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Abstract

The formal approach to shapes and their algebras, as it appears in shape grammar theory, has
been reviewed. It starts with geometric elements and their partial algebras, continues to shapes,
their algebras, and boundaries, as well as algebras that calculate with shapes and their bound-
aries. There is a number of new concepts introduced along the way. These include diagonal
decompositions and their algebras which simplify calculations with shapes, b-paired diagonal
decompositions which extend calculations with shapes and their boundaries from diagonal
shapes only to all shapes, and m-order boundaries which extend the concept of shape bound-
aries and allow for calculations with multiple representations of shapes. It also shows that alge-
bras of shapes are infinite direct sums of diagonal algebras.

Introduction

This paper is an extended version of the paper presented at the DCC ‘20 Conference (Krstic, 2020).
Both papers examine algebras of shapes which constitute the framework for calculations with
shapes in the context of shape grammars. Grammars and algebras, augmented with some other
devices, are pillars of computational design theory which celebrates half a century in existence.1

The first paper dealt with spatial and nonspatial calculations with shapes and introduced
diagonal decompositions of shapes as a way to separate the two. We will do the same here,
however, this time the emphasis will be on diagonal decompositions of algebras of shapes
into component diagonal algebras. The direct sum of the component algebras will prove to
b1010 equal (up to isomorphism) to the original algebra of shapes. The new algebra provides
a framework for calculations with diagonal shape decompositions in place of shapes. This alge-
bra separates more complex spatial calculations from the simpler nonspatial ones. It also
breaks the former calculations into independent chunks thus further simplifying them.

We will review the design theory from constructions of shapes out of basic geometric ele-
ments to the construction of their algebras. Although this has been previously covered by a
number of papers and books,2 we opted to have a self-contained text accessible to readers
not familiar with the field. Some small innovations in the form of new definitions, proofs
and procedures are introduced along the way and the use of the prefix “diagonal” is broaden
to entities like geometric elements and sets of shapes. The review sets the stage for the intro-
duction of diagonal decompositions of shapes and their algebras as well as the representation
of algebras of shapes as infinite direct sums of diagonal algebras.

Building blocks

Before getting to shapes and calculations, we should examine the building blocks of shapes.
These are zero-, one-, two-, and three-dimensional (0D, 1D, 2D, and 3D) geometric elements3

like points, lines, planes, and solids, respectively. The inquiry will be restricted to so-called flat
loci where lines are straight, planes are flat, and solids are delineated by flat planes. Such a
system could be extended to include curved lines and surfaces (Jowers, 2006) so that the
restriction should not impede the generality of the study. We will also, following our percep-
tual intuitions, consider only finite geometric elements and finite sets of such elements that are
confined to finite spaces with both elements and spaces not exceeding three dimensions.

Geometric elements

Points, lines, planes, and solids are respectiive 0D, 1D, 2D, and 3D geometric elements that
will serve as the building blocks of shapes.They are situated in the 3D space, but less than

1The first paper on shape grammars (Stiny and Gips, 1972) was presented at Information Processing ’71, the IFIP Congress
held 1971 in Ljubljana Yugoslavia (now Slovenia) and published the following year.

2Most notably (Stiny, 2006) which is a comprehensive monography on the subject.
3Some authors use terms basic geometric elements or basic elements in place of geometric elements for the building blocks of

shapes.
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3D elements could be situated in less than 3D spaces as well. A
line can be in the space, but also on an infinite plane or an infinite
line. At the minimum, a point can be situated on a point, which is
a 0D space. In general, a geometric element is characterized by its
dimensionality and the dimensionality of the space it is defined
in. Typically, a geometric element of dimension i defined in the
space of dimension j≥ i is denoted by aij with all the combina-
tions shown in Table 1.

It is clear from the table that the minimum space (in terms of
its dimensionality) in which a single geometric element can be
defined is of the same dimension as the geometric element itself.
Elements defined in their minimum spaces are diagonal geometric
elements as they appear on the diagonal of the table. The mini-
mum space for a set of geometric elements could be as small as
the minimum space of one of the elements and as big as the
3D space. For example, the minimum space for two collinear
lines is 1D, for two parallel or two intersecting lines is 2D,
while for two skew lines is 3D. If the minimum space of a none-
mpty set of geometric elements is the same as the minimum space
of one of its elements, then it is a diagonal set and the space is a
diagonal space. It is easy to see that in such a set all elements have
the same minimum space. For example, the set of all solids is
diagonal, but so is a set of collinear lines.

Boundaries of geometric elements

Boundaries outline geometric elements. Each geometric element
is delineated by a finite collection of geometric elements one
dimension smaller than itself. Two endpoints delineate a line, a
polygon delineates a plane, and a closed polyhedral surface
delineates a solid. Points do not have boundaries and lines have
two-point boundaries. Given that each geometric element of
dimension greater than 0 has infinitely many geometric elements
embedded in it, the boundary of a geometric element of dimen-
sion greater than 1 can be described by an infinite set of geometric
elements. However, the fact that there are also finite descriptions
qualifies it as a boundary. There are figures with finite areas and
infinite boundaries, that is, boundaries that cannot be described
by finite sets. For example, the Koch snowflake in Figure 1 is a
finite area planar figure which may have a fractal boundary
with an infinite number of lines.

Calculating with geometric elements

Geometric elements could be related in many ways. One could be
embedded in or be coincident with another element or the two
could overlap or touch. There are numerous other relations but
these four play important roles when calculating with geometric
elements. The most important relation is embedding.
Intuitively, given two lines, the first line is embedded in the sec-
ond one, if the result of drawing one on top of the other is the
second line. The first line appears to be a part of the second
one. The embedding relation is a partial order≤ on a set of geo-
metric elements of the same kind – that is, the elements of the
same dimension defined in the same space. Note that this implies
that only lines could be parts of lines, planes parts of planes, and
solids parts of solids. A point can be coincident with a line but not
its part. However, for a≤ b to hold, where a and b are geometric
elements, being of the same kind is not enough. There is another
necessary – but not sufficient – condition: set {a, b} must be
diagonal.

For points, partial order is identity. A point is a part of another
point if the two are identical. That is if a≤ b, then b≤ a and a = b,
where a and b are points. Note that for points, all diagonal sets are
singletons.

Armed with partial order we may proceed to define Boolean
operations: product, sum, difference, and symmetric difference
– for geometric elements of the same kind belonging to the
same diagonal set.

For points defined on a point (0D space), sum and product are
always defined and equal to the only point, which is both the
smallest and the greatest element. In contrast, difference and sym-
metric difference are never defined. Points defined in 1D, 2D, and
3D spaces have sum and product only if the points that are argu-
ments are identical. In contrast, difference is only defined if the
arguments are different points, while symmetric difference is
never defined. Geometric elements of higher dimension have
more elaborate behavior in calculations. Operations for lines
planes and solids are defined below.

Product: a⋅b = c exists if c is the greatest common part of a and
b. That is c≤ a and c≤ b so that set {a, b, c} is diagonal. Given the
lines in Figure 2a, the top one is the product of the middle and the
bottom line. Two lines in (b) belong to a diagonal set but do not
have the product as there is no line that is part of both. It is clear
from the definition and examples that for a⋅b to be defined a and
bmust have common parts – that is, overlap – however, this is not
sufficient for planes and solids. For example, two overlapping L-s
(c) do not have a product. The greatest common part is missing,
as we end up with two incomparable elements (d).

Sum: a + b = c if c is the smallest geometric element with both
a and b as parts (1), and there is no part of c that does not share
parts with a or b (2). If sum exists, then a≤ c and b≤ c so that set
{a, b, c} is diagonal. Given lines in Figure 3a, the top one is the
sum of the middle and the bottom line. In contrast, with lines
(b) the top one is the smallest line with the bottom two as
parts, but it is not their sum. It satisfies condition (1), however,
the gap between the bottom lines can accommodate infinitely
many lines that violate condition (2). Both conditions (1) and
(2) are required only for lines. For planes and solids, condition
(1) is sufficient. For example, neither planes (c) nor planes (d) sat-
isfy (1) and cannot be summed. In contrast, planes (e) and planes
(f) do satisfy (1) so that (g) and (h) are their respective sums. The
sums exist because planes overlap in the first case and touch in the
second.

The touch relation could now be defined: geometric elements
touch if their sum exists, but their product does not.4

Difference: a – b = c exists if c is the greatest part of a that does
not share parts with b. Given lines in Figure 4a, the top line is the
result of subtracting the middle line from the bottom one. The
same result we get if the middle line is subtracted from the top

Table 1. Geometric elements aij of dimension i defined in the space of
dimension j ( j≥ i) enumerated

a00 a01 a02 a03

a11 a12 a13

a22 a23

a33

4This is a touch relation for discrete elements that share the same diagonal space and it
differs from the general one by Stiny (2006, p. 171).
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one and we get the middle line if the two arguments swap their
places. That is, a – b = a and b – a = b if the two do not have com-
mon parts. There is no difference defined for lines (b) as we end
up with two or no geometric elements depending on the order of
arguments. There is another, somewhat unintuitive, requirement
stemming from the Boolean nature of the operations. As there
is no greatest or smallest geometric element, difference is defined
using relative complements. It is the unique complement of b rel-
ative to the interval [b, a + b]. Thus, the difference could only be
defined if a + b is defined. This is stricter than the usual diagonal
set requirement.

Symmetric Difference: a ⊕ b = c exists if c is the greatest geo-
metric element with each of its parts being either part of a or
b, but not of both. For example, each of the three lines in
Figure 4c is the symmetric difference of the other two. In contrast,
lines (b) do not have the symmetric difference as two different
lines satisfy the definition. Like the other operations, the sym-
metric difference is only defined for diagonal sets of arguments.

Although the operations above are Boolean in nature, some of
the standard Boolean identities do not hold. For example, the def-
inition of difference as the unique complement of a⋅b relative to
the interval [a⋅b, a], which is equivalent to the one given before,
does not hold if a⋅b is not defined although the difference may be

defined. Similarly, if a – b exists, then a – b = a – (a⋅b) should
hold. For example, the two overlapping L-s in Figure 2c yield
two possible differences, as shown in Figure 4d,e. However, the
identity does not hold for either of the differences because the
product of the L-s is not defined. Likewise, the symmetric differ-
ence of the two L-s is (f), which is the following standard identity
a ⊕ b = (a – b) + (b – a). However, another standard identity a ⊕
b = (a + b)− (a⋅b) does not hold for the lack of product.

Note that the geometric elements that are results of the opera-
tions above have finite boundaries because the elements that are
the arguments of the operations have finite boundaries.

Set Iij of all geometric elements of dimension i defined in the
space of dimension j together with operations ⋅, +, −, and ⊕
forms partial algebra Iij – which is partial because Iij is not closed
under the operations.

Shapes

In the previous section, we were dealing with single geometric ele-
ments which are building blocks of shapes. Intuitively, shapes are
collections of such elements like the collection of lines that makes
a rectangle. Nevertheless, shapes will be defined here without rely-
ing on these intuitions. Rather, the formal conditions under
which partial algebras of geometric elements evolve into algebras
of shapes will guide the definition.

Defining shapes

Calculations with geometric elements are purely spatial: one starts
with two geometric elements and transforms them into one
usually different than both – but occasionally equal to one of
them. Such a transformation depends on a spatial relation
between geometric elements and may not always be possible. In
contrast, nonspatial or symbolic calculations are always possible
as they typically involve just repacking geometric elements while
leaving them intact. One may take two elements from two pack-
ages and place them into one: {a} ∪ {b} = {a, b}; or may take some
elements out of a package and not worry if the package ends up
empty: {a, b}\{a, b} = {} = Ø. The packages are more important
than the elements they contain so the latter are as good as sym-
bols. In order for calculations with geometric elements to always
be defined, Iij should be extended to include nonspatial (set)
operations. Consequently, geometric elements are replaced with
sets of geometric elements of the same kind, or shapes. Shapes
are combinations of the spatial and nonspatial. The spatial is
what matters the most while the nonspatial is there for closure,
that is, to be able to calculate and always get the result.

Fig. 1. Koch snowflake: a finite area planar figure which may have an infinite fractal
boundary.

Fig. 2. Product: the top line is the product of the other two (a); there is no product of
the two lines (b); there is no product of the two overlapping L-s (c) as there is no
smallest common part (d).

Fig. 3. Sum: top line is the sum of the other two (a); top line is not the sum of the
other two (b); pairs of planes (c) and (d) do not have sums; pairs of planes (e) and (f)
and their respective sums (g) and (h).

Fig. 4. The top line (a) is the result of subtracting the middle line from the bottom, or
if the middle line is subtracted from the top one, and the middle line is the result of
arguments swapping their places; there is no difference or symmetric difference for
two the lines (b); each of the three lines (c) is the symmetric difference of the other
two; the two overlapping L-s in Figure 2c yield two possible differences (d) and (e)
and the symmetric difference (f).
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For example, one cannot make a line out of the two lines in
Figure 2b so the sum from I11 fails. However, if each line is
seen as a one-line shape, then the set union produces a two-line
shape and we have the sum. Similarly, if the top line in Figure 4b
is subtracted from the bottom one, no geometric element is left,
and the difference fails. Not so if the two lines are shapes. The dif-
ference produces a shape with no geometric elements, just an
empty set.

Geometric elements forming a shape must, be of the same
kind, and occupy a finite chunk of space. Because there are infi-
nitely many geometric elements embedded in a single geometric
element – if its dimension is greater than 0 – different sets,
including infinite ones, of geometric elements may represent the
same shape. An infinite set may represent a shape if there is at
least one finite set representing the same shape. The following
proposition establishes bounds for such sets.

Proposition 1: Let a and A be sets of geometric elements
defined in Iij and confined to a finite chunk of space. Let a be
finite with sums being defined only for pairs of identical elements
(i) and let A be the set of all elements that are parts of elements of
a, or A = {x≤ y | y ∈ a} (ii). The following holds:

(1) a is the set of maximal geometric elements of A,
(2) a represents a shape, and
(3) A is the set of all geometric elements embedded in the shape

represented by a.

Proof: From (i), a is a set of maximal elements, and from (ii), a
⊆ A so that these are also maximal elements of A, which proves
(1). a must have a finite boundary to be a shape. Because a is
finite and so are the representations of boundaries of elements
of a, the union of these representations is finite and is a represen-
tation of the boundary of a, which proves (2). Assume (3) does
not hold so that there is a geometric element z embedded in
the shape represented by a such that z ∉ A. Thus, z must be a
sum of parts of different elements of a. From (i), no such sum
exists so that (3) holds.

Sets a and A are, in terms of their cardinalities, respective
minimal and maximal sets representing the same shape. The for-
mer one is the ideal shape representation because it is unique and
compact which leads to the following three equivalent definitions
of shape.

A shape occupies a finite chunk of space and is:

(1) A finite set of geometric elements defined in Iij such that only
pairs of identical elements have sums.

(2) A finite set of maximal geometric elements defined in Iij.
(3) A finite subalgebra of Iij with sums and products defined only

for identical elements.

Note that subset X of partial algebra Iij is its subalgebra if every
sum (product) of elements of X which is defined is also an ele-
ment of X.

Any finite set of geometric elements from Iij, occupying a
finite chunk of space, may be represented as a shape.

Proposition 2: Let C be such a set and let cl+(C ) be its closure
under sum, where cl+ is a closure operator on the set of subsets of
C,℘(C ). Set a of maximal elements of cl+(C ) is a shape repre-
sented by C.

Proof: Because C is finite cl+(C ) is finite and there are elements
e∈cl+(C ) such that for every c∈cl+(C ) e + c = e or is not defined.
The set of all elements like e is a and because they are maximal

with respect to one another a is a shape. Each element of C is
either part of or equal to an element of a because a is the set
of maximal elements of cl+(C ) so that a is the shape represented
by C.

The proposition holds for infinite C provided that a exists and
is finite and that for every x∈C there is y ∈ a such that x≤ y. A
good example of such a set is A from proposition 1.

Calculating with shapes

Calculations with shapes are combinations of spatial calculations,
which alter geometric elements, and nonspatial ones, which just
group them. Unlike spatial calculations with geometric elements,
which may not always be defined, calculations with shapes always
result in shapes.

As with geometric elements operations for shapes are Boolean
and depend on the partial order among shapes. The latter is
defined as follows.

The Subshape (or a part) a of shape b, or a≤ b, is a shape
where for every x ∈ a there is y ∈ b such that x≤ y.

The smallest shape is an empty shape which is an empty set of
geometric elements denoted by 0. An empty shape is a part of
every shape. Note that there are different empty shapes as these
are empty sets of elements from different Iij partial algebras.

The subshape relation is pivotal in defining operations on
shapes, but for calculating with them we also rely on operations
for geometric elements.

It is important to note that the operations below are defined
for shapes occupying the same finite chunk of space. For example,
two shapes that are an infinite distance apart cannot be summed.
It could be argued that this requirement is unnecessary as “infi-
nite distance” is nowhere to be found in nature, however, some
of our representational tools do allow for it. Such an example is
provided on page 6 (right column).

Sum: a + b is the smallest shape which has both a and b as
parts.

Proposition 3: The sum of shapes a and b is the set of maximal
elements of cl+(a ∪ b).

Proof: Per Proposition 2, set x of maximal elements of cl+(a∪b)
is the shape represented by a∪b. Every element of x is either the
sum of elements of both a and b, or is equal to an element of a or
b. Thus, x is the smallest shape that includes both a and b as parts
or x = a + b.

The sum could be calculated recursively via the following pro-
cedure, which uses the sum from Iij.

Procedure 1:

Initial values: A0 = a, B0 = b, i = 1, 2,…card(b)5

Recursive step: Bi = Bi−1 \ {b}, where b ∈ Bi−1,
C = {x if x + b is not defined | x ∈ Ai−1},
D = {x + b | x ∈ Ai−1 \ C},
c = Σ (D ∪ {b}),
Ai = C ∪ {c}

Result: a + b = Acard(b)

For i = 1, we remove element b from b (line 1 of the recursive
step) and partition a into set C of elements which do not sum
with b and a set of ones that do (Ai−1\C ), which are then summed
with b to get D (lines 2 and 3). D is augmented with b – just in

5card(b) is the cardinality of set b.
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case Ai−1\C was empty – and summed to create geometric ele-
ment c. All elements of D include b as a part so that their sum
is defined. Element c is included in set C of elements which do
not sum with b to create Ai. The process is continued until all
the elements of b are exhausted (Bcard(b) = Ø). Note that each Ai

is a shape – a set of maximal elements – and so is the result
Acard(b). The set Uij of i-dimensional shapes defined in the
j-dimensional space closed under + and ⋅ is a relatively comple-
mented distributive lattice ordered by the subshape relation. It
features an empty shape as the smallest element while lacking
the greatest one. Being distributive makes its relative complements
unique, enabling the definition of the difference operation.

Difference: a – b is the relative complement of b with respect to
interval [0, a + b], or dually the relative complement of a⋅b with
respect to interval [0, a]. It is the greatest shape made only of
parts of a which have no parts that are parts of b.

Difference could be calculated recursively via the following
procedure that utilizes the difference of Iij.

Procedure 2:

Initial values: A0 = a, B0 = b, i = 1, 2,…card(b)
Recursive step: Bi = Bi−1 \ {b}, where b ∈ Bi−1,

C = {x if x – b is not defined | x ∈ Ai−1},
D = {x – b | x ∈ Ai−1 \ C},
Ai = C ∪ D

Result: a – b = Acard(b)

Product: a⋅b is the greatest shape embedded in both a and b.
To calculate it, we rely on the difference for shapes which is
related to the product via a⋅b = a – (a – b).

Symmetric Difference: a ⊕ b is the greatest shape having only
parts of a that have no parts that are parts of b and parts of b that
have no parts that are parts of a. To calculate it, one may use –
and + with formula a ⊕ b = (a – b) + (b – a) or equivalently by
using –, +, and ⋅ with a ⊕ b = (a + b) – (a⋅b).

For example, the two shapes in Figure 5a have product (b),
sum (c), difference (d), another difference (e), and symmetric dif-
ference (f).

Boundaries of shapes

We established earlier that the boundary of a geometric element
may be represented by a finite set of geometric elements one
dimension lower than the original element. However, proposition
2 allows for a more precise characterization of the boundary.

Boundaries of geometric elements are shapes one dimension
lower than the elements because the boundary of an
i-dimensional geometric element can be represented by a finite
set of (i−1)-dimensional geometric elements it can, according
to proposition 2, be represented as a shape.

This allows for a unique and compact representation of bound-
aries and introduction of boundary operator be: Iij→Ui−1j, where
Ui−1j is the set of (i− 1)-dimensional shapes defined in the
j-dimensional space. The boundary operator takes a geometric ele-
ment from Iij to its boundary which is a shape in Ui−1j, or y = be(x),
x ∈ Iij, y ∈ Ui−1j. For example, the identity in Figure 6a shows
operator be turning a quadrilateral planar geometric element into
a set of four maximal lines or a linear shape which is a boundary
of the planar element. Because shapes are sets of maximal geo-
metric elements, boundaries are sums of the boundaries of the
elements. Consequently, the boundary operator for shapes b:
Uij→Ui−1j is defined as b(a) = Σx∈a be(x) where b(a) ∈ Ui−1j,
a ∈ Uij and x ∈ Iij. Identity (b) shows how this works for a planar
shape having two maximal geometric elements.

Boundaries of shapes are shapes one dimension lower than the
original shapes. They are sums of the boundaries of maximal ele-
ments representing shapes.

For example, the sequence of shapes in Figure 6c has a 3D
solid cube, its boundary which is a 2D shape consisting of 6 pla-
nar squares, with a 1D boundary consisting of 12 lines, and its
boundary a 0D shape having 8 points, respectively. It is a chain
of boundaries of a 3D shape starting with the first-order 2D
boundary (or simply the boundary), followed by the second-order
1D boundary, which is the boundary of the first-order boundary,
and ending with the third-order 0D boundary, which is the
boundary of the second-order boundary. More formally:

m-order boundary of shape a ∈ Uij is shape b
m(a) ∈ Ui−mj, m ∈

{0, 1,… i} is defined recursively by b0(a) = a, bn+1(a) = b(bn(a)).
There is a trivial, but nicely sounding proposition stemming

from this definition.
Proposition 4: All shapes are m-order boundaries of shapes.
Calculations with shapes do not mirror calculations with their

boundaries as the two are not isomorphic. For example, for the
two singleton shapes in Figure 7a, the boundary of their sum
(b) is different than the sum of their boundaries (c). The only
exception is the operation of symmetric difference when applied
to shapes sharing the same diagonal space.

Proposition 5: The boundary of the symmetric difference of
two diagonal shapes sharing the same diagonal space is the sym-
metric difference of their boundaries, or b(a ⊕ b) = b(a) ⊕ b(b)
where a, b ∈ Uii (Earl, 1997; Krishnamurti and Stouffs, 2004).

Fig. 5. Shape operations: two shapes (a) and (b) have the product (c), sum (d), dif-
ference (e), another difference (f), and symmetric difference (g).

Fig. 6. Boundary operators: identity (a) shows operator be turning a quadrilateral
planar geometric element into a linear shape which is its boundary; identity (b)
shows operator b turning a two-element shape into its linear boundary by summing
the boundaries of the elements; sequence (c) of shapes a cube and boundaries
obtained by recursive applications of operator b.
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Proof: Possible spatial relations between a and b determine
how parts of their boundaries are affected by a ⊕ b. A part of
the original boundary should be removed if there is either a
shape or an empty shape on both of its sides (i) and it should
be preserved otherwise (ii). If b(a) ⋅ b(b) = 0 and either a ⋅ b = 0
or b < a or a < b, then a⊕ b is a + b or a – b or b – a, respectively.
In all three cases, boundaries of a and b satisfy (ii) and should be
preserved which b(a)⊕ b(b) = b(a) + b(b) does so that b(a⊕ b) =
b(a)⊕ b(b) (iii) holds. If b(a) ⋅ b(b) ≠ 0 and either a ⋅ b = 0 or b <
a or a < b, then a ⊕ b is a + b or a – b or b – a, respectively. In all
three cases, b(a) ⋅ b(b) satisfies (i) and should be removed which b
(a)⊕ b(b) = [b(a) + b(b)] – [b(a) ⋅ b(b)] does so (iii) holds. If a ⋅ b
≠ 0 and b(a) ⋅ b(b) = 0, then a ⊕ b removes a ⋅ b so that b(a ⋅ b)
satisfies (ii) and should be preserved. The remaining parts of
boundaries b(a) – b(a ⋅ b) and b(b) – b(a ⋅ b) also satisfy (ii)
so that both b(a) and b(b) should be preserved which b(a) ⊕ b
(b) = b(a) + b(b) and again (iii) holds. This exhausts all the possi-
ble spatial relations between a and b and completes the proof.

For example, shapes in Figure 7d with their respective bound-
aries (e) have symmetric difference (f) with boundary (g). The lat-
ter is also the symmetric difference of boundaries of the original
shapes. Restriction to diagonal shapes is necessary to avoid situa-
tions where the products of boundaries are parts of new bound-
aries like, for example, the surface of cube Figure 6c with the
boundary made of lines that are products of boundaries of the
adjacent faces. Because products are never parts of symmetric dif-
ferences proposition 5 does not hold.

Proposition 5 can be generalized to include different order
boundaries.

Proposition 6: The m-order-boundary of symmetric difference
of two diagonal shapes sharing the same diagonal space is the
symmetric difference of their m-order boundaries, or bm(a ⊕
b) = bm(a) ⊕ bm(b), where a, b ∈ Uii, and m ∈ {0, 1, … i} (see
page 9 (left column) of the proof).

The corollary below extends proposition 6 to nondiagonal
shapes of a certain kind.

Corollary: Let shapes a, b ∈ Uij be m-order boundaries of diag-
onal shapes from Ujj, where 1≤ i < j and m = j – i, then b(a ⊕ b)
= b(a) ⊕ b(b) holds.

Proof: Let a = bm(a′) and b = bm(b′) so that a ⊕ b = bm(a′) ⊕
bm(b′) = bm(a′⊕ b′) in accordance with proposition 6. Now, b(a
⊕ b) = b(bm(a′⊕ b′)) = bm + 1(a′⊕ b′) = bm+1(a′) ⊕ bm+1(b′) =
b(bm(a′)) ⊕ b(bm(b′)) = b(a) ⊕ b(b) in accordance with proposi-
tion 6 and the definition of m-order boundaries.

Propositions and the corollary above are global in nature as
they consider shapes of certain kinds without considering their
spatial relations. Sharper results could be achieved by considering
some local properties. For example, the corollary of proposition 6
is sharpened by the proposition below (which is given without the
proof).

Proposition 7: Let the product of shapes a, b ∈ Uij be the
m-order-boundary of a diagonal shape from Ujj, where 1≤ i < j
and m = j – i, then b(a ⊕ b) = b(a) ⊕ b(b) holds.

Algebras of shapes

Algebras of shapes (Stiny, 1991, 1992) provide the framework for
calculations with shapes. They are formalizing the design practice
by modeling what designers do when they design. The process of
drawing, outlining, or erasing shapes is handled well with the
Boolean operations above. Designers also move, scale, and other-
wise transform shapes in order to achieve different spatial rela-
tions. This cannot be modeled with Boolean operations. For
that Uij must be closed under similarity transformations. The lat-
ter form an algebra of their own: a group. An algebra for shapes
must include both a Boolean lattice and a group.

Two-sorted algebras of shapes

An algebra of shapes should have a Boolean part to handle the
structures of shapes and a group part to deal with their symme-
tries (Krstic, 1999, 2014).

The Boolean part has set Uij of shapes, occupying a finite
chunk of space, which together with Boolean operations forms
a relatively complemented distributive lattice with the least ele-
ment, but without the greatest one. Such a structure is due to
its Boolean properties also known as Generalized Boolean
Algebra (Birkhoff, 1993).

The group part has set Tij of similarity transformations that can
act on i-dimensional shapes defined in a j-dimensional space. Set
Tij is closed under group operations of composition °, inverse −1,
and identity ι, to form group Tij. This structure allows for calcu-
lating with transformations. For example, simple transformations
could be combined to create more complex ones, or an inverse of
a transformation could be created to undo an erroneous move.

Boolean and group parts are connected via the operation of
group action (): Tij ×Uij→Uij where shape a is acted upon by
transformation t to produce the transformed shape t(a).

Note that Tij need not be the similarity group of transforma-
tions. It could be any group that can act on shapes like the
rigid body, Euclidean, affine, or some subgroups of these, or
even some unusual ones as a group with shapes as elements
(Krstic, 1999).

Boolean and group parts are combined in a two-sorted algebra
Uij with carrier {Uij, Tij} having elements of two different sorts –
shapes and transformations – and signature {⋅, +, c, ⊕, °, −1, ι, ()}
with Boolean and group operations as well as the group action.
Algebras Uij are enumerated and sorted in Table 2 based on the
dimensionality of geometric elements making their shapes (i)
and the dimensionality of the space the latter are defined in
( j). The table resembles Table 1 of geometric elements. For exam-
ple, algebras with shapes defined in the minimum space of their
geometric elements appear on the diagonal of the table, the
same way the elements appeared in the previous table. The geo-
metric elements were diagonal, and the algebras are diagonal
operating on diagonal shapes in diagonal spaces.

As mentioned earlier, a shape has to be confined to a finite
chunk of space and the same requirement holds for set Uij of
shapes. Although infinite distances are common in mathematics,
they do not appear in nature so that these constraints seem
unnecessary. However, there are some methods of 3D object rep-
resentation that include infinite distances.

Fig. 7. Calculations with shapes and boundaries: two shapes (a), the boundary of
their sum (b), and the sum of their boundaries (c); shapes (d) with their boundaries
(e) have symmetric difference (f) with boundary (g).
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For example, the drawing in Figure 8 includes lines in the
plane which should belong to a U12 algebra so that triangle
ΔABC is a shape – an element of U12. There are also (labeled)
points A, B, and C which are shapes in a U02 algebra and so is
their sum. In contrast, the drawing can be seen as a perspective
representation of a cube. As such it belongs to a U12 algebra
which is now closed under projective transformations in place
of the similarity ones. Triangle ΔABC is not a shape in this
new algebra. Its sides AC and BC are infinite in length because
point C is a vanishing point at infinity for a pencil of parallel
lines. Points A, B, and C are now shapes in a U02 algebra closed
under projective transformations. However, their sum is not a
shape because it has three points as maximal elements where
one is infinitely distanced from the other two. So, it seems that
the finite chunk containment requirement should stay after all.

Combining algebras of shapes

Shapes in practice often come as compound, having geometric
elements of different kinds like the shape in Figure 9a, which
has four lines and a planar segment. The lines belong to U12

while the planar segment belongs to U22 so that the shape must
belong to a combination of the two algebras. A standard algebraic
combination is the direct product of component algebras which
have the same signatures. Direct product U12 ×U22 of U12 and
U22 is a two-sorted algebra of compound shapes with carrier
{U12 ×U22, T12 × T22}, which is the Cartesian product of the com-
ponent carriers and operations defined componentwise. Shape (a)
is represented by the ordered pair (b) where the first element is in
U12 and the second in U22. The componentwise symmetric differ-
ence of two compound shapes (a, u), (b, v) ∈ U12 ×U22 is (a, u)
⊕ (b, v) = (a ⊕ b, u ⊕ v) with an example of such calculations
depicted in Figure 9c.

Likewise, the action of compound transformation (t1, t2) ∈
T12 × T22 on compound shape (a, b) ∈ U12 ×U22 is (t1, t2)((a,
b)) = (t1(a), t2(b)) ∈ U12 ×U22.

For example, the clockface in Figure 10a showing 9:00 is
defined in U12 ×U22. It shows 9:15 (b) after the action of transfor-
mation (rot(−90°), rot(−90/12 =−7.5°)) ∈ T12 × T22, where rot(x)
is the rotation of x degrees around the origin.

Another combination of algebras is their sum. Unlike direct
product, which is in the domain of universal algebra, sum is par-
ticular to algebras of shapes (Krstic, 1999, 2014). It is based on a
subdirect product, that is, a subalgebra of a direct product that
enumerates all elements of the component algebras, but not all
of their combinations. The sum of two shape algebras is a subdir-
ect product that enumerates all shapes of the component algebras
as well as all their combinations but allows only combinations of
equal transformations. Sum does not restrict the Boolean part but
requires for all components of compound shapes to be trans-
formed in the same way. This preserves the integrity of compound

shapes in calculations. For example, the compound shape in
Figure 10c could be rotated in the direct product algebra so that
its boundary is off (d) however, this cannot happen with the
sum of algebras where both the shape and its boundary are
rotated in the same way (e).

Decomposing algebras of shapes

As previously shown, occupying the same diagonal space is the
necessary condition for two geometric elements to be able to spa-
tially interact. However, they must overlap or at least touch for
their interaction to result in new geometric elements. All shapes
in a diagonal algebra share the same diagonal space as, for exam-
ple, the two lines in Figure 11a, which are singleton shapes from
U11. The sum of the lines is a spatial calculation as it results in a
longer line (b). In contrast, two singleton shapes (c) defined in
U12 have sum (d) which is their set union. This is a nonspatial
calculation with no new geometric elements produced.
Calculations are usually combinations of the spatial and nonspa-
tial ones. For example, the shape in Figure 12a, defined in U12, is
the sum of shapes (b). This calculation has a spatial part (c) and a
nonspatial one (d). Note that + from U12 acts as sum from U11 in

Table 2. Algebras Uij enumerated and sorted based on the dimensionality of
geometric elements making their shapes (i) and the dimensionality of the
space the latter are defined in ( j)

U00 U01 U02 U03

U11 U12 U13

U22 U23

U33

Fig. 8. Perspective drawing of a cube.

Fig. 9. Compound shapes: shape (a) with linear rectangle and a planar segment rep-
resented by ordered pair (b) with first element belonging to U12 and to U22.

Fig. 10. Compound algebras: clockface (a) defined in U12 × U22 is showing 9:00; it
shows 9:15 (b) when transformed by (rot(−90°), rot(−7.5°)) ∈ T12 × T22; shape (c)
rotated in a direct product algebra (d) and in a sum of algebras (e).
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the spatial part of the calculation and as set union in the nonspa-
tial part. This means that instead of calculating with shapes in U12

we may calculate with their parts in diagonal algebras U11 and
take the union of the results of these calculations. To take this
further, we need to utilize special types of shape decompositions.

Natural and diagonal decompositions of shapes

A shape could be decomposed into shapes that are its parts. Given
shape a, set A of its parts is a decomposition of a if it is finite and
sums up to a, or ΣA = a. Set A is a discrete decomposition of a if
for each x, y ∈ A and x ≠ y, x⋅y = 0. There is a unique discrete
decomposition of each shape that stems from the shape
definition.

The natural decomposition of shape a ∈ Uij is set na with ele-
ments that are singleton shapes of maximal geometric elements
which define a, or na = {{x}| x ∈ a}. For example, the shape in
Figure 13a has natural decomposition (b). Each shape has its
unique natural decomposition. Because shapes which are ele-
ments of the decomposition are incomparable, their sum and
union are equal, or Σna = ∪na = a.

Each element of a natural decomposition is singleton shape, so
its minimum space is a diagonal one. Two shapes belonging to the
same algebra may have natural decompositions such that an ele-
ment of one decomposition shares diagonal space with an ele-
ment belonging to a different one. There could be several such
pairs of elements. If the two shapes are arguments of some calcu-
lation, then calculations with elements sharing the same diagonal
space could take place in the related diagonal algebra. This opens
interesting possibilities, however, not without a problem. There is
no guarantee for two elements of the same natural decomposition
to be in different diagonal spaces. Fortunately, there is another
discrete decomposition related to the natural one, which over-
comes this problem.

The diagonal decomposition of a shape is a discrete decompo-
sition in which each element is a diagonal shape and no two ele-
ments share the same diagonal space. The decomposition in
Figure 13b is both natural and diagonal. In contrast, shape (c)
has decompositions (d) and (e) as natural and diagonal, respec-
tively.6 Note that the last two shapes in the natural decomposition
share the same diagonal space so they are replaced with their sum
in the diagonal one. Going the other way, each nonsingleton
shape of a diagonal decomposition should be replaced with its
natural decomposition to get the natural decomposition of the
original shape. Like natural decompositions diagonal ones are

unique and also like natural decompositions they sum in a non-
spatial way: Σda = ∪da = a. Let na and da be the respective natural
and diagonal decompositions of shape a, then na≤ da and card
(da)≤ card(na).

7

Now, we are in a position to break calculations with shapes
into partial calculations carried on in diagonal algebras defined
by the diagonal decompositions of the argument shapes. Let da
and db be the respective diagonal decomposition of shapes a
and b from Uij, and let shapes x ∈ da and y ∈ db share the
same diagonal space. That is to say that set {x, y} is diagonal,
or ordered pair (a, b) is diagonal, or shapes x and y are
co-diagonal. Partial calculation x * y, where * stands for ⋅, +, −,
or ⊕, could be carried on in Uij, but also in a diagonal algebra
Uii defined in the space that x and y share. Different such pairs
may exist and for each of them the above partial calculation is car-
ried on in an appropriate diagonal algebra. The same could be
extended to elements that could not be paired by simply pairing
them with appropriate empty shapes. Finally, the union of the
results of such partial calculations is equal to a * b. So instead
of doing a calculation in Uij we did several simpler calculations
in different Uii algebras.

For example, the calculation in Figure 14 carried out in U12

can also be done in six diagonal algebras U11 by using diagonal
decompositions of the argument shapes, as shown in Table 3.

Shapes which are arguments of the calculation in U12, as well
as their diagonal decompositions spanning U11 algebras, are
shown in rows 3 and 4 of the table. Each diagonal decomposition
spans four diagonal algebras and both decompositions span six
algebras. The resulting shape of the calculation appears in the bot-
tom row together with its decomposition which has nonzero ele-
ments in all six diagonal algebras. Calculations in (U11)2 and
(U11)4, where decompositions of both argument shapes have non-
zero elements, are spatial: they result in new shapes. The calcula-
tions in the rest of the algebras are nonspatial with the nonzero
argument as the result. Note that the decomposition of the result-
ing shape is also diagonal.

Because diagonal decompositions are unique, we may intro-
duce operator d: Uij→℘(Uij) that takes a shape to its diagonal
decomposition, or d(a) = da. The calculation above exposed an
interesting property of diagonal decompositions, d(a + b) = d(a)
+ d(b), where + on the right side is carried out componentwise.
This remains true for other Boolean operators (⋅, −, ⊕), which
gives rise to an algebra of diagonal decompositions.

Fig. 11. Two lines (a) defined in U11 and their sum (b); two lines (c) defined in U12 and
their sum (d).

Fig. 12. Spatial and nonspatial: shape (a) is the sum of shapes (b); this calculation
has a spatial part (c) and a nonspatial one (d).

6Note that we use brackets around individual geometric elements to distinguish
between geometric elements and singleton shapes. When a shape has two or more ele-
ments, we do not need brackets as it is clearly a shape. For the lack of space, brackets
are omitted in tables as well.

7Given two decompositions a and b, relation a ≤ b holds if for every x ∈ a there is y ∈
b such that x≤ y and for every y ∈ b there is x ∈ a such that x≤ y (Krstic, 2005).
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Algebras of diagonal decompositions of shapes

The uniqueness of diagonal decompositions – that is, their 1-1
relation to shapes – as well as the expressions like the one
above render an algebra of diagonal decompositions isomorphic
to an appropriate algebra of shapes. This is expressed by commu-
tative diagram Uij d�< Xij, where Xij is an algebra of diagonal
decompositions of shapes from Uij.

Table 3 may provide some guidance on how to do Boolean
operations in Xij.

Let two shapes a and b defined in Uij be arguments of calcula-
tion a * b = c, where * stands for ⋅, +, −, or ⊕. To do the calcula-
tion with diagonal decompositions in place of shapes, we may use
the following procedure.

Procedure 3:

1. Define diagonal decompositions of Uij implied by d(a) and d
(b), that is, A = {Uii | x ∈ d(a), x ∈ Uii} and B = {Uii | x ∈ d
(b), x ∈ Uii}.

2. Calculate sets of diagonal algebras which are in B but not in A
or in A but not in B, that is,. A′ = B\A and B′ = A\B.

3. Augment decompositions d(a) and d(b) with empty shapes of
algebras from sets A′ and B′, that is, d(a)′ = d(a) ∪ {0 ∈
Uii | Uii ∈ A′} and d(b)′ = d(b) ∪ {0 ∈ Uii | Uii ∈ B′} so that
card(d(a)′) = card(d(b)′).

4. Calculate d(c)′ = {x * y | x ∈ d(a)′, y ∈ d(b)′, x, y ∈ Uii, Uii ∈
A ∪ B}.

5. Finally calculate d(c) = {x ∈ d(c)′ | x ≠ 0}.

Because a Uij algebra includes transformations, one would
expect that a related algebra of diagonal decompositions includes
them as well. However, it only handles the Boolean part while
leaving the transformations to Uij. Diagonal decompositions
and their algebras streamline spatial calculations with shapes by
breaking them down into simpler calculations with parts of the
shapes. The latter calculations are independent with respect to
one another and could be done in parallel. The same approach
may be used for checking the partial order among shapes by com-
parison of their parts done in parallel. A diagonal decomposition
could easily be turned into the related natural decomposition –
which is the standard maximal representation of a shape – and
vice versa.

To showcase the utility of diagonal decompositions, we will use
them to provide a rather elegant proof of proposition 6 – which
has been left unproven on page 6 (left column).

Proof of Proposition 6: We will prove by induction on m valid-
ity of bm(a ⊕ b) = bm(a) ⊕ bm(b), where a, b ∈ Uii and m ∈ {0, 1,
… i}. It trivially holds for m = 0 stating that a ⊕ b = a ⊕ b.

Assuming that it holds for n, 1≤ n <m, we have to prove that it
holds for n + 1. Because it holds for n, d(bn(a ⊕ b)) = d(bn(a))
⊕ d(bn(b)) also holds. Now, let elements xa⊕b ∈ d(bn(a⊕b)), xa
∈ d(bn(a)), and xb ∈ d(bn(b)) of diagonal decompositions belong
to the same diagonal algebra Ui−n i−n. Because these are diagonal
shapes (*) b(xa⊕b) = b(xa) ⊕ b(xb) holds by proposition
5. Identities (*) hold for every diagonal algebra induced by the
above diagonal decompositions. By summing all of these identi-
ties, we get (**) b(bn(a⊕b)) = b(bn(a)) ⊕ b(bn(b)) in accordance
with the definition of shape boundaries. Identity (**) is bn+1(a
⊕ b) = bn+1(a) ⊕ bn+1(b) by the definition of m-order boundaries
which completes the proof.

With the aid of diagonal decompositions, we were able to
break the problem into smaller chunks for which proposition 5
holds and get the result by summing them back to shapes.

Direct sum representation of an algebra of shapes

In the calculations above – as specified by procedure 3, algebra Uij

is de facto decomposed into a finite set of different diagonal alge-
bras Uii each of which is tasked with a partial calculation. The
union of the partial results is the final one. Each diagonal decom-
position of a shape defined in algebra Uij induces the decomposi-
tion of Uij into a set of diagonal algebras Uii. The decomposition
is relative to the shape as it is induced by the shape’s diagonal
decomposition which is unique. Thus, for each shape a ∈ Uij,
there is the diagonal decomposition of Uij relative to a denoted
by dij(a). However, many shapes could have the same diagonal
decompositions of Uij. Let a, b, c ∈ Uij such that a and b are argu-
ments and c is the result of a calculation carried out in Uij, then
the decomposition relative to the calculation is dij(a) ∪ dij(b)
while the decomposition related to the result of the calculation
or dij(c) can be any subset of dij(a) ∪ dij(b) including the
empty one.

For example, decompositions of algebra U12 relative to shapes
in the calculation in Figure 11f are {(U11)1, (U11)2, (U11)3, (U11)4}
and {(U11)2, (U11)4, (U11)5, (U11)6} for arguments and {(U11)1,
(U11)2, (U11)3, (U11)4, (U11)5, (U11)6} for the result – as shown
in Table 3. The resulting decomposition is, in this case, the
union of the argument ones, which is also the decomposition rel-
ative to the calculation itself.

Algebras of diagonal decompositions as they are defined so far
are good enough for practical applications, however, to make
them formally sound we need some more work.

For each calculation, Uij is decomposed into a finite set of Uii

algebras which are considered components so that calculations
are done componentwise. The pool of possible Uii algebras is
infinite for all algebras with i < j. For diagonal algebras (i = j ),
it is a one-member family: the algebra itself. The pool of alge-
bras is represented by the family (Uii)k∈S, where S is an infinite
indexing set.

For example, a U12 algebra, with elements which are line seg-
ments in a plane has pool (U11)k∈S which is the set of diagonal

Fig. 13. Natural and diagonal decompositions: shape (a) and its
natural decomposition (b); shape (c) and its natural (d) and diag-
onal (e) decompositions.

Fig. 14. Calculation carried out in U12.
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algebras manipulating line segments on infinite lines coincident
with that plane. Note that not all U11 algebras are elements of
(U11)k∈S but only those whose spaces are coincident with the
space of U12.

Diagonal algebra Uii is coincident with a Uij algebra if its space
is coincident with that of Uij.

We can construct a direct product algebra from the diagonal
algebras of (Uii)k∈S:

Q =
∏

k[S
(Uii)k.

Because S is an infinite set, Q is an infinite direct product with
elements which are infinite tuples containing one element from
each of the component diagonal algebras. Tuples with all but
finitely many elements being 0 correspond to the diagonal
decompositions of shapes. For example, the tuple corresponding
to d(a), a ∈ Uij, will have shapes from d(a) at positions corre-
sponding to diagonal algebras from dij(a) and empty shapes else-
where. Such tuples form an infinite direct sum algebra8 which is
isomorphic to Uij.

Proposition 8: Every Uij algebra is isomorphic to the direct sum
of diagonal algebras Uii which are coincident with Uij, or

Uij = ⊕k[S(Uii)k,

where the identity above holds up to isomorphism. Note that
symbol ⊕ above denotes direct sum, however, it stands for sym-
metric difference everywhere else in the text.

The proposition above describes the diagonal decomposition
of Uij which could also be seen as its direct sum representation.
Note that infinite tuples are more elegant representations of
shapes than diagonal decompositions. They both do the same
job when calculating with shapes, however, the former do it in
the standard componentwise way while the latter rely on a pro-
prietary procedure (procedure 3). For i < j, we have an infinite
direct sum, while for i = j, we have one component direct sum
which is the original diagonal algebra with a twist: its elements
are singletons containing shapes.

Like Uij the direct sum algebra is closed under similarity trans-
formations. These involve spatial transformations carried out in
diagonal algebras as well as (nonspatial) permutations of index
set S.

Calculating with shapes and their boundaries

Proposition 5 opens the possibility for calculating with both
shapes and their boundaries in parallel. This could be done in
the framework of direct product algebra Uii ×Ui−1i, however,
some smaller algebras may provide a better fit. First, both shapes
and their boundaries should be transformed in the same way so
that (t, t) are the only ordered pairs of transformations allowed.
Second, not all shapes from Ui−1i are boundaries of the shapes
from Uii. A line in U12 is not the boundary of any plane in
U22. Consequently, the set of boundaries of shapes from Uii is a
proper subset of Ui−1i or b(Uii) ⊂ Ui−1i. According to proposition
5, set b(Uii) is closed under symmetric difference and could be
elevated to an algebra Bi of boundaries of shapes from Uii.
Now, a subdirect product UBi ⊂ Uii × Bi operating on compound
shapes where shapes from Uii are matched with their boundaries
from Bi, or UBi = {(x, b(x)) | x ∈ Uii, b(x) ∈ Bi}, i = 1, 2, or 3, pro-
vides an economical framework for parallel calculations with
shapes and their boundaries. Calculations in UBi are carried out
componentwise, or (a, b(a)) ⊕ (b, b(b)) = (a ⊕ b, b(a) ⊕ b(b)),
where (a, b(a)), (b, b(b)) ∈ UBi. For example, the calculation in
Figure 9c, when carried out in UB2, accounts for both planar
shapes and their linear boundaries. The new algebra is weaker
than the standard algebras of shapes. It has only one operation
– symmetric difference – and works with only one kind of
shape – diagonal shapes. Symmetric difference is not that limited
as it may act as the sum or as the difference depending on the con-
text. For example, a ⊕ b = a + b if a⋅b = 0, a ⊕ b = a – b if a≤ b,
and a ⊕ b = b – a if b≤ a. Calculations defining a shape grammar
rule application depend on both sum and difference. Certain types
of grammars like subtractive and collision-protecting ones provide
the right context for symmetric difference to play both roles.
Algebras UBi are therefore the right framework for such grammars
to simultaneously generate shapes and their boundaries.

Boundary-paired diagonal decompositions and their algebras

So far, we have been following Krstic (2001) in developing UBi

algebras, but will now use devices developed in this paper to lift
the restriction of UBi algebras to diagonal shapes.

First, the corollary of proposition 6 and proposition 7 allow for
the immediate extension of proposition 5 to shapes which need
not be diagonal, but either they or their products are m-order
boundaries of diagonal shapes. Further extension – to (all) shapes
– may be achieved via diagonal decompositions.

Unlike Bi set Bij ⊂ Ui−1j of boundaries of shapes from Uij can-
not be elevated to an algebra. Instead, we approximate shapes
from Uij with a special kind of diagonal decomposition.

Table 3. Example, of a calculation with shapes carried out in U12 and also with diagonal decompositions of the argument shapes carried out in six diagonal algebras U11

8Infinite direct sums are algebraic constructs similar to infinite direct products except
that their tuples are restricted to having only finitely many nonzero elements, where
tuples of direct products have no such restriction. Finite direct sums are the same as direct
products.
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The boundary-paired or b-paired diagonal decomposition of a
shape is the diagonal decomposition in which every element is
paired with its boundary. Because both the diagonal decomposi-
tion and boundary are unique for a shape so is its b-paired diag-
onal decomposition. Thus, we may introduce operator d′: Uij→℘
(Uij ×Ui−1j) which takes a shape from Uij to its b-paired diagonal
decomposition. Operator d′ is defined as d′(a) = {(x, b(x))| x∈d
(a)}, a∈Uij. To go the other way, from b-paired diagonal decom-
positions to shapes and their boundaries, we make use of projec-
tion operators pru(d′(a)) = {x| (x, y)∈d′(a)} and prb(d′(a)) = {y| (x,
y)∈d′(a)} so that a = ∪[ pru(d′(a))] and b(a) = Σ[ prb(d′(a))],
where a∈Uij and b(a)∈Ui−1j. Like diagonal decompositions the
b-paired ones form algebra UBij, however, this one has only
one operation: symmetric difference ⊕. Like algebras for diagonal
decompositions, UBij algebras handle only the Boolean part while
leaving the transformations to Uij.

Proposition 9: Let d′(a) and d′(b) be b-paired diagonal decom-
positions of shapes a, b∈Uij. The following holds:

(1) Each element (x, b(x))∈d′(a) is an element of some UBi

algebra.
(2) b-paired diagonal decompositions are closed under sym-

metric difference, or d′(a⊕ b) = d′(a)⊕ d′(b), and form alge-
bra UBij.

Proof: If (x, b(x))∈d′(a), then x∈d(a) so that x∈Uii, for some
Uii, therefore, (x, b(x))∈UBi, which proves (1). (2) follows from
(1), the fact that d(a ⊕ b) = d(a) ⊕ d(b), and proposition 5,
that is, b(a ⊕ b) = b(a) ⊕ b(b).

It follows from (1) that d′(a) implicitly defines a set A of UBi

algebras to which its elements belong, or A = {UBi | x∈d′(a),
x∈UBi}. Consequently, calculation d′(c) = d′(a) ⊕ d′(b) can be
compartmentalized and carried on in parallel via a procedure
not unlike the one for diagonal decompositions.

Procedure 4:

1. Define sets A and B of UBi algebras to which elements of d′(a)
and d′(b) respectively belong, as well as their relative comple-
ments A′ = B\A and B′ = A\B.

2. Augment decompositions d′(a) and d′(b) with empty shapes of
algebras from sets A′ and B′, that is, d′(a)′ = d′(a) ∪ {(0,
0)∈UBi | UBi∈A′} and d′(b)′ = d′(b) ∪ {(0, 0)∈UBi | UBi∈B′}.

3. Calculate d′(c)′ = {(x ⊕ u, y ⊕ v)|(x, y)∈ d′(a)′, (u, v)∈ d′(b)′,
(x, y), (u, v)∈UBi, UBi∈A ∪ B}.

4. Finally, calculate d′(c) = {(x, y) ∈ d′(c)′ | x ≠ 0, y ≠ 0}.

For example, Figure 15a depicts a calculation carried on in a
U23 algebra – where symmetric difference of a “smaller-than”
and “greater-than” shape results in an “X” shape. Table 4 shows
how the same calculation looks when done with b-paired diagonal

decompositions in place of the shapes. Argument shapes, their
boundaries, and their b-paired diagonal decompositions are in
the third and fourth rows of the table while resulting shape, its
boundary, and its b-paired diagonal decomposition occupy the
fifth row.

The resulting “X” shape is obtained from its decomposition via
nonspatial calculation (b). In contrast, spatial calculation (c) pro-
duces the boundary of “X”. Note that the original calculation (d)
carried on in a U13 algebra results in an incomplete boundary of
“X”.

Generalization of UBi and UBij algebras

Based on proposition 6, we may extend b-paired diagonal decom-
positions to include m-order boundaries so that UBi and UBij

algebras could manipulate multiple representations of shapes in
parallel.

For example, the sequence of four shapes in Figure 6c may be
seen as a solid cube represented by its faces, its edges, and its ver-
tices. It could also be seen as a sequence of m-order boundaries
b0(a), b1(a), b2(a), b3(a), where a is a solid cube belonging to a
U33 algebra. Let b be another shape, say another cube, from
U33, then in accordance with proposition 6 and definition of ⊕
the following holds:

bm(a + b) = bm(a) ⊕ bm(b), for a⋅b = 0,
bm(a – b) = bm(a) ⊕ bm(b), for b≤ a,
bm(b – a) = bm(a) ⊕ bm(b), for a≤ b,
bm(a ⊕ b) = bm(a) ⊕ bm(b), otherwise,

where m ∈ {0, 1, 2, 3}.9 This means that we can meaningfully
calculate with shapes while simultaneously accounting for their
different representations. Algebras UBi and UBij could be
extended to their respective generalized versions UB′

i and
UB′

ij, to provide a framework for such calculations.
Elements of a UB′

i algebra are n-tuples (bk1(a), bk2(a), …
bkn(a)) where k1 = 0 < k2 <⋯ < kn≤ i, and 1≤ n≤ i + 1. The first
element of the n-tuple is the shape itself (b0(a) = a) followed by
an ordered – not necessarily complete – sequence of m-order
boundaries. For example, the cube in Figure 6c may be repre-
sented by triplet (b0(a), b2(a), b3(a)), that is, by itself, its edges
and its vertices. Algebras UB′

i are generalizations of both UBi

and Uii algebras in the sense that for n = 2 and k2 = 1, UB′
i

becomes UBi, and for n = 1, it becomes Uii. Calculations in
UB′

i are done componentwise as in UBi except that the number
of components may be different.

Algebras UBij can be generalized in a straightforward fashion.
Because their elements are b-paired decompositions with

Fig. 15. Calculation in U23 algebra (a); the resulting shape
obtained from its decomposition by a nonspatial calculation
(b) and its boundary by a spatial calculation (c); calculation
carried out in U13 yields an incomplete boundary (d).

9Note that for m = 0, the statements account for the definition of ⊕.
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components belonging to different UBi algebras by replacing the
latter with UB′

i algebras, we get UB′
ij ones. Again, for n = 2 and

k2 = 1, UB′
ij becomes UBij, and for n = 1, it becomes Uij.

Conclusion

Throughout the paper, we dealt with mathematics arising in the con-
text of shape grammars theory. The latter started in the early 1970s
with the introduction of shape grammars, as production systems
capable of generating shapes, and evolved over the period of half a cen-
tury into a formal design theory in which we analyze by seeing and
calculate by drawing. We focused on algebras of shapes and particu-
larly on their two-sorted version. In going from geometric elements
and their partial algebras to shapes and their algebras, we followed
Krstic (1999) while introducing some improvements along the way
like the two procedures for shape operations + and− based on partial
operations for geometric elements.

We examined spatial and nonspatial calculations with shapes
with an eye toward separating them. However, only geometric ele-
ments are combined in a purely spatial fashion. The closest the
shapes get to this is when they belong to diagonal algebras.
Diagonal decompositions are introduced to partition shapes so
that each element of a decomposition belongs to a different diag-
onal algebra – implying a co-diagonal equivalence relation. This
way all spatial calculations take place in diagonal algebras and
may be done in parallel. The resulting diagonal decompositions
are turned into shapes via simple nonspatial operations.
Although this approach may be novel from the theoretical point
of view the same notions have a long history. Forty years ago,
Krishnamurti (1980) used the collinearity relation to partition lin-
ear shapes in the same way the diagonal decompositions do. He
later extended it to shapes of higher dimension via the
co-descriptor relation (Krishnamurti, 1992). Stiny (2006,
pp. 202–204) got the same result with the coembeddedness
equivalence relation and noted that such partitioning “is a nice
way to store maximal elements in a computer”.

Boundaries of shapes were investigated and m-order boundaries
introduced as consequences of recursive applications of the bound-
ary operator. Proposition 5 is generalized to m-order boundaries
and some other propositions related to standard boundaries
stemmed from this generalization. Parallel computations with
shapes and their boundaries are extended from diagonal shapes
to (all) shapes. This required the introduction of b-paired diagonal
decompositions of shapes as well as their algebras. Stiny (2006,

pp. 202–204) does similar calculations with shape boundaries by
breaking shapes into parts for which proposition 5 holds.

Because only one operation is available when calculating with
shapes and their boundaries, special kinds of shape grammars are
needed. Two such grammars were mentioned here, and more are
given in Krstic (2001, 2019). Finally, in order to calculate with
multiple shape representations in parallel, b-paired diagonal
decompositions are extended to include m-order boundaries.

We have seen that the co-descriptor, coembeddedness and
co-diagonal relations are equivalent for all practical purposes,
however, there are subtle (theoretical) differences between them.
The first two are defined for geometric elements and are based
on the embedding (≤), where the last one is the property of
shapes based on common set membership (∈). The co-descriptor
relation requires infinite geometric elements (descriptors) to
embed the finite ones. This does not prevent the two co-elements
from being infinite distance apart thus not confined to the finite
chunk of space. The coembeddedness avoids this by requiring
finite elements to be embedded in the common finite element.
The co-descriptor and coembeddedness relations are introduced
to aid the practical calculations with shapes where the co-diagonal
relation is more geared to the advancement of the theory. Notions
related to diagonal decompositions and their algebras, when
pushed further yield some insights into the structure of algebras
of shapes that emerge as infinite direct sums of diagonal algebras.
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