
J. Fluid Mech. (2019), vol. 880, pp. 992–1019. c© Cambridge University Press 2019
doi:10.1017/jfm.2019.726

992
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Flow over aligned and staggered cube arrays is a classic model problem for rough-wall
turbulent boundary layers. Earlier studies of this model problem mainly looked
at rough surfaces with a moderate coverage density, i.e. λp > O(3 %), where λp
is the surface coverage density and is defined to be the ratio between the area
occupied by the roughness and the total ground area. At lower surface coverage
densities, i.e. λp < O(3 %), it is conventionally thought that cubical roughness
acts like isolated roughness elements; and that the single-cube drag coefficient,
i.e. Cd ≡ f /(ρU2

hh2), equals CR. Here, f is the drag force on one cubical roughness
element, ρ = const. is the fluid density, h is the height of the cube, Uh is the
spatially and temporally averaged wind speed at the cube height, and CR is the
drag coefficient of an isolated cube. In this work, we conduct large-eddy simulations
and direct numerical simulations of flow over wall-mounted cubes with very low
surface coverage densities, i.e. 0.08 %< λp < 4.4 %. The large-eddy simulations are at
nominally infinite Reynolds numbers. The results challenge the conventional thinking,
and we show that, at very low surface coverage densities, the single-cube drag
coefficient may increase as a function of λp. Our analysis suggests that this behaviour
may be attributed to secondary turbulent flows. Secondary turbulent flows are often
found above spanwise-heterogeneous roughness. Although the roughness considered
in this work is nominally homogeneous, the secondary flows in our simulations
are very similar to those observed above spanwise-heterogeneous surface roughness.
These secondary vortices redistribute the fluid momentum in the outer layer, leading
to high-momentum pathways above the wall-mounted cubes and low-momentum
pathways at the two sides of the wall-mounted cubes. As a result, the spatially and
temporally averaged wind speed at the cube height, i.e. Uh, is an underestimate of
the incoming flow to the cubes, which in turn leads to a large drag coefficient Cd.

Key words: turbulence simulation, turbulence modelling

1. Introduction
Rough-wall turbulent boundary layers are encountered in both nature and engineering

(Raupach, Antonia & Rajagopalan 1991; Barlow & Coceal 2008; Bons 2010).
Modelling drag forces on rough walls is a research topic that has received sustained

† Email address for correspondence: gemingwei@ncepu.edu.cn
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FIGURE 1. (Colour online) (a) Sketches of the sheltered ground area and the sheltered
volume downstream of a cubical roughness element: top view (upper part) and perspective
view (lower part). (b) The drag and friction coefficients computed according to (1.3) and
(1.4) for c1 = c2 = c= 0.25, 0.5 and 1.

attention (Jiménez 2004; Schultz & Flack 2009; Schlichting & Gersten 2016).
Recently, with increasing use of additive manufactured parts in the turbomachinery
industry, a new interest has emerged in modelling drag forces on 3D printed rough
surfaces (see e.g. Ferster, Kirsch & Thole 2018; Kirsch & Thole 2018).

A well-studied model problem for rough-wall turbulent boundary layers is flow over
aligned and staggered cube arrays (see e.g. Coceal et al. 2006; Cheng et al. 2007;
Leonardi & Castro 2010; Lee, Sung & Krogstad 2011). Aside from empirical models
(Moody 1947; Taylor, Coleman & Hodge 1985), the theoretical work by Arya (1975)
and Raupach (1992) on drag partition lays the groundwork of rough-wall drag-force
modelling. Raupach argues that a cubical roughness element ‘shelters’ its downstream
ground area and volume (see figure 1a). The sheltered ground area and the sheltered
volume scale as h2Uh/uτ and h3Uh/uτ , respectively, where h is the cube height, Uh

is the spatially and temporally averaged wind speed at the cube height, and uτ is the
friction velocity. If a roughness element is not sheltered, it acts as an isolated element.
Raupach (1992) concludes that, at low surface coverage densities, the drag force on
a rough surface increases linearly with the number of roughness elements (given an
outer flow), and the single-cube drag coefficient,

Cd ≡ f /(ρU2
hh2), (1.1)

equals that of an isolated element. Here, ρ = const. is the fluid density and f is
the drag force on one wall-mounted cube. For cubes, the solidity λf equals the
surface coverage density λp. Sheltering becomes non-negligible for surfaces with
a moderate coverage density. Raupach (1992) hypothesizes that the overall shelter
area and volume can be calculated by randomly superimposing the individual shelter
areas and volumes. He concludes that the surface friction drag force scales as
τs(λp) = ρCsU2

h exp(−c1λpUh/uτ ) and that the roughness-induced drag scales as
τR(λp) = λpρCRU2

h exp(−c2λpUh/uτ ), where τs and τR are the surface drag and
the roughness drag per unit planar area, Cs and CR are the friction coefficient of
the unmounted ground and the drag coefficient of an isolated cube, respectively,
and c1 and c2 are two O(1) constants, whose values depend on the roughness
arrangement. Because τs and τR are partitions of the total drag force, the above
theory is conventionally referred to as the drag partition theory.
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We define the friction coefficient as

Cf = τs/(ρU2
h). (1.2)

A direct consequence of the drag partition theory is that

Cf (λp)≡
τs

ρU2
h
=Cs exp(−c1λpUh/uτ )6 Cs (1.3)

and
Cd(λp)≡

f
ρU2

hh2
=

τR

λpρU2
h
=CR exp(−c2λpUh/uτ )6 CR. (1.4)

Defining γ =Uh/uτ , the drag partition τ = ρu2
τ = τs + τR leads to

Csγ
2 exp(−c1λpγ )+ λpCRγ

2 exp(−c2λpγ )= 1. (1.5)

Solving (1.5) for γ , substituting the solution into (1.3) and (1.4), and setting c1 =

c2 = c, CR = 0.5 and Cs = 0.001, i.e. typical values in the literature (ESDU 1986;
Raupach 1992), figure 1(b) shows Cf /Cs and Cd/CR as a function of λp. Because c1=

c2, we have Cf /Cs = Cd/CR. The result shows that, given c, both Cf /Cs and Cd/CR
are non-increasing functions of the surface coverage density, λp.

The pioneering work by Raupach (1992) on drag partition and flow sheltering lays
the groundwork for later studies on rough-wall drag-force modelling (see e.g. Shao
& Yang (2005, 2008)). Determining the drag partition is often the most important
part of a rough-wall model. Here, a rough-wall model refers to a model that predicts
the mean flow in a rough-wall boundary layer and is also referred to as a canopy
model. Examples of such models include the ones presented in Macdonald (2000),
Coceal & Belcher (2004) and Harman & Finnigan (2007), to name a few, where the
parametrization of flow sheltering relies on empiricism, and the ones presented
in Millward-Hopkins et al. (2011) and Yang et al. (2016), where sheltering is
modelled, and the authors were able to predict the aerodynamic properties of arbitrary
cube-roughened surfaces (see e.g. Yang (2016) and Yang & Meneveau (2016, 2017)).
Because sheltering leads to reduced friction and pressure drag, it is a defining feature
of rough-wall models that both Cd and Cf are non-increasing functions of the surface
coverage density.

In this work, we revisit the classic drag partition theory. We study drag forces
on sparsely packed cubes with an aligned or a staggered arrangement. Aligned and
staggered cubes are well studied. Direct numerical simulation (DNS) results of a fully
developed channel with wall-mounted cubes were reported in, for example, Coceal
et al. (2006), Coceal et al. (2007b) and Leonardi & Castro (2010). Large-eddy
simulations (LES) were conducted by Stoesser et al. (2003), Castillo, Inagaki &
Kanda (2011), Inagaki et al. (2012) and Cheng & Porté-Agel (2015), to name a few.
Finally, Cheng & Castro (2002), Cheng et al. (2007) and Perret et al. (2017) reported
experimental measurements of drag forces on cubical roughness. The previous studies
provided data for surfaces with a coverage density from approximately 3 % to
approximately 40 %. Depending on the amount of flow sheltering, roughness may be
categorized into k-type and d-type (Perry, Schofield & Joubert 1969; Jiménez 2004):
k-type roughness has limited sheltering, and the roughness elements act similarly to
isolated elements; d-type roughness has a lot of sheltering, and the flow does not
experience much drag from each roughness element.
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In this work, we study cubical roughness. But different from previous studies
that considered surfaces with a moderate coverage density, we study drag forces
on sparsely packed cubes. The objective of this work is to test if the classic view
of Raupach (1992) holds at very low surface coverage densities, and, if not, what
might be causing the deviation. To do that, we conduct LES of flow over aligned
and staggered cube arrays with surface coverage densities between 0.08 % and 4.4 %.
We show that, for both aligned and staggered arrangements, within a certain range
of surface coverage densities, the single-cube drag coefficient Cd is an increasing
function of λp. In addition to LES, we conduct DNS of aligned cubes at one surface
coverage density, λp = 1 %. We use the DNS to study the behaviour of skin friction.
The rest of the paper is organized as follows. The detailed computational set-up is
described in § 2. We study the behaviour of drag forces in § 3. A brief discussion
about the secondary flows is presented in § 4. Concluding remarks are given in § 5.
In appendices A and B, we validate our results by comparing with wind tunnel
experiments and wall-resolved LES.

Rough-wall boundary layer flow is a classic problem and may be approached from
many perspectives. The discussion here will focus on low-order flow quantities.
Throughout the paper, we use u (U), v (V) and w (W) for the streamwise,
spanwise and wall-normal velocities. We use capital letters, U, V and W, for
time-averaged flow quantities. When necessary, we also use 〈·〉 to indicate time
averaging. Subscripts x and y are used to denote spatial averaging in the streamwise
and spanwise directions, respectively. For example, Ux is the streamwise-averaged
and time-averaged streamwise velocity, and Uxy is the horizontally averaged and
time-averaged streamwise velocity. Lower-case letters, u, v and w, are used for
instantaneous flow quantities.

2. Computation details
2.1. Large-eddy simulations

We use LES for flow over sparsely packed cubes in a half-channel. LES resolves
the relatively energetic motions and models the relatively less energetic motions
and is therefore a very cost-effective computational tool (Meneveau & Katz
2000). The LES code we use is LESGO. It solves the filtered incompressible
Navier–Stokes equations at nominally infinite Reynolds number. The convective
terms are evaluated in its rotational form. A pseudo-spectral discretization is used
in both the streamwise and spanwise directions. A second-order finite difference
scheme is used in the wall-normal direction. Conserved flow quantities, including
the streamwise, wall-normal and spanwise velocities, are solved on a staggered grid
(as opposed to a collocated one). The wall-mounted cubes are resolved using an
immersed boundary method. The cube surfaces are such that they coincide with the
surfaces of the pressure computational cells. The deviatoric part of the subgrid-scale
stress is modelled via the scale-dependent Lagrangian dynamic model (Bou-Zeid,
Meneveau & Parlange 2005). The code has been extensively used for similar flow
problems (see e.g. Cheng & Porté-Agel (2015), Yang et al. (2016) and Giometto
et al. (2017)). The reader is directed to Yang & Abkar (2018) for further details of
the solver.

Figure 2 shows the computational domain. The height of the wall-mounted cubes
is h. The domain size is Lx × Ly × Lz in the streamwise, spanwise and wall-normal
directions, respectively. The half-channel height is Lz = 3.5h for all the cases except
for A100-h, where the half-channel height is Lz= 7h. The flow is driven by a constant
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FIGURE 2. A sketch of the computational domain. Periodicity is imposed in both the
streamwise (x) and spanwise (y) directions. The cubes are of height h. The size of the
computational domain is Lx × Ly × Lz.
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FIGURE 3. Sketches of the two roughness arrangements: (a) aligned arrangement and
(b) staggered arrangement. The flow goes from left to right.

volumetric body force fb. The friction velocity is uτ =
√

fbLz/ρ and is kept constant.
We vary Lx and Ly. The streamwise and spanwise extents of the computational domain
are such that they are never smaller than approximately 2πLz. According to Lozano-
Durán & Jiménez (2014), our computational domain is sufficiently large. It is worth
noting that domains that are much smaller were used to study rough-wall boundary
layer flows at moderate surface coverage densities (Chung et al. 2015; MacDonald
et al. 2016, 2017).

Table 1 summarizes all the LES cases. By varying Lx, Lz and the number of
wall-mounted cubes in the computational domain, we consider rough walls with
surface coverage densities between 0.081 % and 4.4 %. Two extensively studied
roughness arrangements are considered, namely, the aligned and the staggered
arrangements. Figure 3(a,b) shows the sketches of the two arrangements. For an
aligned cube array, both the streamwise and the spanwise inter-cube distances are
l = h/

√
λp, which varies from approximately 4h to 35h. The streamwise distance

between two cubes is 2l when the cubes are staggered in the spanwise direction.
If we project the wall-mounted cubes onto a spanwise–wall-normal plane, for a
staggered arrangement, the spanwise distance between two neighbouring cubes is l/2.

The boundary conditions are as follows. A periodic boundary condition is imposed
in both the streamwise and spanwise directions for all cases except for A100-d and
A440-d, where the inflow is provided by a precursor channel flow simulation. A free-
slip condition is used for the top boundary. The surface shear stresses on both the
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Name λp (%) Lx × Ly × Lz Mesh N Name λp (%) Lx × Ly × Lz Mesh N

A008 0.081 70× 70× 3.5 9.1M 2× 2 S008 0.081 70× 70× 3.5 9.1M 2× 2
A011 0.11 60× 60× 3.5 6.7M 2× 2 S011 0.11 60× 60× 3.5 6.7M 2× 2
A016 0.16 50× 50× 3.5 4.6M 2× 2 S016 0.16 50× 50× 3.5 4.6M 2× 2
A025 0.25 40× 40× 3.5 3.0M 2× 2 S025 0.25 40× 40× 3.5 3.0M 2× 2
A044 0.44 30× 30× 3.5 1.7M 2× 2 S044 0.44 30× 30× 3.5 1.7M 2× 2
A100 1.0 20× 20× 3.5 0.74M 2× 2 S100 1.0 20× 20× 3.5 0.74M 2× 2
A150 1.5 25× 25× 3.5 1.1M 3× 3 S150 1.5 33× 25× 3.5 1.1M 4× 3
A300 3.0 23× 23× 3.5 0.98M 4× 4 S360 3.6 21× 21× 3.5 0.82M 4× 4
A440 4.4 24× 24× 3.5 1.0M 5× 5 S440 4.4 29× 24× 3.5 1.3M 6× 5
A100-h 1.0 40× 40× 7.0 5.8M 4× 4
A100-w 1.0 40× 40× 3.5 3.0M 4× 4
A100-d 1.0 100× 20× 3.5 3.6M 8× 2
A440-d 4.4 95× 24× 3.5 4.0M 16× 5

TABLE 1. LES cases. The names of cases are Axxx or Sxxx, where ‘A’ and ‘S’ denote
‘aligned’ and ‘staggered’ arrangements, respectively, and the three digits ‘xxx’ indicate the
surface coverage density. Case A100-h is similar to A100 but in a horizontally larger and
vertically higher computational domain, i.e. Lx × Ly × Lz = 40× 40× 7. Case A100-w is
similar to A100 but in a horizontally larger computational domain, i.e. Lx × Ly × Lz =

40 × 40 × 3.5. Cases A100-d and A440-d are similar to A100 and A440 but with the
inflows specified using a precursor channel flow simulation. The domain sizes are shown
in terms of the cube height h. The ‘Mesh’ column shows the grid size in million (M)
cells. The column ‘N’ shows the number of wall-mounted cubes in columns (streamwise)
and rows (spanwise). Note that we keep two significant digits for all the numbers.

ground and the cube surfaces are specified through a wall model,

τ/ρ =−

[
κ

log(∆/zo)

]2

Ũ‖|Ũ‖|, (2.1)

where τ is the shear stress vector, U‖ is the wall-parallel velocity vector at a distance
∆ from the wall, ·̃ is a spatial filtering operator (Bou-Zeid et al. 2005; Yang, Park
& Moin 2017b), zo = 10−4h is a pre-specified roughness/viscous length scale, κ =
0.4 is the von Kármán constant (von Kármán 1931; Marusic et al. 2013) and log
is the natural logarithm. Equilibrium wall models including the one in (2.1) have
difficulties in handling flow separations and predicting flow reattachments (Slotnick
et al. 2014). This is less of an issue for sparsely packed roughness. For a cubical
roughness element, the flow separates at the trailing edge irrespective of the wall
model used. Also, because we study cube arrays that are very sparsely packed, the
flow reattaches before the recirculation bubble reaches the downstream wall-mounted
cube, which is clear from figure 4, where we show contours of the mean streamwise
velocities on a streamwise–wall-normal plane through the centre of a column of wall-
mounted cubes. In figure 4, two neighbouring cubes are 4.8h apart in the streamwise
direction, which is the closest among the cases in table 1. Hence, it is probably safe to
say that, at very low surface coverage densities, the drag forces on the wall-mounted
cubes do not depend critically on near-wall modelling.

For all cases in table 1, we use a uniform grid, with 1x = 1y = 1z = h/8. The
same grid resolution has previously been used in a number of studies (Xie & Castro
2006; Jiang et al. 2008; Graham & Meneveau 2012). The results are also validated
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FIGURE 4. (Colour online) Contours of the mean streamwise velocity on a streamwise–
wall-normal plane through the centre of a column of wall-mounted cubes. We show results
from A440. The contour levels cut off at U= 0 to highlight the reattachment location. The
flow reattached before the recirculation bubble reaches the next cube.

by comparing with wind tunnel measurements and wall-resolved LES in appendices A
and B.

2.2. Direct numerical simulation
The near-wall turbulence is modelled instead of resolved in LES. To get more reliable
measurements at the wall and to study the behaviour of the skin friction, we resort
to DNS. The computational set-up is the same as in the case A100. We refer to
the DNS as A100-d. A structured, body-fitted mesh is used. The size of the mesh
is approximately 9.6 million. We refine the mesh near the wall-mounted cubes.
Figure 5(a,b) shows the mesh near a wall-mounted cube. The grid resolution is such
that the local wall-normal resolution is nowhere coarser than ∆+n = 0.5 and the local
wall-parallel resolution is ∆+‖ ≈ 5. Compared with resolutions used for similar flow
problems (Coceal, Dobre & Thomas 2007a; Balakumar, Park & Pierce 2014), our grid
resolution is quite high. Similar to A100, the flow is driven by a constant body force.
The friction Reynolds number is Reτ = uτLz/ν = 350. Case A100 is at a nominally
infinite Reynolds number. Considering the difference in their Reynolds numbers,
the drag and the friction in A100 and A100-d are not expected to be the same,
although the LES and the DNS solutions are qualitatively alike. For the DNS, we use
the in-house unstructured finite-volume flow solver CharLES (Khalighi et al. 2011;
Bermejo-Moreno et al. 2014). The code solves the full compressible Navier–Stokes
equation. It uses a fourth-order-accurate spatial discretization (Mahesh, Constantinescu
& Moin 2004) and a third-order-accurate temporal discretization (Williamson 1980;
Moin 2010). The Mach number in the computational domain is nowhere greater than
0.15, and therefore the flow may be considered as incompressible (Lele 1994; Park &
Moin 2014). The code is well validated and has been used extensively for boundary
layer flow problems (Joo et al. 2014; Larsson et al. 2015; Park 2017).

3. Drag forces and flow physics
It is the conclusion of the classic drag partition theory that Cd (< CR) is a non-

increasing function of λp. This is often the starting point of rough-wall drag-force
modelling. Here, we show results that challenge the above classic theory. Figure 6(a)
shows the drag coefficient Cd as a function of the surface coverage density λp for both
the aligned and the staggered arrays. For the staggered arrays, the drag coefficient
Cd is approximately 0.49 and stays roughly constant for λp < 0.25 %. It increases
as a function of λp from λp = 0.25 % to λp ≈ 5 %. For the aligned arrays, the drag
coefficient increases as a function of λp from λp = 0.08 % to approximately λp = 1 %,
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FIGURE 5. Grid near a wall-mounted cube: (a) on a spanwise–wall-normal plane and
(b) on a streamwise–wall-normal plane.
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(÷ 100 %)¬p
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FIGURE 6. (Colour online) (a) Drag coefficient Cd = f /(ρU2
hh2) as a function of the

surface coverage density λp for both the aligned and the staggered cube arrays. Here, f is
the drag force on one wall-mounted cube; and Uh is the mean velocity at the cube height.
The red circles show the results of the staggered cube arrays, and the blue squares show
the results of the aligned cube arrays. (b) Friction coefficient Cf = τs/(ρU2

h) as a function
of the surface coverage density λp. Here, τs is the friction drag per unit planar area. The
symbols are the same as in panel (a).

and then decreases as a function of λp for λp > 1.5 %. Figure 6(b) shows the friction
coefficient Cf as a function of the surface coverage density. For both arrangements, the
skin-friction coefficient increases as a function of λp for λp< 1 %. Note that Cd is the
drag coefficient of a single cube, not the skin-friction coefficient of the entire rough
wall, the latter of which is an increasing function of the surface coverage density until
approximately λp ≈ 15 %–30 % (Jiménez 2004).

There are a few trends that are expected from the classic drag partition theory and
a number of trends that are less expected. First, we briefly discuss the trends that
are expected from the theory. The decrease of the drag coefficient and the friction
coefficient as a function of λp at relatively high coverage densities (although only a
few per cent) is expected and is simply a result of flow sheltering (Yang et al. 2016).
For the staggered cubes, at very low surface coverage densities, i.e. λp < 0.25 %, the
cubes act as isolated elements, and the drag coefficient stays constant, Cd=CR= 0.49.
The drag coefficient CR= 0.49 is close to the measurements in the literature, although
the exact value may vary depending on the flow conditions, including the Reynolds
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FIGURE 7. (Colour online) Contours of the streamwise velocity: results for aligned cases
(a) A008, (b) A100 and (c) A440. The vectors show the in-plane motions (spanwise and
wall-normal velocities). Both the spanwise and the wall-normal velocities are averaged in
time and in the streamwise direction. The vectors are shown every four grid points in
both directions in (a,b), and every other point in (c) for better presentation. The cubes
are projected onto the plane. The flow is periodic in the spanwise direction. We show
only one repeating flow unit.

number and the boundary layer height (Akins, Peterka & Cermak 1977; ESDU
1986; Macdonald, Griffiths & Hall 1998). Last (and needless to say) the flow
behaves differently above aligned and staggered cubes. Next, we discuss the trends
that are not expected from the drag partition theory, i.e. the increase of the drag
coefficient and the skin-friction coefficient as a function of the surface coverage
density. Flow sheltering leads to reduced drag forces and cannot be responsible for a
drag coefficient larger than CR. Here, the increase of the drag coefficient as a function
of λp is a result of secondary turbulent flows. Secondary flows are common in, for
example, square ducts and open channels (Nikuradse 1930; Nakagawa 2017). In the
context of canonical boundary layer flows, secondary flows arise often as a result of
spanwise-heterogeneous ground roughness (see e.g. Wang & Cheng 2005; Fishpool,
Lardeau & Leschziner 2009; Vermaas, Uijttewaal & Hoitink 2011), and they manifest
as streamwise-elongated counter-rotating vortices that extend from the ground to the
top of the boundary layer (Willingham et al. 2014; Anderson et al. 2015; Vanderwel
& Ganapathisubramani 2015). Although our roughness is nominally homogeneous,
the secondary flows in our LES are similar to the ones above spanwise-heterogeneous
roughness.

Figures 7 and 8 show the streamwise velocity contours on a spanwise–wall-normal
plane. The streamwise velocity is averaged both in time and in the streamwise
direction. For brevity, we show results for three representative surface coverage
densities, i.e. λp = 0.08 %, 1.0 % and 4.4 %. The overlying vectors show the in-plane
motions. The spanwise velocity and the wall-normal velocity are also averaged in time
and in the streamwise direction. We see secondary flows. A pair of counter-rotating
vortices is found on the two sides of a wall-mounted cube. For a given surface
coverage density, there are twice as many windward projected cubes in staggered
cases than in aligned cases; as a result, there are twice as many vortex pairs in
staggered cases than in aligned cases. The counter-rotating vortices extend from the
ground to the top of the boundary layer in A/S008 and A/S100, i.e. for cubes that
are sparsely packed. At cube locations, the counter-rotating vortices bring high-speed
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FIGURE 8. (Colour online) Same as figure 7, but for staggered cases (a) S008, (b) S100
and (c) S440.

fluid from the upper part of the boundary layer to the lower part, and on the two
sides of the cubes, low-speed fluid in the lower part of the boundary layer is brought
to the upper part. This leads to the spanwise heterogeneity in the streamwise velocity
in figures 7 and 8, featuring high-speed flows above the cubes and low-speed flows
on the two sides of the cubes. Because of the spanwise heterogeneity, Uh is an
underestimate of the velocity of the incoming flows to the cubes, leading to a drag
coefficient Cd that is Cd >CR.

The wall-normal extents of the counter-rotating vortices decrease as the inter-cube
distance decreases (see figures 7c and 8c). For A/S440, the outer flows are nearly
homogeneous. Reynolds et al. (2007) found spanwise heterogeneity in the streamwise
velocity above cube arrays of a surface coverage density λp = 25 %. Different from
the secondary flows in figures 7 and 8, whose spanwise extents are confined by two
columns of cubes, the high/low-momentum pathways in Reynolds et al. (2007) span
approximately 4h in the spanwise direction and cover approximately two columns of
cubes. As a result, the flow experiences a larger drag force at some cube locations
than at others on average. This violates ergodicity. Considering that the secondary
flows above spanwise-heterogeneous roughness and the secondary flows in our LES
do not violate ergodicity, we think the secondary flows reported in Reynolds et al.
(2007) are probably different flow features than the ones considered here.

Next, we briefly discuss how we may go about modelling the drag coefficient
at low coverage densities. Figure 9 shows a sketch of the trailing vortices and
the counter-rotating vortices (secondary flows). The trailing vortices join the
counter-rotating vortices and strengthen them. We define sx to be the streamwise
inter-cube distance. (Per figure 3, for the aligned arrangement, sx = l = h/

√
λp; and

for the staggered arrangement, sx = 2l = 2h/
√
λp.) If we fix sx, the strength of

the counter-rotating vortices is a function of sy/Lz only, where sy is the spanwise
distance between two pairs of counter-rotating vortices, and Lz is the half-channel
height (Anderson et al. 2018; Yang & Anderson 2018). It follows that, given sx, then
Cd −CR is a function of sy/Lz only. A possible ansatz is

Cd/CR − 1= (sy/Lz)
−αg(sx/h), (3.1)

where g is a generic function and α > 0 is a model parameter. Figure 10 shows
(Cd/CR − 1)(sy/Lz)

α for α = 0.4. The data collapse. For large sx values, the cubes
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FIGURE 9. (Colour online) A sketch of the relevant flow structures. Flow is from left to
right. For clarity, we have sketched flow structures on only one side of the cubes.
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FIGURE 10. (Colour online) Plot of (Cd/CR − 1)(sy/Lz)
α as a function of sx/h; α = 0.4

is a parameter.

are non-interacting and Cd = CR. For small sx values, flow sheltering dominates, and
Cd decreases as sx decreases (as λp increases). For 10< sx/h< 35, Cd −CR increases
as sx decreases, and Cd/CR − 1= (sy/Lz)

−αg(sx/h).
Next, we take a brief look at the friction on the ground. Compared with the drag

forces on cubes, the friction on the ground is often small at high Reynolds numbers
and is not the focus of this work. The near-wall turbulence is modelled instead of
resolved in our LES; hence the wall shear stresses in our LES are less reliable (Yang,
Bose & Moin 2017a). To study the wall shear stresses, we use DNS A100-d. The
DNS computes flow in a half-channel above an array of aligned cubes with a surface
coverage density of 1 %. Figure 11(a) shows the mean streamwise friction on the
ground. Recirculation behind each wall-mounted cube leads to a region of reduced
skin friction underneath the near wake, as expected. Underneath the far wake, we see
two bands of high-stress regions. This is not expected from the classic drag partition
theory, but is consistent with figure 9 and is responsible for the increase of the friction
coefficient as a function of the surface coverage density. To the best of our knowledge,
this is the first time a high-stress region has been found downstream of a cubical
roughness.

To briefly summarize: we find secondary flows on homogeneously placed cubical
roughness elements; the secondary flows manifest as counter-rotating vortices; as a
result of the secondary flows, the spatially and temporally averaged wind speed at
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FIGURE 11. (Colour online) (a) Contours of the temporally averaged streamwise skin
friction in case A100-d. (b) A zoomed view of the region underneath the far wake.

the cube height underestimates the velocity of the incoming flow to the cubes, and is
more so when the secondary flows become stronger; as a result, the drag coefficient
Cd takes values Cd >CR. Detailed analysis shows that, for aligned and staggered cube
arrays, the increase in the drag coefficient scales as Cd/CR − 1= g(sx/h)(sy/Lz)

−α.

4. Further discussion on secondary flows

Turbulent secondary flows in rough-wall boundary layers have received a lot
of attention in the recent literature. They are found above spanwise-heterogeneous
roughness (see e.g. Mejia-Alvarez & Christensen 2013; Barros & Christensen 2014)
and spanwise-heterogeneous superhydrophobic surfaces (Jelly, Jung & Zaki 2014;
Lee, Jelly & Zaki 2015). Spanwise heterogeneity is often imposed by placing
streamwise strips of closely packed roughness elements (see e.g. Nugroho, Hutchins &
Monty 2013; Anderson et al. 2015; Vanderwel & Ganapathisubramani 2015; Yang &
Anderson 2018), and the spanwise-heterogeneous surface roughness changes the flow
dynamics in the outer layer. High-momentum pathways (HMPs) form above roughness
strips, and low-momentum pathways (LMPs) form between two strips (Mejia-Alvarez
& Christensen 2010). The nomenclature, i.e. HMPs and LMPs, is meant to distinguish
the secondary flows from the high-speed and low-speed regions, which are transient
in nature (see the detailed discussions in Meinhart & Adrian (1995), Hutchins &
Marusic (2007) and de Silva, Hutchins & Marusic (2016)). Although the surface
roughness in this work is nominally homogeneous, the secondary flows in our LES
are very similar to the ones above spanwise-heterogeneous roughness. Figures 12
and 13 show the time-averaged streamwise velocity on a streamwise–spanwise plane
at a distance 3h from the wall. Except for S440 (in figure 13c), LMPs and HMPs are
found in all the cases. HMPs are found at cube locations, and LMPs are found on the
sides of the cube locations. The HMPs and the LMPs are slightly compressed in the
spanwise direction at locations downstream of the cubes, leading to weak streamwise
heterogeneity. It is worth noting that the HMPs and LMPs could not be identified
in instantaneous flow fields (see figures 14 and 15, where we show the contours of
the instantaneous streamwise velocities on a spanwise–wall-normal plane at an equal
distance from two rows of roughness elements).

The sizes of the secondary flows are confined by both the wall-mounted cubes
and the half-channel height. At a relatively high surface coverage density, e.g. A440,
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FIGURE 12. (Colour online) Contours of the time-averaged streamwise velocity on a
streamwise–spanwise plane located at a distance 3h from the wall for aligned cases
(a) A008, (b) A100 and (c) A440. The contour levels are kept the same among the plots.
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FIGURE 13. (Colour online) Same as figure 12, but for staggered cases (a) S008, (b) S100
and (c) S440.
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FIGURE 14. (Colour online) Contours of the instantaneous streamwise velocity on a
spanwise–wall-normal plane located at an equal distance from two rows of cubes for
aligned cases (a) A008, (b) A100 and (c) A440. The spanwise extent of the computational
domain is 70. For a better presentation, we show only half of the computational domain.

the cubes dictate the sizes of the secondary flows; and at a low surface coverage
density, e.g. A008, the half-channel height dictates the sizes of the secondary flows.
Comparing A100, where the computational domain size is Lx× Ly× Lz= 20h× 20h×
3.5h, A100-w, where the computational domain size is Lx×Ly×Lz=40h×40h×3.5h,
and A100-h, where the computational domain size is Lx × Ly × Lz = 40h× 40h× 7h,
we study the effect of the domain size at a somewhat intermediate surface coverage
density. Figure 16(a) shows the streamwise- and time-averaged longitudinal velocity
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FIGURE 15. (Colour online) Same as figure 14, but for staggered cases (a) S008, (b) S100
and (c) S440.
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FIGURE 16. (Colour online) Contours of the streamwise- and time-averaged longitudinal
velocity of (a) A100-h and (b) A100-w. The arrows show the in-plane motion.

of A100-h. Comparing with figures 7(a) and 16(a), the centres of the secondary
vortices are at the same wall-normal locations. In the absence of secondary
flows, a roughness sublayer, which is usually 3h to 5h (Lee et al. 2011), can be
defined, and the flow is statistically homogeneous above the roughness sublayer.
For A100-h, because the secondary vortices span the whole channel, the flow is
nowhere statistically homogeneous. The measured drag coefficient is Cd = 0.52 from
A100-h, which agrees reasonably well with that measured from A100, i.e. Cd = 0.53.
Figure 16(b) shows the streamwise- and time-averaged longitudinal velocity of
A100-w. Comparing A100 and A100-w, extending the computational domain in the
streamwise and the spanwise directions does not seem to make any difference. The
drag coefficient is Cd = 0.53 from A100-w, and is exactly the same as that measured
from A100. Last, figure 17 shows the mean velocity profiles of A100, A100-h and
A100-w. The three profiles agree reasonably well. This is particularly the case for
the flow in the roughness layer.

So far, we have considered flows that are fully developed, for which a periodic
boundary condition is imposed in the streamwise direction. Next, we consider flows
that are developing, where the inflow is provided by a precursor channel flow
simulation. We examine if secondary flows form shortly downstream and if the drag
forces increase as a result. The two cases we will consider are A100-d and A440-d.
Their fully developed counterparts, i.e. A100 and A440, show strong and weak
secondary flow effects, respectively. Figure 18(a) shows the time-averaged streamwise
velocity at a wall-normal distance z = 1.2h. A few rows downstream from the inlet,
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FIGURE 17. (Colour online) Mean velocity profiles of A100, A100-h and A100-w. Here
Uxy is the streamwise-, spanwise- and time-averaged velocity.
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FIGURE 18. (Colour online) (a) Contours of time-averaged streamwise velocity at a
wall-normal height z= 1.2h in case A100-d. The wall area near the outlet is not mounted
with cubes and is not shown. The cube locations are indicated with thin solid lines.
(b) Normalized drag forces at each row for case A100-d. (c) Same as panel (a) but for
A440-d. (d) Same as panel (b) but for A440-d.

HMPs form above the wall-mounted cubes and LMPs form in between. This is also
clear from figure 19(a,c,e), where we show contours of the time-averaged streamwise
velocity at various streamwise locations. Figure 18(b) shows the normalized drag
force at each row. After a decrease in the normalized drag from the first row to the
second due to flow sheltering (where the secondary vortices have not emerged yet),
the drag force gradually increases as a result of secondary vortices, and at row 8,
the drag is already above that of the first row. The results of A440-d are shown
in figures 18(c,d), and 19(b,d, f ). The flow field is much less heterogeneous in the
spanwise direction, and the normalized drag increases only slightly from row 2 to
row 17. Hence, it is probably safe to say that the secondary vortices we see in
figures 7 and 8 are not artifacts of the periodic boundary condition.

Having verified that the secondary vortices in our LES are not artifacts of periodic
boundary conditions nor a confined computational domain, we take a closer look
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FIGURE 19. (Colour online) (a,c,e) Time-averaged streamwise velocity at x = 20h, x =
40h and x= 60h, respectively, from A100-d. (b,d, f ) Time-averaged streamwise velocity at
x = 21h, x = 40h and x = 59h, respectively, from A440-d. The streamwise locations are
such that they are at the midpoint of two rows of roughness elements.

at these flow structures. A defining feature of secondary flows is that they carry a
momentum flux. This could potentially pose a challenge to drag-force modelling.
Although Raupach (1992) made no assumption about the mean flow, neglecting
dispersive stresses in the Reynolds-averaged streamwise momentum equation is a
common practice for rough-wall drag-force modelling (Macdonald 2000; Coceal &
Belcher 2004; Harman & Finnigan 2007).

Here we derive the equation used in rough-wall modelling. The streamwise
momentum equation reads

∂u
∂t
+ u

∂u
∂x
+ v

∂u
∂y
+w

∂u
∂z
=−

1
ρ

∂p
∂x
+ ν

(
∂2u
∂x2
+
∂2u
∂y2
+
∂2u
∂z2

)
− f , (4.1)

where f represents the drag force. Averaging in time, equations (4.1) leads to

U
∂U
∂x
+ V

∂U
∂y
+W

∂U
∂z

+
∂〈(u−U)(u−U)〉

∂x
+
∂〈(u−U)(v − V)〉

∂y
+
∂〈(u−U)(w−W)〉

∂z

=−
1
ρ

dP
dx
+ ν

(
∂2U
∂x2
+
∂2U
∂y2
+
∂2U
∂z2

)
− F, (4.2)

where F is the time average of f . For simplicity, let us consider a periodic
computational domain with constant half-channel height. Averaging in both the
streamwise and the spanwise directions, equations (4.2) leads to

−
1
ρ

dP
dx
+ ν

d2Uxy

dz2
− Fxy

−
d〈(U −Uxy)(W −Wxy)〉xy

dz
−

d〈(u−U)(w−W)〉xy

dz
= 0, (4.3)
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FIGURE 20. (Colour online) The Reynolds stresses, the dispersive stresses and the sum
of the two for cases (a) A008, (b) A100, (c) A440, (d) S008, (e) S100 and ( f ) S440.
The dot-dashed lines are the Reynolds stresses, the dashed lines are the dispersive stresses
and the thick solid lines are the total stresses. The thin solid line corresponds to τ+ =
−1 + z/Lz. The red line shows the dispersive stress in a rough-wall channel, where the
roughness is staggered cubes of 25 % surface coverage density (Leonardi & Castro 2010).

where the first term represents a mean pressure force, the second term represents the
viscous stress, the third term represents the drag force, the fourth term represents
the dispersive stress and the fifth term represents the Reynolds stress. If one neglects
dispersive stresses, the Reynolds-averaged streamwise momentum equation reads

−
1
ρ

dP
dx
+ ν

d2Uxy

dz2
−

d〈(u−U)(w−W)〉xy

dz
−CdsU2

xy
dAf (z)

dz
= 0, (4.4)

where Cds is the sectional drag coefficient and is often assumed to be constant, Af (z)
is the frontal area under height z per unit planar area, and the subscript xy indicates
streamwise and spanwise averaging. At high Reynolds numbers and in the absence of
a streamwise pressure gradient, equation (4.4) reduces to

−
d〈(u−U)(w−W)〉xy

dz
−CdsU2

xy
dAf (z)

dz
= 0, (4.5)

which is often the starting point of rough-wall drag-force modelling.
Dispersive stresses are neglected in (4.5). Although dispersive stresses are not

negligible in the roughness layer (Lien & Yee 2004; Martilli & Santiago 2007;
Barlow & Coceal 2008), their effects can be modelled and absorbed in the drag
coefficient Cds; and therefore neglecting dispersive stresses is usually not problematic
for drag-force modelling.

This is not the case for sparsely mounted cubes. Figure 20 shows the Reynolds
stress τxz,R = 〈(u − U)(w − W)〉xy, the dispersive stress τxz,R = 〈UW〉xy − UxyWxy
and the ‘total’ stress τxz,t = τxz,R + τxz,D for cases A/S008, A/S100 and A/S440.
Here, the subscript xz in τxz denotes the tensor direction, and the subscript xy in
Uxy and Wxy denotes streamwise and spanwise averaging. The ‘total’ stress does
not contain the subgrid stress nor the viscous stress. Subgrid stresses should be
small if the flow is well resolved. Viscous stresses should be small if the flow is

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

72
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.726


Drag forces on sparsely packed cube arrays 1009

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0

z/h z/h z/h

u+ rm
s,  R

/D
/t

u+ rm
s, R

/D
/t

†xx,R
†xx,D†xx,t
†xx,D

(a) (b) (c)

(d) (e) (f)

FIGURE 21. (Colour online) Same as figure 20, but for the streamwise component.

at high Reynolds numbers. Figure 20 shows the stresses above z/h = 0.25. The
numerical solutions are less susceptible to numerical errors away from the wall
(Kawai & Larsson 2012; Larsson et al. 2016). We make a few observations. First, the
dispersive stress is practically zero at a coverage density λp= 25 %, and therefore it is
not responsible for momentum transfer. Second, the total stresses in our LES follow
τ+=−1+ z/Lz closely above z/h= 1 in all cases, and therefore the energy-containing
scales in flows are ‘well resolved’ above the cube crest and the simulations are
well converged. Third, the dispersive stresses in our LES are comparable with the
Reynolds stresses. For cases A/S008, the dispersive stresses are responsible for more
than half of the momentum fluxes at a distance approximately h above the cubes.
For cases A/S100 and A/S440, the Reynolds stresses are the dominant component
but the dispersive stresses are not negligible. If one includes the dispersive stress, the
streamwise momentum equation is

−
d〈(u−U)(w−W)〉xy

dz
−

d(〈UW〉xy −UxyWxy)

dz
−CdsU2

xy
dAf (z)

dz
= 0, (4.6)

where we have neglected the viscous and the pressure forces.
In (4.6), both the dispersive stress and the Reynolds stress need be modelled. To

model the Reynolds stress, one could resort to an eddy viscosity model, and −τR,xz=

νT dU/dz. As −τR,xz is positive definite, the eddy viscosity is also positive definite
and therefore well defined. An eddy viscosity model is not possible for the dispersive
stress, because it is not a positive definite quantity (see figure 20a), and one has to
take a different approach. A similarity solution was recently proposed in Anderson
et al. (2018). The similarity solution models the flow above the roughness and may be
useful for modelling the dispersive stress, although, in its present form, the similarity
solution assumes streamwise homogeneity and will have to be adapted for the flows
considered in this work. In addition to the xz component of the dispersive stress, the
xx component quantifies spanwise heterogeneity as well. Figure 21 shows the root-
mean-square (r.m.s.) of the streamwise component of the dispersive stress tensor τxx,D
as a function of the wall-normal distance; τxx,D is not negligible above sparsely packed
cubes but is small if the cubes are packed closely (λp = 25 %).

The dispersive stress (the xz component) shows up in the x-momentum equation and
therefore affects the mean flow scaling. Figure 22 shows the mean velocity profiles
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FIGURE 22. (Colour online) Mean velocity profiles. Squares are used for aligned cubes.
Crosses are used for staggered cubes. Cases A/S008 are shown in blue. Cases A/S100 are
shown in red. Cases A/S440 are shown in yellow. The thin solid line corresponds to the
expected mean flow when there are no wall-mounted cubes, i.e. U+ = 1/κ log(z/zo).

in cases A/S008, A/S100 and A/S440. For cases A/S008, the cubes are very sparsely
packed and the mean flow is not very different from that of a flat plate. The mean
flows in cases A/S440 show typical behaviours as in rough-wall boundary layers (see
e.g. Raupach et al. 1991; Squire et al. 2016). While the secondary flows do not affect
much the mean flows in A/S440 and A/S008, the mean flows in A/S100 are noticeably
modified by the secondary flows. Owing to the secondary-flow-induced mixing, the
mean velocity profile is nearly flat above z/h= 1 in A100.

5. Concluding remarks
We conduct LES and DNS of flow in a half-channel with aligned and staggered

cubes at the bottom wall. We study the properties of cube-roughened surfaces with a
coverage density between λp= 0.08 % and λp= 4.4 %. Although flow over cube arrays
is a well-studied model problem for rough-wall turbulent boundary layers, there have
not been many studies on rough walls with such a low coverage density (λp < 1 %).

Our findings are summarized below.

(i) For both aligned and staggered arrangements, we see an increase of the drag
coefficient Cd and the friction coefficient Cf as a function of λp at low surface
coverage densities. Since the seminal work by Raupach (1992), rough-wall drag-
force modelling has been predominantly focusing on modelling the effects of flow
sheltering, which only leads to a reduced drag coefficient and friction coefficient.
Hence, the findings here pose a challenge to rough-wall drag-force modelling.

(ii) The observed increases in both Cd and Cf are the result of secondary turbulent
flows. The secondary flows lead to HMPs at cube locations, which increases
the incoming wind speed to wall-mounted cubes, and in turn leads to an
increase in the drag coefficient. Visually, the secondary flows manifest as
streamwise-elongated counter-rotating vortices in the mean flow fields. These
secondary vortices are different from the commonly observed turbulent streaks,
which are transient in nature (in time or in space).

(iii) The amount of increase in the drag coefficient is determined by the strength of
the counter-rotating vortices and the distance between two neighbouring pairs
of counter-rotating vortices, which may be parametrized with sx/h and sy/Lz,
respectively. Detailed analysis shows that (Cd/CR − 1)(sy/Lz)

α collapses as a
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FIGURE 23. (Colour online) Contours of the instantaneous streamwise velocity on an x–y
plane at a distance 0.5h from the wall, a y–z plane through the centre of a column of
cubes, and an x–z plane through the centre of a row of cubes.

function of sx/h for both aligned and staggered cube arrays, thereby providing a
possible approach to drag-force modelling at low surface coverage densities.

(iv) The counter-rotating vortices enhance mixing and carry a significant part of
the wall-normal momentum flux, leading to a non-negligible dispersive stress
〈UW〉xy − UxyWxy. This poses yet another challenge to rough-wall drag-force
modelling, as the common practice is to neglect the dispersive stress in the
momentum balance.

(v) We also found two streamwise bands of high-stress regions beneath the far wake
of a wall-mounted cube. As wakes have velocity deficits, the above finding is
rather counter-intuitive.

The problem of flow over cube-roughened surfaces at low coverage densities can
be approached from many perspectives. We have approached this problem from the
perspective of drag-force modelling, and we have focused predominantly on first-order
flow quantities. Rough surfaces with low coverage densities is still an under-explored
area; we hope that this work will provide some preliminary yet useful information
about the flow in that regime.
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Appendix A. A validation case against experiment
To validate our code, we conduct LES of flow in a half-channel with an array of

aligned cubes at the bottom wall. The domain size is 8h × 8h × 3.5h, where h is
the height of the cubes. The surface coverage density is 6.25 %. We use the same
resolution as the cases in table 1, and the mesh size is 64× 64× 28. This corresponds
to eight grid points across each direction of the cube. The boundary conditions are
the same as those for the cases in table 1. Graham & Meneveau (2012) used the
same setting for this flow. Figure 23 shows contours of the instantaneous streamwise
velocity. We see low-speed regions behind the cubes and high-speed regions in
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FIGURE 24. Mean velocity profiles compared with the experimental data at a few different
streamwise locations: (a) an x–z plane through the centre of a column of cubes; and (b) an
x–y plane at a distance z= 0.5h from the wall. The solid lines are LESGO data, the dots
are experimental results from Meinders & Hanjalić (1999) and the dashed lines indicate
the measurement locations.

Name λp (%) Reτ Lx × Ly × Lz Mesh Meshh N

A008-wrc 0.081 5.4× 103 70× 70× 3.5 7.5M 36 2× 2
A008-wrf 0.081 5.4× 103 70× 70× 3.5 26M 52 2× 2
A440-wrc 4.4 5.4× 103 24× 14× 3.5 14M 30 5× 3
A440-wrf 4.4 5.4× 103 24× 14× 3.5 40M 50 5× 3

TABLE 2. Details of the WRLES. The domain size is shown in terms of the cube height h.
The ‘Mesh’ column shows the grid size in million (M) cells. The ‘Meshh’ column shows
the number of grid points used to resolve one cube height. The column ‘N’ shows the
number of wall-mounted cubes in columns (streamwise) and rows (spanwise). Again, we
keep two significant digits.

between the cubes. In figure 24, we compare the LES results with the experimental
measurements by Meinders & Hanjalić (1999) at a few streamwise locations. The LES
results follow the experimental measurements closely. This work studies low-order
statistics and therefore the present resolution suffices.

Appendix B. Validation against wall-resolved LES

To further validate our results, we conduct wall-resolved large-eddy simulation
(WRLES) and compare WRLES with wall-modelled large-eddy simulation (WMLES).
Details of the WRLES are tabulated in table 2. The nomenclature of the WRLES is
as follows: A[λp]-wr[c/f], where λp is the surface coverage density (008 corresponds
to 0.081 %, 440 corresponds to 4.4 %), ‘wr’ is wall-resolved, and c/f is coarse/fine
grid. We carry out a grid convergence study. Figure 25 shows the mesh around a
wall-mounted cube in A008-wrc, A008-wrf, A440-wrc and A440-wrf, respectively.
The grid is non-uniform. The mesh is stretched away from the wall. The near-wall
resolution is DNS-like and is kept unchanged between a coarse-grid LES and a
fine-grid LES. A fine-grid LES has more grid points in the bulk than a coarse-grid
LES, and the refinement ratio is approximately 1.5. We use 36, 52, 30 and 50 grid
points to resolve one cube height in A008-wrc, A008-wrf, A440-wrc and A440-wrf,
respectively. A typical WRLES uses approximately 20 to 30 grid points to resolve the
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FIGURE 25. Grid around a wall-mounted cube in (a) A008-wrc, (b) A008-wrf, (c) A440-
wrc and (d) A440-wrf.

bulk of the boundary layer Choi & Moin (2012). The coarse-grid LES, i.e. A008-wrc
and A008-wrf, already comply with the above grid requirement. We use the in-house
code CharLES for the WRLES calculations. The numerics of the code was already
discussed in § 2.2. Here, the subgrid scales are modelled using the dynamic Vreman
model (You & Moin 2007).

The counterparts of the WRLES are cases A008 and A440. The WMLES cases
are at a nominally infinite Reynolds number, i.e. the viscosity is zero in the bulk
of the flow. A viscous/roughness length scale zo is imposed in the wall model.
This length scale corresponds to ν/uτ exp(−κB), where κ is the von Kármán
constant, and B is the addend in the logarithmic law of the wall. Hence the nominally
infinite-Reynolds-number wall-modelled LES corresponds to a finite-Reynolds-number
flow at Reτ = Lz/zo exp(−κB). In Stevens, Wilczek & Meneveau (2014), WMLES at
nominally infinite Reynolds number are compared with finite-Reynolds-number wind
tunnel experiments, and the statistics from the nominally infinite WMLES agrees
well with that of the finite-Reynolds-number wind tunnel experiments up to the sixth
order. The Reynolds number of our WRLES is determined following Stevens et al.
(2014).

Table 3 compares the drag coefficient Cd in our WRLES and WMLES. The results
match up to two significant digits; Cd is a zeroth-order statistic. Predicting Cd is
usually not difficult. In fact, by prescribing the flow separation locations, one could
predict the pressure drag and lift coefficients of an airfoil using an inviscid code,
which does not resolve the wall layer nor the wake. In the present cases, flow
separates at the trailing edge of the cube irrespective of the WRLES/WMLES used,
and the leeward surface is immersed in the separated region. Thus, the pressure on the
leeward surface does not depend critically on the WRLES/WMLES. This is probably
why the WRLES and WMLES yield almost the same Cd despite the difference in the
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Name Cd Name Cd Name Cd

A008-wrc 0.49 A008-wrf 0.49 A008 0.49
A440-wrc 0.44 A440-wrf 0.44 A440 0.44

TABLE 3. Drag coefficients in WMLES and WRLES. Again, we have kept two
significant digits.
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FIGURE 26. (Colour online) (a) Contours of the streamwise- and time-averaged
longitudinal velocity in the case A008-wrc. The arrows show the in-plane motions. (b) A
comparison of the time-mean streamwise velocity at a spanwise location through the centre
of the cube and at various x locations. The cube location is indicated. The coarse-grid
WRLES results are on top of the fine-grid WRLES results. (c) Same as panel (a) but for
case A440-wrc. (d) Same as panel (b) but for surface coverage density 4.4 %.

velocity above the crest and further downstream (shown after). In the following, we
take a look at the velocity, which is usually more difficult to predict than the drag
coefficient.

Figure 26(a,c) shows the contours of the streamwise- and time-averaged longitudinal
velocity in cases A008-wrf and A440-wrf. The results compare well with figure 7(a,c).
In figure 26(b,d), we compare WMLES with WRLES at a spanwise location through
the cube centre and at various streamwise locations. The WRLES calculations are
grid-converged. A008-wrc is no different from A008-wrf, and A440-wrc is no different
from A440-wrf. The WMLES results follow the WRLES results closely both upstream
and immediately downstream of the cube. Differences are found in the wake and
above the cube crest. Despite this difference, the drag coefficient in WRLES matches
that in WMLES (in table 3). This is because the drag force on a wall-mounted cube
depends on the pressure but not so much the skin friction.

In this paper, we have mainly looked at the behaviour of the drag force on the cubes.
In the main part of the paper, we argued that, because the wall layer is modelled in

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

72
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.726


Drag forces on sparsely packed cube arrays 1015

0 5 10 15 20 25 30 35

0.2
0.1

0
-0.1

y/h

y/h

†�
w

†�
w

0 2 4

0.2
0.1

0
-0.1
-0.2

A008-wrc

A440-wrc
A440-wrc, filtered
A440

A008

(a)

(b)

FIGURE 27. (a) The streamwise- and time-averaged skin friction in A008-wrc and A008.
(b) The streamwise- and time-averaged skin friction in A440-wrc and A440. ‘A440-wrc,
filtered’ is A440-wrc subjected to a Gaussian filtration.

a WMLES, the skin-friction prediction in a WMLES is not reliable. The skin friction
Cf is shown only in figure 6(b). In that context, Cf is a derived quantity from the
drag coefficient:

Cf =
τs

ρU2
h
=

−
dP
dx

Lz −
f
h2
λp

ρU2
h

=
u2
τ

U2
h
−Cdλp. (B 1)

However, it is of interest to take a look at how WMLES does for the skin friction.
Considering that the secondary flows are streamwise-elongated structures, it is
probably more informative to show the time-averaged and streamwise-averaged wall
shear stress as a function of the spanwise coordinate. Figure 27 shows the streamwise-
and time-averaged wall shear stress in A008-wrc, A008, A440-wrc and A440. The
fine-grid WRLES results are not different from those for the coarse-grid WRLES and
are not shown here for brevity. At λp= 0.081 %, the WMLES follows the WRLES in
general, but because the wall layer is not resolved in WMLES, the WMLES misses
the details that are present in the WRLES. The cube is located at y/h = 17.5. The
footprints of both the HMPs and the LMPs are found: HMPs manifest as two peaks
in the immediate vicinity of the cube, and LMPs manifest as two valleys further
away from the cube location. At λp = 4.4 %, the WMLES results look smeared and
do not agree well with the WRLES. An interesting observation is that the Gaussian
filtered WRLES stress agrees well with the WMLES.
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