(�αx� + 1) + 1 �
(

1 +
1
α

)
(2�αx� + 1),

valid for any α, x � 0. It follows that

|B(k, s, λ′L; Q′)|
|B(k, s, L; Q)| �

(
1 +

Q′

λ′Q

)−t

.

Finally, note, as remarked in the introduction, that t � (4k)s.
The proof for the nilprogressions P (k, s; L) is essentially identical. �

Let us record a particular application of this that we used in § 5.

Corollary 7.3 (control by dilated balls). Let G be a simply connected s-step nilpo-
tent Lie group with Lie algebra g. Let x1, . . . , xk ∈ g, and suppose that M, M ′ � 1
are integers. Then exp(B(Mx1, . . . , Mxk; L)) and exp(B(M ′x1, . . . , M

′xk; L)) mutually
(MM ′)Csks

-control one another.

Proof. The introduction of M ′ is merely to make the statement look symmetric. We
only needed the corollary in the case M ′ = 1, and in fact the general case clearly follows
from this special one using the transitivity of control. Suppose, then, that M ′ = 1. Since
we are dealing with mutual control, a notion which persists under homomorphisms by
the remarks at the beginning of the section, it suffices to work in the free setting.

One may easily check the inclusions

B(MX1, . . . , MXk; M−sL, Q) ⊆ B(X1, . . . , Xk; L, Q)

and
B(X1, . . . , Xk; L, MsQ) ⊆ B(MX1, . . . , MXk; L, Q)
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for any integer Q � 1. Thus

B(MX1, . . . , MXk; L) ⊇ B(X1, . . . , Xk; L, Ms) ⊇ B(MX1, . . . , MXk; M−sL, Ms),

which implies by Proposition 7.2 that

exp(B(MX1, . . . , MXk; L))

MCsks

-controls
exp(B(X1, . . . , Xk; L, Ms)).

By another application of Proposition 7.2 this, in turn, MCsks

-controls

exp(B(X1, . . . , Xk; L)).

The inverse relationship may be obtained very similarly. �

Appendix A. Frĕıman invariance of nilpotent progressions

In this section we show that nilpotent progressions are preserved under Frĕıman homo-
morphisms if the side lengths L are sufficiently large. Thus, in a sense, they are well-
defined multiplicative–combinatorial objects. We recall the definition of Frĕıman homo-
morphism. Suppose that A and B are two sets in ambient groups and that φ : A → B is
a map. We say that φ is a Frĕıman k-homomorphism provided that for all a1, . . . , ak ∈ A

and all choices of ε1, . . . , εk ∈ {−1, 0, 1} the conditions aε1
1 · · · aεk

k = id implies that
φ(a1)ε1 · · ·φ(ak)εk = id.

Proposition A.1 (invariance under Frĕıman isomorphism). Suppose G and H are
two groups and s ∈ N. There is a constant Cs � 1 such that the following holds. Let A be
an s-step nilpotent progression with k generators in G and side lengths L = (L1, . . . , Lk)
with Li � Ck,s for i = 1, . . . , k. Let φ be a Frĕıman 3-homomorphism from A onto a
subset B of H. Then B is also an s-step nilpotent progression with k generators.

Proof. Every nilpotent progression has the form

A = {ul1
1 · · ·ult

t : |lj | � Lχ(j)} (A.1)

for some elements u1, . . . , ut. However, not every set of this form is a nilpotent progression:
indeed uk+1, . . . , ut are specific commutators involving u1, . . . , uk, and in particular there
are words wi, i = k + 1, . . . , t, independent of the underlying group, such that ui =
wi(u1, . . . , uk). Moreover, it is not hard to see that if the ui satisfy these conditions and
if all (s + 1)-fold commutators of the ui equal the identity then the object (A.1) does
define a nilpotent progression.

Now if the lengths L = (L1, . . . , Lk) are sufficiently great then all initial segments of
all these words wj lie in the nilpotent progression P (u1, . . . , uk; L). This follows from the
fifth inclusion of Proposition 7.1, or else it may be verified more explicitly by taking each
initial segment ui1 , . . . , uim and commutating until all copies of u1 are at the left, then
repeating this process for u2 and so on.
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Now let φ : A → B be a map. Observe that if a1, . . . , am are elements of A or A−1 such
that each initial segment a1 · · · ai belongs to A for all i = 1, . . . , m, then φ(a1 · · · am) =
φ(a1) · · ·φ(am). Also, by an easy induction, we have φ(aj) = φ(a)j whenever all the
powers a, a2, . . . , aj lie in A. Writing vi := φ(ui) for i = 1, . . . , t, it follows from these
observations and the analysis of the preceding paragraph that the vi satisfy the same
words vi = wi(v1, . . . , vk), and also that all (s + 1)-fold commutators of the vi equal the
identity.

It follows that
{vl1

1 · · · vlt
t : |lj | � Lχ(j)}

is a nilpotent progression in H. Furthermore, several more applications of the observation
we made in the last paragraph confirm that

φ(ul1
1 · · ·ult

t ) = vl1
1 · · · vlt

t ,

and so this nilpotent progression is precisely equal to B. �

Appendix B. On coordinates in the free nilpotent Lie group

Throughout this appendix we will be working in the free s-step nilpotent Lie algebra
nk,s on k generators and with the corresponding free nilpotent Lie group Nk,s. We sup-
pose that an adapted basis (see the introduction for definitions) X1, . . . , Xt for nk,s has
been chosen, and that u1, . . . , ut is the corresponding ordered list of group commutators
in Nk,s. We will also use the weight function χ : [t] → Nk

0 introduced in § 1.
Our aim in this section is to establish Proposition 7.1, which the reader may care

to recall now. We shall be quite brief in our treatment, which depends on a study of
coordinates in the following sense.

Definition B.1 (coordinates). Suppose that x ∈ Nk,s. Then we define the group
coordinates ψgp(x) to be (x1, . . . , xt), where x1, . . . , xt are the unique complex numbers
such that x = ux1

1 · · ·uxt
t . We define the algebra coordinates ψalg(x) to be (x′

1, . . . , x
′
t),

where x′
1, . . . , x

′
t are the unique complex numbers such that x = exp(x′

1X1 + · · ·+x′
tXt).

Remarks. The existence and uniqueness of the group coordinates is not obvious, and
it will be a byproduct of our analysis. The algebra coordinates are the same thing as
‘exponential coordinates of type I’, as featured for example in [4] (hence the notation,
with a single dash). The group coordinates are not quite the same thing as exponential
coordinates of type II. If x ∈ Nk,s then to find the type II coordinates (x′′

1 , . . . , x′′
t ) one

expresses x as exp(x′′
1X1) · · · exp(x′′

t Xt). We will encounter type II coordinates again in
a short while.

Everything will follow from the Baker–Campbell–Hausdorff formula, which states that

exp(X) exp(Y ) = exp(X + Y + 1
2 [X, Y ] + 1

12 [X, [X, Y ]] + · · · ).

It is not important to know what the rational numbers here are, and indeed they are
rather complicated to describe. All that is important is that the series on the right is finite
in an s-step nilpotent group, and that all the rationals occurring have complexity Os(1).
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With a little thought, this leads directly to the following description of multiplication
in algebra coordinates.

Lemma B.2 (multiplication in algebra coordinates). Suppose that x, y ∈ Nk,s and
that ψalg(x) = (x1, . . . , xt) while ψalg(y) = (y1, . . . , yt). Then

ψalg(xy) = (P1(xi, yi), . . . , Pt(xi, yi)).

Here, each Pj is a polynomial of the form

xj + yj +
∑

α,β �=0

C
(j)
α,βxαyβ ,

where the C
(j)
α,β are rationals with complexity Os(1), α = (α1, . . . , αt) and β =

(β1, . . . , βt) ∈ Nt
0 are multi-indices and xα means xα1

1 · · ·xαt
t . Furthermore, C

(j)
α,β is only

non-zero if
∑

l∈[t] χ(l)(αl + βl) = χ(j).

The third inclusion of Proposition 7.1 follows quickly from this, taking Qs to be the
least common multiple of the denominators of all the C

(j)
α,β .

We may also say something about the transformation which takes the group coordin-
ates of a point x ∈ Nk,s and outputs the algebra coordinates. Before doing this it
is convenient to set up a notion of degree. Suppose that (x1, . . . , xt) are variables,
to be thought of as coordinates. Now let z1, . . . , zk be further variables, and substi-
tute xj = zχ(j) = z

χ(j)1
1 · · · zχ(j)k

k . When we speak of the degree deg(P ) of a poly-
nomial P = P (x1, . . . , xt) involving the xi, we shall mean the total degree in the zi

of P (z1, . . . , zk) after this substitution has been made. We shall also write degi for the
degree with respect to zi.

Definition B.3 (privileged coordinate change). Let φ : Ct → Ct be a polynomial
map. We say that φ is a privileged coordinate change if (φ(x))j = xj + Pj(x1, . . . , xt),
where degi(Pj(x)) � degi(xj) for all i = 1, . . . , k and Pj depends only on those variables
xl with deg(xl) < deg(xj).

The inverse of a privileged coordinate change is another privileged coordinate change,
as is the composition of two such coordinate changes. We leave the proof as an exercise.
If all the coefficients of the Pj are rationals with complexity Os(1) then we say that φ is
of bounded complexity ; the inverse and composition of privileged coordinate changes of
bounded complexity are also privileged coordinate changes of bounded complexity, albeit
with worsenings of the unspecified constants Os(1).

Lemma B.4 (group coordinates to algebra coordinates). Suppose that x ∈ Nk,s

and that ψgp(x) = (x1, . . . , xt) and ψalg(x) = (x′
1, . . . , x

′
t). Then the mapping (xj) → (x′

j)
and its inverse are privileged coordinate changes of bounded complexity.

Proof. Write Yi := log(ui) for i = 1, . . . , t. We claim that the relation between the Yi

and the Xi is a rather special one: we have

Yj = Xj +
∑
m

µjmXm,
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where the sum is restricted to those m for which χ(m) � χ(j) pointwise but χ(m) �= χ(j).
This may be established by induction on the order of the commutator ui using the
Baker–Campbell–Hausdorff formula: we leave the details to the reader. Suppose that
ψalg(x) = (x′

1, . . . , x
′
t), that is to say log x = x′

1X1 + · · · + x′
tXt. We may also represent

log x as y1Y1 + · · · + ytYt in ‘exponential coordinates of type I’ relative to the basis Yi,
and it is not hard to check that the change of coordinates map (x′

i) → (yi) is a privileged
coordinate change of bounded complexity.

In view of the group closure properties of the notion of privileged coordinate change it
suffices to show that the map (xi) → (yi) is a privileged coordinate change of bounded
complexity. Note that x = exp(x1Y1) · · · exp(xtYt) (so the group coordinates ψgp(x) =
(xi) are actually the same thing as the ‘exponential coordinates of type II’ relative to the
basis Y1, . . . , Yt). The desired property follows from repeated application of the Baker–
Campbell–Hausdorff formula: once again we leave the precise details to the reader. �

Remark. The existence and uniqueness of group coordinates follows from (the proof of)
this lemma.

The first and second inclusions of Proposition 7.1 follow very quickly from this lemma.
To establish the fourth and fifth inclusions of that proposition, it suffices to prove the
following ‘group’ variant of Lemma B.2.

Lemma B.5 (multiplication in group coordinates). Suppose that x, y ∈ Nk,s and
that ψgp(x) = (x1, . . . , xt) while ψgp(y) = (y1, . . . , yt). Then

ψgp(xy) = (P1(xi, yi), . . . , Pt(xi, yi)).

Here, each Pj is a polynomial mapping Zt × Zt to Z of the form

xj + yj +
∑

α,β �=0

C
(j)
α,βxαyβ ,

where the C
(j)
α,β are rationals with complexity Os(1), α = (α1, . . . , αt) and β =

(β1, . . . , βt) ∈ Nt
0 are multi-indices, and xα means xα1

1 · · ·xαt
t . Furthermore, C

(j)
α,β is only

non-zero if
∑

l∈[t] χ(l)(αl + βl) = χ(j).

Proof. Combine Lemma B.4 with Lemma B.2. The fact that each Pi maps Zt ×Zt to Z

follows from the fact that the set {un1
1 · · ·unt

t : n1, . . . , nt ∈ Z} is a group (the free s-step
nilpotent group Γk,s on k generators). This may be verified by repeated commutation,
taking the product of two such elements and moving all copies of u1 to the left, then all
copies of u2, and so on. �

Remark. Similar issues to those addressed by the last lemma are discussed in [13].
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