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Abstract

Background. Major depressive disorder (MDD) is accompanied by alterations in grey matter
volume. However, the biological processes associated with regional structural perturbations
remain elusive.
Methods. We applied integrative omics analysis to investigate specialized transcriptome sig-
natures and translational determinants associated with regional grey matter variations in
2737 MDD patients relative to 3098 controls by summarizing the results from gene co-expression
network analysis of Allen human brain transcriptome profiles in six donors, enrichment analysis
of gene-sets and cellular structure from rodents and mediation analysis of BrainSpan proteome
profile in six donors.
Results.We found convergent alterations of grey matter volume in MDD were associated with
transcriptome profiles enriched for synaptic transmission, metabolism, immune processes and
transmembrane transport. Genes with abnormal expression in post-mortem tissue in MDD
were also associated with transcriptome signatures. Further gene co-expression network
and enrichment analysis of MDD-related genes in these signatures revealed the modules
with higher neuronal expression were enriched in the medial temporal cortex and tem-
poro-parietal junction with genes differentially associated with neuronal development and
metabolism. Also, the modules with higher non-neuronal (e.g. astrocyte and oligodendrocyte)
expression were concentrated in the rostral and dorsal anterior cingulate cortex and were sep-
arately associated with immune response and transmembrane transport. Moreover, proteins as
the gene expression products mediated the association between transcriptome signatures and
brain volume changes in the visual and dorsolateral prefrontal cortex.
Conclusions. Our multidimensional analyses offer a novel approach to detect specific bio-
logical pathways that capture regional structural variations in MDD, which suggests structural
endophenotypes associated with MDD.

Introduction

Major depressive disorder (MDD) is a common heritable psychiatric disorder with a complex
polygenic architecture, which is associated with cognitive and emotional dysfunction and
other metabolic conditions, such as obesity and type 2 diabetes (Major Depressive Disorder
Working Group of the Psychiatric et al., 2013; Milaneschi et al., 2017; Wray et al., 2012).
Structural neuroimaging studies report that MDD is typically accompanied by lower grey mat-
ter volumes (GMVs) in the anterior cingulate cortex (ACC), dorsolateral prefrontal cortex
(dlPFC) and medial temporal cortex (MTC) (van Tol et al., 2010; Zou et al., 2010), and greater
GMV in visual cortex (VC) and temporo-parietal junction (TPJ) (Oudega et al., 2014; Wehry
et al., 2015). Interestingly, brain volumes in these regions have higher heritability in the
healthy human brain (Geschwind, Miller, DeCarli, & Carmelli, 2002; Peper, Brouwer,
Boomsma, Kahn, & Hulshoff Pol, 2007; Zhao et al., 2019), such as 0.31 for both heritabilities
of dlPFC and MTC, 0.26 for lateral occipital and 0.29 for TPJ (Zhao et al., 2019). Studies have
identified genetic mediators of structural deficits within MTC and ACC in individuals with
MDD (i.e. Brain-derived neurotrophic factor (BDNF) and 5-HTTLPR) (Frodl et al., 2007,
2008). However, genetic polymorphisms in a single gene could have moderate indirect effects
on grey matter structure across the whole brain in MDD. Based on the typical paradigm of
molecular biology, studying genome-regulated transcription [message RNA (mRNA)] is a
complementary approach that reflects the effects of genetic sequence variation on grey matter
structure in MDD.

Transcriptome profile studies offer a way to identify gene transcriptional correlates of MDD
through measuring mRNA expression levels of each gene. Transcriptomal profiles of the post-
mortem prefrontal cortex and ACC in MDD patients have revealed altered gene expression
patterns in neurotransmitter receptor regulation (Klempan et al., 2009), metabolic processing
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(Klempan et al., 2009) and neuroimmune function (Shelton et al.,
2011). Moreover, individuals with MDD showed down-regulated
expression of synaptic-related genes and a corresponding
decreased number of synapses in the dlPFC (Kang et al., 2012),
which may also be related to lower dlPFC GMV in MDD patients
(Rajkowska et al., 1999). In addition, protein products of gene
expression were associated with energy metabolism and synaptic
function in the dlPFC in MDD patients (Martins-de-Souza
et al., 2012). At the cellular level, MDD patients showed reduced
ACC glial cell density and neuronal size, which may contribute to
the reduced ACC GMV (Cotter, Mackay, Landau, Kerwin, &
Everall, 2001). However, these studies exploring the intracellular
and molecular mechanisms of MDD have focused on hypothesis-
driven brain regions. Thus, evidence of genetic influence on
whole-brain GMV in depression is sparse. Identification of struc-
tural endophenotypes in MDD has been hampered by a discon-
nect between human genetics and neuroimaging, including
transcriptome profiles, proteome atlases and cellular architecture
(Congdon, Poldrack, & Freimer, 2010). Thus, there is an urgent
need to fill these gaps and identify genetic determinants of
MDD-related regional GMV differences on transcriptional and
translational determinants ranging from transcriptome to prote-
ome to cell types. This important information will extend our
current understanding of biological pathways involved in MDD-
related structural pathologies and provide a basis for generating
hypotheses regarding gene-regional GMV relationships in MDD.

To address these issues, we performed an integrative omics
analysis by combining transcriptional and translational determi-
nants from the transcriptome, proteome profiles and cell types.
Specifically, we first performed a meta-analysis of 68 whole-brain
voxel-based morphometry (VBM) studies to assess the convergent
whole-brain pattern of volumetric changes in MDD relative to
healthy controls. Second, we investigated transcriptome signatures
that were associated with global GMV changes through multivari-
ate analysis [partial least squares (PLS)] of meta-analytic maps
and whole-brain gene expression profiles provided by the Allen
Institute for Brain Science (AIBS). Third, to interpret the relation-
ship between differential expression patterns in MDD and tran-
scriptome signatures that related to GMV changes, we used four
brain transcriptome datasets with differential expressed genes
(DEGs) in dlPFC and ACC in MDD patients compared to the
healthy controls. Furthermore, to investigate the specific bio-
logical pathways associated with regional GMV variations in
MDD, we performed the graph-based weighted correlation net-
work analysis (WGCNA) with gene lists in transcriptome signa-
tures and summarized the information from transcriptional and
translational determinants, including the anatomical architecture
of modules, gene ontologies and cell types. Finally, we applied a
proteome atlas of six postmortem healthy human brains to link
with the identified transcriptome signatures and regional GMV
changes in VC and dlPFC.

Methods and materials

Dataset overview

This study included five datasets (online Supplementary
Table S1). Dataset 1 was used to derive a map of GMV changes
in MDD relative to healthy controls through meta-analysis.
Dataset 2 included gene expression profiles of postmortem
brain tissue from six healthy donors from the Allen Human
Brain Atlas and was used to identify the transcriptome signatures

associated with GMV changes in MDD. Dataset 3 included four
differential transcriptome profiles of postmortem brain tissues
in MDD relative to healthy controls and was used to examine
the relationship between the abnormal transcriptions and tran-
scriptome signatures related to GMV changes. These four differ-
ential transcriptome profiles are from specific brain regions,
including two gene expression profiles for ACC and another
two for the dlPFC. Dataset 4, which was available from Zhang
et al. (2014), was used to examine the enrichment of
transcriptome-related genes in specific cell types, including neu-
ron, astrocyte and oligodendrocyte. Dataset 5 included proteome
profiles of an anatomically comprehensive set of brain regions
from six donors in BrainSpan (Carlyle et al., 2017) and was
used to investigate whether the proteome profiles mediated the
relationship between the MDD-related transcriptomal signatures
and GMV differences in MDD. A schematic overview of the
study protocol is provided in Fig. 1.

Whole-brain VBM meta-analysis in MDD

The whole-brain VBMmeta-analysis was used to determine the pat-
tern of GMV changes in MDD relative to healthy controls.
Identified studies were published in English before May 2017
from five online public datasets, including PubMed (PubMed
Central), Neurosynth, ScienceDirect, Web of Science and the
BrainMap database. Selected studies were restricted to whole-brain
structural MRI studies using VBM analysis to compare MDD
patients and healthy controls (see Supplement). Following the appli-
cation of these criteria, 68 VBM studies of MDD with 2737 patients
and 3098 controls were included (online Supplementary Table S2).

To identify MDD-related GMV changes, the coordinate-based
anisotropic effect-size signed differential mapping (AES-SDM)
meta-analysis was performed using SDM software (https://www.
sdmproject.com/, version 5.141). Specifically, we first converted
the coordinates reported in Talairach space to MNI standard
space (Lancaster et al., 2007). Then, AES-SDM created an effect-
size map and an effect-size variance map from t values and effect-
sizes (Hedge’s d value) of peak coordinates reported in each study.
Next, all maps were combined with a model of random effects by
accounting for sample size, intra-study variability and between-
study variance (Radua et al., 2012). Finally, a null distribution
was empirically estimated using permutation statistics to obtain
meta-analytic maps with GMV changes in MDD (see Supplement).

Allen brain atlas data

The brain atlas of the transcriptome profiles we used was previously
defined byWhitaker et al. (Whitaker et al. 2016) and widely used to
explore the relationship between transcriptome and structural
changes in brain disorders (McColgan et al., 2017;
Romero-Garcia, Warrier, Bullmore, Baron-Cohen, & Bethlehem,
2018; Romme, de Reus, Ophoff, Kahn, & van den Heuvel, 2017).
The microarray data for six donors in this atlas are available
from the AIBS (http://human.brain-map.org/static/download)
(Hawrylycz et al., 2015). In the microarray dataset, each of the
3702 brain tissues determined the location of 306 parcellated ana-
tomical structures based on the MNI coordinates closest to the
AIBS sample (Whitaker et al., 2016). Expression data were averaged
across all samples from all donors in the matching anatomical
structures, resulting in a region of interest (ROI) × gene, 306 × 20
737, matrix of the transcriptome profiles (see Supplement). In add-
ition, previous studies used leave-one-donor-out approach and
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Fig. 1. Schematic overview of the workflow in this study. (A) First, we obtained a meta-analytic map of volumetric changes in MDD relative to healthy controls
across 68 studies. Mean volumetric changes were calculated across 306 cortical regions. In parallel, gene expression profiles for 20 737 genes were calculated across
the same 306 cortical regions. (B) PLS was used to identify a linear combination of genes that had a similar cortical pattern of expression to the map of volumetric
changes in MDD. (C) We also examined the association between our identified transcriptome signatures and differential expression of genes in postmortem tissues
of MDD patients compared to healthy controls. (D) For each significant PLS component, we compared the spatial patterns of PLS scores with the meta-analytic
map and performed biological annotations associated with global structural changes in MDD. (E) Among the gene lists in transcriptome signatures, gene
co-expression network analysis was used to disassemble these transcriptome signatures by grouping a series of co-varying genes into specialized gene clusters.
(F) For each identified gene cluster, we examined the expression pattern across the whole brain and the enrichment of biological pathways and cell types by inte-
grating information from transcriptional and translational determinants, such as transcriptome atlas, gene-set enrichment and cell types of rodents. (G) Finally, we
examined the mediation effect of proteins on the relationship between our identified transcriptome profiles and volumetric changes of MDD-related brain regions.
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Combining Batches of Gene Expression Microarray Data (ComBat)
(Johnson, Li, & Rabinovic, 2007) to confirm the robustness of
expression profile to the effects of inter-individual differences
and artefactual correlation induced by batches and donors
(Romero-Garcia et al., 2018).

Partial least squares analysis

We used the multivariate approach of PLS (McColgan et al., 2017;
Whitaker et al., 2016) to explore the transcriptome–brain relation-
ship. In our study, the predictor variable comprised a ROI × gene
(306 × 20 737) matrix, and the response variable comprised one
ROI vector (mean GMV values extracted from the meta-analytic
map across the same 306 ROIs). PLS identified several ranked
components of gene expression having maximum covariance
with GMV changes through singular value decomposition
(Abdi & Williams, 2013), such that the first few PLS components
(PLS1, PLS2, etc.) provide the optimal low-dimensional represen-
tation of covariance. In each component, genes were assigned
weights (positive or negative) and ranked based on the contribu-
tion to the variance they explained. The positive weights represent
genes with a higher than average gene expression contributing to
greater GMV in MDD, whereas the negative weights represent
genes with a higher than average gene expression contributing
to lower GMV in MDD. The PLS components were examined
for statistical significance with two-tailed alpha = 0.05 by 1000 per-
mutations through shuffling the ROI labels assigned to the
response variable. We also used bootstrapping (resampling with
the replacement of the 306 regions) to estimate the standard
error of each gene in each PLS component. For each component,
we separately ranked the genes with the ratio of their weights to
the bootstrapped error based on their contribution to the compo-
nent in descending (from positive to negative weights) and ascend-
ing (from negative to positive weights) orders. Finally, top- and
down-ranked genes in each component were separately performed
using gene ontology (GO) analysis (Gorilla: http://cbl-gorilla.cs.
technion.ac.il) (Eden, Lipson, Yogev, & Yakhini, 2007; Eden,
Navon, Steinfeld, Lipson, & Yakhini, 2009) with false discovery
rates (FDRs, q < 0.05) correction. For the visualization of the GO
terms in REViGO (http://revigo.irb.hr), we also discarded items
with over 1500 genes given their general biological processes.

Relationship between abnormal transcriptions in MDD and
transcriptome signatures of volumetric changes

To examine whether differential expression in MDD brains was
associated with genetic signatures of GMV changes, we first
obtained differential expression profiles in the regions with
GMV changes in MDD, such as ACC (GSE54565 and
GSE54562) and dlPFC (GSE92538; Shelton et al. 2011), which
were available from microarray datasets (https://www.ncbi.nlm.
nih.gov/gds). Then, we extracted DEG profiles ( p < 0.005) from
the datasets of GSE54565, GSE54562 and GSE92538, and gene
lists from Shelton et al., (2011). Among four brain regions (bilat-
eral ACC and dlPFC), we separately performed Pearson correl-
ation analysis between DEGs with the log2 fold change and
corresponding gene weights in the first PLS component.

Construction of gene co-expression network

Given that the transcriptome architectures discussed above are
from a global anatomical perspective, we next applied WGCNA

[available from R library (Langfelder & Horvath, 2008)] to
decrease the redundancy of the genetic signatures and detect spe-
cialized gene regulatory landscapes that capture local structural
deficits in MDD by grouping a series of co-varying genes into
gene clusters across the whole brain. In our analysis, the
co-expression network comprised nodes corresponding to genes
overlapping with positive or negative weights among significant
PLS components and edges corresponding to the pairwise corre-
lations between the gene expression levels. We selected soft
thresholding power 5 based on the scale-free topology criterion
(see Supplement).

Gene module identification and annotation

Genes module assignments were determined by a hybrid dynamic
tree-cutting algorithm with default parameters except deepSplit =
2, cutHeight = 0.999 (Langfelder, Zhang, & Horvath, 2008). Then,
gene modules were iteratively merged until all pairs of module
eigengenes (MEs; the first principle component of the module)
were correlated with r < 0.8 (Hawrylycz et al., 2015; Langfelder
& Horvath, 2007) (see Supplement). MEs are considered the
most representative gene expression in a module and are used
to describe the spatial distribution of modules across the whole
brain (Langfelder & Horvath, 2007). The ToppGene (https://topp-
gene.cchmc.org/) portal (Chen, Bardes, Aronow, & Jegga, 2009)
was used to functionally annotate the gene lists in identified mod-
ules. Those annotations included GO annotations (biological pro-
cess, cellular component and molecular function) and Kyoto
Encyclopaedia of Genes and Genomes pathway annotation.

Cell types characterization of genes within the modules

As mouse models have shown the enrichment of genes in differ-
ent cell types, such as neurons, astrocytes and oligodendrocytes
(Zhang et al., 2014), we converted human genes to mouse ortho-
logues using HGNC Comparison of Orthology Predictions tool
(http://www.genenames.org/help/hcop) (Eyre, Wright, Lush, &
Bruford, 2007) (see Supplement). Then, for genes within each
module, we compared them with the cell type dataset and separ-
ately counted genes that had a significant enrichment (at least 10
fragments per kilobase of transcript sequence per million mapped
fragments) in neurons, astrocytes and oligodendrocytes. Finally,
we calculated the proportion of each cell type in individual
gene modules.

Proteome analysis

We used the proteome database of adult human brain tissue
(Carlyle et al., 2017) to investigate the mediation effects of pro-
teins on the relationship between MDD-related transcriptome sig-
natures and structural differences in MDD. We used the proteome
atlas with six donors (HSB123, HSB126, HSB127, HSB135,
HSB136 and HSB145), which is available from BrainSpan
(Carlyle et al., 2017). We extracted the averaged proteome data
in two overlapping regions between transcriptome and proteome
atlas across six donors from the dlPFC and VC. Next, we separ-
ately extracted gene expression and corresponding protein data
that showed overlap between transcriptome and proteome atlases
and the corresponding averaged gene weights in significant PLS
components. Finally, mediation analyses were separately per-
formed to investigate whether an independent variable (i.e. the
gene expression profile) affects a dependent variable (i.e. PLS
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weights) through a mediator variable (i.e. the protein profile) on
dlPFC and VC volumes. These were performed with 1000 bias-
corrected bootstrap samples to generate 95% confidence intervals
(CIs) for indirect effects testing (Preacher & Hayes, 2004).

Protein–protein interaction network

To investigate whether MDD-related proteins could form a pro-
tein–protein interaction network involved in structural changes
in MDD, we used the Search Tool for the Retrieval of
Interacting Genes/Proteins (http://string-db.org) (Szklarczyk
et al., 2015) to construct protein interactive network. This dataset
includes protein–protein interaction information from numerous
sources, including experimental data, publications and computa-
tional prediction methods. Only medium-confidence (>0.4)
links were retained.

Results

Transcriptome signatures associated with global structural
variations in MDD

Across 68 studies, the whole-brain VBM meta-analytic maps con-
sistently displayed lower GMV within the ACC, MTC, dlPFC and
mPFC, and greater GMV within the left VC and right TPJ in
MDD patients relative to healthy controls (Fig. 2A).

As noted, we used a multivariate PLS approach to elucidate the
transcriptome profiles associated with structural changes in
MDD. The first two PLS components explained 45.05% of the
GMV covariance across the whole brain ( p < 0.001). These two
components both showed similar spatial patterns with the VBM
meta-analytic map, with positive scores in the VC, TPJ and
motor cortex, and negative scores in the ACC and MTC
(Fig. 2B). Moreover, we found a positive correlation between
the PLS scores and GMV changes across the whole brain (PLS1:
r = 0.58, p = 3.50 × 10−29; PLS2: r = 0.33, p = 2.16 × 10−9; Fig. 2C).

PLS1 was rich in genes involved in synaptic transmission, metal
ion transmembrane transport and sensory perception ( pFDR <
0.05; Fig. 2D and online Supplementary Table S3), while PLS2
genes are involved in mitochondrial function and immune
response ( pFDR < 0.05; Fig. 2E and online Supplementary
Table S4). These findings suggest expression profiles associated
with GMV changes in MDD mainly involved in synaptic signal-
ling, energy metabolism, and immunological processes.

Differential expression patterns in MDD associated with
transcriptome signatures of volumetric changes

We next examined the relationship between our identified tran-
scriptome signatures and DEG in the postmortem brain tissue
of MDD patients, including ACC and dlPFC. The results showed
a significantly negative correlation between abnormal transcrip-
tion of genes in ACC and PLS1 weights (GSE54565: r = −0.45,
p = 0.007; GSE54562: r = −0.17, p = 0.01; online Supplementary
Fig. S1), which suggests that the genes positively weighted in
the component were relatively under-expressed in the ACC of
MDD patients compared with controls. In contrast, disrupted
expression of genes in dlPFC was positively correlated with
PLS1 weights (GSE92538: r = 0.16, p = 4.79 × 10−9; Shelton: r =
0.53, p = 0.007; online Supplementary Fig. S1), which suggests
that genes positively weighted in component were relatively over-
expressed in the dlPFC in MDD patients compared with controls.

Moreover, GO analysis showed an enrichment of DEGs involved
in mitochondrial function, metabolic and immunological pro-
cesses, neuronal development and transmembrane transport,
similar to those in the transcriptome signatures ( pFDR < 0.05;
online Supplementary Table S5).

Gene co-expression network captures the regional structural
variations in MDD

We next applied a graph-based WGCNA approach to detect spe-
cialized transcriptome signatures that can capture local structural
changes in MDD. We first constructed a co-expression network
with 3411 genes overlapping between the first two PLS components
(Fig. 3A). It included five gene modules, individual modules that
were enriched expression in specific anatomical structures (red
regions) involved in MDD structural changes (Fig. 3B).
Specifically, Mod 01 and Mod 04 were enriched in the MTC and
TPJ, respectively. Mod 02 was manifested in the sensory cortex,
such as VC. In contrast, Mod 03 and Mod 05 showed enrichment
in different parts of the cingulate cortex, such as ventral ACC and
dorsal ACC. Cell type specific analysis identified a large proportion
of genes assigned to Mod 01 and Mod 04 with higher neuronal
expression, whereas other modules were represented as non-
neuronal modules with large astrocyte and oligodendrocyte signa-
tures (Fig. 3C). GO enrichment analysis also showed each module
characterized by specific biological processes, such as neural devel-
opment, metabolism and immune response ( p < 0.001, Table 1 and
online Supplementary Table S6–S10).

Integrating with the above-mentioned multi-dimensional infor-
mation of gene modules, we found individual modules that were
enriched for different cell classes in distinct anatomical structures
and were associated with various biological pathways. Specifically,
Mod 01 and Mod 04 were largely selective for neuronal expression
and enriched in MTC and TPJ, with genes associated with neuronal
development ( p = 1.84 × 10−7) and metabolism ( p = 6.25 × 10−6),
respectively. Mod 02 was selective for non-neuronal expression in
VC, with genes involved in sensory perception ( p = 7.73 × 10−40).
Mod 03 and Mod 05 were enriched in non-neuronal expression
in the ventral ACC and dorsal ACC, with genes associated with
immune function ( p = 1.94 × 10−11) and transmembrane transport
( p = 2.69 × 10−5), respectively.

Proteome profiles mediated the relationship between
transcriptome signatures and structural changes in MDD

We next assessed the mediation effects of 771 proteins showing the
overlap between transcriptome and proteome atlases in dlPFC and
VC. Results of mediation analyses revealed proteins mediated the
association between gene expression profiles and weights on the
GMV in dlPFC (Fig. 4A, β =−0.43, 95% CI −1.01 to −0.02) and
VC (Fig. 4B, β = 0.10, 95% CI 0.009–0.20). These proteins were
also involved in biological processes, such as neural development,
synaptic transmission, metabolism and neuroimmune processes
( pFDR < 0.05; online Supplementary Table S11). Moreover, we
found 85.92% proteins interacted to form a protein–protein inter-
action network ( p < 1.00 × 10−16, Fig. 4C), which indicates protein
involvement in the alterations of GMV in MDD.

Discussion

Our integrative omics analysis revealed the genetic configuration
of MDD-related GMV changes on transcriptional and
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Fig. 2. Transcriptome signatures were associated with grey matter volume changes in MDD. (A) Meta-analytic map of volumetric differences in MDD. Blue and red–
yellow separately represent the regions with lower (e.g. ACC, MTC, dlPFC and medial prefrontal cortex) and greater volumes (e.g. left VC and right TPJ) in MDD
patients relative to healthy controls. (B) Spatial patterns of PLS scores for significant PLS components (PLS1 and PLS2). PLS scores were calculated by multiplying
the PLS weights in each component (a vector with 20 737 values) and gene expression matrix (20 737 × 306). Red–yellow and blue separately represented positive
(e.g. VC, right TPJ and parietal cortex) and negative PLS scores (e.g. insula, cingulate cortex and MTC) across the whole brain. The regions with more positive PLS
scores in significant PLS components (PLS1 and PLS2) showed greater Z-scores in the meta-analytic map of volumetric changes and vice versa, which suggests
similar patterns between the identified PLS components and volumetric changes in MDD. (C) The spatial patterns of significant PLS components positively asso-
ciated with grey matter volume changes in MDD. Each dot represents a brain region, thus there are 306 dots (306 brain regions) in each plot. Significant GO items
associated with PLS components, including PLS1 (D) and PLS2 (E), were shown in the semantic space ( pFDR < 0.05). Significantly GO annotations were plotted in
semantic space, in which similar terms were shown close to each other. Markers are scaled and coloured based on the log10 p value for the significance of each
annotation. Large blue circles are more significant, whereas small red circles are less significant. Associated biological pathways are shown beside the circles.
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translational determinants ranging from transcriptome to prote-
ome profile to cellular architecture. Specifically, we first showed
that transcriptome signatures associated with global volumetric
changes in MDD were enriched in synaptic communication,
metabolic and immune processes, transmembrane transport and
sensory perception. We also observed that our identified tran-
scriptome signatures were associated with genes with differential
expression in the postmortem dlPFC and ACC in MDD patients.
Second, gene co-expression network analysis identified specia-
lized gene modules with differential biological annotations that
capture regional structural changes in MDD. Modules enriched
in the MTC and TPJ were largely selective for neuronal expres-
sion, with genes differentially associated with energy metabolism
and neuronal development. Moreover, modules were enriched for
the non-neuronal expression in different parts of ACC, with genes
associated with immune function and transmembrane transport.
Finally, protein profiles mediated the relationship between tran-
scriptome patterns and MDD-related GMV differences in a pro-
tein–protein interactive network in dlPFC and VC. These findings
bridge the complicated link between biological sources and struc-
tural variations in MDD and expand our understanding of neuro-
biological mechanisms underlying MDD.

In our meta-analysis of VBM studies, we observed lower GMV
in the ACC, MTC and dlPFC and greater GMV in the VC and
TPJ in MDD patients compared with healthy controls. Previous
studies have provided converging evidence of neuroimaging and
histopathology for lower volume in these MDD-related regions.
A majority of meta-analyses of structural neuroimaging studies
have reported lower volume in the ACC (Bora, Fornito,
Pantelis, & Yucel, 2012; Lai, 2013), hippocampus and insula in
MDD (Schmaal et al., 2016; Wise et al., 2017), which was consist-
ent with our findings. Neuropathological studies showed reduced
glial cell density and neuronal size in ACC (Cotter et al., 2001),
hippocampus (Stockmeier et al., 2004) and dlPFC (Kang et al.,
2012; Rajkowska et al., 1999) in MDD, which may contribute to
lower brain volume (Anderson, 2011).

Using the multivariate PLS analysis, we identified genetic cor-
relates of global structural variations in MDD, which are involved
in synaptic signalling, metabolic and immune responses and
transmembrane transport. We next focused on interpreting
these MDD-related biological annotations in transcriptome signa-
tures. The synaptic signalling terms, such as regulation of postsy-
naptic membrane potential, modulation of neurochemical
synaptic transmission and anterograde trans-synaptic signalling,

Fig. 3. Specialized gene modules captured
regional grey matter volume variations in MDD.
(A) Construction of gene co-expression network
on the MDD-related genes in the transcriptome
signatures. Each colour represents the gene
being assigned to the modules. (B) Spatial pat-
terning of five gene modules with expression
values of module eigengenes. Individual mod-
ules are enriched in specific anatomical architec-
tures, with enrichment predominantly in the
regions showing grey matter volume differences
in MDD. Expression range of module eigengenes
scaled from minimum (blue) to maximum (red)
across the brain. (C) Percentage of the known
neuron-, astrocyte- and
oligodendrocyte-enriched genes in five gene
modules.
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were strongly implicated in the pathogenesis of MDD (Jans,
Riedel, Markus, & Blokland, 2007; Rothman, Cathala, Steuber,
& Silver, 2009). Previous studies also observed that lower levels
of synaptic signalling related genes in MDD tightly involved in

a reduction of neural plasticity and number of synapses in both
dlPFC and hippocampus (Duman & Aghajanian, 2012; Duric
et al., 2013; Kang et al., 2012), which was associated with lower
volumes in these regions. Metabolic GO terms, such as

Table 1. Biological annotations of gene modules

Category GO ID Description p value q value FDR B&H

Module 01

BP 0007417 Central nervous system development 1.84 × 10−07 1.20 × 10−03

BP 0007420 Brain development 4.09 × 10−06 1.33 × 10−02

BP 0060322 Head development 9.16 × 10−06 1.99 × 10−02

CC 0000788 Nuclear nucleosome 1.33 × 10−07 9.52 × 10−05

CC 0043025 Neuronal cell body 8.83 × 10−05 1.62 × 10−02

CC 0032809 Neuronal cell body membrane 9.05 × 10−05 1.62 × 10−02

Module 02

MF 0004984 Olfactory receptor activity 6.37 × 10−38 5.35 × 10−35

MF 0004930 G protein-coupled receptor activity 6.30 × 10−34 2.64 × 10−31

MF 0004888 Transmembrane signaling receptor activity 1.39 × 10−22 3.88 × 10−20

BP 0050907 Detection of chemical stimulus involved in sensory perception 7.73 × 10−40 3.07 × 10−36

BP 0007606 Sensory perception of chemical stimulus 2.42 × 10−38 4.80 × 10−35

BP 0050906 Detection of stimulus involved in sensory perception 1.39 × 10−37 1.75 × 10−34

Module 03

MF 0023026 MHC class II protein complex binding 4.59 × 10−06 2.24 × 10−03

MF 0023023 MHC protein complex binding 9.61 × 10−06 2.34 × 10−03

MF 0032395 MHC class II receptor activity 7.94 × 10−05 1.01 × 10−02

BP 0002503 Peptide antigen assembly with MHC class II protein complex 1.94 × 10−11 2.80 × 10−08

BP 0002399 MHC class II protein complex assembly 1.94 × 10−11 2.80 × 10−08

BP 0002501 Peptide antigen assembly with MHC protein complex 1.15 × 10−10 8.29 × 10−08

CC 0042613 MHC class II protein complex 9.74 × 10−10 3.28 × 10−07

CC 0042611 MHC protein complex 3.37 × 10−08 5.68 × 10−06

CC 0012507 ER to Golgi transport vesicle membrane 1.36 × 10−07 1.53 × 10−05

Module 04

BP 0015980 Energy derivation by oxidation of organic compounds 6.25 × 10−06 4.40 × 10−02

BP 0007005 Mitochondrion organization 1.47 × 10−05 4.48 × 10−02

BP 0006091 Generation of precursor metabolites and energy 1.91 × 10−05 4.48 × 10−02

CC 0005739 Mitochondrion 5.71 × 10−15 4.79 × 10−12

CC 0044429 Mitochondrial part 3.07 × 10−13 1.29 × 10−10

CC 0005759 Mitochondrial matrix 1.55 × 10−09 4.32 × 10−07

Module 05

MF 0008227 G protein-coupled amine receptor activity 6.71 × 10−05 2.81 × 10−02

MF 0030594 Neurotransmitter receptor activity 2.19 × 10−04 3.76 × 10−02

MF 0004969 Histamine receptor activity 2.69 × 10−04 3.76 × 10−02

BP 0043269 Regulation of ion transport 2.69 × 10−05 2.50 × 10−02

BP 1903792 Negative regulation of anion transport 3.12 × 10−05 2.50 × 10−02

BP 0006811 Ion transport 4.50 × 10−05 2.50 × 10−02

GO, gene ontology; MF, molecular function; BP, biological process; CC, cellular component; FDR B&H, false discovery rate Benjamini & Hochberg.
Note: the top three most significant GO terms are displayed for each gene module. Full tables can be found in online Supplementary Tables S6–S10.
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mitochondria function, organic compound metabolism and pro-
tein synthesis, have been reported to be associated with energy
imbalance within the brain and body of MDD patients (Biver
et al., 1994; Milaneschi et al., 2017; Milaneschi, Simmons, van
Rossum, & Penninx, 2019). Positron emission tomography studies
have also shown lower glucose metabolism in the TPJ and dlPFC
in MDD (Biver et al., 1994), which could be normalized after suc-
cessful paroxetine therapy (Kennedy et al., 2001). Moreover, some
epidemiological studies reported a greater risk of obesity and dia-
betes complications in MDD (Gavard, Lustman, & Clouse, 1993;
Milaneschi et al., 2019). Immune-related items, such as antigen
processing and responses to cytokine, have also been implicated
in MDD (Dantzer, O’Connor, Freund, Johnson, & Kelley, 2008).
MDD is associated with adaptive immune response in the T
cells and natural killer cells in studies of differential expression
profiles in brain tissues and peripheral blood (Jansen et al.,
2016; Leday et al., 2018; Shelton et al., 2011). Finally, the trans-
membrane transport terms, such as metal ion and neurotransmit-
ter transport, provide support of the prevailing hypothesis in
5-hydroxytryptamine reuptake inhibition in MDD (Hieronymus,
Emilsson, Nilsson, & Eriksson, 2016; Svenningsson, Kim,
Warner-Schmidt, Oh, & Greengard, 2013). Greater glutamate
levels in the extracellular matrix could potentially have an impact
on the neuronal activity and efficiency of glutamate signalling
(Choudary et al., 2005).

When thousands of genes might differ between regions, net-
work analysis can subdivide variations into smaller, more bio-
logically coherent sets of modules to identify molecular
underpinnings associated with brain-wide pathology in disorders.
WGCNA analysis helps to decrease the redundancy of the genetic
signatures and elucidate the biological mechanisms of gene clus-
ters through transcriptional and translational determinants,
including specific anatomic patterning, biological pathways and
cell types. We showed that Mod 01 was predominantly enriched
in the MTC with genes largely expressed in neurons and asso-
ciated with neural development. Neuropathological analyses in

postmortem hippocampal tissue in MDD patients support these
results. The soma size of pyramidal neurons in the hippocampus
is significantly lower in MDD than controls, which may contrib-
ute to lower hippocampal volume measured by structural neuroi-
maging (Stockmeier et al., 2004). We showed that neuronal Mod
04 was enriched with genes associated with metabolic-related
pathways in the TPJ. This is consistent with positron emission
tomography studies, in which the parietal cortex showed distur-
bances of glucose metabolism in unipolar depression (Biver
et al., 1994; Kennedy et al., 2001). Non-neuronal modules (e.g.
Mod 03 and Mod 05) mainly showed enrichment in ACC, with
genes associated with immune function and transmembrane
transport. Microarray analysis of postmortem ACC demonstrated
down-regulation of glutamate transporters-related genes in MDD,
which could represent elevated levels of extracellular glutamate
and affect the efficiency of glutamate signalling (Choudary
et al., 2005). Moreover, abnormal expression of immune-related
genes, such as interleukin-1β (IL-1β), IL-6 and tumour necrosis
factor (Maes, 1995; Miller & Raison, 2016; Miller, Maletic, &
Raison, 2009), and lower density of glial cells across all layers
were identified in the ACC in MDD patients (Cotter et al.,
2001; Gittins & Harrison, 2011). Taken together, analysis of spe-
cialized gene modules not only can elucidate regional structural
variations in MDD, but also extend findings from peripheral
blood and limited postmortem tissue, which link genetic architec-
ture to psychopathology in MDD (Klempan et al., 2009; Shelton
et al., 2011; Spijker et al., 2010).

Despite the complicated pathway from the post-transcriptional
to the post-translational processes, our findings revealed the
mediation effects of proteins on the relationship between tran-
scriptome profiles and MDD-related GMV differences in dlPFC
and VC. Moreover, these MDD-related proteins are involved in
neural development, synaptic transmission and metabolic pro-
cesses, which was consistent with the proteome signatures in shot-
gun analyses of dlPFC in MDD (Johnston-Wilson et al., 2000;
Martins-de-Souza et al., 2012). These findings suggest that the

Fig. 4. Proteins mediated the relationship between transcriptome profiles and grey matter volume changes in the manner of the interactive network in MDD.
Proteins mediated the relationships between the transcriptome architecture and volume changes in the dlPFC (A) and VC (B). These MDD-related proteins inte-
grated a consensus protein–protein interaction network involved in biological pathways. Proteins were represented by nodes with various colours. Edges between
nodes represent protein–protein associations and were weighted by the Search Tool for the retrieval of interacting genes/proteins confidence scores. Only medium-
confidence (>0.4) links were retained, and disconnected proteins are not shown.
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proteome provides a complementary approach to understanding
the genetic determinants of structural variations in MDD.
Finally, we should note that further work is needed to validate
the mediation effects in other brain regions.

There are several limitations to this work. First, the use of gene
expression profiles from the healthy human brain in AIBS to
explain GMV changes is limited to the extent that transcription
in patients could be different from those in healthy brains.
Although abnormal transcription in dlPFC and ACC in MDD
has shown tight associations with our identified signatures, add-
itional regions across the whole brain should be examined to fur-
ther interpret the correlates of these signatures to differential
gene expression patterns in MDD. Second, the signatures we iden-
tified were available from the AIBS atlas, as other human brain
transcriptome atlases such as Braineac (Ramasamy et al., 2014)
offer a lower resolution of sample collection relative to the AIBS
atlas. Therefore, our findings need to be validated through other
transcriptome atlases with more participants. Third, the interpret-
ability of PLS analyses is hampered by the fact that expression pat-
terns were not separated by directional effects, such as decreased or
increased expression. Up- or down-regulation of a gene may
equally represent variations within a certain cell type or in the
structural differences related to MDD. Likely, gain or loss of func-
tion of genes was difficult to distinguish in the enrichment analyses.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291720002676.
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