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We present a study of absolute and convective instabilities in electrohydrodynamic
flow subjected to a Poiseuille flow (EHD-Poiseuille). The electric field is imposed
on two infinite flat plates filled with a non-conducting dielectric fluid with unipolar
ion injection. Mathematically, the dispersion relation of the linearised problem is
studied based on the asymptotic response of an impulse disturbance imposed on the
base EHD-Poiseuille flow. Transverse, longitudinal and oblique rolls are investigated
to identify the saddle point satisfying the pinching condition in the corresponding
complex wavenumber space. It is found that when the ratio of Coulomb force to
viscous force increases, the transverse rolls can transit from convective instability to
absolute instability. The ratio of hydrodynamic mobility to electric mobility, which
exerts negligible effect on the linear stability criterion when the cross-flow is small,
has significant influence on the convective–absolute instability transition, especially
when the ratio is small. As we change the value of the mobility ratio, a saddle point
shift phenomenon occurs in the case of transverse rolls. The unstable longitudinal
rolls are convectively unstable as long as there is a cross-flow, a result which is
deduced from a one-mode Galerkin approximation. Longitudinal rolls have a larger
growth rate than transverse rolls except for a small cross-flow. Finally, regarding the
oblique rolls, a numerical search for the saddle point simultaneously in the complex
streamwise and transverse wavenumber spaces always yields an absolute transverse
wavenumber of zero, implying that oblique rolls give way to transverse rolls when
the flow is unstable.

Key words: absolute/convective instability, MHD and electrohydrodynamics

† Email address for correspondence: mpezmq@nus.edu.sg

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

95
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://orcid.org/0000-0003-0035-3116
http://orcid.org/0000-0002-3072-1648
http://orcid.org/0000-0002-8354-7129
mailto:mpezmq@nus.edu.sg
https://doi.org/10.1017/jfm.2018.958


Spatiotemporal stability analysis of electrohydrodynamic–Poiseuille flow 817

1. Introduction
1.1. Electrohydrodynamic flow

Studies on electrohydrodynamic flow (EHD) are concerned with the dual effects of
electrostatics and hydrodynamics, which are governed respectively by Maxwell’s
equations in the quasi-electrostatic limit and the Navier–Stokes equations, cf.
Castellanos (1998), Kikuchi (2001). There are mainly two ion creation mechanisms
in EHD, one being ion injection and the other being dissociation of chemical species
(in this paper, we focus on the first mechanism). EHD flow is not only of theoretical
interest with research topics including flow stability and turbulence (Castellanos 1998)
and dusty plasma and lightning modelling (Kikuchi 2001), but also has significant
industrial/commercial applications, such as EHD pumps (Stuetzer 1960; Melcher &
Firebaugh 1967; Darabi et al. 2002), micro-/nano-scale drug delivery (Chakraborty
et al. 2009), EHD heat enhancement (Allen & Karayiannis 1995), electrostatic
precipitators (White 1965) and charge injection atomisers (Shrimpton 2009).

Theoretically, the flow dynamics in EHD is complex and far from being fully
understood. Studying EHD flow can contribute to our current knowledge of complex
system. The experimental work by Malraison & Atten (1982) studied the turbulent
EHD flow subject to unipolar ion injection (such a flow is called electroconvection).
The authors observed that an exponential decay of the power spectral density was
found when the viscous force is dominant but a power-law decay was observed
when the inertial force is dominant. By high-pass filtering the intensity fluctuation of
the turbulent signal, they demonstrated that the exponential decay is related to the
burst of intermittency in the flow, consistent with the theoretical study by Frisch &
Morf (1981). Electroconvection has been often compared to the well-studied turbulent
natural convection. It has been demonstrated that in Rayleigh–Bénard convection
(RBC), the dimension of the corresponding strange attractor is approximately of
order 3 (experimental work by Dubois (1982) indicated a value of 2.8), while
Atten et al. (1984) showed that the turbulent EHD flow corresponds to a strange
attractor of very large or infinite order (Castellanos 1991). The flow instability
mechanism is also different in electroconvection and natural convection. It is well
known that the bifurcation mechanism in RBC under the Boussinesq approximation
is of a supercritical nature (Cross 1980), whereas electroconvection takes a subcritical
route (Atten & Lacroix 1979; Zhang 2016). This is partially because, in RBC,
molecular diffusion constitutes the principal dissipative mechanism, whereas in
EHD flow, it is the ion drift velocity that diffuses perturbations in the fluid with
a hysteresis loop (Atten & Lacroix 1974). Thus, there are many unique features
of EHD flow that await exploration in view of a dynamical system approach. As
another example, the interaction between longitudinal convection rolls and transverse
waves in RBC-Poiseuille flow under the Boussinesq approximation has long been
studied in terms of a supercritical–subcritical bifurcation (Fujimura & Kelly 1995).
Subcritical–subcritical interaction therefore cannot be discussed in this flow setting.
EHD-Poiseuille flow serves to provide one example of this type of interaction.

Studying the combined EHD-Poiseuille flow also bears practical purposes. In a
broad sense, we can investigate the interaction between EHD and shear and viscous
effects in this configuration. The electroviscous (EV) phenomenon, which refers to the
increase of apparent viscosity in bulk flow as a result of the electrostatic effect, has
been investigated in EHD-Poiseuille flow (Atten & Honda 1982) in order to decrease
the amplitude of undesirable vibration. The EV damper is more favourable than other
passive devices or active methods in cost, weight and size. Besides, EHD-Poiseuille
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flow (with corona discharge as the ion generation mechanism) can also be related to
the electrostatic precipitator or ESP (McCluskey & Atten 1984; Atten, McCluskey
& Lahjomri 1987), which is widely used in reducing industrial particulate emissions
(White 1965) and also recently finds applications in sampling for bioaerosols (Pardon
et al. 2015). The turbulence in ESP will influence the behaviour of charged particles
in the flow and is crucial to optimise precipitator efficiency. Finally, EHD can also
be studied in the light of turbulent flow control to investigate how the wall-bounded
shear flow can be manipulated by the electric field. It can be envisioned that the
electric field, by forming counter-rotating streamwise vortices, is able to reduce the
skin drag because the vortex can modify the turbulent structures in the near-wall
region (Schoppa & Hussain 1998). In a related context, the roll structures that appear
in EHD-Couette flow have been investigated by Kourmatzis & Shrimpton (2016) to
study the EHD in a shear flow, which has applications in electrostatic atomisation
and heat transfer enhancement.

In the following, we first review the relevant research works on EHD-Poiseuille flow
(mostly linear stability analyses), then discuss the concept of absolute and convective
instabilities and finally introduce the aim and structure of this paper.

Atten & Honda (1982) first conducted an experimental study on the EHD-Poiseuille
flow focusing on the EV effect. They found that the pressure drop in the flow subject
to an electric field can be 20 times higher than that without an electric field. They
attributed the increase to the electrically induced secondary motion. This implies
that the electric field can indeed dramatically change the flow characteristics of a
cross-flow. Castellanos & Agrait (1992) investigated the linear stability of EHD flow
in plane Poiseuille flow or Couette flow. They conducted an energy analysis of
the disturbances to explain the instability that arises from the electric or inertial
effect. It was found that EHD-Poiseuille flow is stabilised when the Reynolds
number (Re) is less than a certain value but destabilised at higher Re (Reynolds
number measures the amplitude of the Poiseuille flow). The transverse rolls are
stabilised when the ratio of hydrodynamic mobility to ion mobility M increases
(see § 2.2 below for its mathematical definition). Lara, Castellanos & Pontiga (1997)
found that when M is large, the charge field tends to be more fluctuating. Similar
to Castellanos & Agrait (1992), with increasing M, they also noticed the flow
stability in the range of 0 < Re < 100. By analysing the hydrodynamic energy of
a perturbation caused by an electric force via a method of stationary phase, the
authors demonstrated that, at the neutral curve, the critical stability parameter T
(which measures the relative importance of Coulomb force to viscous force) is
proportional to M, consistent with their numerical results. Recently, Zhang et al.
(2015) studied the linear stability analysis of EHD flow with and without Poiseuille
flow. This work performed a non-modal linear stability analysis (which calculates
the transient growth of disturbance energy, see Schmid 2007). In the part relating
to EHD-Poiseuille flow, it was confirmed that Poiseuille flow is destabilised by the
electric field. The transient growth in EHD-Poiseuille flow also becomes significantly
large with increasing strength of the electric field, implying that the electric field
destabilises the Poiseuille flow in a short time. Besides the linear stability analyses,
there were also works on nonlinear stability analyses (weakly nonlinear and energy
analyses) of EHD-Poiseuille flow, which are less relevant to this work. The interested
readers are referred to Félici (1971), Atten & Lacroix (1979), Richardson & Deo
(1986), Zhang (2016).
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1.2. Absolute and convective instabilities
The concept of absolute and convective instabilities is important in categorising
convective flow systems (Briggs 1964; Huerre & Monkewitz 1990; Chomaz 2005). It
is a general framework to address the linear instability development of a disturbance
in both space and time or wavelength and frequency. When an infinitesimal impulse
is imposed on a base flow, the flow system will undergo one of the three different
routes, i.e. being stable, convectively unstable or absolutely unstable. If the disturbance
decays with time at all spatial positions, the flow eventually returns to its undisturbed
state and the corresponding base flow is regarded as stable. The flow is referred to
as convectively unstable if the impulse disturbance grows within at least one moving
frame of reference, but decays locally where it is initially excited. In other words, the
disturbance is amplified along the spatial coordinate, a situation which necessitates a
spatial linear stability analysis. This type of flow, often referred to as a noise amplifier,
is extremely sensitive to externally imposed disturbance/forcing, and therefore will be
very hard to control/manipulate in a real situation. Finally, if the disturbance grows
with time at all spatial positions, the flow is then absolutely unstable. Accordingly,
a temporal linear stability analysis is more suitable in this case. Absolutely unstable
flow is often characterised by an inherent instability mechanism and is less dependent
on the external disturbance/forcing. In such flows, there is usually a specific spatial
region which acts as a ‘wavemaker’ associated with a preferred frequency. These
flows are conventionally called an oscillator.

The absolute and convective instabilities were first systematically studied by plasma
physicists (Briggs 1964; Bers 1983). In the field of hydrodynamic stability, extensive
studies have also been conducted. Gage & Reid (1968) examined the long-time
behaviour of the Green function in a thermally stratified plane Poiseuille flow. In
a series of papers by Gaster (1965, 1968, 1975, 1981), the disturbance growth in
both space and time was investigated. A very well received work in this field is
due to Huerre & Monkewitz (1985), who studied, by means of a steepest descent
method (Whitham 1974), the absolute and convective instabilities in free shear layers
formulated as a problem of estimating the asymptotic response of an impulse excited
on the base flow. They found that if the mixing layer is convectively unstable (the
velocity ratio in the free shear layer is smaller than a critical value Rt = 1.315), the
flow can only be marked by spatially growing waves, whereas, when the velocity ratio
is larger than Rt, the instability wave will develop temporally (absolutely unstable).
Later, the convective nature of Poiseuille flow was demonstrated by Deissler (1987).
When a convectively unstable system is superposed on an absolutely unstable system,
an interesting question arises as to where the border between absolute and convective
instabilities lies in the new system. This problem is important because, depending on
its convective (noise amplifier) or absolute (oscillator) nature, the unstable flow will
behave fundamentally differently and it will have a significant influence on deciding
the flow control strategy, as we have elaborated above.

This kind of study was exemplified by the superposed system of Poiseuille flow
and Rayleigh–Bénard convection under the Boussinesq assumption (Gage & Reid
1968; Müller, Lücke & Kamps 1992; Müller, Tveitereid & Trainoff 1993; Kelly 1994;
Tveitereid & Müller 1994; Carrière & Monkewitz 1999; Carrière, Monkewitz &
Martinand 2004; Grandjean & Monkewitz 2009). Rayleigh–Bénard convection (RBC)
is driven by a thermal gradient field across two infinite flat plates. The buoyancy
force drives the fluid to form convective motion. As a linear RBC can only support
stationary waves, the system is absolutely unstable whenever it is unstable. Once
RBC is superposed on a Poiseuille flow (RBP), the new system’s absolute/convective

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

95
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.958


820 F. Li, B.-F. Wang, Z.-H. Wan, J. Wu and M. Zhang

Potential
difference

Injector

E
V

y = 1

Ï = 1, Q = 1, U = 0

Ï = 0, ™Q/™y = 0, U = 0

y = -1

x
y

Collector

FIGURE 1. A two-dimensional schematic representation of EHD-Poiseuille flow.

instability border has to be pinned down in the parameter space spanned by the
Reynolds number Re (ratio of inertia to viscosity), Rayleigh number Ra (ratio of
buoyancy force to viscosity force) and Prandtl number Pr (ratio of viscous diffusion
to thermal diffusion). Carrière & Monkewitz (1999) addressed this problem with the
dispersion relation derived from the linearised Navier–Stokes equation and they found
that the convective–absolute transition in RBP always corresponds to transverse rolls
when the Rayleigh number exceeds a critical value. On the other hand, the system
remains convectively unstable with respect to longitudinal rolls for all non-zero Re.

1.3. Current work
We consider here a specific EHD configuration with unipolar injection in Poiseuille
flow (see figure 1) where the ions are injected from one of two infinite flat plates filled
with a non-conducting dielectric fluid and forced to move to the other plate under
the action of Coulomb force as a result of the imposed electric field. As EHD shares
commonalities with RBC, it also raises the question, similarly to RBP, regarding
where the border between the absolute and convective instabilities is once the EHD
is subjected to a cross-flow. Nevertheless, the absolute and convective instabilities
in EHD-Poiseuille flow have not been investigated so far. This piece of information
can be beneficial, e.g. in understanding the flow behaviour in ESP, thus improving
its particle collection efficiency. Because of the aforementioned scientific significance
and practical applications of EHD-Poiseuille flow, we are prompted to conduct such
a study to better understand it. We will analyse the dispersion relation of linearised
EHD-Poiseuille flow via a spatio-temporal linear stability analysis, a theory which is
based on the long-term asymptotic response of an impulse imposed on the base flow.
A careful search of the literature indicates that there is no experimental work designed
specifically for investigating the absolute and convective instabilities in EHD-Poiseuille
flow. Therefore, our theoretical results to be presented below may serve as a source
for comparison of future experimental works relevant to this specific problem.

Finally, we mention in passing that in a broader context of electrohydrodynamic
and electrokinetic flow, the absolute and convective instabilities of electrokinetic flow
with conductivity gradients have been studied by Chen et al. (2005). Their EHD flow
is different from what we consider here; the ion generation mechanism in their case is
due to the conductivity gradients based on the leaky dielectric model (Saville 1997).

The paper is organised as follows. In § 2, we present the theoretical model
of the electric field and hydrodynamic field and derive the linearised governing
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equations. The theoretical tool for studying absolute and convective instabilities
is then formulated following Huerre & Monkewitz (1985), Carrière & Monkewitz
(1999). In § 3, we delimit the convective/absolute instabilities border that is affected
by various non-dimensional parameters for transverse, longitudinal and oblique rolls
and provide physical interpretations of our findings. Finally, in § 4, we conclude the
paper by summarising the results.

2. Theoretical model and equations
2.1. Theoretical modelling

We consider the flow of an incompressible Newtonian viscous dielectric liquid
between two infinite planes, see figure 1. The Cartesian coordinate system (x, y, z)
is used to describe the problem, with x, y and z being streamwise, wall-normal and
transverse coordinates, respectively. The flow is maintained by a constant pressure
gradient in x direction. A direct-current (DC) electric voltage V0 is imposed across
the two plates. Meanwhile, charges of density Q0 are injected into the liquid from the
upper plane (injector). The flow is affected by the electric Coulomb force acting on
the charged ions. The Navier–Stokes equations in this scenario read (the superscript
∗ indicates a dimensional variable)

∇
∗
· u∗ = 0, (2.1)

ρ
∂u∗

∂t∗
+ ρ(u∗ · ∇∗)u∗ =−∇∗p∗ +µ∇∗2u∗ + q∗E∗, (2.2)

where u∗ is the velocity of the liquid (with streamwise velocity u∗, wall-normal
velocity v∗ and transverse velocity w∗), ρ is the density of the liquid, p∗ is the
pressure and µ is the dynamic viscosity of the liquid (assuming that the system is
isothermal and homogeneous). The last term in (2.2), q∗E∗, is the Coulomb force.
Since we consider a DC voltage and a constant electric permittivity, it is legitimate to
consider only the Coulomb force term, following Castellanos (1998), Kikuchi (2001)
or our previous work Zhang et al. (2015).

The dynamics of injected charged ions complies with Maxwell’s equations. We
consider dielectric liquids of low conductivity. These fluids can exhibit nonlinear
current–voltage characteristics (Atten & Honda 1982). The magnetic field and
Joule heating effect are neglected. The governing equations for the electric field
are Maxwell’s equations in the quasi-electrostatic limit (Castellanos 1998; Kikuchi
2001), i.e.

∇
∗
×E∗ = 0, (2.3)

∇
∗
·D∗ = q∗, (2.4)

∂q∗

∂t∗
+∇

∗
· j∗ = 0 with j∗ =KE∗q∗ + u∗q∗ −Dν∇

∗q∗, (2.5)

where E∗ is the electric field intensity, D∗= εE∗ the electric displacement vector with
ε being the electric permittivity of the liquid, q∗ the volume charge density, j∗ the
electric current density, K the ionic mobility, Dν the charge diffusion coefficient. Since
the electric field is irrotational (2.3), it is appropriate to introduce an electric potential
function φ∗, so that E∗ =−∇∗φ∗. From (2.4),

∇
∗2φ∗ =−

q∗

ε
. (2.6)

At the upper plane (injector) y∗= L and the lower plane (collector) y∗=−L, where
L is the half-distance between the two planes, the following boundary conditions
are imposed:
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(i) no-slip and no-penetration conditions for the velocity field, i.e. u∗|y∗=±L = 0;
(ii) Dirichlet conditions for the electric potential, i.e. φ∗|y∗=L = V0 and φ∗|y∗=−L = 0;

(iii) the charge density at the injector is constant and the y-direction gradient of the
charge density at the collector is zero, i.e. q∗|y∗=L=Q0 and ∂q∗/∂y∗|y∗=−L= 0, see
Pérez & Castellanos (1989).

2.2. Non-dimensionalisation

Choosing L, KV0/L (ion drift velocity), ρK2V2
0/L

2, V0, V0/L and Q0 as the
characteristic length, velocity, pressure, electric potential, electric field and charge
density, respectively, the equations governing the system are non-dimensionalised as
follows

∇ · u= 0, (2.7)
∂u
∂t
+ (u · ∇)u=−∇p+

M2

T
∇

2u+CM2qE, (2.8)

E=−∇φ, (2.9)
∇

2φ =−Cq, (2.10)
∂q
∂t
+∇ · [q(E+ u)] =

1
Fe
∇

2q, (2.11)

where the symbols without superscript * denote the corresponding dimensionless
variables. There are four dimensionless parameters appearing in the governing
equations:

(i) T = εV0/Kµ: the Taylor number measuring the relative importance of the
Coulomb force to the viscous force for a constant ion injection level;

(ii) C=Q0L2/εV0: the level of ion injection;
(iii) M =

√
ε/ρ/K: the ratio between hydrodynamic mobility and electrical mobility

of ions in the electric field (the drift velocity is KE);
(iv) Fe=KV0/Dν : the ratio of ion drift to charge diffusion in electric current.

The dimensionless boundary conditions are u|y=±1= 0, φ|y=1= 1, φ|y=−1= 0, q|y=1= 1
and ∂q/∂y|y=−1 = 0. There are certainly other possibilities for non-dimensionalisation;
for example, Lara et al. (1997) use the time and velocity scales of particle diffusion
to characterise their equations.

The base flow is sustained by a constant pressure gradient −dP/dx along the
streamwise direction. From the time-independent solution of the momentum equation
(2.8), which is subject to the no-slip boundary conditions, we have

U(y)=−
1
2

dP
dx

T
M2
(1− y2)=−

1
2

dP
dx

ReΓ (1− y2), (2.12)

where Re = U0L/ν is the Reynolds number accounting for the ratio between
inertia and viscosity (U0 is the characteristic velocity scale in the flow). The first
equation in (2.12) implies that solely modifying the strength of the electric field
(i.e. changing T) could change the base flow. This is inherently related to the way
we non-dimensionalise the system. It is more instructive to look at the second
equation, which makes Re explicit. There also appears a non-dimensional number
Γ = (T/M2)(1/Re)= KV0/U0L linking the ion drift to ion advection (in the absence
of a proper name, we call it Γ ), which has been discussed in Zhang et al. (2015).
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In most of the experiments involving a cross-flow, the common way of changing the
base flow is to modify the pressure gradient; whereas in micro-/nano-scale systems,
it is difficult to achieve this. The second expression indicates that one can modify
the ratio of ion drift to ion advection in order to realise the same goal. In this work,
we will change collectively the value of −(1/2)(dP/dx)ReΓ to see the influence
of the magnitude of the base cross-flow on the convective/absolute instability in
EHD-Poiseuille flow. For the ease of discussion, we will hereafter call this combined
non-dimensional number U , so the base flow becomes U(y)= U(1− y2).

The dimensionless differential equation for the base electric potential Φ(y) is

(D2Φ)2 +DΦD3Φ +
1
Fe

D4Φ = 0, (2.13)

with the boundary conditions Φ|y=1= 1, Φ|y=−1= 0, D2Φ|y=1=−C and D3Φ|y=−1= 0.
It is difficult to solve (2.13) analytically subject to these boundary conditions;
therefore, we use a numerical solver to obtain the base state of Φ∗ following Zhang
et al. (2015), Zhang (2016).

2.3. Linearisation
In the linear stability analysis, the physical quantities are decomposed into a basic
part and a perturbation part, i.e. u = U + u′, p = P + p′, E = E0 + E′, q = Q + q′
and φ = Φ + φ′, where the prime ′ denotes the perturbation parts. Substitution of
the decompositions into the governing equations and boundary conditions yields the
following linearised equations

∇ · u′ = 0, (2.14)
∂u′

∂t
+ (U · ∇)u′ + (u′ · ∇)U=−∇p′ +

M2

T
∇

2u′ +CM2(QE′ +E0q′), (2.15)

E′ =−∇φ′, (2.16)
∇

2φ′ =−Cq′, (2.17)
∂q′

∂t
+∇ · [Q(E′ + u′)+ q′(E0 +U)] =

1
Fe
∇

2q′, (2.18)

with u′|y=±1= 0, φ′|y=±1= 0, q′|y=1= 0 and ∂q′/∂y|y=−1= 0. Hereinafter, the primes on
the perturbation quantities are dropped for the sake of brevity. It should be mentioned
that in the case of space-charge limit (SCL, that is infinite C) and no charge diffusion
(infinite Fe), Atten & Moreau (1972), Lara et al. (1997) argued that the boundary
condition q′|y=1 = 0 should be modified to be consistent with the equations. As we
consider finite values of C and Fe, there is no need to change the above boundary
conditions.

For the electric field, it is possible to re-write (2.16)–(2.18) into one equation in
terms of the electric potential perturbation φ. The linearised governing equations can
then be re-cast in terms of the wall-normal vorticity η= ∂u/∂z− ∂w/∂x, wall-normal
velocity v and electric potential φ. Since Squire’s theorem is valid in EHD-Poiseuille
flow (Zhang et al. 2015), it is legitimate and sufficient to consider only a v–φ
formulation for our purpose

∂∇2v

∂t
=

(
−U

∂

∂x
∇

2
+D2U

∂

∂x
+

M2

T
∇

4

)
v

+M2

[
−D3Φ

(
∇

2
−
∂2

∂y2

)
φ +DΦ

(
∇

2
−
∂2

∂y2

)
∇

2φ

]
, (2.19)
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∂∇2φ

∂t
=D3Φ

∂φ

∂y
+ 2D2Φ∇2φ +DΦ

∂∇2φ

∂y
−U

∂∇2φ

∂x
−D3Φv +

1
Fe
∇

4φ, (2.20)

with the boundary conditions

v(y=±1)= 0,
∂v

∂y
(y=±1)= 0, (2.21a,b)

φ(y=±1)= 0,
∂2φ

∂y2
(y= 1)= 0,

∂3φ

∂y3
(y=−1)= 0. (2.21c−e)

2.4. Absolute and convective instability analysis
Suppose that a localised impulse perturbation is imposed on the base flow. In order to
determine the absolute and convective instability of the flow, we can study the spatio-
temporal response of the impulse disturbance. The following theoretical development
is due to Huerre & Monkewitz (1985), Carrière & Monkewitz (1999). The linearised
system (2.19)–(2.20) can be written in a matrix form

A
∂h
∂t
+Bh= 0, (2.22)

where

h= (v, φ)T, A =

[
∇

2 0
0 ∇

2

]
, B =

[
Los Lvφ

Lφv Lφφ

]
, (2.23a−c)

the superscript T denotes transpose, and the expressions of Los, Lvφ , Lφv and Lφφ

can be easily obtained from (2.19)–(2.20). Imposing an impulse in (2.22), we get

A
∂G
∂t
+BG=F, (2.24)

where F is the impulse of the form

F= (Fv, Fφ)T = (av(y), aφ(y))Tδ(x)δ(z)δ(t), (2.25)

av, aφ are the shape functions, and δ is the Kronecker delta function.
To determine the absolute/convective instability of the flow, one can check the

long-time behaviour of Green’s function G by using the method of steepest descent
(Whitham 1974) twice in the complex α- and complex β-plane. After some standard
manipulations of the equations following Huerre & Monkewitz (1985), Carrière &
Monkewitz (1999), the expression for Green’s function at long times is

G(x, y, z, t) =
−i
2πt

∑
n

[
∂2ωn

∂α2
(αsn, βsn)

∂2ωn

∂β2
(αsn, βsn)−

(
∂2ωn

∂α∂β

)2

(αsn, βsn)

]−1/2

×〈
ˆ̂
ĥ†

n(αsn, y, βsn),
ˆ̂
F̂(y)〉

ˆ̂
ĥn(αsn, y, βsn) exp(i(αsnx+ βsnz−ωsnt)),

(2.26)
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where the subscript s denotes the saddle points, and αsn, βsn and ωsn(αsn, βsn) are the
complex streamwise wavenumber, transverse wavenumber and frequency at the saddle
point determined by

∂ωn

∂α
(αsn, βsn)=

x
t
,

∂ωn

∂β
(αsn, βsn)=

z
t
. (2.27a,b)

The equation (2.27) implies that the group velocity at a saddle point is real.
On the other hand, from (2.26), the amplitude of Green’s function at long times is

proportional to eσi,maxt/t, where σi,max is the maximum growth rate along the ray x/t=
const. and z/t= const., i.e.

σi,max =

[
ωsn,i(αsn, βsn)− αsn,i

x
t
− βsn,i

z
t

]
max
, (2.28)

where the subscript i denotes the imaginary part. To get σi,max, one needs to solve
∂σi/∂(x/t)= 0 and ∂σi/∂(z/t)= 0, which results in αsn,i=βsn,i= 0, implying that when
the streamwise wavenumber α and the transverse wavenumber β are real valued, the
growth rate σi is maximum. That is, the temporal mode is the most unstable/least
stable. Therefore, to judge the stability of the flow, we look into the maximum
temporal growth rate ωi,max =max{ωi(α, β), for ∀ real α, β}:

(i) if ωi,max < 0, the flow is linearly stable;
(ii) if ωi,max = 0, the flow is neutrally stable;

(iii) if ωi,max > 0, the flow is linearly unstable.

From (2.26), we can deduce that an unstable parallel flow is convectively unstable
if limt→∞ G(x, y, z, t)= 0 and is absolutely unstable if limt→∞ G(x, y, z, t)=∞. When
t→∞, for any fixed location, x/t→ 0 and z/t→ 0, and (2.27) reduces to

∂ωn

∂α
(αn0, βn0)= 0,

∂ωn

∂β
(αn0, βn0)= 0. (2.29a,b)

Here αn0 and βn0 are the absolute wavenumbers, and ωn0(αn0, βn0) the absolute
frequency with its imaginary part ωn0,i being the absolute growth rate. From (2.28),
the maximum growth rate σi,max = max{ωn0,i, for all the saddle points}. Apparently,
if max{ωn0,i} > 0, the flow is absolutely unstable; if max{ωn0,i} < 0, the flow is
convectively unstable. Therefore the study of absolute and convective instabilities of
the flow becomes the study of its characteristics at saddle points by solving (2.29).
The saddle point must satisfy the Briggs pinching criterion (Briggs 1964; Bers 1983).
Another way of identifying the valid singular point is to search for the cusp point in
the frequency space (Kupfer, Bers & Ram 1987).

3. Numerical results and discussions
3.1. Numerical method

The theoretical development in the above section dictates the finding of the saddle
point/cusp point in the dispersion relation (2.24) in the wavenumber/frequency space.
We deal with this task in a framework of spatio-temporal linear stability analysis,
in which both wavenumber and frequency are complex. The way of locating the
saddle point in both streamwise and transverse wavenumber spaces simultaneously
is detailed in appendix A. The numerical problem is solved by using a Chebyshev
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FIGURE 2. (Colour online) Typical ωi-contours in the complex α-plane for transverse rolls
for (a) T = 175 and (b) T = 230. (c) Absolute growth rate ω0i versus Taylor’s parameter T .
AI represents absolute instability and CI convective instability. (d) The pinching condition
when the absolute instability of transverse rolls is triggered at T = 200.37. k+ denotes the
spatial branch for which rolls propagate downstream while k− denotes the spatial branch
for which rolls propagate upstream. The parameters in this figure are C = 50, M = 50,
Fe= 104.

spectral collocation method as in our previous works (Zhang et al. 2015; Zhang
2016) and hence the details are not repeated here. The new code has been verified
by comparing the results against those in Zhang et al. (2015).

In the following we study the effects of various non-dimensional parameters on
the absolute and convective instabilities of transverse, longitudinal and oblique rolls.
For the ranges of the parameters, we consider those that can reflect the properties of
the liquids in practice. M is from 3 to 100 (a range which can represent common
dielectric fluids according to Lacroix, Atten & Hopfinger 1975), C is from 2.5 to
50 (approaching the SCL, which is the working condition for the charge injection
atomiser where cross-flow is usually encountered, cf. Kourmatzis & Shrimpton 2014)
and Fe is from 103 to 104 (see the discussion in Pérez & Castellanos 1989). We
choose U = 1 for most of the cases, except when we change it in figures 9, 10 and 14.

3.2. Transverse rolls
3.2.1. Effect of T

We first consider the transverse rolls (TR, β = 0). The electric field is found to
influence significantly the absolute and convective instabilities of the system in this
case. Typical contour plots of the imaginary part of the complex frequency, ωi, in
the complex α-plane are shown in figure 2(a,b) for two values of Taylor’s parameter
T = 175, 230 and the quantitative results are recorded in table 1. Apparently, there is
one saddle point in each plot with T = 175 being convectively unstable and T = 230
absolutely unstable. The influence of T can be seen more clearly in figure 2(c), where
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T α0 ω0 Instability nature

175 1.993–0.853i 2.020–0.180i Convective instability
200.37 2.039–0.841i 2.016+0i Critical condition
230 2.082–0.823i 2.017+0.201i Absolute instability

TABLE 1. The values of the parameters at the saddle points shown in figure 2 for
transverse rolls. T = 200.37 is the critical condition where convective/absolute instability
transitions.

the absolute growth rate ω0i is increased as Taylor’s parameter T increases. When
T reaches some critical value (here T ' 200.37 at C = 50, M = 50, Fe = 104), the
transition from convective to absolute instability occurs. The pinching condition has
been examined for the saddle points, and an example is shown in figure 2(d).

The parameter T is related to the strength of the electric field. Experimentally, the
most convenient way to modify the strength of the electric field is to change its
electric potential V0. Unfortunately, under the current scheme of non-dimensionalisation,
V0 appears in several non-dimensional parameters. In order to single out the effect
of V0 to compare with experimental works in the future, we use L/U0 to scale the
time, leading to the Reynolds number Re=U0L/ν, a dimensionless number related to
the electric voltage Eu1 = εV2

0/ρU2
0L2, a dimensionless number related to the charge

density Eu2=Q2
0L2/ερU2

0 , the same mobility ratio M=
√
ε/ρ/K and the ratio between

charge diffusion and ion convection Du = Dν/U0L. In such non-dimensionalisation,
the voltage appears only in Eu1. Note that the absolute growth rate under this new
definition is different from the previous scaling. So here we use σ0i in this part to
distinguish it from the non-dimensional absolute growth rate ω0i. The effect of Eu1 on
the absolute growth rate is shown in figure 3. We can see that the absolute growth
rate σ0i increases monotonically and almost linearly with the increase of Eu1 near the
transitional Eu1= 2506.53. This trend reflects the fact that the absolute growth rate is
proportional to the squared electric voltage V2

0 , a fact which can be easily examined
by experimentalists in the future.

3.2.2. Effect of C
The influence of the ion injection level C on the absolute growth rate ω0i is

shown in figure 4(a). We can observe that, as C increases, the line moves to the
left, indicating that the transition from convective to absolute instability occurs at a
smaller T for a larger injection level. However, the influence of the injection level is
basically negligible at large C values close to SCL. Figure 4(b) shows the stability
borders in the C–T plane, where the symbols (squares and triangles) represent the
actually calculated data points, and the lines are the fitted results. At small C, the
boundaries bend toward large T , while at large C, the boundaries approach some
asymptotic values of T .

3.2.3. Effect of M
The influence of the mobility ratio M is more interesting and is shown in figure 5.

In (a,b) for M=7, two saddle points, labelled ‘A’ and ‘B’ in the figure, both satisfying
the Briggs pinching criterion, are identified in the complex α-plane. At T = 1495
in (a), the saddle point A is dominant over the saddle point B with a larger ω0i

(at A, α0 = 1.006 − 1.516i, ω0 = 1.633 + 0.0413i; at B, α0 = 4.473 − 5.933i, ω0=
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FIGURE 3. (Colour online) The absolute growth rate σ0i versus Eu1. Re= 0.08,
Eu2 = 6.25× 106, M = 50, Du= 10−4.

-0.4

-0.2

0

0.2

0.4(a) (b)

ø0i T

150 200

C = 2.5
C = 5
C = 10
C = 50
C = 200

250
T C

300
100

150

200

AI

CI

Stable

250

50 100 150 200

FIGURE 4. (Colour online) (a) The absolute growth rate ω0i versus Taylor’s parameter
T for different values of the ion injection level C, and (b) the absolute and convective
instability transition (the solid line with squares) and the temporally neutral stability
boundary (the dashed line with triangles) in the C–T plane for transverse rolls. CI:
convective instability; AI: absolute instability. The parameters in this figure are M = 50,
Fe= 104.

2.955 + 0.0128i). However, at a larger electric field T = 1635, the saddle point B
becomes dominant with a larger ω0i (this time, at A, α0=0.991−1.515i, ω0=1.628+
0.0447i; at B, α0 = 4.765 − 6.116i, ω0 = 3.008 + 0.0695i). This saddle point shift
makes a sudden turn of the lines in figure 5(c), which is indicated by an arrow there.
In Delbende, Chomaz & Huerre (1998), a similar phenomenon was reported in their
investigation of absolute/convective instabilities of the Batchelor vortex using direct
numerical simulation. They observed a bump of absolute growth rate for the azimuthal
mode −1 as the group velocity is increased. The saddle shift phenomenon in EHD-
Poiseuille flow influences dramatically its dependence on M. In figure 5(d), one can
see that the influence of the mobility ratio is great when its value is small, i.e. when
the hydrodynamic mobility is not much larger than the ion mobility. At small M, the
system remains convectively unstable unless T becomes extremely strong. A simple
explanation of this result is that, in the momentum equation (2.15), the Coulomb force
is proportional to M2 and it being small indicates that, physically, the fluids are less
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FIGURE 5. (Colour online) Contour of the absolute growth rate in the α plane featuring
a saddle shift phenomenon at (a) M = 7, T = 1495 and (b) M = 7, T = 1635. (c) The
absolute growth rate ω0i versus Taylor’s parameter T for different values of the mobility
ratio M, and (d) the absolute and convective instability transition boundary (the solid line
with squares) and the temporally neutral stability boundary (the dashed line with triangles)
in the M–T plane for transverse rolls. The parameters in this figure are C= 50, Fe= 104.

affected by the electric field. As the Poiseuille flow is convectively unstable, small
values of M will thus make EHD-Poiseuille flow more convectively unstable.

In order to further analyse the saddle point shift phenomenon, we plot the
eigenfunctions at the two saddle points in figure 6 (M = 6, T = 2453.229) and
figure 7 (M = 7, T = 849.059), respectively, at CI–AI transition. Interestingly, it can
be seen in figure 6 that the eigenfunction of saddle point B is more localised in the
vertical direction compared to that of saddle point A in figure 7. This implies that
at smaller M when higher T is needed for absolute instability (saddle point B), the
flow is more intensive in the vicinity of injecting plate (y= 1), a fact which might be
interesting to experimentalists when they measure the intensity of the flow velocity.
This will also stimulate theorists as spatially localised structures have been actively
discussed in transition to turbulence (Eckhardt et al. 2007).

We summarise in the following the effect of M in the linear stability analysis of
EHD-Poiseuille flow, which has been repeatedly discussed in the works by Castellanos
& Agrait (1992), Lara et al. (1997), Zhang et al. (2015) with the new results of our
calculation. For hydrostatic EHD flow (without a cross-flow U = 0), the M effect
can be deduced from (2.19), where we see that M2 is a common factor for the
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FIGURE 6. (Colour online) The eigenfunctions of (a) the streamwise velocity component
u and (b) the normal velocity component v at M = 6 and T = 2453.229 (in this case
saddle point B is dominant). C= 50, Fe= 104, U = 1. The results are normalised by the

maximum value of ˆ̂v̂.
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FIGURE 7. (Colour online) The eigenfunctions of (a) the streamwise velocity component
u and (b) the normal velocity component v at M= 7 and T = 849.059 (in this case saddle
point A is dominant). C=50, Fe=104, U =1. The results are normalised by the maximum

value of ˆ̂v̂.

diffusion term and the terms related to the electric field. So, when the electric field
is destabilising the flow, increasing M will lead to a more unstable flow; on the other
hand, when the electric field stabilises the flow, increasing M will cause a more
stable flow. Therefore, it can be said that increasing M promotes flow instability or
stability. Especially, M has no effect on the neutral stability curve for the hydrostatic
EHD flow. However, this does not hold true for U 6= 0 in which case the terms
involving U in (2.19) play an important role. Castellanos & Agrait (1992), Lara et al.
(1997) reported a stabilising effect of M on the neutral stability curve in the limit of
negligible charge diffusion effect (Fe→∞) and infinite charge injection (C→∞).
We found that M has a very small influence on the stable–CI border, as shown in
figure 5(d). This is related to our choice of U = 1; in fact, at a larger value of U ,
we do notice a remarkable effect of M on the stable–CI boundary, similar to Lara
et al. (1997), see figure 9(c). On the other hand, M shows a significant influence on
delimiting CI–AI transition, as shown in figure 5(d). From this figure, it is concluded
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FIGURE 8. (Colour online) (a) The absolute growth rate ω0i versus Taylor number T
for different values of the reciprocal of the charge diffusion coefficient Fe, and (b) the
absolute and convective instability transition boundary (the solid line with squares) and
the temporally neutral stability boundary (the dashed line with triangles) in the Fe–T plane
for transverse rolls. The parameters in this figure are C= 50, M = 50.

that increasing M at a constant T will lead the unstable flow to be more unstable (as
it transits from being CI to AI), so on the CI–AI border, M has a destabilising effect.
The rather steep slope at small M is related to the saddle point shift, as discussed for
the first time for EHD-Poiseuille flow. It is interesting to note that at small M, when
T increases, the more dominating saddle point will change from a point of smaller
αr to another point of larger αr. At the same time, αi becomes more negative. This
shows that at small M, when T becomes larger, a shorter wave decaying faster in
space is favoured in the transition from convective instability to absolute instability.

3.2.4. Effect of Fe
The charge diffusion effect, represented by the reciprocal of the dimensionless

parameter Fe, also has some influence on the absolute and convective instabilities of
the system. As shown in figure 8(a), as Fe decreases, the lines move towards the left,
indicating that increasing the charge diffusion coefficient promotes the transition from
convective to absolute instability of the system at a smaller T . In figure 8(b), the
temporally stable domain is narrowed down as Fe decreases, meaning that increasing
the charge diffusion effect may trigger the instability of the system at a weaker
electric field, a finding similar to that by Zhang et al. (2015) for β = 0. Also,
the critical T at which the transition from convective to absolute instability occurs
increases as Fe increases, a result from which we can understand that the charge
diffusion will facilitate absolute instability. In Zhang et al. (2015), the destabilising
effect of charge diffusion on the stable–CI border is explained with the help of an
energy analysis by calculating the energy transfer between the electric field and the
hydrodynamic field. Since the trend of the CI–AI border is similar to that of the
stable–CI border in figure 8(b), it may be hypothesised that a similar energy transfer
between the two fields will also occur here. We believe that more work should be
devoted to revealing the effect of charge diffusion. A more comprehensive study of
the charge diffusion effect on flow stability/instability in EHD (and EHD-Poiseuille
flow) is currently being undertaken by the authors.
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FIGURE 9. (Colour online) (a) The absolute growth rate ω0i versus Taylor number T for
different values of the base flow parameter U , (b) the absolute and convective instability
transition (the solid line with squares) and the temporally neutral stability boundary (the
dashed line with triangles) in the U–T plane for transverse rolls, and (c) comparison
with the results in Lara et al. (1997). The parameters in (a,b) are C = 50, M = 50,
Fe= 104.

3.2.5. Effect of U
The parameter U represents the relative importance of the Poiseuille flow in the x

direction. As shown in figure 9(a), the influence of U on the absolute and convective
behaviours of the system is significant. In figure 9(b), there is also a shift of the
saddle point on the CI–AI border. As U increases, the transition from convective to
absolute instability can be greatly postponed, which reflects the convective instability
nature of the Poiseuille flow (Deissler 1987). In contrast, as U decreases, the absolute
instability can be triggered at a much weaker electric field, reflecting the absolute
instability characteristics of electrohydrodynamic convection with no cross-flow. A
similar figure to figure 9(b) can be found for RBP flow, for example, in the work by
Müller et al. (1992). However, there is a noticeable difference that when U increases
from 0, the critical T delimiting the stable–CI border decreases in the beginning and
then increases. In RBP, the critical Ra as a function of Re increases monotonically
(U is in proportion to Re), see Fujimura & Kelly (1988). Because of this and the fact
that Rac for longitudinal rolls (LR, to be discussed below) is the same as that of RBC
without a cross-flow, LR have a larger growth rate compared to TR. Experiments
also confirmed that LR appear when Re is increases from 0. However, the situation is
different in EHD-Poiseuille flow. As we have shown in figure 9(b), the critical T for
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FIGURE 10. (Colour online) The contours of the Taylor number T at the border of
absolute and convective instability in the M–U plane. C= 50, Fe= 104.

TR is smaller than that of LR (which is the same as the EHD without a cross-flow
U = 0) when U or Re is small, meaning that the growth rate of TR is larger than that
of LR. Therefore, we deduce that TR will be a dominant pattern in EHD-Poiseuille
when the amplitude of the cross-flow is small either because of convective instability
or absolute instability. We also compare our results to those in Lara et al. (1997),
shown in figure 9(c) regarding the stable–CI border. In their work, the injection level
is infinite and the charge diffusion effect is neglected. We choose a large value of
C approaching the SCL and a large value of Fe. The comparison is qualitatively
satisfactory. The small dip at small Re discussed above also appears in all of the
curves in this figure.

Finally, we combine the effects of U and M in a single plot depicting the critical
T for the CI–AI transition, see figure 10 (we choose M because the effect of C is
insignificant in SCL and the effect of Fe is less interesting than M). The previous
results in figures 5(d) and 9(b) are simply two lines in this figure. At small values of
M and large values of U , the value of the critical T is so large that it is very difficult
to calculate. The phenomenon of saddle point shift occurring at different values of M
and U is also marked. This figure may serve as a guidance for experimentalists to do
a preliminary parameter exploration in EHD-Poiseuille flow at the SCL condition.

We now discuss briefly the implication of our results on U and M for understanding
the flow in ESP. The work by Atten et al. (1987) established the similarities
between the flow properties of particles in air and ions in a liquid (having the
same order of M value). Thus, to some extent, our results on ions in a liquid
can be applied to the dynamics of the charged particles in the air flow of ESP,
despite the facts that the geometries and the ion generation mechanisms in the
flow problems are different and that the flow in ESP is turbulent, whereas we are
conducting a spatio-temporal linear stability analysis. Leonard, Mitchner & Self
(1983) conducted an experimental work on the EHD flow in ESP with the aim of
minimising the generation of turbulence in ESP in order to improve its efficiency.
Firstly, their finding that a smaller velocity in ESP led to an intensified turbulence
level whereas a higher velocity abated turbulence level signals the convective effect
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of the cross-flow which is consistent with our results shown in figure 9 (which
implies that larger U will convect away the disturbance/turbulence). Secondly, the
experimental results demonstrated that, for a smaller ion mobility (∼1/M in our
terminology), the disturbance/turbulence is less likely to be convected away (so the
turbulence level increases), whereas, our result similarly indicates that larger M tends
to result in an absolutely unstable flow, in which the disturbance/turbulence will be
sustainable in a fixed frame of reference. Therefore, it is interesting to find that
some of our results are consistent with the observations in Leonard et al. (1983) and
we thus believe that the understanding of the dynamics of EHD flow in ESP may
be improved by studying its absolute/convective instability. A more detailed work
performing the linear AI/CI (or even nonlinear AI/CI in the spirit of Chomaz 1992)
in the geometry of ESP would thus be very promising.

3.3. Longitudinal rolls
The absolute/convective instabilities of the longitudinal rolls (α = 0) can be
probed similarly to the transverse rolls. Because we are concerned with the
absolute/convective instability of LR in the streamwise direction, the useful information
in the complex α plane is restricted to only α= 0 or αr = 0 (the former represents a
constant amplitude longitudinal roll while the latter admits amplitude variation). We
performed a numerical search of the saddle point simultaneously in the streamwise
and transverse wavenumber spaces. Figure 11(a) shows the saddle point located at
β = 2.55 in the β plane with a positive absolute growth rate for longitudinal rolls
α = 0 at T = 200, indicating that the flow is absolutely unstable in the transverse
direction. This is a trivial result as there is no cross-flow in the transverse direction.
The corresponding cusp point can be identified in the ω plane, as shown in (b),
confirming its validity. When we look into the contour of ωi in the α plane at
β = 2.55 (c), there is no saddle point at α = 0 (or αr = 0). In this case, the group
velocity can be approximately calculated from (d) as 0.88 for U = 1. Thus, these
figures reveal no information about the growth rate at the ray x/t = 0 regarding
absolute/convective instability of LRs. At the critical condition T = 155.706, we see
the same behaviour of LR, as shown in figure 12. We also checked the other values
of β for different T and a similar result is observed.

In order to gain some insight into the absolute/convective instabilities of longitudinal
rolls, we present in the following a one-mode Galerkin approximation of (2.19) and
(2.20) following Carrière & Monkewitz (1999). The trial mode for the vertical velocity
is a1v1= a1(1− y2)2 and for the electric potential b1φ1= b1(y4

+ 4y3
− 18y2

− 4y+ 17),
where a1, b1 are the coefficients. The slightly complex form of φ1 is due to
its boundary conditions (2.21b). Substituting these trial functions to the aforesaid
equations, the one-mode Galerkin approximation leads to the following equations(

Uiα(k2
−D2)+U′′iα +

M2

T
(k4
− 2k2D2

+D4)

)
a1v1

+M2
[Φ ′′′k2

+Φ ′k2(k2
−D2)]b1φ1 − iω(k2

−D2)a1v1 = 0, (3.1a)

−Φ ′′′a1v1 +

[
Φ ′′′D+ 2Φ ′′(D2

− k2)+Φ ′(D3
− k2D)+Uiα(k2

−D2)

+
1
Fe
(k4
− 2k2D2

+D4)− iω(k2
−D2)

]
b1φ1 = 0. (3.1b)
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FIGURE 11. (Colour online) (a) Longitudinal rolls. (b) The cusp point in the ω plane.
(c) Contour of ωi when β = 2.55 in the α plane. There is no saddle point. (d) Contour
of ωr when β = 2.55 in the α plane T = 200, C= 50, M = 50, Fe= 104.

Multiplying the first equation with v1, the second equation with φ1 and integrating
along the y direction, we haveiαf1 +

M2

T
f2 − iωf3 M2f4

−f5 f6 + iαf7 +
1
Fe

f8 − iωf9

(a1
b1

)
= 0, (3.2)

where fi > 0 are some functions involving k2. Applying the solvability condition, we
have (

αf1 − i
M2

T
f2 −ωf3

)(
−if6 + αf7 − i

1
Fe

f8 −ωf9

)
−M2f4 f5 = 0. (3.3)

Following Carrière & Monkewitz (1999), we substitute ω = ω′′ + α(x/t) (ω′′ is the
temporal growth rate along the ray travelling at the group velocity x/t and y/t = 0)
and take the derivative of the above equation with respect to α(

f1 − f3
x
t

)(
−if6 + αf7 − i

1
Fe

f8 −ω
′′f9 − α

x
t
f9

)
+

(
αf1 − i

M2

T
f2 −ω

′′f3 − α
x
t
f3

)(
f7 − f9

x
t

)
= 0. (3.4)
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FIGURE 12. (Colour online) (a) Longitudinal rolls at the critical condition (to be
consistent with the one-mode Galerkin approximation). (b) The cusp point in the ω plane.
(c) Contour of ωi when β = 2.57 in the α plane. There is no saddle point. (d) Contour
of ωr when β = 2.57 in the α plane T = 155.706, C= 50, M = 50, Fe= 104.

For longitudinal rolls α = 0, a special case is considered as ω′′ = 0 at the criticality
T = Tc and β = βc, so we have(

f1 − f3
x
t

)(
f6 +

1
Fe

f8

)
+

M2

Tc
f2

(
f7 − f9

x
t

)
= 0, (3.5)

which is equivalent to

x
t

∣∣∣
0
=

f1

(
f6 +

1
Fe

f8

)
+

M2

Tc
f2f7

f3

(
f6 +

1
Fe

f8

)
+

M2

Tc
f2f9

. (3.6)

In order to investigate the growth rate in the vicinity of x/t|0, we choose two rays x/t±
on either side of x/t|0 with k2

= 0 and calculate the growth rates along these rays

0<
x
t −
=

f1

f3
=

1
3
U <

x
t

∣∣∣∣
0

, Im(ω′′
−
)=−

M2

Tc

f2

f3
< 0, (3.7a,b)

x
t +
=

f7

f9
=

518
153

U >
x
t

∣∣∣∣
0

, Im(ω′′
+
)=−

f6 +
1
Fe

f8

f9
< 0. (3.7c,d)
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FIGURE 13. (Colour online) The neutral stability boundary in the C–T plane (a) and
Fe–T plane (b) for longitudinal rolls. The parameters in this figure are M= 50, Fe= 104.

Note that the ray x/t−> 0 is chosen to be the same as that in Carrière & Monkewitz
(1999), while x/t+ is different than theirs partially because of the different trial
function used for the imposed electric field. As the base profile of the electric field
depends on the values of C and Fe, we have checked many values of these two
parameters and the results show that both the imaginary parts of ω′′ are negative. It
then can be deduced that at x/t = 0, the growth rate is negative, meaning that the
flow cannot be absolutely unstable. Therefore, the LR is convectively unstable once
there is a cross-flow.

With the convective nature of the longitudinal roll having been determined, we
proceed to study the influence of the physical parameters on its instability. Figure 13
shows the neutral stability boundary in the C–T plane and the Fe–T plane. We see
that the influence of the charge injection level C and charge diffusion coefficient Fe
on the neutral stability boundary of longitudinal rolls is similar to their influence on
transverse rolls as shown in figures 4(b) and 8(b), respectively.

The influence of the mobility ratio M on the temporal growth rate ωi is shown in
figure 14(a). In the stable region where ωi < 0, the stability of longitudinal rolls is
reinforced by increasing the mobility ratio. However, in the unstable region where
ωi > 0, the effect of the mobility ratio becomes destabilising. It is noted that the
mobility ratio does not influence the critical value of T at which the transition from
stability to instability occurs. The M effect in LR is the same as in static EHD without
a cross-flow.

Finally, we consider the effect of the parameter U . As shown in figure 14(b), the
dependence of the temporal growth rate ωi on T remains the same as U varies. That
is, U has no influence on ωi, which can be deduced as follows. When α= 0, it can be
seen in (2.19) and (2.20) that the U-related terms disappear because of their coupling
to the streamwise spatial derivative. It is then the case that the magnitude of U will
not influence the instability characteristics of longitudinal rolls. In RBP flow, a similar
conclusion has been reached in the study of longitudinal rolls.

3.4. Oblique rolls
In the following, we show briefly the results for oblique rolls (α 6= 0, β 6= 0). We first
show in figure 15 that the growth rate of oblique rolls is always smaller than that of
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FIGURE 14. (Colour online) (a) The influence of the mobility ratio M on the growth rate
ωi of longitudinal rolls; (b) the influence of the base flow parameter U . The parameters
in this figure are C= 50, M = 50, Fe= 104.

TR or LR in temporal (left column in the figure) and spatial stability analyses (right
column) as the maximum growth rate is found either on α or β axis. In RBP flow, it
has also been demonstrated by Pearlstein (1985) that the most unstable mode should
be either a transverse or a longitudinal roll.

To study the absolute and convective instability of oblique rolls, according to the
method described in § 2.4, we need to find the saddle points in both the α and β

planes, satisfying the pinching condition. Fortunately, due to the symmetry of the
problem in the transverse direction, the maximum growth rate is found at β = 0. This
is numerically examined in figure 16, in which we see that the absolute growth rate at
the saddle point decreases when β increases. This indicates that the absolute growth
rate for the transverse rolls is larger than that of oblique rolls. Such a numerical check
only tackles one real line in the complex β plane. We also conducted a numerical
search for the saddle points simultaneously in the complex α and β spaces and found
that, in the β plane, the saddle point is always located at β = 0, confirming the
transverse symmetry and implying that if the flow is absolutely unstable, TR will
appear rather than an oblique roll. Therefore, we deduce that the oblique rolls are
not significant in the CI–AI transition of EHD-Poiseuille flow and are not expected
to be observed in the experiments. Oblique rolls were not present in the numerical
simulations of RBP by Martinand, Carrière & Monkewitz (2006). In Carrière &
Monkewitz (1999), they commented that the boundary of absolute instability in RBP
coincides with the absolute instability boundary for transverse rolls due to transverse
symmetry.

4. Concluding remarks

In this work, we have applied spatio-temporal linear stability analysis to EHD-
Poiseuille flow in the SCL regime in order to investigate its absolute and convective
instabilities, supplementing the previous studies on the linear stability analysis of this
flow (Castellanos & Agrait 1992; Lara et al. 1997; Zhang et al. 2015). We considered
three different roll structures. Physical parameters such as T , M, C, Fe, U are probed
with an aim of clarifying their effects on the absolute–convective instability transition.
These results are important to understand in general the effect of an electric field
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FIGURE 15. (Colour online) (a,c,e) Typical ωi-contours in the α–β plane for the temporal
instability of oblique rolls; (b,d, f ) typical −αi-contours in the αr–β plane for the spatial
instability of oblique rolls. The parameters in this figure are C = 50, M = 50, Fe = 104.
Note that in ( f ) in the region where the transverse number β is smaller than 2.34 the
rolls become absolutely unstable and spatial analysis cannot be used.

applied in a cross-flow, for example, in the case of electrostatic precipitators, flow
control or heat transfer enhancement using EHD.

The effects of non-dimensional parameters are briefly summarised here. For TR,
we found that increasing T (Coulomb force to viscous force) or electric voltage V0

will make the flow transition from being convectively unstable to absolutely unstable.
Since the flow we considered is in the SCL regime, the effect of the ion injection
level C on the CI–AI transition is not significant except at small C. Small mobility
ratio M is associated with a saddle point shift phenomenon and subsequently, the
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FIGURE 16. (Colour online) The absolute growth rate ω0i as a function of β at saddle
points (each data point corresponds to a saddle point). This figure aims to show at β = 0,
the absolute growth rate is maximum. T = 230, U = 1, C= 50, M = 50, Fe= 104. β = 0
represents transverse rolls and β 6= 0 oblique rolls.

critical T in this condition for CI–AI transition is boosted to a much higher value.
Physically this is because that small M tends to make the hydrodynamical field
decouple from the electric effect, rendering it more stringent to becoming absolutely
unstable (due to the convective nature of Poiseuille flow). Stronger charge diffusion
will facilitate flow instability, towards absolute instability. Understanding its instability
mechanism is beyond the current work and is currently under investigation. The
critical T increases with increasing magnitude of the cross-flow.

This paper is written with an objective to serve as a source of comparison and
theoretical guidance for future laboratory measurements of the absolute/convective
instabilities in a real dielectric fluid subject to unipolar injection. Our findings that the
experimentalists may find useful and interesting and are subject to verification include
that (i) near CI–AI transition, the absolute growth rate increases quadratically as a
function of the applied voltage (which is the most straightforward means to change
in experiments), that (ii) when T is large and M relatively small, localised flow
structures appear close to the injector at the saddle condition and that (iii) when the
amplitude of the cross-flow is small, TR is more likely to appear in the experiments
than LR and the TR can exhibit absolute instability in EHD-Poiseuille flow. When
U is large, LR has a higher growth rate than TR and is preferred at this condition.
Besides, our results also show that the LR is convectively unstable and for oblique
rolls, the growth rate is always smaller than that of TR/LR.

This work focuses on the linear nature of the absolute and convective instabilities
in EHD-Poiseuille flow. When the disturbance grows to some extent, a nonlinear
analysis is employed for the subsequent development of the disturbance, for which
a direct numerical method is usually employed. A nonlinear analysis (Chomaz 1992)
is suggested to be undertaken in the future as it will reveal more thoroughly the
roll transition mechanism in EHD-Poiseuille flow. Besides, the absolute/convective
instability in other EHD flows subject to a cross-flow, which are more directly related
to the practical problems, such as wire-two-plate geometry in McCluskey & Atten
(1984) and ESP (Leonard et al. 1983; Atten et al. 1987), can be studied similarly, as
we have suggested above.
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Appendix A. Method to find saddle points
A double iteration method is used to calculate saddle points in the three-dimensional

case. The procedure is as follows: first, give four initial values of β, i.e. β1, β2, β3
and β4, near a saddle point in the complex β-plane; for each initial value of β, i.e. βj,
calculate the corresponding saddle point in the complex α-plane using the iteration
method employed in Yin & Sun (2003). That is, given four values of α, i.e. α1, α2,
α3 and α4, near the saddle point, calculate the corresponding values of ω, i.e. ω1, ω2,
ω3 and ω4, and then construct the following interpolation function

ω(αi)=
a
3
(αi − α4)

3
+

b
2
(αi − α4)

2
+ c(αi − α4)+ d, (A 1)

where the subscript i= 1, 2, 3, 4. The coefficients a, b, c and d are readily solved by
substituting the four couples of α and ω into (A 1). Naturally, the value of α at the
saddle point is supposed to be the solution of the following equation

dω
dα
= a(α − α4)

2
+ b(α − α4)+ c= 0. (A 2)

Solving (A 2), we obtain α5. Then we use α2, α3, α4 and α5 as four known values
in the interpolation function (A 1), and calculate the saddle point again in (A 2). The
iteration is terminated when a convergence request is reached (e.g. the relative error
of α or ω is not larger than 0.005). Thus we obtain α0j and ω0j at the saddle point
in the complex α-plane that correspond to βj; then, in complex β-plane, four couples
of βj and ω0j are used to build an interpolation function similar to (A 1)

ω(βj)=
a
3
(βj − β4)

3
+

b
2
(βj − β4)

2
+ c(βj − β4)+ d, (A 3)

where j= 1, 2, 3, 4, and the saddle point in the complex β-plane is determined by
dω
dβ
= a(β − β4)

2
+ b(β − β4)+ c= 0. (A 4)

Solving (A 4), we obtain β5; for this β5, Yin & Sun’s iteration method is used again
to calculate the corresponding α05 and ω05 at the saddle point in the complex α-plane;
then, replacing β1, ω01 by β5, ω05 in (A 3), we calculate β6 . . . until it converges.
Finally we get the values of α0, β0 and ω0 at the saddle points in both the complex α-
and complex β-planes. For an overview of the numerical methods of locating saddle
points in wavenumber space using the viscous dispersion relation, one is referred to
Suslov (2006).
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