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SUMMARY

Understanding the frequency distribution of parasites and parasite stages among hosts is essential for efficient experimental

design and statistical analysis, and is also required for the development of sustainable methods of controlling infection.

Nematodirus battus is one of the most important organisms that infect sheep but the distribution of parasites among hosts is

unknown. An initial analysis indicated a high frequency of animals withoutN. battus and with zero egg counts, suggesting

the possibility of a zero-inflated distribution. We developed a Bayesian analysis usingMarkov chainMonte Carlo methods

to estimate the parameters of the zero-inflated negative binomial distribution. The analysis of 3000 simulated data sets

indicated that this method out-performed the maximum likelihood procedure. Application of this technique to faecal egg

counts from lambs in a commercial upland flock indicated that N. battus counts were indeed zero-inflated. Estimating the

extent of zero-inflation is important for effective statistical analysis and for the accurate identification of genetically resistant

animals.

Key words: Nematodirus battus, Ovis aries, distribution, Bayesian MCMC, faecal egg count, Zero-inflated negative

binomial.

INTRODUCTION

Nematodirus battus is one of the most pathogenic

organisms that infect sheep in cool temperate cli-

mates. Infected lambs develop acute enteritis with

watery diarrhoea accompanied by inappetence and

weight loss. Animals can die if the disease is not

controlled by anthelmintic treatment (Armour and

Coop, 1991). The life-history forN. battus is unusual

because larvae develop to the infective third stage

within the egg and these eggs only hatch when the

temperature exceeds 10 xC following a cold spell.

The simultaneous hatching of large numbers of in-

fective larvae poses a severe disease risk. Historically,

disease occurs in late spring in those years with

suitable weather. However, more recently, warmer

and more variable weather suggests that outbreaks

could also occur in late autumn.

Despite its importance, N. battus has received

surprisingly little attention. In particular, the dis-

tribution of parasites and egg output among hosts

following natural infection is unknown, although the

distribution of Nematodirus spp. (predominantly

Nematodirus spathiger) in 104 three-month-old

Australian Merino lambs was similar to a negative

binomial distribution (Barger, 1985). Mixed model

analyses indicated that the heritability of faecal egg

count following natural infection with Nematodirus

spp. was similar to the heritability of egg counts

due to other strongyle species in New Zealand

Coopworth and Romney sheep (McEwan et al.

1995), higher for Nematodirus spp. than other

strongyles in Scottish Blackface sheep (Bishop et al.

2004) and lower for Nematodirus spp. than other

strongyles in selected lines of New Zealand Romney

sheep (Morris et al. 2004). In all cases there were

strong positive genetic correlations between

Nematodirus spp. egg counts and those of other

nematode species, suggesting that similar mechan-

isms underlay resistance to, or control of, all sheep

nematodes, and that sheep could be simultaneously

selected for resistance to Nematodirus spp. and other

species.

However, an accurate knowledge of the distri-

bution of egg counts and adult nematodes among

hosts is essential for efficient experimental design,

and analysis of the resulting data. Using an inap-

propriate distribution increases the risk of both false

positive and false negative results (type I and type II

errors). An inappropriate model of the frequency
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distribution could lead to inaccurate estimates of

variance components and inefficient selection

schemes. In addition, the frequency distribution in-

fluences the impact of parasites upon the host

population (Anderson andMay, 1991) and influences

the success of potential control measures such as

selective breeding. Further, mathematical pro-

cedures that model the frequency distribution of egg

counts can be used to improve the detection of an-

thelmintic resistance (Torgerson et al. 2005) and to

determine the optimal time to treat grazing livestock

(Morgan et al. 2005). Therefore an accurate de-

scription of the distribution among hosts of faecal egg

counts is likely to improve the diagnosis and treat-

ment of parasitic disease. The negative binomial

distribution has beenwidely used to describe parasite

distributions, but more recently zero-inflatedmodels

have also been suggested (Nødtvedt et al. 2002).

These models are appropriate if the observed dis-

tribution results from a mixture of lambs that have

not been exposed (zero distribution), and lambs that

have been exposed (negative binomial distribution)

to infection. An accurate and precise method to de-

termine the frequency distribution should have

widespread application among quantitative para-

sitologists.

The purposes of this study were to develop a

suitable procedure to determine the frequency dis-

tribution of faecal egg counts following natural

infection with N. battus and to determine the distri-

bution of egg production among lambs.

MATERIALS AND METHODS

Experimental plan

The negative binomial distribution has a variety of

parametrizations. The parametrization most com-

monly used by parasitologists characterizes the dis-

tribution by 2 parameters: the mean (m) and the

shape (k), which is an inversemeasure of aggregation.

In this model, the variance is given by m+m2/k

(McCullagh and Nelder, 1989). We used the ratio m/

k (the scale parameter, h) to represent dispersion,

which is equivalent to the extra-Poisson variance to

mean ratio suggested by Elliot (1977) as a measure of

aggregation. h is positively related to the degree of

aggregation, so that as h tends towards 0 the distri-

bution converges on the Poisson. The variance in our

model is therefore given by m (1+h), and the extra-

Poisson variance by m h. The apparent prevalence of

Nematodirus infections is always less than 1, there-

fore a zero-inflated negative binomial model was

explored. All faecal egg counts greater than 0 are

derived from the negative binomial distribution, but

each of the zero counts can arise from either the

negative binomial or the zero distributions, with a

probability of belonging to the zero distribution equal

to the zero-inflation parameter. This probability is

estimated by comparison of the observed number of

zeros in the data to the expected number of zeros

from a negative binomial distribution with given

values for mean and dispersion. The zero-inflated

negative binomial distribution therefore has 3 par-

ameters; mean, scale and percentage zero-inflation.

Parasitologists have usually estimated the mean and

shape parameters by maximum likelihood (Bliss and

Fisher, 1953). Other estimators also exist including

method of moments, maximum quasi-likelihood and

conditional likelihood (van de Ven, 1993). A simu-

lation study suggested that maximum likelihood or

conditional likelihood were the best-performing es-

timators (van de Ven, 1993) ; however, the desirable

properties of the maximum likelihood estimator are

most apparent at large sample sizes. Therefore we

developed a method for Bayesian analysis with

Markov chain Monte Carlo (MCMC) and compared

this to a maximum likelihood method on simulated

data. The best-performing procedure was then used

to estimate the parameters in real data sets.

Animals

All sheep were straight-bred Scottish Blackface

sheep from a commercial upland farm in Southwest

Strathclyde. All husbandry procedures followed

usual commercial practice and have been described

previously (Stear et al. 1998). All lambs were kept on

the same field after weaning at 3 or 4 months of age

until the end of the study. To maintain health and

productivity, all lambs were given anthelmintic (al-

bendazole sulphoxide at the dose rate recommended

by the manufacturer) every 28 days until 6 or 7 weeks

before necropsy. Cohorts of 200 lambs were sampled

monthly during the summer grazing season of 5

consecutive years to avoid bias due to unusually

heavy or light infections in specific years. After re-

moval of lambs due to death, missing records, lost

tags or no rectal faecal sample, a mean of 169.4

(88–192) counts for 5 (n=3) or 6 (n=2) consecutive

months between May and October were obtained.

The lambs were the offspring of 39 sires and 496

dams.

Parasitological procedures

In addition to the monthly faecal egg counts per-

formed on all 1000 animals, 530 animals were ex-

amined post-mortem at 6.5 months of age, in late

October and early November. For the first 2 years,

only female animals were sampled as all males were

sent to slaughter. In the 3rd and 4th years, animals

were selected on the basis of faecal egg counts, with

individuals with less extreme egg counts being

selected for post-mortem analysis. No animals from

the 5th year of study were examined post-mortem.

Standard procedures were used to estimate the con-

centration of nematode eggs per gram of faeces and to
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enumerate fourth-stage, immature and adult fifth-

stage nematodes in the abomasum and small intestine

(Armour et al. 1966; Stear et al. 1998). Although it is

possible to differentiate adult N. battus from other

Nematodirus sp., this is not usually done. However,

N. battus eggs were recorded separately.

Simulated data

In total, 1000 datasets were simulated for each sam-

ple size of 10, 100, and 1000 counts, using R (R

Development Core Team, 2007). Each data set was

generated using a zero-inflated negative binomial

model with parameters randomly chosen from be-

tween 0 and 100 for mean count, 0 and 0.75 for the

proportion of the population that is unexposed to

infection (zero-inflation), and 0.01 and 100 for dis-

persion. The mean was sampled from a log uniform

distribution to increase the number of datasets with

lower mean counts. Dispersion was also sampled

from a log uniform distribution to increase the

number of datasets that were close to being Poisson

distributed, since with unknown zero-inflation a

small amount of dispersion with a low mean count is

more difficult to accurately quantify than a large

amount of dispersion with a high mean count. Zero-

inflation was sampled from a uniform distribution.

A total of 44 out of the 1000 simulated datasets for

sample size 10 (but none of the sample size 100 or

1000) contained only zero counts and so were ex-

cluded from analysis. Treating the mean egg count

and dispersion as independent could produce data-

sets that are unlikely to be observed in real faecal egg

count data. However, since both models use the same

distribution to fit data, it is unlikely that the con-

clusions would be any different if the two parameters

were simulated with a dependency.

Statistical models

Each remaining dataset was analysed with MCMC

methods using a zero-inflated negative binomial

model in WinBUGS (Spiegelhalter, 2003). The

model was run using 2 independent Markov chains,

which effectively perform the simulation twice to

ensure that the 2 sets of results have converged on the

same distribution for each parameter. Each inde-

pendent run of the simulation is expected to produce

similar results when the chains have converged (Toft

et al. 2007). The model description and additional

details concerning the prior distributions and initial

values can be found in Appendix A.

Convergence was assessed by calculating the

Gelman-Rubin statistic, which compares the vari-

ance between chains to the variance within the chains

(Gelman and Rubin, 1992). Given adequate con-

vergence the 2 values should be similar, if they were

equal the Gelman-Rubin statistic would equal 1.

Convergence analysis was performed for all datasets

using the ‘gelman.diag’ function of the ‘coda’

package (Plummer et al. 2006) in R. Analyses were

classified as converged if the point estimate of the

Gelman-Rubin statistic for each of the 3 monitored

variables was below 1.05.

The first 5000 iterations were discarded (burn in),

before sampling from 10000 iterations and saving the

output to coda files. TheMCMCmodel returned the

error warning ‘undefined real result ’ for a number of

datasets after completing a varying number of iter-

ations. This appeared to be associated with theGibbs

sampler attempting to sample from extreme values

for dispersion. Datasets that achieved less than 1000

sampling iterations before this occurred (not in-

cluding the 5000 iterations burn-in period) were re-

jected; the remainder were analysed for convergence

along with successfully completed datasets. Outputs

that failed this criterion were re-run with 100 000 and

then, if necessary, 500000 iterations in an attempt to

improve convergence. The results for any datasets

that failed to achieve convergence were removed.

The outputs for the MCMC coda files were then

analysed using R to determine the median value for

the mean egg count and the 95% credible interval.

Maximum likelihood analysis used the ‘zicounts’

package (Mwalili) in R. The maximum likelihood

analysis did not produce results for some datasets. In

addition, for some datasets, the standard error of one

or more parameters was returned as impossible to

calculate or infinite. Since a maximum likelihood

estimate with an unknown confidence interval is of

little use, these results were also removed.

R was used to compare the maximum likelihood

and Bayesian MCMC analyses. To assess the accu-

racy of theMCMCmedian and maximum likelihood

estimates, the mean bias was calculated using the

simulated (true population) value for each par-

ameter. The error of the estimate was calculated in

each case by subtracting the log of the simulation

parameter from the log of the estimate. The mean of

these estimate errors was taken as the mean bias.

Because subtracting the log of the simulation par-

ameter from the log of the estimate is equivalent to

taking the log of the estimate divided by the simu-

lation parameter, the resultant bias is relative to the

simulation parameter.

The mean value presented is the mean of the

negative binomial distribution describing the in-

fected animals, multiplied by 1 – the proportion of

zero-inflated animals. It is similar to the arithmetic

mean of all the animals, but the two will not be

identical since the distributional mean takes into

account variation due to sampling, and the arithmetic

mean is merely the mean of a single sample. For the

Bayesian MCMC analyses the mean value was esti-

mated from the median of the mean value over the

different iterations. The dispersion parameter was

calculated as the scale parameter (equal to the mean

divided by k).
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RESULTS

Fig. 1 shows the distribution of N. battus eggs in the

faeces of these lambs at necropsy. The majority of

animals have zero egg counts indicating a relatively

low prevalence of N. battus infection in early

November. Of the 530 animals tested, only 51 (9.6%)

had egg counts above zero.

Fig. 2 shows the combined distribution of

Nematodirussp.(predominantlyN.battus,N.filicollis,

N. spathiger) in 6.5-month-old lambs from a com-

mercial farm. The data were collected from 110, 100,

170 and 150 lambs that were necropsied in 1992,

1993, 1994 and 1995 respectively. Nematodirus spp.

were detected in 34.9% (185/530) of the lambs ne-

cropsied.

The comparison of BayesianMCMCmethods and

maximum likelihood showed that the percentage of

simulated data sets that were analysed successfully

was higher for MCMC than ML (Table 1). This

Fig. 1. The distribution of Nematodirus battus eggs in the faeces of 530 Scottish Blackface lambs at post-mortem

examination over a 4-year period.

Fig. 2. The distribution of adult Nematodirus sp. at post-mortem examination of 530 Scottish Blackface lambs over a

4-year period.
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difference was especially marked with a sample size

of 10 where 42% of the datasets analysed by maxi-

mum likelihood did not produce meaningful esti-

mates, compared to only 17% of the data sets

analysed by Bayesian MCMCmethods. Table 1 also

shows that there was a larger proportion ofmaximum

likelihood analyses where the 95% confidence inter-

val did not contain the true (simulated) value. This

was especially marked at the smallest sample size,

where the maximum likelihood analysis returned

the true value for the mean in only 85% of cases and

dispersion in 74% of cases, although the true value

for zero-inflation was identified in 92% of cases.

The MCMC model returned the true value 94–97%

of the time in all cases, compared to the value of

95% that would be expected from a 95% credible

interval.

Fig. 3 compares the mean bias in the estimates for

mean egg count, the dispersion parameter and zero-

inflation obtained by maximum likelihood and

BayesianMCMC analyses of the simulated data sets.

Maximum likelihood estimates were, on average,

more biased than the Bayesian MCMC estimates for

all except the estimates of zero-inflation in the data

sets of size 1000.

The Bayesian MCMC method was then used to

analyse faecal egg counts from Scottish Blackface

lambs on a commercial farm in Strathclyde. Table 2

shows that all the data sets from the naturally in-

fected animals showed evidence of zero-inflation,

with median estimates ranged from 2.5 to 86%, and

lower 95% credible intervals ranged from 0.1 to

82.5% (data not shown). The mean number of

counted eggs in the lambs ranged from 0.02 in

October 1996 to 9.8 in June 1995. As each egg

counted represented 50 eggs per gram, mean egg

output ranged from a low of 1 egg per gram to a high

of 490 eggs per gram. For comparison the arithmetic

mean egg production ranged from 1.5 to 440 eggs per

gram (data not shown). The degree of dispersion also

showed considerable temporal variation and ap-

peared to be higher at increased levels of infection,

while at low intensities of infection, the estimates of

dispersion were close to zero (Fig. 4). Spearman’s

rank correlation coefficient between the estimates of

the mean and the dispersion parameter was 0.63

(P<0.001). The May 1994 counts had a relatively

high mean egg count (5.3) and a very high estimate

for the scale parameter (43). Even after excluding this

sample, the rank correlation was still highly signifi-

cant at 0.59 (P<0.002). There was less evidence for a

relationship between the sample mean and the esti-

mate of zero-inflation (Spearman’s rank corre-

lation=x0.34; P=0.085).

DISCUSSION

The number of lambs with demonstrable N. battus

eggs in their faeces, or with Nematodirus sp. in their

intestines was always less than 100%. This differs

fromTeladorsagia circumcincta (Stear et al. 1998) but

is typical of most parasitic infections, and supports

the possibility that the distribution of N. battus

contains a zero-inflation component. We developed a

BayesianMCMCmethod to estimate the parameters

of the zero-inflated negative binomial distribution.

This method performed better than maximum like-

lihood in simulated data sets of size 10 to 1000.

Analysis of faecal egg counts from lambs on a com-

mercial farm indicated that most Nematodirus dis-

tributions were zero-inflated and the median

estimate of zero-inflation ranged from 2.5 to 86%.

There was also considerable variation over time in

mean egg counts from 1 to just below 500 eggs per

gram. The frequency distributions at times of low

egg output had a variance close to the mean, but

showed evidence of greater dispersion when egg

output was higher. A repeating yearly pattern was

evident, with relatively high estimates for mean

count and dispersion seen at the start of the grazing

season in May and June which gradually reduced

over the summer (data not shown).

Judged by the number of unsuccessful analyses, as

well as the failure of the 95% confidence interval to

contain the true value and by the mean bias, the

Bayesian MCMC method performed better than the

ML procedure in the simulated data sets. Although

maximum likelihood methods have mainly desirable

properties (Edwards, 1992), they are only asympto-

tically efficient and it is clear that for negative

Table 1. Comparison of maximum likelihood (ML) and Bayesian Monte Carlo Markov chain methods

(MCMC) for zero-inflated negative binomial simulated data sets

Sample size
10 MCMC

Sample size
10 ML

Sample size
100 MCMC

Sample size
100 ML

Sample size
1000 MCMC

Sample size
1000 ML

Analysis did not return usable
results

17% 42% 4% 25% 2% 22%

True value was outside the
95% CI for mean count

5% 15% 5% 9% 6% 8%

True value was outside the
95% CI for dispersion

4% 26% 5% 15% 6% 10%

True value was outside the
95% CI for zero-inflation

3% 8% 5% 12% 6% 9%
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(A)

(B)

(C)

Fig. 3. (A) Mean bias for the estimate of mean count at each sample size. Maximum likelihood shown in dark grey,

MCMC median estimate in light grey. (B) Mean bias for the estimate of zero-infation at each sample size. Maximum

likelihood shown in dark grey, MCMC median estimate in light grey. (C) Mean bias for the estimate of the dispersion

parameter at each sample size. Maximum likelihood shown in dark grey, MCMC median estimate in light grey.
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binomial distributions, the approach to the asymp-

tote is slow, especially for the dispersion parameter

(van de Ven, 1993; van de Ven and Weber, 1999).

MCMCmethods have the advantage of not assuming

normality, which is one reason why the technique

appears to have out-performed theMLmethod here.

The Bayesian MCMC method is computationally

intensive, but the time and effort required is

Fig. 4. The relationship between the mean Nematodirus battus egg count and the scale parameter for 28 populations of

Scottish Blackface lambs (outlier point for May 1994 omitted).

Table 2. Parameters of the zero-inflated negative binomial distribution in Nematodirus battus egg counts

(The mean value in Table 2 is the mean value estimated in the proportion of infected animals multiplied by 1 – the
proportion of zero-inflated animals. It is not the arithmetic mean of all the animals. The mean value was the median of the
different runs. The dispersion parameter is the mean divided by k.)

Year Month
Number of
lambs

Mean faecal
egg count Dispersion

Zero
Inflation (%)

1992 May 118 1.1 2.5 26
1992 June 164 2.0 0.4 2.5
1992 July 152 0.5 0.01 46
1992 August 183 0.3 0.01 34
1992 September 187 0.2 0 27
1993 May 148 0.7 2.6 18
1993 June 183 2.8 2.0 5.6
1993 July 192 0.8 0.03 36
1993 August 176 0.3 0.03 65
1993 September 191 0.03 0 42
1994 May 88 5.3 43 26
1994 June 164 2.8 4.3 17
1994 July 171 3.6 3.3 30
1994 August 178 0.2 0.1 40
1994 September 186 0.06 0.9 9
1994 October 190 0.08 0.6 68
1995 May 108 4.3 0.05 86
1995 June 171 9.8 5.0 7
1995 July 188 1.3 0.2 43
1995 August 185 0.3 0.8 38
1995 September 187 0.05 0 48
1995 October 171 0.1 0.1 71
1996 June 165 5.8 2.5 6.5
1996 July 180 0.9 1.4 10
1996 August 176 0.2 0.01 57
1996 September 182 0.3 0.7 77
1996 October 190 0.02 0.37 3.1
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considerably less than the effort required to collect

the parasitological data. However, even with the

Bayesian MCMC method, obtaining accurate and

precise estimates for the parameters of the zero-

inflated negative binomial distribution requires

reasonably large and homogeneous data sets. Our

analyses of simulated data sets suggests that sample

sizes in the order of 100 animals or even larger are

desirable. These results suggest that the likelihoods,

especially for the zero-inflation and dispersion

parameters, were not normally distributed, even at

sample sizes of 1000.

Analysis of N. battus egg counts indicated that

zero-inflated models were more appropriate to de-

scribe the distribution of N. battus in lamb faeces

than models that do not take into account zero-

inflation. The large proportion of zero counts in

Figs 1 and 2 indicate the possibility that some zero-

inflation may be present in the data, and the con-

sistent identification of a zero-inflation component

usingMCMCmethods confirms this in theN. battus

egg counts, although the relatively low mean egg

count increased the uncertainty in zero-inflation

estimates. Low egg counts are typical of N. battus,

especially in mid-summer, but our results may have

been influenced by the fact that the lambs were kept

in bye (close to the farmer’s house) and given an-

thelmintic every 28 days. The lower 95% confidence

interval for zero-inflation was greater than 5% in 9 of

the 28 data sets, while the upper 95% confidence

interval was greater than 5% in all cases. It is con-

venient to think of a lower 95% confidence interval of

less than 5% as the possibility that the data may not

contain an appreciable zero-inflated component, and

an upper 95% confidence interval of greater than 5%

as the possibility that an appreciable zero-inflated

component may be present. On the basis of this, the

model retained the possibility that zero-inflation was

absent in 10 of the 28 (36%) datasets, while retaining

the possibility that zero-inflation was present in

100% of the datasets. This can be compared with an

additional study using 100 datasets of 100 egg counts

simulated from a negative binomial distribution with

similar parameters to those used for the simulation

study in this paper, where the lower 95% credible

interval for zero-inflation was below 5% in 91 out of

97 (94%) of the successfully converged analyses, and

the upper 95% credible interval was above 5% in only

53 (55%) of the analyses (data not shown). The use of

zero-inflated models is therefore valid where the

extent of zero-inflation (if any) is unknown.

The observed distribution of N. battus eggs in

faeces can therefore be considered as a mixture of 3

processes: presence or absence of exposure to infec-

tion, an underlying distribution of egg production

among infected animals (Hunter and Quenouille,

1952), and a Poisson process reflecting variation in

the counting process. Zero counts may arise in an

individual because it has not been exposed or because

it has been exposed but is producing no eggs, or very

few eggs. Very low egg output may not be detected.

While it is impossible to distinguish these based on

faecal egg counts, it is important to consider both

possibilities to avoid misclassification of a nematode-

resistant animal. Analyses that ignore zero-inflation

may therefore give misleading results, with a tend-

ency to over-estimate the dispersion parameter. To

our knowledge, only one group has so far taken zero-

inflation into account in the analysis of egg counts,

although the method used was not Bayesian MCMC

(Nødtvedt et al. 2002).

Many parasite species (with the notable exception

ofT. circumcincta) show frequent faecal egg counts of

zero, and our results suggest that there would be

value in examining these infections for the possibility

of zero-inflation. Where there is sufficient infor-

mation in the data to be confident that zero-inflation

is not present, our Bayesian MCMC models return

an estimate of approximately zero for the zero-

inflation parameter, and the estimates for mean and

the dispersion parameter are very similar to the

simple negative binomial model. In the presence of

zero-inflation, a zero-inflated model returns more

accurate estimates for both mean and the dispersion

parameter. Unlike the lognormal-Poisson, negative

binomial, or continuous distributions such as the

Weibull (Gaba et al. 2005), zero-inflated models al-

low a bimodal distribution to be described. This has

implications for many aspects of quantitative para-

sitology, including the identification of lambs that are

genetically resistant to nematode infection. An ap-

propriate analysis that takes into account a zero-

inflated distribution, such as that applied by

Nødtvedt et al. (2002) using commercially available

software, should beused to analyse zero-inflated data.

The mean faecal egg counts ranged from 1 to 490

eggs per gram. These data are consistent with the

view thatN. battus is presentmost of the time at a low

level but reaches dangerous levels only occasionally.

The only deaths due to Nematodirus infections on

this farm occurred in May and June 1995 during the

period of peak intensity. There was also a significant

positive relationship between the mean and the scale

parameter. At low levels of infection the scale par-

ameter was close to zero, so there was little evidence

for overdispersion. As overdispersion tends to zero,

the negative binomial converges to the Poisson dis-

tribution. As the Poisson distribution describes the

uncertainty due to the counting of eggs in the faeces,

this implies that at low levels of N. battus infection,

host variation in grazing behaviour or in protective

immune responses do not noticeably contribute to

the observed variation in egg output among lambs.

Protective immune responses against nematode in-

fections are slow to develop in sheep and cattle and

our results support Dineen (1963) who argued that

effective immunity requires prolonged and moder-

ately heavy exposure. It is also possible to measure
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dispersion as the ratio of the extra-Poisson standard

deviation to the mean, which may affect the re-

lationship between the mean and dispersion.

The negative binomial is not the only distribution

that can be used to describe the frequency distri-

bution of parasites among hosts. Other distributions

may be more appropriate given the biological as-

sumptions, such as the lognormal Poisson distri-

bution, or give a better empirical fit, such as the

Weibull (Gaba et al. 2005). Now that we can estimate

the parameters of the negative binomial distribution

more accurately and precisely, and can account for

zero-inflation, we can more meaningfully compare

the fits of different distributions.

Conclusions

In conclusion, we have developed a BayesianMarkov

chain Monte Carlo method to estimate the par-

ameters of the zero-inflated negative binomial dis-

tribution. The analysis of 3000 simulated data sets

indicated that this method out-performed the maxi-

mum likelihood procedure. Analysis of egg counts

from lambs in a commercial upland flock indicated

that N. battus counts were zero-inflated. As egg

output increased, the estimates for the dispersion

parameter increased, but at low intensities of egg

production, there was little evidence for over-

dispersion.

This research was funded by DEFRA: VTRI projects
0101 and 0102.

APPENDIX A: MCMC MODEL DESCRIPTION

A brief description of the MCMC model used is as

follows. Each count is defined as originating from a

Poisson distribution with a mean value that is unique

to each count. These mean values are thenmultiplied

by a variable of either 0 or 1 for each count, which is

generated from a Bernoulli trial with a probability

value that represents the prevalence of infection

within the group. The adjusted mean values are then

defined as part of a gamma distribution with a mean

and variance that describes the non-zero group. The

mean and ratio of mean to variance of the gamma

distribution represent mean count and dispersion

respectively, and the prevalence is taken as oneminus

the probability that a count is truly zero.

Table 3. The prior distributions and initial values used for each

parameter with the Bayesian MCMC model in WinBUGS

Prior distribution
Initial value
chain 1

Initial value
chain 2

Mean.correction Uniform(0.001,1000) 0.5 2
Log.beta Uniform(x7,7) x2.3 2.3
Probability Uniform(0,1) 0.05 0.95

Model {

for(i in 1: Sample.Size){

Count[i]ydpois(lambda[i])

lambda[i]<- true.count[i] * corrected.lambda[i]

corrected.lambda[i]<- gamma[i] * mean.correction

true.count[i]ydbern(Probability)

gamma[i]ydgamma(alpha, beta)

}

alpha<- beta * input.mean

beta<- exp(log.beta)

# Prior distributions

mean.correctionydunif(0.001,1000)

log.betaydunif(x7, 7)

Probabilityydunif(0,1)

}

Calculated in R from coda files after WinBUGS analysis:

mean.count<- mean.correction * Input.Mean

dispersion<- mean.correction/beta

zero.inflation<- 1 – Probability
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In this syntax, ‘alpha’ is defined as ‘beta’ multiplied

by ‘Input.Mean’, so that the mean of the gamma

distribution is defined as the additional data-driven

parameter ‘Input.Mean’, which is the arithmetic

mean of the data as calculated prior to Bayesian

analysis to the nearest integer with a minimum value

of 2. Mean count is therefore equivalent to ‘ in-

put.mean’ multiplied by ‘mean.correction’, and

dispersion as the inverse of ‘beta ’ multiplied by

‘mean.correction’.

There are several other methods of specifying a

similar model in WinBUGS, such as allowing ‘al-

pha’ and ‘beta’ to vary independently, and by de-

fining the mean of the gamma distribution as one.

Each of these 3 specifications achieves generally

similar results, although the specification used gives

more reliable results when information in the data is

poor and/or at extremes of values for dispersion (data

not shown). An exhaustive justification of the speci-

fication is neither warranted nor practical in this

paper; however, more information is available from

the corresponding author.

The prior distributions used are minimally in-

formative, although dispersion and mean adjustment

are restricted to sensible values in order to reduce the

number of times the simulation returned an error

warning when sampling from a gamma distribution.

The prior distribution used for ‘ log.beta’ is log

uniform in order to avoid biasing towards larger

values of ‘beta ’ of >0.5 (small amounts of disper-

sion) when there is little information in the data.

‘beta ’ is defined as the exponent of ‘ log.beta’ in the

model.

The prior distributions and initial values used for

‘mean.correction ’, ‘ log.beta ’, and ‘Probability ’ or one

minus zero-inflation are given in Table 3.
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