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This text presents one of the first successful applications of a rare events sampling method
for the study of multistability in a turbulent flow without stochastic energy injection.
The trajectories of collapse of turbulence in plane Couette flow, and their probability
and rate of occurrence are systematically computed using adaptive multilevel splitting
(AMS). The AMS computations are performed in a system of size Lx × Lz = 24 × 18
at Reynolds number R = 370 with an acceleration by a factor O(10) with respect
to direct numerical simulations (DNS) and in a system of size Lx × Lz = 36 × 27 at
Reynolds number R = 377 with an acceleration by a factor O(103). The AMS results
are validated by a comparison with DNS in the smaller system. Visualisations indicate
that turbulence collapses because the self-sustaining process of turbulence fails locally.
The streamwise vortices decay first in streamwise elongated holes, leaving streamwise
invariant streamwise velocity tubes that experience viscous decay. These holes then extend
in the spanwise direction. The examination of more than a thousand trajectories in the
(Ek,x = ∫

u2
x/2 d3x,Ek,y−z = ∫

(u2
y/2 + u2

z/2) d3x) plane in the smaller system confirms
the faster decay of streamwise vortices and shows concentration of trajectories. This hints
at an instanton phenomenology in the large size limit. The computation of turning point
states, beyond which laminarisation is certain, confirms the hole formation scenario and
shows that it is more pronounced in larger systems. Finally, the examination of non-reactive
trajectories indicates that both the vortices and the streaks reform concomitantly when the
laminar holes close.
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1. Introduction

Many turbulent flows of aerodynamical or geophysical interest are not homogeneous
nor isotropic. They often display several possible turbulent flow configurations and
rare switches between these flow configurations. For these reasons these flows are
often termed multistable. Examples of multistability in turbulent flows include turbulent
dynamos (Berhanu 2007), turbulent convection (Podvin & Sergent 2017), bluff body wakes
(Grandemange, Gohlke & Cadot 2013), jets in the wake of a pair of cylinders (Kim
& Durbin 1988) and barotropic atmospheric-type jets (Bouchet, Rolland & Simonnet
2019a; Simonnet, Rolland & Bouchet 2021). In order to understand these turbulent
flows, uncovering what drives the switches is as important as explaining the mechanisms
maintaining each metastable configuration. These switches are characterised by the mean
first passage time before a change of configuration occurs. The switches often take place
through the same chain of events, termed a transition path or a reactive trajectory, a notion
originating from kinetic chemistry (Metzner, Schütte & Vanden-Eijnden 2006). It is fairly
difficult to compute mean first passage times and transition paths, either experimentally or
numerically for two main reasons.

(a) One firstly has to deal with the very large number of degrees of freedom of turbulent
flows, particularly in numerical simulation. These complex flows are often difficult
to simulate even by means of large eddy simulations.

(b) One secondly has to deal with the extremely long waiting times between each event.
These waiting times are several orders of magnitude larger than the duration of a
realisation of a switch and even longer than the typical eddy turnover time (Kim
& Durbin 1988). This means that the cost of sampling more than a few events is
prohibitive by classical means (see table in Bouchet et al. 2019a).

In order to propose a method to systematically study multistability, one first needs a
turbulent system which has fewer effective degrees of freedom but is still complex enough
to display multistability, with a moderate need for extrinsic stochastic forcing. One can
thus temporarily bypass problem (a). A transitional wall flow such as plane Couette flow
can provide such a situation (see figure 1). Unlike thermal convection, for instance, a
wall flow like plane Couette flow is linearly stable for all Reynolds numbers (Romanov
1973). Meanwhile transitional turbulence can exist at moderate Reynolds numbers, albeit
transiently (Schmiegel & Eckhardt 1997; Bottin & Chaté 1998; Eckhardt et al. 2007, 2008).
Transitional wall turbulence takes the form of velocity streaks: long wavy streamwise
tubes flanked by short streamwise vortices. The streaks and vortices sustain one another
in a cycle termed the self-sustaining process (SSP) of wall turbulence (Hamilton, Kim
& Waleffe 1995; Waleffe 1997). The streamwise vortices extract energy from the mean
flow to regenerate the streaks, a process termed lift-up. Meanwhile, the streaks regenerate
the streamwise vortices through a Kelvin–Helmholtz instability and vorticity tilting by
the base flow. How does wall turbulence collapse, that is to say whether the SSP fails
because vortices disappear first or streaks disappear first or both collapse at the same time,
is a question that could only be address very recently (Rolland 2018; Gomé, Tuckerman
& Barkley 2020; Liu et al. 2021). Conversely, turbulence can build up from laminar
flow under a finite amplitude forcing (Wan & Yu 2017; Rolland 2018; Liu et al. 2021),
or somewhat equivalently from a finite amplitude initial condition (Faisst & Eckhardt
2003). This gives a first type of multistability, where the transitional turbulence of plane
Couette flow can collapse down to laminar flow under its own fluctuations, and go back
to turbulence if it is forced. In a way this is a purely temporal view. This image should
be completed by noting that transitional wall turbulence tends to be localised (the type of
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Figure 1. Overview of transition to turbulence: the bottom axis indicates the Reynolds number and the text on
the top indicates typical states. The left panel (a) displays a sketch of plane Couette flow. The middle panel
(b) displays colour levels of the kinetic energy density in a y = 0 plane at R = 370, showing banded laminar
turbulent coexistence. The green box indicates a domain of size Lx × Lz = 36 × 27, the blue box indicates a
domain of size Lx × Lz = 24 × 18. The right panel (c) displays colour levels of the kinetic energy in a y = 0
plane at R = 500.

organisation depends on the flow geometry). At moderate Reynolds numbers, wall flows
where transitional turbulence extends in one dimension (such as Hagen–Poiseuille flow
Moxey & Barkley (2010), tilted plane Couette Shi, Avila & Hof (2013) flow or tilted plane
Poiseuille flow Gomé et al. 2020) can display splitting: the turbulent puff elongates and
splits in half. This can lead to an effective extension of the area occupied by turbulence.
This can provide a third type of multistability events in some flow configurations. When
all these processes are taken into account, one can find laminar–turbulent coexistence
in large flow domains containing several puffs. In models, it can be shown that the
laminar–turbulent coexistence is also transient, and that its lifetime grows exponentially
with the system size (Rolland 2018). The laminar–turbulent coexistence and the possibility
of reinvasion of laminar holes through puff splitting are actually preeminent ingredients in
the collapse scenario and size scaling of lifetimes in the model. Transitional wall flows
are relevant for high Reynolds number wall turbulence, since the processes described
here still take place very close to the wall (up to thirty wall units Pope 2001), in a
layer termed the buffer layer, or the viscous layer when a slightly thicker layer is taken
into account. Moreover, canonical flows such as plane Couette can thus provide a good
laboratory to test rare events methods on turbulent flows. These multistable turbulent
flows are not so complex that they cannot be simulated by direct numerical simulations
(DNS).

Even if the number of degrees of freedom is reduced, as is the case for transitional wall
flows, one still has to deal with problem (b). Transitional turbulence, like other multistable
systems, displays very long waiting times before a multistability event occurs (Bottin
& Chaté 1998; Eckhardt et al. 2007; Shi et al. 2013; Gomé et al. 2020). This means
that, even for the study of turbulence collapse in plane Couette flow, the use of DNS
to sample many events comes with a prohibitive computational cost. There are of course
alternative methods to study rare events. Many of them originate from the study of kinetic
chemistry and borrow much of its vocabulary. All these methods aim at performing the
computation of the reactive trajectories, the probability that a reactive trajectory occurs
and the mean waiting time before they occur. These methods can be divided in three
main families (Bouchet, Rolland & Wouters 2019b), two of them (action minimisation
and cloning methods) will be invoked in this text.

(i) Firstly, one finds mostly theoretical optimisation methods, which are applied to
systems where a stochastic forcing is clearly identified. In that case, in the limit
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where the variance of said forcing goes to zero, all the transition paths concentrate
around an instanton (Touchette 2009) § 6. The instanton represents the most probable
transition path and can be computed using action minimisation (Wan & Yu 2017;
Grafke & Vanden-Eijnden 2019). One fundamental property of said instantons is that
they evolve from a first multistable state toward a saddle point of the deterministic
dynamics under the action of the noise. The instanton then evolves freely from the
saddle point toward the second multistable state. The mean first passage time can be
estimated using the result of said action minimisation and can loosely be thought of
as depending on the distance between the first metastable state and the saddle point.
In gradient stochastic systems, this yields the celebrated Eyring–Kramers formula,
also known as the Arrhenius law (Hänggi, Talkner & Borkovec 1990). Such results
can be extended to non-gradient systems (Bouchet & Reygner 2016). While these
methods give a lot of qualitative results on the structure of transition paths, they
can prove tricky to implement for fluid flows (Wan & Yu 2017). A key property
of these formulae and methods is that they are formulated as large deviations
(Touchette 2009). This means that probabilities α, probability density functions ρ,
rates of transitions 1/T are considered in the limit of a vanishing small parameter
ε → 0. In that case, we have that limε→0 −ε log(α) = Iα , limε→0 −ε log(ρ) = Iρ ,
limε→0 ε log(T) = IT , with Iα , Iρ and IT independent on ε. In other words, the
leading dependence is exponential, and noted as α �

ε→0
e−(Iα/ε).

(ii) Secondly, one finds mostly numerical cloning methods, which use the actual
fluctuating dynamics of the system and pushes it towards realisations of the reactive
trajectories. These methods compute the transition paths using N clone dynamics
of the system and apply a mutation selection procedure to compute the reactive
trajectories. One such method is termed adaptive multilevel splitting (AMS) (Cérou
& Guyader 2007; Cérou, Guyader & Rousset 2019b). AMS and its variants have
been successfully used to compute reactive trajectories and extreme events in kinetic
chemistry (Lopes & Lelièvre 2019) theoretical physics models (Rolland, Bouchet
& Simonnet 2016), models of transitional flows (Rolland 2018) and idealised
atmospheric flows (Bouchet et al. 2019a; Simonnet et al. 2021). Some variants have
been applied to the study of extreme two-dimensional turbulent wakes (Lestang et al.
2018; Lestang, Bouchet & Lévêque 2020) and oceanic flow reversals (Baars et al.
2021).

(iii) Thirdly, one can use importance sampling methods (L’Ecuyer, Mandjes & Tuffin
2009; Hartmann et al. 2019). These methods modify the dynamics so that the
events of interest can then be sampled according to a new probability distribution
function (see Lestang et al. (2018) figure 8, Ragone & Bouchet (2019) figure 3
or Ragone & Bouchet (2021) figure 1a,b). Under this new distribution, the event
of interest is much more probable and is therefore sampled much more precisely.
Conversion factors are then used to rescale the estimated mean first passage
times and probabilities. Importance sampling is often performed in stochastic
systems, where the modifications are applied on the noise. As a consequence,
this often makes importance sampling hard to apply to deterministic systems.
The key question is then what modification to apply and how to compute the
rescaling factors. When answering these questions, one can note that the boundaries
between optimisation, cloning and importance sampling methods are porous. For
instance, results of action minimisation can be used to design importance sampling
methods, when studying extreme events on a given time interval (Ebener et al.
2019; Grafke & Vanden-Eijnden 2019). Similarly, some cloning methods lead to
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a situation comparable to importance sampling (Ragone & Bouchet 2019, 2021),
where the rescaling of probabilities is based on large deviations for time averaged
variables.

Action minimisation and cloning methods are often used hand in hand. Once a small
parameter that controls the effective noise variance has been identified, the qualitative
insight from theory is used to guide numerical studies and propose manners in which
results can be presented, as has been done in models of pipe flow (Rolland 2018). Applying
such a program to the collapse of turbulence in plane Couette flow is actually not that
straightforward. Because energy is not injected in the flow through a stochastic forcing
whose variance decays, the small parameter is not readily identified. For similar reasons,
cloning methods cannot be applied as such (Lestang et al. 2020). Applying basic cloning
rules leads to so-called extinction: the flow does not separate trajectories from one another
and the method does not manage to create a reactive trajectory which contains an excursion
far enough from the starting metastable state. A first goal is therefore to propose a modified
cloning method that can bypass this problem and can at least succeed in computing reactive
trajectories faster than a DNS would. This is the purpose of anticipated AMS, which
is presented and used in this text. Once the reactive trajectories are computed, if they
display concentration around a typical transition path, one needs to make sense of this
concentration. For this purpose, one can use both AMS and DNS to identify the right small
parameter from the study of probability density functions, probabilities of transition, mean
first passage times etc. We will keep this in mind in our study. We also note that there are
examples of very relevant reactive trajectories (see Rolland et al. (2016) for instance) that
are not necessarily of the instanton type. As a consequence, one does not always have to
try to force the results into a large deviations framework.

We present the study of the collapse of transitional turbulence of plane Couette flow in
the following manner. We describe plane Couette flow in § 2.1. We then present anticipated
AMS in § 2.2. The generation of initial conditions is presented in § 2.3. The reaction
coordinate used to compute reactive trajectories is presented in § 2.4. The DNS which are
used as reference are presented in the next section (§ 2.5). We then present the systematic
comparison of reactive trajectories computed by AMS and DNS in a system of size
Lx × Lz = 24 × 18 (§ 3.1). We perform the validation of the computation of the probability
of crossing and mean first passage time in this system in § 3.2. AMS is then applied to the
computation of very rare trajectories and laminar hole formation in § 4. These results are
finally discussed together in the conclusion (§ 5).

2. Flow configuration and numerical procedures

2.1. Plane Couette flow
We will perform the study of collapse in plane Couette flow, the flow between two
parallel walls located at y = h and y = −h, respectively moving at velocities Uex and
−Uex (figure 1a). We term ex the streamwise direction, ey the wall normal direction
and ez the spanwise direction. Lengths are non-dimensionalised by h, velocities are
non-dimensionalised by U and times by h/U. The first and foremost control parameter
is the Reynolds number R = hU/ν, with ν the kinematic viscosity. The non-dimensional
streamwise and spanwise sizes Lx and Lz are two other control parameters of the system.
The full velocity field is written v = yex + u, where yex is the laminar base flow.
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The forced incompressible Navier–Stokes equations for the field u, the departure to the
laminar base flow yex and the pressure q, read

∂ul

∂t
+ um

∂ul

∂xm
+ y

∂ul

∂x
+ δl,xuy = − ∂q

∂xl
+ 1

R

(
∂2ul

∂x2 + ∂2ul

∂y2 + ∂2ul

∂z2

)
+ fl(x, t),

∂um

∂xm
= 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.1a,b)

using tensorial notations. We include the term f . It is a very general forcing which can be
switched on or off. When it is on, it is white in time and in y. It can be red or white in
x − z: in AMS simulations, we will use a temporally localised fully white perturbation (see
§ 2.2.1), while in perturbed DNS, we use a red forcing (see §§ 2.3, 2.5 for details). These
equations are discretised in space on Nx and Nz de-aliased Fourier modes (so that 3

2 Nx

and 3
2 Nz modes are used in total) in the streamwise ex and ez directions and Ny Chebyshev

modes in the ey direction. Time integration is performed using CHANNELFLOW, by J.
Gibson (Gibson, Halcrow & Cvitanović 2008). We investigate in detail systems of two
sizes. The smaller system has size Lx × Lz = 24 × 18 (see figure 1 for scale), we set
Ny = 27, 3

2 Nx = 128 and 3
2 Nz = 96. The larger system has size Lx × Lz = 36 × 27, we

set Ny = 27, 3
2 Nx = 196 and 3

2 Nz = 144. In both cases we will set a constant time step
�t during the time integrations, �t = 0.05 (at R = 370 and R = 377) and �t = 0.02
(at R = 600). Both these values ensure stability of the time integration and respect the
Courant–Friedrich–Levy (CFL) criterion. We do not use adaptive time steps in order to
have more control on trajectory reconstruction and effect of the time step on convergence.

We define the spatially averaged kinetic energy as

Ek = 1
2LxLz

∫ Lx

x=0

∫ 1

y=−1

∫ Lz

z=0

u2
x + u2

y + u2
z

2
dx dy dz. (2.2)

We will also distinguish the kinetic energy contained in the streamwise component Ek,x,
on the one hand, and the kinetic energy contained in the spanwise and wall normal
components Ek,y−z, on the other hand

Ek,x = 1
2LxLz

∫ Lx

x=0

∫ 1

y=−1

∫ Lz

z=0

u2
x

2
dx dy dz,

Ek,y−z = 1
2LxLz

∫ Lx

x=0

∫ 1

y=−1

∫ Lz

z=0

u2
y + u2

z

2
dx dy dz.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.3a,b)

The first kinetic energy Ek,x roughly quantifies the energy contained in velocity streaks,
while the second Ek,y−z roughly quantifies the energy contained in streamwise vortices
(Jiménez & Moin 1991; Hamilton et al. 1995). These are the two main flow structures of
transitional wall flow turbulence. They regenerate one another in the cyclic self-sustaining
process of turbulence (Waleffe 1997).

2.2. Adaptive multilevel splitting

2.2.1. Principle of the algorithm
Before presenting the principle of anticipated AMS, let us first give a formal phase space
description of the rare events we will study in this text. Let us sketch the collapse of
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Figure 2. (a) Sketch of two bistable states A and B and the hypersurface C closely surrounding A. Two
realisations of the dynamics are sketched: a single excursion in blue and a first passage trajectory in black and
red. The red part of the first passage trajectory is the reactive trajectory (figure originally made for Rolland
& Simonnet 2015). (b) Sketch of the principle of AMS, showing two iterations of the algorithm, with N =
3 clones, indicating the starting state A and its neighbourhood, the arrival state and its neighbourhood B,
three trajectories are ordered by their maxt Φ. Trajectory one (dashed blue line) is suppressed and branched
on another trajectory at level maxt Φ1 and then ran according to its natural dynamics. Trajectory 2 is then
suppressed and branched on 3 at level maxt Φ2 (figure originally made for Simonnet 2016). (c) Two examples
of anticipation of branching level of reaction coordinate as a function of maximum reaction coordinate reached
by suppressed trajectories ΦNc (Φb) tested in anticipated branching (see Appendix A, (A1), (A2) for details,
both examples use a parameter ξ = 0.25).

turbulence in figure 2(a) and consider the set A, a neighbourhood of the turbulent flow
in phase space, and the set B, a neighbourhood of the laminar flow. A realisation of
the dynamics which starts in A fluctuates around it, has several excursions out of C,
a hypersurface closely surrounding A, and eventually crosses C and reaches B before
coming back to A, is termed a first passage. Its average duration is termed the mean first
passage time T . The last stage of the dynamics is termed a reactive trajectory: this is the
part of the dynamics that starts in A, crosses C and reaches B before A. Precise definitions
of sets A, B and hypersurface C for collapse will be given in §§ 3 and 4, based on reaction
coordinates defined in § 2.4.

We then give a brief overview of the variant of AMS, termed anticipated AMS, which
was used for the computation presented in this text (see Cérou & Guyader (2007), Rolland
& Simonnet (2015), Bréhier et al. (2016), Rolland (2018), Cérou et al. (2019b) and Lestang
et al. (2020) for more details on the general methods). All variants of AMS use a reaction
coordinate (or observable) φ(u), a real-valued function of the velocity field. The reaction
coordinate gives a relative distance in phase space between u and the sets A and B. For
practical reasons, we will see the reaction coordinate as a function of time Φ(t) = φ(u(t))
on the trajectories. The reaction coordinate is often rescaled such that φ(∂A) = 0, on the
boundary of set A, φ(∂B) = 1, on the boundary of set B and grows monotonically in
between. All variants run N clone dynamics of the system to compute iteratively at least
N − Nc > 0 reactive trajectories going from a hypersurface C, close to set A, towards
the set B. At each iteration, Nc < N clones are replaced. The algorithm is sketched in
figure 2(b) and proceeds in the following manner:

(i) There is a first stage of the natural dynamics, where each clone dynamics starts inside
set A. As much as possible, these initial conditions should be distributed according
to the natural flow, restricted to A (see § 2.3 for an example of the procedure). We let
all the initial conditions evolve according to their natural dynamics until they cross
C and we stop them when they reach either A or B. We set the number of iterations
κ = 0.
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(ii) In a second stage, the algorithm iterates the mutation selections as long as there are
less than N − Nc clones that transit to B.
At each iteration, we set κ = κ + 1. Then all the clones are ordered with index i,
1 ≤ i ≤ N, according to the maximum of the reaction coordinate on the trajectory
maxt Φi(t). The clones 1 ≤ i ≤ Nc, that have the shortest excursion out of A are
removed from the set of clones. In order to keep a constant number of clones, Nc new
clones are created by branching on Nc clones, labelled i′, drawn uniformly out of the
N − Nc non-removed clones at level Φb, a function (specified later in the text) of
ΦNc (the maximal value of reaction coordinate reached by the removed trajectories).
The branched trajectories first share the dynamics of the clone on which they are
branched, i.e. we set {u(t), q(t)}i = {u(t), q(t)}i′ from t = 0 to the time where clone
i′ first reach Φb. Then, the branched clones follow their natural dynamics until they
reach either A or B, with a new realisation of the noise. One may have to repeat
this branching operation several times to make sure that the maximum of Φ on the
branched trajectory is strictly larger than ΦNc .

The algorithm stops when Nr ≥ N − Nc + 1 clone trajectories have reached B. We
usually perform o > 1 independent AMS runs. In each of the runs labelled by the number
a, 1 ≤ a ≤ o, we obtain the total number of iterations κa, with ra the proportion of clones
that transit to B. This yields an estimator of the probability α of reaching B before A
(Cérou & Guyader 2007), and the corresponding mean first passage time T (Cérou et al.
2011)

αa = ra

(
1 − Nc

N

)κa

, α̂ = 〈αa〉o , T̂ =
〈(

1
αa

− 1
)
(t1,a + τ̃a)+ (t1,a + τa)

〉
o
,

(2.4a–c)

where τa is the mean duration of reactive trajectories, t1,a is the mean duration to go from
A to C and τ̃a is the mean duration of non-reactive trajectories, computed in each AMS
run 1 ≤ a ≤ o. The notation 〈·〉o = (1/o)

∑o
a=1 ·a corresponds to an average over the o

independent AMS runs (Cérou & Guyader 2007; Rolland 2018).
We will often record the velocity field, noted ulast and termed the last state at the last

stage, that corresponds to maxt ΦNc(t) during the last stage of the algorithm. It often
gives a precise idea of the turning point in reactive trajectories. Before the flow visits
the neighbourhood of that state, returning towards turbulence is more likely, beyond that
point, relaminarising becomes more likely. In systems which correspond to a simple
deterministic part forced by noise, that state actually corresponds to the saddle point of
the deterministic part of the dynamics crossed by the instanton in the limit of the noise
variance going to 0. This has been verified for models with few degrees of freedom and
the one-dimensional Ginzburg–Landau equation (not shown here). It can be used to educe
an effective saddle between two multistable states (Simonnet et al. 2021). Dichotomy
procedures have been started from states seen during turbulence collapse (De Lozar et al.
2012). However, we have a priori no certainty that the field ulast corresponds to an actual
saddle of the Navier–Stokes equations (as computed by dichotomy or other methods
Schneider, Eckhardt & Yorke 2007; Willis & Kerswell 2009).

The algorithm is naturally parallelised over the Nc suppressed clones. This will be done
for the calculation presented in this text. We usually choose the number of threads p such
that Nc/p is an integer larger than or equal to two. Since the trajectories have a random
duration, we cannot have a perfect load balancing in this parallelisation. Note, however,
that, as Nc/p increases, it has been observed that the differences in trajectory durations
average out and that we can reach a reasonable load balancing between threads.

931 A22-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

95
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.957


A rare events algorithm for wall turbulence collapse

Note that, in AMS computations in deterministic systems, we add a small background
noise which helps the separation of trajectories after branching. In practice we will
switch on the forcing f (see (2.1a,b)), white in time and space 〈fl(x, t)fm(x′, t′)〉 =
(1/βf )δlmδ(x − x′)δ(t − t′), with inverse variance βf = 1010, at the branching time step
and switch it off afterwards. The realisation of this noise is decorrelated from one
branching to another. The variance is small enough so as not to perturb the laminar flow too
much. The trade-off is that we compute trajectory properties with a small error : T + δT ,
α + δα and τ + δτ . We will comment on the visible effects of this additional force on the
trajectories and their properties in §§ 3.1.2 and 3.2.

2.2.2. Anticipated AMS and branching level Φb
Schematically, we can apply AMS to two types of systems. On the one hand, we find
systems with a large time scale separation between some fast fluctuating degrees of
freedom and slower degrees of freedom which represent the main features of the flow
travelling between A and B. This is often the case for stochastically forced systems. In
these systems, two slightly different initial conditions will quickly separate and the odds
of creating an excursion toward B instead of A by slightly changing the noise realisation
at a branching are non-negligible. On the other hand, we find systems with absolutely no
clear time scale separation between degrees of freedom. This is often the case of purely
deterministic systems. Two slightly different initial conditions do not separate until it is
too late (they both reach A). We can find situations where, no matter the structure of
the small perturbation (typically at a branching), the odds of creating a further excursion
toward B instead of A can be exceedingly small. This is especially the case if we perturb
at the peak of an existing fluctuation. If we apply basic AMS to this second type of system,
where we branch at ΦNc , we run the risk of a so-called extinction (Lestang et al. 2020).
This occurs when all trajectories have the same maximum of reaction coordinate but none
of them reach the arrival set, so that ∀ 1 ≤ i ≤ N,maxt Φi = Φext < φ(∂B), where ∂B
is the boundary of set B. The algorithm does not manage to proceed any further (in
that case, when extinction is detected, the computation is terminated and the way AMS
is used is reassessed). In order to bypass this limitation, we can perform anticipated
branching, that is to say branch the new trajectories at Φb < ΦNc . In that case, it may
be necessary to reiterate the branching several times in order to ensure that the branched
trajectories have maxt Φ > ΦNc : all the branched trajectories have to go further than the
maximum level of reaction coordinate reached by removed trajectories. In figure 2(c), we
give two examples of relations Φb(ΦNc) that were tested for plane Couette flow. Each one
is adapted to a given situation. The converging anticipation is mostly used in this article.
The point is to take advantage of higher mixing and faster separation of trajectories that
take place when the flow is closer to the fully turbulent state. For this matter, one first has
a small branching level Φb 
 ΦNc for ΦNc < 0.5. We then almost branch at the maximal
possible level Φb � ΦNc for ΦNc ≥ 0.5, so as not to lose too much computational time
rerunning trajectories when the flow is very close to turbulence collapse. The saturated
anticipation takes a very different point of view. It has proved very efficient in very small
domains where the collapse of turbulence is very well described by transient chaos. This
modification of AMS uses the fact that there is much more mixing when the flow is close to
the turbulent state, but that mixing gradually stops during excursions. If a trajectory is on
the wrong track, there is no derailing it at largeΦ. In this type of systems, the task of AMS
is really about finding the right exit point. More details on the necessity of anticipation are
given in Appendix A.
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2.2.3. On the goodness of AMS computations
We use AMS (or any other rare event simulation method) on top of a numerical
discretisation of the Navier–Stokes equations to compute (by order of priority):

(a) a large number of reactive trajectories, in our case from turbulent to laminar flow;
(b) provide an estimate of the probability that these reactive trajectories occur;
(c) estimate the mean first passage time before a reactive trajectory occurs.

We wish these computations to be precise, with an emphasis firstly on reactive
trajectories, secondly on probabilities and ideally on mean first passage times. Like every
other numerical procedure, the use of AMS can lead to errors on estimates which are
deemed too large because of an unadapted reaction coordinate or an insufficient number
of clones. This is similar to the effect of time or space steps that are too large, leading to
excessive errors in a numerical discretisation. Similarly, an unadapted scheme can lead to
a numerical convergence which is too slow.

A successful application of AMS first means that a) the resulting reactive trajectories
should faithfully represent the actual reactive trajectories that would be computed in very
long DNS (in terms of path chosen, of duration of the paths etc.). This can be checked
by comparing the paths computed by AMS with some reference, for instance a DNS.
The comparison is usually done in a space with few dimensions (two or three), where
we display the most probable paths as computed by AMS and by the reference and
show that they go through the same stages. If several clearly distinct types of paths are
possible, one should check that, in the set of trajectories computed by AMS, there is the
correct proportion of trajectories going through each path (see for instance Rolland &
Simonnet (2015), figure 8). In order to validate quantities like the average duration of
trajectories 〈τ 〉o (averaged over all the sampled durations over a series of independent
AMS runs), one compares the sample mean with the sample mean of the reference.
Since these means are the sum of independent random variables, drawn from identical
distributions with a finite variance, one often invokes the central limit theorem to state that
the actual average has a 66 % chance of being within ± the variance of the distribution

στ =
√
(1/o)

∑o
a=1 τ

2
a − 〈τ 〉2

o divided by the square root of the number of samples (or
98 % chances of being ± twice the variance). The interval (〈τ 〉o − στ /

√
o; 〈τ 〉o + στ /

√
o)

is termed the confidence interval. The averaged quantities should be close in that their
respective confidence interval should overlap: in that case, we cannot assert that the
estimation is biased. The result of AMS computations should first pass this first test in
order to be validated. Indeed, it may be that incorrect trajectories are selected, usually
because of a very poor reaction coordinate (Rolland & Simonnet 2015; Bréhier et al. 2016).
If one can avoid this phenomenon, one can ensure that the more clones N are used in AMS
computations and the more independent runs o are performed, the more precise the result
is going to be. Furthermore the correctly computed trajectories can be used to improve the
computation of more sensitive quantities like the probability α and the mean first passage
time T .

A successful application of AMS secondly means that (b) the estimate of the
probability that the trajectory occurs is precise. One can perform an estimate of α by
averaging the result over AMS runs. The AMS runs are independent. Moreover, one
can ensure that the distribution of αa computed in AMS runs has a finite variance σα =√
(1/o)

∑o
a=1 α

2
a − 〈α〉o. One can provide an estimate with a 66 % interval of confidence

〈α〉o ± σα/
√

o for the probability, using the sample variance and the number of samples,
and compare this with a reference. Of course this estimate is tainted by the finite number of
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clones N, the finite number of AMS realisations o and possibly a poor reaction coordinate.
It is often observed that 〈α〉o underestimates α with a probability close to one. However,
it is demonstrated that, for most versions of AMS, this quantity is estimated without bias
(Bréhier et al. 2016) or with a controlled bias decaying with N (Cérou & Guyader 2007).
It is conjectured that this discrepancy is caused by an effect called the apparent bias in
multilevel splitting (Glasserman et al. 1998). A correct estimation would then require an
infinite number of realisations. Note that this also occurs when importance sampling is
performed (Devetsikiotis & Townsend 1993). The quality of the estimate of α can further
be tested using the sample variance of α̂, which should not be too large compared with the
ideal variance. The ideal variance is obtained numerically if one uses the ideal reaction
coordinate, termed the committor (Cérou et al. 2019a). If a problem is suspected, because
the confidence intervals of α estimated by AMS and the reference absolutely do not overlap
and/or the sample variance of α is too large, one can compute the histograms of α. When
the apparent bias phenomenon occurs, heavy power law tails appear, usually toward large
α: a few very large overestimate compensate the large majority of underestimates. If the
apparent bias phenomenon is avoided, one can ensure that the estimate of α is unbiased:
that this to say that there is no additive irreducible error on the α computed after each AMS
run (dependent on N or not) and that the average over AMS realisations will converge
toward the reference when the number of realisations o goes to infinity. When errors
occur, the number of clones in each realisation can be increased. One can also rely on
the information brought by correctly computed reactive trajectories to construct a better
reaction coordinate.

Finally, the most successful applications of AMS mean that (c) the estimated mean
first passage time is precise. Again, one can provide an estimate of T and an interval of
confidence. Note, however, that, unlike the properties of trajectories or the probability of
collapse, one cannot demonstrate that the estimator of (2.4a–c) is unbiased. In practice, the
relative error on the estimate of T using a small number of clones can be larger than the
error on the estimate of each of the separate terms involved in (2.4a–c). In order to reduce
said bias, it has been observed that increasing the number of clones and improving the
reaction coordinate will improve the estimate of T . Biases in the estimate of T generally
lead to overestimates. These biases arise because the estimate of T is not direct and comes
from the product of several other random variables. There are versions of AMS that lead
to a more direct estimate of T . However, this rewriting comes with additional constraints,
such as fixed durations for trajectories (Lestang et al. 2018).

All things considered, we can assert that AMS computations give reliable results when
the reactive trajectories and the probability of crossing are computed precisely, with
clear accelerations of computations with respect to DNS. When these two quantities are
correctly estimated, we can use the AMS results to discuss the physics of the multistability
of the problem we investigate. This also means that we can reuse the information on
reactive trajectories from these computations in order to improve the reaction coordinate.
Since the probability of crossing follows the same exponential scalings as the probability
density functions (PDFs) or the mean first passage times, it can be used as a proxy to
investigate the large deviations or PDF tails if we are not satisfied with the estimate of the
mean first passage time.

2.3. Initial condition generation
In this section we present the procedure used for the generation of turbulent initial
conditions used to study the collapse of turbulence at Reynolds number R (by means
of DNS or AMS). This procedure uses mixing at a higher Reynolds number R+ = 600
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to naturally decorrelate turbulent initial conditions. It is easily parallelised with a
minimal load imbalance. If we use p threads, we generate Nj = �N/p or Nj = �N/p�
initial conditions on each thread j. Each thread uses distinct seeds for random number
generation.

(a) On each thread j, 1 ≤ j ≤ p, we first create an artificial velocity field uy = 0, uz = 0,
q = 0, ux = 0.4 sin(π(( y + 1)/2)) cos(4π(z/Lz)Mz), with spanwise wavenumber
Mz = max(1, �Lz/5�). This corresponds to streamwise velocity tubes which are
prone to the streaks instability, a key process in the cyclic SSP (Waleffe 1997) and
should thus lead to wall turbulence.

(b) On top of the velocity components, we add a noise that is red in x and z and white
in y. This yields an initial velocity field u0. This red noise is such that the variance
of its Fourier mode for streamwise wavenumber nx and spanwise wavenumber nz on
component l is σlγnxγnz , with shape factors γnm = 1 for 0 ≤ |nm| ≤ 6, γnm = 6/|nm|
for nm > 6, with m = x or z. We set γnm = 0 if nm > 28 in the Lx × Lz = 24 × 18
system and if nm > 36 in the Lx × Lz = 36 × 27 system, with m = x or z. We use
the variances σx = 0.05, σy = 0.0025 and σz = 0.015.

(c) This initial condition is evolved for T0 = 500 in the Lx × Lz = 24 × 18 system and
T0 = 200 in the Lx × Lz = 36 × 27 system at mixing Reynolds number R+ = 600.
It has been checked that this duration is long enough so that natural buffer layer
turbulence forms (Pope 2001). If the kinetic energy of this velocity field is larger
than 0.03, this yields the fields {uR+,1,0, qR+,1,0}, otherwise we go back to step (b)
and generate a new u0 with a new realisation of the red noise.

(d) We then generate the Nj initial conditions {un, qn}0≤n<Nj in the following manner.
We first evolve the fields {uR+,1,n, qR+,1,n} at R+ for T+ = 500 (Lx × Lz = 24 ×
18) or T+ = 200 (Lx × Lz = 36 × 27), yielding the fields {uR+,2,n, qR+,2,n} =
{uR+,1,n+1, qR+,1,n+1}, which will be used to generate the initial condition at R and
generate a subsequent decorrelated field at R+.

(e) We then set the Reynolds at R (where we study collapse) and we set {uR,1,n, qR,1,n} =
{uR+,2,n, qR+,2,n}. These velocity and pressure fields are evolved at R during T− =
750 (Lx × Lz = 24 × 18) or T− = 500 (Lx × Lz = 36 × 27). This duration is chosen
so that enough mixing has occurred and each initial condition is decorrelated from
the others. We obtain {uR,2,n, qR,2,n}. We then let it evolve until the kinetic energy
is either within 1.25 % of E0, in which case we have our nth initial condition
{un, qn} or is below 0.03. In that case we restart at (d) by setting {uR+,1,n, qR+,1,n} =
{uR+,2,n, qR+,2,n}. We use E0 = 0.055 in the system of size Lx × Lz = 24 × 18 and
E0 = 0.052 in the system of size Lx × Lz = 36 × 27.

This approach ensures that we have N decorrelated initial conditions which verify a
given constraint on kinetic energy (for instance).

2.4. Reaction coordinates
Since the kinetic energy Ek (2.3) of the turbulent flow is fluctuating around a conditional
average, while the kinetic energy of the laminar flow is zero (figure 3a), a first choice to
construct the reaction coordinate is to use Ek(t). The simplest reaction coordinate based
on Ek is affine. We can therefore propose the reaction coordinate ΦE defined directly as a
function of time by

ΦE(t) = Eturb − Ek(t)
�E

. (2.5)
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Figure 3. (a) Example of a time series of kinetic energy in a domain of size Lx × Lz = 24 × 18 at Reynolds
number R = 370. The black dashed lines indicate where the sampling is stopped for the construction of the
empirical probability density function of kinetic energy conditioned to not collapse. (b) Conditional average
of the kinetic energy as a function of the Reynolds number for domains of size Lx × Lz = 24 × 18, Lx × Lz =
36 × 27. (c) Conditional variance of the kinetic energy as a function of the Reynolds number for domains of
size Lx × Lz = 24 × 18, Lx × Lz = 36 × 27.

In this affine function, we use the shift to the kinetic energy Eturb and the normalisation of
the reaction coordinate�E. These two quantities are chosen so thatΦE � 0 when the flow
is turbulent andΦE � 1 when the flow is laminar. It is natural to choose Eturb close to some
average of the kinetic energy and �E � Eturb. In order to estimate Eturb, one can sample
Ek(t) and construct the empirical probability density function conditioned on the flow
experiencing no collapse of turbulence, in a system of given size and Reynolds number.
One can for instance retain the part of the time series where Ek(t) ≥ 0.025 (indicated by
the black dashed line in figure 3a). Using this, one can compute a sample mean of the
kinetic energy E (figure 3b), and then choose close enough Eturb and �E accordingly. We
will state what values of Eturb and�E are chosen in AMS computations in §§ 3 and 4. We
also compute the conditional variance σ as a function of the Reynolds number for the two
system sizes (figure 3c): we will use this quantity to choose the hypersurface C, so that we
typically have Eturb − Ek(t) � σ/2 on C. This corresponds to a short excursion where the
kinetic energy is away from its conditional average by typically half a standard deviation.
Using the reaction coordinate, we set A as all velocity fields such that φE ≤ 0 and B as all
velocity fields such that ΦE ≥ 1.

One can note that the variance of the kinetic energy decreases with Reynolds number in
the range of interest (figure 3c). The larger variance for R ≤ 380 are caused by fluctuations
of kinetic energy toward low values at lower Reynolds numbers. The distributions of
kinetic energy are asymmetric for 330 ≤ R ≤ 380 with a relative skewness that can be
below −0.5. As the Reynolds number is increased, the excursions of Ek toward low values
become less and less probable and the PDF of kinetic energy becomes narrower and more
symmetric (see Rolland (2015) figure 9(c), in a case where the domain can accommodate
laminar–turbulent bands). In domains large enough to contain laminar–turbulent bands
(figure 1b), one can observe a narrow peak of the variance in the range 378 � R � 382
(at our numerical resolution), because temporary closing of laminar holes can be observed
on time scales smaller than O(104). At higher Reynolds numbers, the variance of kinetic
energy increases again because of turbulent fluctuations.

In Appendix A, we use another reaction coordinateΦasym, based onψ(t), the asymmetry
of the streamwise velocity field with respect to the midplane y = 0

ψ(t) = 1
V

∫ Lx

x=0

∫ 1

y=−1

∫ Lz

z=0
ux sgn( y) dx dy dz, (2.6)
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where sgn( y) stands for the sign of y. The choice of this reaction coordinate is motivated
by the fact that we have mostly ux < 0 (coming from low speed streaks) for y > 0 and
mostly ux > 0 (coming from high speed streaks) for y < 0 when velocity streaks (and thus
wall turbulence) are present in the flow (Jiménez & Moin 1991; Hamilton et al. 1995;
Kawahara et al. 2003). Note that with this definition ψ is mostly negative. We proceeded
in the same manner as with the kinetic energy in order to construct a reaction coordinate:
conditional averages of ψ are performed in order to calculate Φasym(t) = 1 − ψ(t)/〈ψ〉.

2.5. DNS of collapses
We perform two types of DNS of turbulence collapse. The first kind of simulation consists
in letting the flow freely evolve from initial conditions computed following the method of
§ 2.3. These simulations are stopped when the flow has laminarised. This is deemed to have
happened when the reaction coordinate has reached one. In these simulations, we only save
time series, such as those of Ek, Ek,x, Ek,y−z and ΦE (an example of such time series in
given in figure 3a). From the last part of each DNS, we can extract the time series of these
quantities in natural collapse trajectories. We will perform two types of such DNS: some
free natural DNS, and some forced DNS, in order to check the effect of additional noise
on the collapse of turbulence. An additional noise will necessarily be included in AMS
computations, and we wish to know what is the minimal error caused on the probability of
collapse, trajectory features and durations and mean first passage times by the addition of
this noise. Since we cannot add a comparable temporally localised perturbation in DNS,
we will add a noise that is red in space and white in time. In that case the forcing f (2.1a,b)
is exerted at all time and it is red in x and z. The forcing noise is characterised by its spatial
correlation function

〈fl(x, t)fm(x′, t′)〉 = δlmδ(t − t′)Cl(x − x′, z − z′)C̃l( y − y′), Ĉl(nx, nz) = Γl,nx,nz,

(2.7a,b)

with Cl, the correlation function of the noise for variables x and z, along component l,
C̃l, the correlation function of the noise for variable y along component l. The correlation
function Cl is prescribed using its Fourier transform Ĉl, with amplitude Γl,nx,nz , where
nx stands for the streamwise wavenumber and nz stands for the spanwise wavenumber.
In this text, we always use C̃l( y − y′) = δ( y − y′) in numerical simulations using a finite
number Ny of Chebyshev modes in the wall normal direction. In DNS, we will always set
the amplitude Γi,nx,nz = σlγnxγnz using the previously defined shape factors γnm for m = x
or z (see § 2.3). We set the variance σl = 10−9 for all components.

Another kind of DNS consists in repeating the first stage of AMS, where we start the
simulation from our initial conditions, let the resulting flows cross the hypersurface C and
then either laminarise or go back to turbulence as detected byΦE < 0. From these, we can
compute the proportion of trajectories that laminarise and thus have an unbiased estimate
of the probability of collapse and trajectory durations and validate AMS estimates of these
quantities.

3. System of size Lx × Lz = 24 × 18: reactive trajectories and validation of AMS
computations

In this section, we will compare the properties of the reactive trajectories computed by
means of AMS and by means of DNS as well as discuss the trajectory properties in a
system of size Lx × Lz = 24 × 18 at Reynolds number R = 370. We choose rectangular
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shaped domains: a shape comparable to what is feasible in experiments, albeit at smaller
size (see figure 1) (tilted periodical domains being a numerical experiment). The values
of the domain size and Reynolds number imply that the study of turbulence collapse is
affordable by means of DNS. Results of DNS and AMS computations will be compared in
order to assert what degree of trust can be placed in general outputs of AMS computations.
For estimates (of the probability of collapse α, the average duration of trajectories τ , and
the mean first passage time T and paths followed by trajectories) coming from both types
of computations, we will provide intervals of confidence and check whether they overlap
or if biases are present in the results of AMS computations. From these we will be able
to deduce what should be the minimal error bars that should be placed on the results
of anticipated AMS computations. This will be useful when no DNS are available for
comparison, for instance in larger domains at larger Reynolds numbers, in § 4.

In these computations, we will use Eturb = 0.05,�E = 0.048 for the reaction coordinate
ΦE (2.5), in conjunction with the conditional average of the kinetic energy (figure 3b).
The properties of the initial conditions in A are given in § 2.3. The hypersurface C will
correspond to the set of velocity fields such that ΦE = 0.06, which roughly corresponds
to half a standard deviation from the conditional average (figure 3c). We set the parameter
ξ = 0.2 with the converging Φb ((A2), Appendix A, figure 2c) for the anticipation
of branching. This corresponds to a good trade-off between the need for mixing and
separation of trajectories, and the minimisation of the number of retries when branching
trajectories. The AMS computations use N = 120 clones and suppress Nc = 32 clones at
each iteration. They are run on 16 threads, which leads to reasonable load balancing.

3.1. Collapse trajectories

3.1.1. Visualisation of the collapse trajectories
We first describe the velocity fields during the collapse, in trajectories computed by
AMS. With the use of AMS, we could produce far more time and space resolved
three-component velocity fields than has previously been shown when using DNS.
Reactive and non-reactive trajectories are simply reconstructed and saved at time intervals
δt > 1 from the checkpoints used in AMS computations.

We display colour levels of the streamwise and spanwise components of the velocity
field in a midplane at successive instants during a collapse trajectory in figure 4 and during
one of the non-reactive trajectory remaining at the last stage of AMS in figure 5. We will
focus on the two fields (ux, uz) because of the physics of wall flows and experimental
constraints:

(i) Indeed, on the one hand, it has been shown in models and observed in some
experiments and simulations that there was a distinct behaviour of velocity
components. One finds velocity streaks contained mostly in ux as well as streamwise
vortices, visible in the streamwise vorticity field ωx = ∂yuz − ∂zuy, but that can be
observed through the component uz (they are the main contribution to this velocity
component) (Hamilton et al. 1995). Moreover, it has been very recently observed
in models, simulations and experiments that decay of turbulence is much faster in
streamwise vortices (or its proxies) than in velocity streaks (Rolland 2018; Gomé
et al. 2020; Liu et al. 2021). We will endeavour to discuss this observation in
specifically computed collapse trajectories.

(ii) On the other hand, most experimental observations are performed by particle image
velocimetry (PIV) using a plane parallel to the wall, thus capturing ux and uz in an
(x,z) plane near the midgap (De Souza, Bergier & Monchaux 2020; Liu et al. 2021).
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Figure 4. Time series of the kinetic energy (a,d,g,j) with a dot indicating the point in time of each line (t = 50,
t = 174, t = 200, t = 400), alongside colour levels of the streamwise velocity (b,e,h,k) and spanwise velocity
(c, f,i,l), at corresponding times, in the midplane y = 0 during a collapse trajectory in a domain of size Lx ×
Lz = 24 × 18 computed by AMS.

We first visualise the velocity fields as turbulence collapses. The reactive trajectory starts
from uniform buffer layer turbulence in the whole domain (figure 4, t = 50). The kinetic
energy is of course close to the conditional average. As time goes on (t = 174), the kinetic
energy decreases, and observation indicates that the spanwise component of the velocity
field is much less intense than in the initial condition. Moreover, the largest values of uz are
spatially localised (intense small spatial scales for 9 � z � 14, less intense, largest spatial
scales for 0 � z � 9). The streamwise velocity field has not yet decayed in amplitude,
however, it is streamwise invariant where uz is almost 0. As the flow laminarises (t = 200),
the spanwise velocity field further decays while the streamwise velocity field becomes even
more streamwise invariant. The amplitude of ux remains comparable to what was found in
the initial condition |ux| � 0.6. This finally leads to a situation where uz is negligible and
only streamwise velocity tubes are left in the flow (t = 300). These tubes then undergo
viscous decay.

We can comparably examine a non-reactive trajectory, that is to say a realisation of the
dynamics that undergoes a large enough excursion of kinetic energy to be retained at the
last stage of AMS computations, but that still goes back to a fully turbulent flow (figure 5).
As with all other trajectories, this one starts with turbulence in the whole domain (figure 5,
t = 2). We again observe that uz decays faster than ux (t = 74). In that case, the spanwise
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Figure 5. Time series of the kinetic energy (a,d,g,j,m) with a dot indicating the point in time of each line
(t = 2, t = 74, t = 200, t = 400, t = 600), alongside colour levels of the streamwise velocity (b,e,h,k,n) and
spanwise velocity (c, f,i,l,o) in the midplane y = 0 during a non-reactive trajectory (hole opening then closing),
at corresponding times, in a domain of size Lx × Lz = 24 × 18 computed by AMS.

localisation of the decay is not disputable. Along with the decay of uz, the streamwise
velocity component becomes streamwise invariant (t = 200). The kinetic energy fluctuates
for some time around a plateau (150 � t � 350), then increases again. The values taken by
uz are getting more intense over an area of the domain that increases (t = 400). Note that
the streamwise velocity field had decayed locally during the plateau (for 0 � z � 7). We
observe an asymmetry between the decay and the reinvasion processes. The component uz
retracts to smaller areas than ux during the decay: the active–quiescent interface (typically
planes z = cst) is not the same for ux and uz. A strict definition of these interfaces will
be proposed in § 4 and figure 14. Then, both uz and a streamwise dependent ux fully
reinvade the domain (t = 600), in that case the active–quiescent interface is the same
for both components. We thus observe a concomitant restart of both components of the
self-sustaining process of turbulence.
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Figure 6. Streamwise vorticity in the midplane y = 0 in the system of size Lx × Lz = 24 × 18 for last states at
the last branching stage of several AMS computations. (a) Run estimating α̂ = 0.045, T̂ = 1.5 × 104, (b) run
estimating α̂ = 0.086, T̂ = 1.1 × 104, (c) run estimating α̂ = 0.022, T̂ = 3.7 × 104.

We can complement this view by observing the streamwise vorticity field ωx,last =
∂yuz,last − ∂zuy,last leading to the largest value of the reaction coordinate in the last
suppressed state in the last stage of AMS (figure 6). In this system of relatively moderate
size, even if one always has an impression that turbulence collapses through the formation
of a laminar hole, the structure of this turning point state varies from one run to
another. One can observe clearly localised streamwise vortices (figure 6a), an almost
entirely quiescent flow (figure 6b) or rather active streamwise vortices all over the domain
(figure 6c). One of the reasons we have fairly different ωx,last is that they correspond to
different instants on similar trajectories that do display a hole opening. This is also caused
by the fact that the size of the domain is not large enough for the reactive trajectories to be
concentrated around a typical trajectory.

In any case, we can have a first view of the path followed during the collapse of
turbulence. In terms of the manner in which the cyclic self-sustaining process of wall
turbulence fails (streaks first, vortices first or concomitant decay of streaks and vortices),
the observed scenario is that of the first decay of streamwise vortices followed by decay
of the velocity streaks. No more energy is extracted from the base flow so that the
velocity streaks, turned into tubes, slowly decay. They do not undergo any new streak
instability that would refuel the streamwise vortices (Jiménez & Moin 1991; Marquillie,
Ehrenstein & Laval 2011). We will examine all the reactive trajectories to show that,
far from being some picked visualisations, this description is statistically significant. We
observed spanwise localisation of this failure of the self-sustaining process of turbulence.
From the observations and monitoring of turbulent fraction, one can note that there is
more variability in this respect. We will examine a larger system in § 4 to check whether
this observation is disputable or not.

3.1.2. Comparison between trajectories computed by AMS and by DNS
We then start our comparison of the collapse trajectories computed by AMS and DNS
by describing the duration of collapse trajectories, that is to say the time s elapsed
between the instant where the flow crossed the hypersurface C and the instant where
the reaction coordinate reaches Φ = 1. We have obtained 1590 trajectories from AMS
and 189 trajectories form DNS. We firstly compute the sample mean 〈τ 〉o and the sample
variance στ over AMS realisations of the trajectory durations, we obtain τAMS = 413 ± 3,
τDNS = 410 ± 7 and στ,AMS = 105 and στ,DNS = 91. As stated in § 2.2.3, the error bars on
τ are given by στ divided by the square root of the number of samples. (It is safe enough to
assume each value is decorrelated enough from a large majority of the others to assert that
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Figure 7. Normalised distribution of duration of collapse trajectories (in logarithmic scale) sampled by AMS
(1590 samples), by DNS (189 samples) and compared with a normalised Gumbel distribution, in a system of
size Lx × Lz = 24 × 18 at Reynolds number R = 370.

the central limit theorem can be applied to the sampled mean: the most general formulation
only require short length correlations. There may be some degree of correlations between
durations of reactive trajectories that arise from the same genealogy, but each genealogy
is small enough compared with the sample size.) We can see that both are within a few
per cent of one another and within the 66 % confidence interval of each other. This shows
that the reactive trajectories computed by AMS and DNS have almost the same duration,
and thus that AMS has very little bias in the way it computes the collapse trajectories. We
then compare the sampled distributions of trajectory durations. In figure 7, we display the
distribution of normalised durations s̃ = (s − τ)/στ of collapse trajectories computed by
means of AMS and of DNS. Both are very similar and seem to be very close to a Gumbel
distribution. This distribution of duration has been reported to be very close to a Gumbel
in many instances of stochastically driven systems (Rolland & Simonnet 2015; Rolland
et al. 2016; Rolland 2018). This was often related to a simple structure of the reactive
trajectory that went through a saddle of the deterministic part of the system. It is actually
demonstrated that reactive trajectory durations have this distribution in one-dimensional
stochastic systems (Cérou et al. 2013). To our knowledge, this is possibly the first time
that such a distribution shape has been shown in turbulence without stochastic injection of
energy. This suggests us that the manner in which turbulence collapses in systems of large
enough size can be compared with reactive trajectories in stochastic systems, in that it
quite possibly follows some effective dynamics agitated by background turbulence. While
it is more difficult to separate the dynamics into a deterministic part and a stochastic part,
this indicates that the reactive trajectories can follow a rather simple path.

In order to investigate to what extent the dynamics could follow a stochastic system-type
transition path (see Metzner et al. 2006) when turbulence collapses, we can then examine
the trajectories themselves, computed by mean of AMS and DNS. Since we obtained
mostly time series from DNS, we will compare the path followed in the (Ek,x,Ek,y−z) plane
by the reactive trajectories (figure 8). We produce a visualisation in a small dimension
space comparable to figure 6 of Bouchet et al. (2019a). Therefore, in order to examine
the most probable path in this plane and how far trajectories deviate from it, we construct
the probability density functions ρe in the (Ek,x,Ek,y−z) plane using solely the collapse
trajectories computed in free DNS (figure 8a), in noisy direct numerical simulations
(figure 8b) and AMS computations (figure 8c). We first note that the trajectories computed
in all three cases have very similar beginnings: we observe in all three cases a decrease
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Figure 8. Probability density functions in the (Ek,x,Ek,y−z) plane, conditioned on being in a collapse
trajectory, for (a) trajectories from free DNS, (b) trajectories from noisy DNS, (c) 1138 trajectories from AMS.
(d) Conditional average trajectories and their variances.

of Ek,y−z much faster than that of Ek,x. While Ek,x is divided by 5 (from approximately
0.05 = exp(−3) to 0.01 � exp(−4.5)), Ek,y−z is divided by 400 (from approximately
0.0025 � exp(−6) to 5 × 10−6 � exp(−12)). This difference in decay rate quantifies
what is observed in the velocity field: the streamwise vortices (whose amplitudes mostly
contribute to uy and uz) decay before the velocity streaks (whose amplitudes mostly
contribute to ux). We note that as Ek,y−z becomes smaller, the three PDFs deviate in shape.
In the case of free DNS (figure 8a), both Ek,x and Ek,y−z keep decreasing, albeit at a smaller
rate for Ek,y−z. However, in situations where some noise in added to the flow (noisy DNS
(figure 8b) or AMS computations (figure 8c)), one way or the other, the kinetic energy
contained in the wall normal and spanwise components Ek,y−z reaches a neighbourhood of
a minimal value while Ek,x keeps decreasing (the now streamwise invariant streaks keep
decaying in amplitude). This minimum value is the consequence of the forcing exerted
on the flow: uy and uz respond almost linearly to this forcing and fluctuate around these
small values. In the case of AMS, this is the partially numerical effect of what is left in
the spectrum of the white perturbations placed at branching. The value around which the
components fluctuate is a function of the noise variance and spectrum shape. It has been
checked in an AMS study of the build up of turbulence that the amount of energy given
to the flow by this noise is small enough so that the probability turbulence restarts from
this forcing is negligible. The differences of amplitude along the paths in these PDFs are
(among other things) a consequence of the number of bins used, the number of sampled
trajectories and the time spent by trajectories near low values of kinetic energy.

We can compare the trajectories more precisely by computing the conditional average
〈log(Ek,y−z)〉 as a function of log(Ek,x). Indeed, if we define the probability ρx of having
the value log(Ek,x) during the reactive trajectories

ρx(log(Ek,x)) =
∫
ρe(log(Ek,x), log(ek,y−z)) d log(ek,y−z), (3.1)
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we have the conditional probability ρc of observing log(Ek,y−z) = log(ek,y−z) if one has
log(Ek,x)

ρc
(
log(ek,y−z)| log(Ek,x)

) = ρe(log(Ek,x), log(ek,y−z))

ρx(log(Ek,x))
, (3.2)

and the conditional average is

〈log(Ek,y−z)〉(log(Ek,x)) =
∫
ρc

(
log(ek,y−z)| log(Ek,x)

)
log(ek,y−z) d log(ek,y−z). (3.3)

We can also compute the conditional variance

σy−z(log(Ek,x))

=
√∫ (

ρc(log(ek,y−z)| log(Ek,x)) log(ek,y−z)2
)

d log(ek,y−z)− 〈log(Ek,y−z)〉2(log(Ek,x)). (3.4)

We display the average 〈log(Ek,y−z)〉(log(Ek,x)) in full line and the average plus/minus the
variance 〈log(Ek,y−z)〉(log(Ek,x))± σy−z(log(Ek,x)) by the dashed line for all three types
of reactive trajectories in figure 8(d). This quantitatively confirms the observation of a
faster decay of the streamwise vortices, and thus of Ek,y−z, than of the streaks, and thus
of Ek,x. This also confirms that using the AMS leads to the same collapse trajectories
as using DNS, at a much smaller cost, up to the effect of the noise added at branching
on Ek,y−z when it is very small. We can finally note that the trajectories seem to be
concentrated around this average. Note, however, that the constant variance of log(Ek,y−z)
actually corresponds to a variance of Ek,y−z which decreases exponentially as the collapse
of turbulence goes on. There is a larger variance of Ek,y−z among the initial conditions
and thus in the amplitude and distribution of streamwise vortices in the initial conditions
and stronger fluctuations in the beginning of the trajectory. On a final note, we state that,
in order to rigorously obtain instantons in stochastic systems, one has to take a limit of the
variance of the added noise going to 0. In the case of our turbulent flows, this means either
identifying an effective noise (which is a difficult task) or displaying large deviations in
quantities like the probability density functions, the probability of collapse or the mean
first passage time. Quantitatively speaking, this amounts to identifying a small parameter
ε, proportional to the square of the suspected noise variance such that limε→0 ε log(α)
or limε→0 ε log(T) are independent on ε (these two limits often have opposite signs)
(Touchette 2009). As it happens, such scalings have been displayed in probability density
functions of kinetic energy in simulations of plane Couette flow when the sizes Lx, Lz
were increased so that domains contained up to 6 wavelengths of the laminar turbulent
bands, with εDNS = 1/LxLz (Rolland 2015). In that case, the rate functions of the PDF
of kinetic energy showed the tails for Ek < 〈Ek〉, describing the fluctuations of kinetic
energy toward low values and eventually toward laminar flow. This type of scaling was
also shown in mean first passage times before collapse of laminar–turbulent coexistence
in models of pipe flow where the length L of the system was increased so that it contained
up to ten puffs, with ε = 1/L, (Rolland 2018). In that case, collapse trajectories started
from laminar–turbulent coexistence. This situation can have a highly fluctuating dynamics,
especially at Reynolds numbers slightly above the transition threshold, with events like
single puff decay or splitting. However, the collapse trajectories themselves followed a
rather systematic scenario (collapse puff by puff for Reynolds numbers slightly above the
transition threshold and synchronous collapse at higher Reynolds numbers) and showed
typical paths in phase space constituted by global quantities.
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One thus observes large deviations in the large system size limit, and in that limit one
should expect to observe an increasingly narrower concentration of trajectories, and an
increase of the mean first passage time before collapse which is exponential with the length
of the system. Note that models indicate that nothing in laminar–turbulent coexistence
prevents the collapse of turbulence: if the Reynolds number is increased slightly above the
threshold of transition, this only requires the concomitant collapse of all the puffs. This
condition is at the origin of the exponential dependence of the lifetime of turbulence on
size. It may very well be that the very same thing happens in actual pipe flows or Couette
flows, where one would require the rare, but not impossible, concomitant collapse of all
the puffs or of the bands of the flow. This synchronisation could be at the origin of an
exponential scaling in size. Note that, in that respect, there is a similar phenomenology
in our rectangular boxes and larger domains: in both cases, the collapse of turbulence on
a streamwise long corridor is required, and in both cases, that collapse can be countered
by contamination from the sides of the hole. This would indicate that laminar turbulent
coexistent is strictly permanent only in domains of infinite size.

Given these considerations, we can conclude that, in order to observe a greater
concentration of trajectories, and more generally large deviations of the probabilities and
rate of probability of collapse, it may very well be necessary to observe said collapses
in larger and larger domains. For this purpose increasing the streamwise size Lx may be
more efficient than increasing the spanwise size Lz. This may be a consequence of the
specific mechanism of hole formation, leading to the formation of two active–quiescent
fronts that move on. Such situations have already been observed in theoretical physics
systems (Rolland et al. 2016). The rare event is the formation of the hole and of the fronts
themselves. Once said hole is created, the probability that it will entirely open is small and
decreases with size, but this decrease is slower than exponential.

We remark that the dynamics leading to collapse of turbulence can be different from
the typical laminar–turbulent coexistence. In plane Couette flow, the laminar–turbulent
coexistence can be fairly complex, in particular at the lowest Reynolds number where it
is permitted: in flows extended in two dimensions, one can observe growth or decay of
turbulent spots or stubs of bands. These can be separated in two, drift etc. (see Chantry,
Tuckerman & Barkley 2017). Visually, this can give fairly distinct initial conditions for
the collapse of turbulence, which nevertheless have comparable statistical properties. In
these cases, the most probable route to laminar flow will most likely remain to suppress
spots or band stubs one by one at lower Reynolds numbers, and collapse them all in a
synchronous manner at higher Reynolds numbers. Time series of global quantities, such
as turbulent fraction, kinetic energy of different components etc. would then have a very
similar structure.

We finally note that, even if each AMS run has some collapse trajectories in its first
iterations (approximately 3.8 % of the trajectories generated in the first stage), and it will
generate other collapse trajectories by branching on these collapse trajectories, it generates
even more variability than this through mutation/selection on other initial conditions,
with the help of anticipated branching. This means that each run generates distinct,
independent reactive trajectories, in particular trajectories with distinct initial conditions.
These trajectories are even more distinct in their later stages. The amount of variability
generated can be estimated by counting the number of genealogies, that is to say the
number of group of trajectories that share the same starting point. Each group will display
trajectories decorrelated from those of another genealogy. On average, we generate 24
genealogies per AMS run with 120 clones. This value is obtained by averaging over
all available AMS runs the number of distinct initial conditions in computed reactive
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trajectories. See Ragone & Bouchet (2021) for a view of genealogies of trajectories with a
different algorithm applied to climate.

3.2. Mean first passage time and probability of collapse
We now compare the mean first passage time before collapse T and probability α of
collapse computed by means of direct numerical simulations and AMS. While the mean
first passage time before collapse is the most physical quantity, the probability of collapse
nevertheless contains a lot of information on the precision of the computations and
the rarity of the event. Looking into its statistics is always a good way of validating
the AMS computations. This is all the more true because this is the one quantity for
which we have mathematical results of convergence (Cérou & Guyader 2007; Bréhier
et al. 2016; Cérou et al. 2019a). Using the methods presented in §§ 2.2 and 2.5, we
obtain the averages with the 66 % confidence intervals 〈α〉o = αAMS = 0.042 ± 0.003
with a variance σα,AMS � 0.016 using AMS, and αDNS = 0.037 ± 0.002 using DNS. This
indicates that the estimation of the probability of collapse is precise, we have an overlap
of both 66 % interval of confidence (as presented in § 2.2.3). When we suppress a fixed
number (strictly larger than one) of clones at each iteration, the ideal variance of the
probability of collapse is given by σ 2

id = (α2/N)(〈κ〉o(Nc/(N − Nc))+ (1 − 〈r〉o)/〈r〉o)
(where 〈κ〉o is the average number of iterations of AMS and 〈r〉o is the average proportion
of reactive trajectories computed at the last iteration) (Cérou & Guyader 2007). This is
the minimum of variance of the estimator of α. It is obtained when the ideal reaction
coordinate, the committor, is used (Bréhier et al. 2016; Cérou et al. 2019a). When this
minimal variance is reached, AMS computations are performed with a minimal error. In
practice this gives a value of the ideal variance σAMS,id � 0.007. The variance on the
estimate of the probability is twice the ideal variance. This indicates that the quality of
the computation is acceptable, but not perfect, quite possibly due to imperfections in the
reaction coordinate we used.

We then compare the mean first passage times before collapse. By means of DNS, we
sample the cumulated density of waiting times before collapse in simulations performed
with and without additional noise, in order to estimate the mean first passage time as well
as test the effect of noise on it. We can see that cumulated densities F(t) = ∫ ∞

t f (ζ ) dζ ,
with f (ζ ) the PDF of passage times, computed with and without noise decrease linearly in
logarithmic scale (figure 9). This is thus entirely consistent with an exponential distribution
of passage times. Both cumulated density functions have very similar slope, which is itself
almost equal to the estimated mean first passage time. We estimate the mean first passage
time before collapse in DNS by averaging over all sampled durations, we obtain TDNS =
1.10 × 104 ± 8 × 102 without noise and TDNS,noisy = 1.3 × 104 ± 103 with additional
noise, where the error bars correspond to the 66 % confidence interval. In both cases, the
variance is equal to the average and the median is equal to

√
2T , further confirming that

we have an exponential distribution. While the addition of noise may increase the mean
first passage time, it does not increase it dramatically, so that it is acceptable to use an
additive small noise in simulations and AMS to help the separation of trajectories. In turn,
we estimate TAMS = 2.4 × 104 ± 3 × 103. Again, we used the 66 % interval of confidence
as error bars. We note that TAMS overestimates the mean first passage time. The confidence
intervals do not overlap, which indicates that this overestimate is most likely an effect of
a bias in the computation of TAMS. In order to understand why the estimate of the mean
first passage time is not as good as what is obtained for other quantities, we examine the
histograms of mean first passage times (figure 10a) and probability of collapse (figure 10b)
computed by AMS. While the histogram of α is symmetric, that of T is skewed. We note
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Figure 9. Logarithm of the cumulated distribution of waiting times in noiseless and noisy DNS for
Lx × Lz = 24 × 18, R = 370. We add the two linear functions −t/〈T〉 for comparison.
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Figure 10. Histograms of T (a) and α (b) sampled by AMS in the system of size Lx × Lz = 24 × 18, at
Reynolds number R = 370.

that the estimate of T is polluted by a handful of very high values, originating from fairly
small values of α, which have a much smaller effect on the average over realisations αAMS.
On top of the improvement brought by a better reaction coordinate, the computation of
the mean first passage time may very well be improved in AMS computations using more
clones.

One can finally compare the relative cost of trajectory computations with AMS and
DNS. Strictly speaking, the average physical duration of a simulation to obtain one
reactive trajectory by DNS is of order O(104), meanwhile the simulation time by means
of AMS is of order O(103). Such a factor 10 acceleration in computation already seems
interesting. This means that, even in this case, where the study of the system by DNS
seems affordable, using AMS already leads to a substantial acceleration in computation.
Of course, with the use of checkpoints to store the trajectories during AMS computations,
the reactive trajectories and non-reactive trajectories can be recorded without unnecessary
use of RAM and disk space. Indeed, in many cases, multistability (or more precisely
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collapse of turbulence) is studied using long records of time series, where most of the
information has to be eventually discarded. Using such records to compute the velocity
fields during collapse would be very inefficient. Velocity fields presenting collapse are
scarcely presented in DNS or experimental studies. This does not have to be a consequence
of the numerical procedure, as one can argue that only records spanning the last one
thousand time units or so of the velocity have to be kept. This requires careful memory
management and has very seldom been explicitly presented in the literature to the author’s
knowledge.

4. A very rare collapse in a domain of size Lx × Lz = 36 × 27: spatial organisation

The observation of collapse of turbulence in the domain of size Lx × Lz = 24 × 18
indicated that, locally, collapse occurred by a more rapid failure of streamwise vortices
than velocity streaks. In that domain, however, it was not entirely clear whether this
collapse was always a local process, leading to a streamwise laminar hole that then
extended in the spanwise direction, or whether this could happen in a synchronous
manner everywhere. The question is open as both behaviours have been observed in a
finite number of decays forced by decrease of the Reynolds number to a very low value
(Manneville 2011; De Souza et al. 2020). We can therefore ask the question of whether
we would always see both types of collapse when the domain size is increased and the
simulation is closer to what can be observed in experiments. For this reason, we will
consider the collapse of turbulence in a domain of size Lx × Lz = 36 × 27 at Reynolds
number R = 377 (see figure 1 for an illustration of the domain size). This will also be
the occasion to test anticipated AMS in a situation where the mean first passage time
before collapse is much larger than in § 3.2. In that case, DNS are not affordable and
there will be no collapse trajectory computed at stage 0 of AMS. This will indicate how
expensive an AMS computation is in that situation and whether anticipated AMS manages
to create collapse trajectories and ensures that there is some variability between these
trajectories.

For the AMS computations, we use Eturb = 0.05, �E = 0.047 in ΦE (2.5). We set the
hypersurface C as the set of velocity fields such that Φ = 0.07. The initial conditions
within A are prepared as stated in § 2.3. We use the parameter ξ = 0.15, with the
converging Φb ((A2), § A) for the anticipation of branching. In each computation, we use
60 clones and suppressed 16 clones at each iteration. On 8 threads, this gives reasonable
load balancing for the simulations. Due to the rarity of the collapse of turbulence for
these control parameters, there is no collapse trajectory in the very first stage of AMS
computation: the method selects them naturally. A downside is that there is less variability
between the trajectories computed in the same AMS run, in the first 100 time units.
There is of course variability from one AMS run to the other. We note that, the larger
the domain is, the more decorrelated fluctuations are adding up in the flow and the
less need there is for anticipation of branching. With these parameters, we estimate
α = 8 × 10−5 ± 7 × 10−5 and T = 8 × 107 ± 7 × 107, where the error bars are given by
the 66 % interval of confidence. We have to simulate the flow for approximately 5000 time
units per trajectory obtained. Even if one takes into account the fact that mean first passage
times are somewhat overestimated with a finite number of clones, this still represents an
acceleration of computations by a factor of more than one thousand.

We display the last state at the last branching stage ulast, ωx,last from one of the AMS
computations in figure 11. This state (which is not steady in any way) displays a laminar
hole localised in z which occupies the whole streamwise length of the domain. For the
streamwise component of the flow (figure 11a,e), this hole is rather narrow and is situated
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Figure 11. Colour levels of the streamwise (a), wall normal (b) and spanwise (c) components of the velocity
field, in the y = 0, (ex, ez) plane for the last stage at the last branching step in an AMS computation of collapse
trajectories at R = 377 in a domain of size Lx × Lz = 36×, along with (d) the streamwise vorticity. (e) Colour
levels of streamwise averaged streamwise velocity as a function of y and z for the same state.

in the range 17 � z � 24. It is flanked by streamwise invariant streaks for 8 � z � 17 and
24 � 27, 0 � 3 (due to periodic boundary conditions in z). In the wall normal component
(figure 11b), the spanwise component (figure 11c) and subsequently the streamwise
vorticity (figure 11d), the laminar hole is actually much wider. These components are away
from zero only for 3 � z � 8, that is to say, where the streamwise component displays
fluctuations. This is the only area left in the flow where the self-sustaining process of
turbulence is still active. This shift in the active–quiescent interface between the streaks
and streamwise vortices flow components highlights again the scenario of collapse where
the vortices disappear before the streaks. Unlike in the domain of size Lx × Lz = 24 × 18,
all the last state at the last branching stage that have been computed display such an
opening of hole. This has also been observed at other Reynolds numbers (R = 351, 357
and 370, not shown here). The observation of this state confirms that for this regime of
parameters, the scenario of collapse of turbulence is far more univocal. As we will see in
the observation of collapse and partial collapse trajectories, there is again a local failure of
streamwise vortices that disappear in a streamwise long hole leaving streamwise invariant
streaks that decay viscously. These holes then extend in the streamwise direction.
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We display a typical collapse trajectory obtained using AMS in figure 12. We follow the
decay of the kinetic energy (a,d,g,j,m,p,s) along with the streamwise velocity and spanwise
velocity in the midplane (b,e,h,k,n,q,t and c, f,i,l,o,r,u). The trajectory starts from typical
uniform wall turbulence at t = 2, where the streamwise velocity is organised in low speed
and high speed streaks, and the spanwise velocity varies at much shorter length scales, as
would be expected from its participation in spanwise vortices. After some slight decay in
amplitude of the spanwise velocity component from t = 2 to t = 292, a laminar hole forms
in uz from t = 292 to t = 440 as seen in the decay of kinetic energy. In that case, this hole
is located in the range 14 � z � 25 for all x. As to ux, the velocity streaks are still present
at that location, albeit they are almost streamwise invariant. At t = 624, this hole has
extended in the spanwise direction. The velocity streaks are now streamwise invariant for
z � 13 and decay in amplitude in this part of the flow. Meanwhile, the spanwise component
of the flow has fallen to zero at the centre of the laminar hole. As time moves forward, at
t = 876, ux falls to zero for 27 � z � 19, one can notice that the interface between the
active and quiescent domains has moved in the spanwise direction from z � 16 to z � 19.
Observation indicates that the active–quiescent interface is the same for uz and ux in that
case. After this event, one nevertheless can note that, at t = 824, the amplitude of the
spanwise velocity field has decreased in the turbulent domain, indicating a failure of the
streamwise vortices in the whole 3 � z � 19 area. The remaining streamwise vortices then
completely decay, leaving only streamwise invariant streaks localised in z at t = 1076, that
then viscously decay.

We display one of the n < Nc non-reactive trajectories left at the last stage of an AMS
computation in figure 13. This trajectory corresponds to an excursion toward laminar flow
that evolves back to a fully turbulent flow. We follow the excursion toward low values
then increase of the kinetic energy (left panels) along with the streamwise velocity and
spanwise velocity in the midplane (central and right panels). This trajectory starts like the
one of figure 12, by the opening of a laminar hole, first by decay of uz (for all x, for 20 �
z � 27 at t = 352), leaving almost streamwise invariant streaks at t = 432. Part of this
similarity may be explained by the fact that the two trajectories share a common beginning,
being branched from the same genealogy. However, they quickly separate, while displaying
common features of a laminar hole opening, and of simplification of the streak preceded
by failure of the streamwise vortices. At t = 806, there is a laminar hole in ux for all x and
17 � z � 22 and the vortices have almost decayed. At t = 1076 the streaks have further
receded, however, the self-sustaining process of turbulence has restarted in the middle of
the turbulent domain, as seen by the increase in amplitude of uz in the 2 � z � 10. From
this point on, turbulence reinvades the domain. We can note that, at t = 1370, the turbulent
hole is closing, as shown by the surge of kinetic energy. However, the opening and the
closing are different processes: now the active–quiescent interfaces are almost at the same
position in z for both ux and uz. In the end, turbulence reinvades the whole domain.

We can observe the movement of the active–quiescent interfaces in more detail for the
reactive trajectory (figure 14a) and the non-reactive trajectory (figure 14b). These figures

use both the contours of
√∫ 36

x=0 u2
z dx − (

∫ 36
x=0 uz dx)2 = 0.03 and

√∫ 36
x=0 u2

x dx = 0.15
which respectively indicate the spanwise location of the active–quiescent interface for
the streamwise vortices and for the velocity streaks. These can be compared with earlier
visualisations (figures 12 and 13), that justified the study of the purely spanwise location of
the active quiescent interface in this type of domain. In the case of the collapse trajectory,
we can observe the survival of streaks where streamwise vortices have disappeared for
500 � t � 800 and 20 � z � 27 and for 900 � t � 1100 and 5 � z � 20 (figure 14a).
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Figure 12. Following a collapse trajectory in a domain of size Lx × Lz = 36 × 27, R = 377. (a,d,g,j,m,p,s)
Show a time series of kinetic energy, with the dot indicating the instant at which the colour levels of streamwise
velocity in the y = 0 plane (b,e,h,k,n,q,t) and spanwise velocity (c, f,i,l,o,r,u) at corresponding times in the
y = 0 plane are shown. A movie of this collapse trajectory is provided in the supplementary material available
at https://doi.org/10.1017/jfm.2021.957.
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Figure 13. Following a non-reactive trajectory (hole opening then closing) in a domain of size Lx × Lz = 36 ×
27, R = 377. (a,d,g,j,m,p,s) Show a time series of kinetic energy, with the dot indicating the instant at which
the colour levels of streamwise velocity in the y = 0 plane (b,e,h,k,n,q,t) and spanwise velocity (c, f,i,l,o,r,u) at
corresponding times in the y = 0 plane are shown. A movie of this non-reactive trajectory is provided in the
supplementary material.
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Figure 14. Contours of
√∫ 36

x=0 u2
z dx − (

∫ 36
x=0 uz dx)2 = 0.03 and

√∫ 36
x=0 u2

x dx = 0.15 as a function of z and t
for (a) the collapse trajectory of figure 12 and (b) the non-reactive trajectory of figure 13.

While this is partially caused by the method of detection of the interface (see figure 12
t = 624) and while the scenario is not at one hundred per cent univocal, the situation
where streamwise vortices survive where streaks have decayed is never observed in the
reactive and non-reactive trajectories. Similar observations can be made in the case of
the non-reactive trajectory (figure 14b). We have an apparent collapse of both streaks and
vortices at t = 400 and for 15 � z � 20. For 500 � t � 800, only the active–quiescent
interface of the vortices recedes. For 800 � 1200, we can see some reduction of the surface
occupied by the streaks. For t � 1200, we can see that the surface occupied by the vortices
increases again until the active–quiescent interface for the streaks and the vortices is again
the same and they both reinvade the domain.

5. Conclusion

In this work we have presented one of the first applications of a rare event sampling method
to study multistability in a turbulent flow not forced stochastically. Namely, AMS was
used with anticipated branching to compute and study turbulence collapse trajectories
in transitional plane Couette flow. A large number of collapse trajectories could thus
be computed using a dramatically reduced amount of computational time. In some of
the cases considered here, simulations can be more than one thousand times faster.
Calculations may be even more accelerated for rarer events as the computational cost of
AMS typically evolves like the logarithm of the computational time of DNS. Moreover, the
collapse trajectories can be straightforwardly recorded in full details using the checkpoints
created during AMS computations. The reactive trajectories in phase space, statistics of
reactive trajectories durations, velocity fields during reactive and non-reactive trajectories
as well as estimates of the probability of turbulence collapse and mean first passage time
before turbulence collapse (with their respective error bars) are then available at low cost
using this approach.

A first step in this work has been to ensure the validity of the result of AMS
computations. This has been done in a system of size Lx × Lz = 24 × 18 at Reynolds
number R = 370. Computation of reactive trajectories and mean first passage time are
amenable in this system, so that rare event computations could be compared with a
reference. It could thus be shown that reactive trajectories (trajectories in phase space,
statistics of durations) are computed precisely. Some effects of the low noise added to the
flow for the separation of trajectories were identified in the very last stages of reactive
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trajectories, when the flow is finally laminar. The bias added to the collapse computations
is small enough so that the use of this additional noise is entirely acceptable. Similarly,
the probability of collapse computed using AMS was shown to be in the same 66 %
interval of confidence as the one computed by DNS. The computed mean first passage
times are overestimated. Histograms of the computed probabilities of collapse and mean
first passage time before collapse indicate that this overestimate is caused by a handful of
overly large estimates of T related to underestimates of α. This is most likely an effect
of the number of clones used in this computation. Other estimators of mean first passage
time could be used to improve the computation (Lestang et al. 2020), which have their
own drawbacks for trajectory computations, such as constraints on trajectory durations.

A large part of this work was of course devoted to the study of the collapse
trajectories properties. In the system of size Lx × Lz = 24 × 18, the visualisation of
collapse trajectories showed that the laminarisation could be sketched in two stages. The
velocity components uy and uz, and as a consequence, streamwise vortices, decayed first, so
that the flow is driven out of the SSP of turbulence (Waleffe 1997). As a consequence, the
streamwise velocity has less dependence on x, and then slowly decays without displaying
streak instability (Kawahara et al. 2003; Marquillie et al. 2011). Examination of the
velocity fields shows that this process can happen locally, leading to a streamwise long
laminar hole in uy, uz that then extends in z: streamwise vortices decay everywhere in
this small domain. Viewed in the quadrant Ek,x ≥ 0,Ek,y−z ≥ 0, these visualisations all
correspond to trajectories concentrated along the same path. While this path is more
continuous than the sketch given here, it still displays a first stage where Ek,y−z decays
much faster than Ek,x, then a second stage where Ek,y−z is small (around the noise level)
and Ek,x decays in turn. Such concentration of trajectories is commonplace in stochastic
models which display rare transitions when the noise variance goes to zero. While the
separation of the dynamics of an actually turbulent flow into a deterministic part and
a noise part is very difficult to make, and the flow displays transient chaos when the
domain is very small (Eckhardt et al. 2007), this is a first indication that the collapse of
turbulence in Couette or Poiseuille flows in domains of increasing size is best understood
as a stochastic system. Given the concentration of trajectories, one may be tempted to
draw a comparison with instantons computed in stochastic systems (Bouchet et al. 2019a;
Grafke & Vanden-Eijnden 2019). In order to give a meaning to such a description, one
would need a low noise limit. This may be the case in the large size limits as observed in
models (Rolland 2018) and in the large deviations of the kinetic energy (Rolland 2015).
The statistics of reactive trajectory durations are another feature of the trajectories which
are very close to their stochastic counterparts. Both DNS and AMS computations show
that the normalised distribution of durations is very close to a Gumbel distribution. In
stochastic multistable systems it is demonstrated in one-dimensional systems that this is
the distribution of durations (Cérou et al. 2013). In extended systems, it is observed that
this distribution is found when the multistability occurs when the system transits through
a single curved saddle of its deterministic part (Rolland et al. 2016; Rolland 2018). This
would place the collapse of turbulence in plane Couette flow in systems of increasing sizes
in this category.

The second part of the study of trajectories concerned the question of the localisation
of the laminar holes. For this matter, the size of the studied system has been increased,
from Lx × Lz = 24 × 18 to 36 × 27. Increasing the domain size led to the computation of
a single type of reactive trajectories. They all display the local opening of a spanwise
localised streamwise elongated hole, first in streamwise vorticity, then in streamwise
velocity as this hole extends in the spanwise direction. Laminar–turbulent front movements
have been presented by Duguet, Le Maitre & Schlatter (2011). There have been some
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observations of similar hole openings, as well as global collapse in numerical simulations
and in experiments (Manneville 2011; De Souza et al. 2020). However, there has been so
far no general way to ascertain the weight of each scenario in turbulence collapse for given
values of control parameters. Using a method like AMS and sampling a large number of
trajectories at a comparably low cost can therefore help give some statistical weight to
each scenario of collapse. Moreover, this suppressed the need to perform a quench or
a more continuous decrease of the Reynolds number in order to observe said collapses.
This reopens the way for the study of collapse of non-isolated turbulent puffs and spots,
which had been considered experimentally (Bottin & Chaté 1998) and more recently in
models. The dynamics of Couette flow, where turbulence can extend in two directions, is
even richer than in the case of the collapse of laminar–turbulence coexistence in models
of canonical pipe flow puff (Rolland 2018).

Another interesting point of the use of a method like AMS is the ability to identify a
turning point in the dynamics of collapse (Simonnet et al. 2021). This is done by recording
the state leading to the largest reaction coordinate in the suppressed trajectories of the last
stage of AMS. In stochastically forced systems, this state corresponds to an effective saddle
between the two metastable states, and can alternatively be computed through a dichotomy
procedure (see Schneider et al. 2007; Willis & Kerswell 2009), or even by computing the
saddle point of the deterministic point of the system in systems forced by an additive noise.
This turning point gives us some information on the mechanism of multistability and in
our case on collapse of turbulence. It displayed localised streaks and streamwise vortices
in the largest system, which backs the scenario of collapse through hole formation. In the
case of collapse of turbulence in plane Couette flow, these states did not necessarily make
the best starting points for edge tracking. Edge tracking has already been performed with
the results of collapse of turbulence in pipe flow (De Lozar et al. 2012). Note that edge
tracking can be performed using the result of AMS computation: this has been done in the
study of build up of turbulence under some additive noise and should be presented in a
later text.

While the use of AMS to compute the reactive trajectories has proven successful, there
is still some room for improvement, in particular for the estimation of the mean first
passage time before collapse. With a given set-up, one can always bring improvement to
the estimate by increasing the number of clones used to compute the trajectories (and thus
their numerical cost). This has been repeatedly measured in stochastically driven systems
(Rolland & Simonnet 2015) and demonstrated for such systems asymptotically (Bréhier
et al. 2016; Cérou et al. 2019a). However, one could wish to perform these improvements
at little additional numerical cost. Said studies have also shown that much improvement
can be brought by improving the reaction coordinate used in computations (Rolland &
Simonnet 2015; Bréhier et al. 2016; Rolland et al. 2016; Cérou et al. 2019a). This has
been so far performed by hand with trial and error by integrating physical properties of the
system in the reaction coordinate in order to mimic the committor function: the probability
of reaching the arrival state before the departure state from any given state (Onsager
1938; Rolland & Simonnet 2015; Bréhier et al. 2016; Cérou et al. 2019a). Indeed, it has
been demonstrated that it was the ideal reaction coordinate: the one that lead to the best
estimates (Cérou et al. 2019a). However, this committor function is in a way the answer
to the question we ask when we study multistability. Systematic methods to approximate
the committor and improve the reaction coordinate are being validated in few degrees
of freedom systems. They could be directly applied to transitional turbulence. Indeed,
the requirement for these methods to function are met: trajectories, reactive or not, are
reasonably well estimated. These approaches may provide another estimate of the mean
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first passage time. This could improve the estimates of T provided in this text and avoid
the accumulation of errors that occurs when (2.4a) is used.

Finally, the computation of reactive trajectories in transitional wall turbulence opens
the way for similar computations in high Reynolds number turbulence. Systematic
computation of reactive trajectories in systems of aerodynamical interest (Kim & Durbin
1988), or geophysical interest are more than conceivable (Herbert, Caballero & Bouchet
2020).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.957.
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Appendix A. Anticipated AMS

The various anticipated branching strategies proposed in § 2.2 help in increasing the
variability amongst trajectories. More importantly, this approach helps to avoid so-called
extinction. Indeed, when using AMS, we wish to avoid a situation where no trajectories are
able to go further than Φext < Φ(∂B). In that case, no matter how many additional steps
are performed, we have at stage k that Φmax,k = maxi maxt(Φi(t)) = Φext and reactive
trajectories cannot be computed. We illustrate this situation in figure 15, where we display
the time series of the reaction coordinate Φ for all trajectories successively computed
by AMS in a run where no anticipation is performed. The reaction coordinate used here is
based on the asymmetry of the flow (see (2.6)). The figure was obtained in a sequential run
of AMS where all the time series of the reaction coordinate for all the trajectories simulated
were successively saved. We draw a distinction between the trajectories computed in the
initial step of the algorithm (times before the black vertical line) and those computed
during the mutation selection process (times after the black line). During the initial free
run stage of AMS (‘stage 0’), the maximum of reaction coordinate over all trajectories
is Φmax,0 = 0.248 ± 0.001. Note that this maximum of Φ on a trajectory corresponds
to a turning point where Φ(t) will decrease with an extremely high probability even
if slightly perturbed. In the first steps of the classical AMS computation, the levels
of reaction coordinate at which trajectories are branched are rather below Φmax,0, so
that variability among trajectories is initially created and the maximum of Φ eventually
reaches Φmax,k = 0.430 ± 0.001 after k stages. Extinction occurs because branchings are
performed at higher and higher levels ofΦ, which are closer and closer to the valueΦmax,k.
Eventually, all trajectories reach that value, all branchings are performed at Φmax,k and
even with small perturbation, all trajectories subsequently decay in Φ. Closer examination
shows that they all differ from one another after some time. The issue here is not that
trajectories do not separate from one another, but that they do so during a decay phase of
Φ and thus cannot lead to a progress of the reaction coordinate. This has also been seen in
the study of turbulent wakes (Lestang et al. 2020). Anticipation of branching consists in
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Figure 15. Time series of Φ during an AMS calculation with the 24 × 16 system leading to extinction (the
laminar state corresponds to φ ≥ 1). The black line indicates the end of the stage 0 of AMS and the red line
the maximal φ = 0.248 ± 0.001 reached during this stage (‘contained in the initial conditions’). The green line
indicates the maximum φ = 0.430 ± 0.001 reached during the whole AMS calculation.

branching trajectories before these turning points so that they all have the time to separate
and generate new trajectories going further and further in Φ.

The anticipation strategy which should be followed depends on the properties of the
system. In the case of the collapse of turbulence in plane Couette flow, this depends
on the size of the system. The line is drawn between small systems (typically of size
Lx � 15, and Lz � 10) and larger systems. Small systems, which have very few degrees
of freedom, display at most four or five velocity streaks (high or low velocity) and a
handful of streamwise vortices. Their behaviour can be described by the escape away from
a chaotic repeller (Eckhardt et al. 2008). They necessarily collapse globally in space, this
means that the larger Φ is, the more globally quiescent the flow becomes: the mixing
is less intense and there is little separation of trajectories. This is shown in figure 16 in
a small system of size Lx × Lz = 12 × 8. The flow required some reorganisation before
collapse was possible (part of the trajectory for 0 ≤ t ≤ 300), and at most two low speed
and two high speed streaks are present. When the collapse takes place (between t = 350
and t = 400) uz collapses almost uniformly. Larger systems have more and more degrees
of freedom, and contain more velocity streaks and vortices. An important feature is that
they collapse through the formation of a laminar hole. This means that, for a large portion
of the reactive trajectory, some area of the flow remains turbulent. This turbulent area can
serve as some sort of heat bath which fuels the trajectory with perturbations and thus can
greatly help the separation of trajectories. This means that, in small systems, branching
must indeed be performed on trajectories having greater excursions, but on their initial
stages, where the flow is still agitated and thus will separate the trajectories. In that case,
we use a so-called saturated anticipation

Φb,sat = ξ

(
1 − exp

(
−ΦNc

ξ

))
. (A1)

This function is shown with ξ = 0.25 in figure 2(c), with the ‘saturated’ label. If we follow
that strategy in the case of larger systems, it will require too many tries for branched
trajectories to reach ΦNc . A more efficient strategy is to anticipate the branching with a
small shift, this can for instance be done with a function that slowly reaches its asymptote,
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Figure 16. Collapse of turbulence in a very small system of size Lx × Lz = 12 × 8. (a,d,g,j) Time series of
kinetic energy with dot indicating the instant in the simulation. (b,e,h,k) Colour levels of streamwise velocity
in the horizontal midplane. (c, f,i,l) Colour levels of spanwise velocity in the horizontal midplane.

the line of slope 1,

Φb,conv =
ΦNc

(
1 + tanh

(
ΦNc − ξ

ξ

))
2

. (A2)

This function is displayed in figure 2(c), with the ‘converging’ label.
On a final note, we state that the strong necessity for anticipated branching may come

from the imperfection of the reaction coordinate. Indeed, we have so far used a reaction
coordinate constructed with a formula under simple physical arguments. For instance, in
the case of the kinetic energy, we considered that Ek decreases as the flow goes toward
the laminar state. In the case of large systems, it may very well be that the committor, the
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function which associates the probability of reaching the final state with (in our case) an
instantaneous velocity field, may not be so far from an affine function of Ek. In the case
of very small systems, which display a behaviour close to temporal chaos, it is likely that
the committor has very large variation on isosurfaces of constant Ek, in particular when
one moves slightly away from turbulence. This is caused by the complex structure of the
laminar–turbulent boundary in small scale systems (Schmiegel & Eckhardt 1997). Both
situations are relevant to collapse of turbulence in shear flows in general. Indeed, pipe
flows will most of the time display a localised turbulent puff which keeps a small number
of degrees of freedom as the length of the pipe is increased. Meanwhile, spatially extended
channel flows such as Couette or Poiseuille flow will display localised turbulence which
will have more and more degrees of freedom as the domain size is increased. The option
of anticipated branching should remain on the table as there is no certainty that methods
to estimate a better reaction coordinate could work without prior runs of AMS.
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