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Risk of congenital heart defects is influenced by genetic
variation in folate metabolism
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Abstract Genetic disturbances in folate metabolism may increase risk for congenital heart defects. We
examined the association of heart defects with four polymorphisms in folate-related genes (methylene-
tetrahydrofolate reductase (MTHFR) c.677C . T, MTHFR c.1298A . C, methionine synthase reductase
(MTRR) c.66A . G, and reduced folate carrier (SLC19A1) c.80A . G) in a case–control study of children
(156 patients, 69 controls) and mothers of children with heart defects (181 patients, 65 controls), born before
folic acid fortification. MTRR c.66A . G in children modified odds ratios for overall heart defects, specifically
ventricular septal defect and aortic valve stenosis (p-value below 0.05). The 66GG and AG genotypes were
associated with decreased odds ratios for heart defects (0.42, 95% confidence interval (0.18–0.97) and 0.39
(0.18–0.84), respectively). This overall association was driven by decreased risk for ventricular septal defect for
66GG and AG (odds ratio 0.32 (0.11–0.91) and 0.25 (0.09–0.65)) and decreased odds ratio for aortic valve
stenosis for 66AG (0.27 (0.09–0.79)). The association of ventricular septal defect and 66AG remained
significant after correction for multiple testing (p 5 0.0044, multiple testing threshold p 5 0.0125). Maternal
MTHFR 1298AC genotype was associated with increased odds ratio for aortic valve stenosis (2.90
(1.22–6.86), p 5 0.0157), but this association did not meet the higher multiple testing threshold. No
association between MTHFR c.677C . T or SLC19A1 c.80A . G and heart defect risk was found. The
influence of folate-related polymorphisms may be specific to certain types of heart defects; larger cohorts of
mothers and children with distinct sub-classes are required to adequately address risk.
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C
ONGENITAL HEART DEFECTS OCCUR IN APPROXIMATELY

1/100 live births1 and represent the major cause
of infant death due to birth defects.2 Early

studies in rats indicated that heart defects are among

the folate-sensitive birth defects, which include neural
tube defects and cleft lip and palate.3 More recent
human studies suggest that periconceptional folate
supplementation reduces the incidence of heart defects,
in particular conotruncal defects and ventricular septal
defect.4,5 In Canada, fortification of grain products
with folic acid has been linked to a significant decrease
in heart defects, particularly conotruncal defects.6

Increased folate intake may prevent heart defects by
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lowering maternal homocysteine levels, as maternal
hyperhomocysteinaemia is associated with a greater
than fourfold increase in risk for heart defects.7

However, it is possible that homocysteine as such does
not cause heart defects, but that it acts as a biomarker of
disturbed folate metabolism or cellular methylation
reactions that may disrupt embryonic development.

The link between low folate/high homocysteine
and heart defect incidence implies that single-
nucleotide polymorphisms in the folate pathways
may be genetic risk factors for these disorders. A
number of polymorphisms in folate pathway genes
have been identified that appear to affect protein
function and/or folate metabolism and thus may
affect the risk for heart defects (for a review, see
Christensen and Rozen8). On this basis, we selected
four variants to examine in a cohort of congenital
heart defect patients and their mothers: methylene-
tetrahydrofolate reductase (MTHFR) c.677C . T
and c.1298A . C, methionine synthase reductase
(MTRR) c.66A . G and reduced folate carrier
(SLC19A1) c.80A . G. These polymorphisms were
selected on the basis of their reported associations
with risk for neural tube defects, and observations
of cardiac defects in mouse models.

MTHFR catalyses the reduction of methylenete-
trahydrofolate to 5-methyltetrahydrofolate, which is
required for the remethylation of homocysteine
to methionine. The MTHFR c.677C . T variant
(p.Ala222Val, dbSNP ID: rs1801133) results in
a thermolabile protein associated with reduced
enzyme activity in vivo.9,10 This variant has been
found to increase plasma homocysteine, particularly
in combination with low folate levels,11 and is a
risk factor for neural tube defects.12 The MTHFR
c.1298A . C variant (p.Glu429Ala, rs1801131) has
been reported to modestly reduce MTHFR activity
in vivo,10 although it may not influence homo-
cysteine levels13,14 or neural tube defect risk.15 The
c.1298A . C variant is in linkage disequilibrium
with the c.677C . T variant (the 677TT/1298CC
genotype is rarely observed), which complicates the
analysis of its effects.16 In mice, MTHFR-deficient
females have greater numbers of offspring with
heart defects than wild-type mice; the majority of
observed defects were ventricular septal defects.17

MTRR catalyses the regeneration of the cobalamin
cofactor of methionine synthase and may also help
stabilise and activate methionine synthase.18 Methio-
nine synthase uses the 5-methyltetrahydrofolate
generated by MTHFR to remethylate homocysteine,
producing methionine. If MTRR activity is dis-
rupted, it results in a functional deficiency of
methionine synthase.19 The MTRR c.66A . G
variant (p.Ile22Met, rs1801394) has been reported
to have different biochemical properties from the

wild-type residue in vitro;20 however, the effect of
the mutation in vivo is not clear. Although this
variant protein does not appear to independently
affect homocysteine levels,13,14 the 66GG genotype
has been reported to significantly decrease homo-
cysteine levels in MTHFR 677TT individuals.14 This
variant has also been reported to influence risk for
neural tube defects, although results of these studies
have been mixed.15,21–23 In mouse models, MTRR
deficiency causes increased plasma homocysteine24

and has been found to increase the incidence of
ventricular septal defect.25

Reduced folate carrier (gene name: SLC19A1)
is a bidirectional transporter that carries reduced
folates such as methyltetrahydrofolate. The effect of
the SLC19A1 c.80A . G variant (p.His27Arg,
rs1051266) on the protein is not clear; one study
found no effect,26 whereas another found that it
decreased transport of the folate analog methotrex-
ate.27 This variant does not appear to affect plasma
homocysteine or folate levels.13 The SLC19A1
c.80A . G variant may be a folate-responsive risk
factor for neural tube defects in some popula-
tions, although reports are inconsistent.28,29 In
mice, reduced folate carrier-deficient embryos die
before implantation in the absence of maternal
folate supplementation; heart defects such as
conotruncal defects and ventricular septal defect
have been reported in folate-supplemented reduced
folate carrier-deficient embryos at later stages of
development.30

The aim of this study is to assess the impact
of these polymorphisms on heart defect risk in a
Canadian cohort born before mandatory folate
fortification. This is the first investigation of
the impact of the MTHFR c.677C . T, MTHFR
c.1298A . C, MTRR c.66A . G, and SLC19A1
c.80A . G variants in a Canadian cohort.

Materials and methods

Human subjects

The subjects in this study are a subset of a previously
described cohort.31 DNA from patients and control
subjects was obtained from blood spots and stored as
reported.31 Informed consent was obtained from all
study participants before sample collection. The study
was performed in accordance with the ethical standards
of the 1964 Declaration of Helsinki with approval
from the Institutional Review Boards at the Montreal
Children’s Hospital and CHU Sainte-Justine. The
subjects were from the province of Quebec, Canada,
of Northern European background, born before
December 31, 1996, before the introduction of
mandatory folic acid fortification in Canada in 1998.
Demographic information and use of folic acid
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supplements during pregnancy was obtained using a
questionnaire administered at sample collection. As in
other studies,32–34 mothers were considered unsupple-
mented if use of supplements began only after the
pregnancy was known. Congenital heart defects were
diagnosed by echocardiography, as described.31 Only
patients and mothers of children with non-syndromic
heart defects were included in this study. Control
samples were collected from mothers and children
unaffected by heart defects who presented at the
Montreal Children’s Hospital for outpatient blood
sampling.

The subjects include 156 children with con-
genital heart defects, 181 mothers of children with
congenital heart defects, 69 control children, and 65
control mothers (Table 1). There were 216 mother–
child pairs within the cohort, that is, 153 patients
and 63 controls. Congenital heart defects in the
patients were aortic valve stenosis, atrial septal
defect, atrioventricular septal defect, coarctation of
the aorta, double-outlet right ventricle, pulmonary
stenosis, transposition of the great arteries, tetralogy
of Fallot, truncus arteriosus, and ventricular septal
defect (Table 1).

Genotyping

Genotypes were determined by restriction fragment
length polymorphism analysis at the Research
Institute of the Montreal Children’s Hospital.
Genotyping of MTHFR c.677C . T was carried
out using the sense primer 50-TGAAGGA-
GAAGGTGTCTGCGGGA-30 and the antisense
primer 50-GATGCCCATGTCGGTTCATGCCTT-
30. Following 35 cycles of polymerase chain reaction
amplification (948C, 1 minute; 688C, 1 minute;
728C, 2 minutes), the 104 base-pair amplicon was
digested with Hinf1 to generate the 104 base-pair
677C or 79 base-pair 677T fragments. Genotyping
for MTHFR c.1298A . C, MTRR c.66A . G, and

SLC19A1 c.80A . G was carried out as described,
except that the restriction enzyme Hinp1I was used
for SLC19A1.35–37 One case mother could not be
genotyped for MTRR c.66A . G or SLC19A1
c.80A . G, and thus was excluded from the analysis
of those polymorphisms.

Statistical methods

Case–control tests of single-nucleotide polymorph-
ism association without controlling for covariates
were first used to compare the frequency of
polymorphism alleles in two well-defined cohorts
of patients diagnosed with the heart defects under
study and unaffected controls. Case–control tests
were performed for mother and child cohorts
separately. Polymorphism impact on heart defect
risk was analysed by diagnosis; owing to small
numbers, coarctation of the aorta, double-outlet
right ventricle, pulmonary stenosis, and truncus
arteriosus were not analysed separately. Single-
nucleotide polymorphism association with heart
defect risk overall was analysed by grouping all
diagnoses together.

Case–control association tests included the chi-
square test on genotype, the chi-square test on
alleles and the Cochran–Armitage trend test on
genotypes. A total of 100,000 permutations were
used to obtain the exact p-values by the Monte
Carlo method.38 Single-nucleotide polymorphisms
were tested for Hardy–Weinberg equilibrium using
an exact test39 based on the conditional probability
of genotype counts given allelic counts and the
hypothesis of allelic independence using 100,000
permutations to get the exact p-values by Monte
Carlo permutation.

A logistic regression model was used to evaluate the
genotypic effect for the homozygous, heterozygous,
dominant, and recessive models for each polymorph-
ism. MTHFR 677T, MTHFR 1298C, MTRR 66G,

Table 1. Congenital heart defect diagnoses in patients and mothers.

n (%)

Type of congenital heart defect Children (n 5 156) Mothers (n 5 181) Mother–child pairs (n 5 153)

Ventricular septal defect 44 (28.2) 51 (28.2) 44 (28.8)
Tetralogy of Fallot 34 (21.8) 42 (23.2) 34 (22.2)
Aortic valve stenosis 32 (20.5) 38 (21.0) 30 (19.6)
Transposition of the great arteries 20 (12.8) 21 (11.6) 19 (12.4)
Atrial septal defect 11 (7.1) 12 (6.6) 11 (7.2)
Atrioventricular septal defect 9 (5.8) 10 (5.5) 9 (5.9)
Truncus arteriosus 2 (1.3) 2 (1.1) 2 (1.3)
Double outlet right ventricle 1 (0.6) 1 (0.6) 1 (0.7)
Pulmonary stenosis 2 (1.3) 2 (1.1) 2 (1.3)
Coarctation of the aorta 1 (0.6) 2 (1.1) 1 (0.7)

Vol. 23, No. 1 Christensen et al: Heart defects and folate-related gene variants 91

https://doi.org/10.1017/S1047951112000431 Published online by Cambridge University Press

https://doi.org/10.1017/S1047951112000431


and SLC19A1 80G were set as the risk alleles.
All statistical analyses were conducted with SAS 9.1
including SAS genetics. Results with p-values less
than or equal to 0.05 were considered to be of interest;
to correct for multiple testing, the significance
threshold was adjusted to less than or equal to
0.0125 using the Bonferroni correction.

Results

Descriptive data
Cohort Demographics. Demographic information

for the cohort – maternal age at birth of index child,
child’s sex, multivitamin use – is shown in Table 2.
Maternal age in the control group was significantly
higher than that in the case groups, p is equal to
0.0121 for heart defects overall. Although significant,
this approximately 1-year increase in maternal age
would not be expected to affect heart defect risk. The
proportion of female children is also higher in
the control groups than that in the case groups.

In the mothers’ cohort, supplemental vitamin use
questions were completed by 57% of patients’
mothers and 72% of control mothers (Table 2). Of
those, only 11% of patients’ mothers and 4%
of control mothers reported using multivitamins
containing folic acid before conception. Owing to
these small numbers, a separate analysis of
supplemented and unsupplemented mothers was not
performed. The majority of mothers in this study did
not use folic acid supplements during the pericon-
ceptional period. Of those that responded, 50%
of patients’ mothers and 68% of control mothers
reported using multivitamins only after the pregnancy
was discovered; as in other studies, we consider these
mothers to be unsupplemented.32–34 Materna was the
most commonly named supplement in all groups. As
the majority of participants were mother–child pairs,

reported use of multivitamins containing folic acid
was not meaningfully different in the children’s
cohort. Given that all of the participants in this
study were born before folic acid supplementation in
Canada, and the majority of mothers used folic acid
supplements only after the periconceptional period,
this study is more likely to detect folate-responsive
single-nucleotide polymorphism associations than
post-fortification cohorts.

Hardy–Weinberg equilibrium and linkage
In the mothers’ cohort, no significant deviations from
the Hardy–Weinberg equilibrium were observed;
frequency of polymorphisms and Hardy–Weinberg
equilibrium results are reported in Supplementary
Table S1. In the children, there were no deviations
from the Hardy–Weinberg equilibrium for any
polymorphism or diagnosis except for MTHFR
c.677C . T in children with ventricular septal
defect and tetralogy of Fallot, which results in
Hardy–Weinberg equilibrium deviation for heart
defects overall for this polymorphism – frequency
of single-nucleotide polymorphisms and Hardy–
Weinberg equilibrium results in Supplementary
Table S2. These deviations could be due to genetic
associations with heart defects; however, they were
not significant after correction for multiple testing.

As expected, the MTHFR c.677C . T and
c.1298A . C variants were in linkage disequili-
brium with a D0 value of 1. The 677TT/1298CC
genotype was not observed in this cohort.

Association of folate-related single-nucleotide
polymorphisms with risk for congenital heart defects

The associations between heart defect risk and the
variant allele, homozygous variant genotype and
heterozygous variant genotype were evaluated for
each of the four polymorphisms. The associations of

Table 2. Demographic description of the cohort.

Patients Controls

Children Mothers Children Mothers

Child’s sex
Male 64 75 21 18
Female 64 70 48 45
Unknown 28 36 0 2

Maternal age
Mean 6 SEM (n1) 27.9 6 0.4 (111) 28.0 6 0.4 (121) 29.9 6 0.6 (59) 29.8 6 0.6 (57)

Periconceptional
Number responded (%) 84 (54) 103 (57) 46 (67) 47 (72)

Supplement use
Yes (%) 7/84 (8) 11/103 (11) 2/46 (4) 2/47 (4)
No (%) 77/84 (92) 92/103 (89) 44/46 (96) 45/47 (96)

1Number of mothers that provided maternal age at birth of index child
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heart defect risk using recessive and dominant effect
models were also assessed by logistic regression. No
significant associations were observed for atrial
septal defect, atrioventricular septal defect, transpo-
sition of the great arteries, and tetralogy of Fallot
in either mothers or children. Complete results
including calculated odds ratios, upper and lower
95% confidence limits, and p-values for the four
polymorphisms in the mothers are reported in
Supplementary Tables S3 and S4; complete results
for the children in Supplementary Tables S5 and S6.
Tables 3–6 show the results for the diagnosis groups
for which there were findings of interest (overall
heart defect risk, aortic valve stenosis, and ventri-
cular septal defect).

The maternal MTHFR 1298AC genotype was
associated with increased odds ratios for aortic valve
stenosis (odds ratio (AC versus CC): 2.90 (1.22–6.86),
p 5 0.0157; odds ratio (AC and CC versus AA): 2.39
(1.04–5.47), p 5 0.0398) (Tables 3 and 4). However,
these associations did not meet the higher threshold
for significance (p 5 0.0125) after correction for
multiple testing. No maternal effect on heart defect
risk was observed for MTHFR c.677C . T, MTRR
c.66A . G, and SLC19A1 c.80A . G.

In children, the MTRR c.66A . G variant was
associated with decreased risk for heart defects. The
G allele, the GG and the AG genotypes decreased
odds ratios for heart defects overall (odds ratio
(G versus A): 0.66 (0.44–0.98), p 5 0.0532;
odds ratio (GG versus AA): 0.42 (0.18–0.97),
p 5 0.0423; odds ratio (AG versus AA): 0.39
(0.18–0.84), p 5 0.0168) (Table 5). When geno-
types were combined using the dominant model
(AG and GG versus AA), the odds ratio was 0.40
(0.19–0.83), p 5 0.0140 (Table 6). None of these
models met the higher threshold for significance
after correction for multiple testing. The relation-
ship of MTRR c.66A . G and heart defect risk
appears to be driven by associations with risk for
aortic valve stenosis and ventricular septal defect.
Decreased odds ratios for aortic valve stenosis were
found for both the AG genotype (odds ratio (AG
versus AA): 0.27 (0.09–0.79), p 5 0.0162) (Table 5)
and the dominant model (odds ratio (AG and
GG versus AA): 0.32 (0.12–0.83), p 5 0.0191) (Table
6); these associations did not meet the threshold of
p 5 0.0125 for significance after correction for multi-
ple testing. The c.66A . G variant appears to be
linked with ventricular septal defect risk at both the
allele and genotype levels: odds ratio (G versus A):
0.54 (0.32–0.93), p 5 0.0295; odds ratio (GG versus
AA): 0.32 (0.11–0.91), p 5 0.0329; odds ratio (AG
versus AA): 0.25 (0.09–0.65), p 5 0.0044) (Table 5).
Consistent with these observations, the dominant
model was highly significant for ventricular septal T
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defect (odds ratio (AG and GG versus AA): 0.27
(0.11–0.66), p 5 0.0040) (Table 6). The association of
ventricular septal defect risk with the AG genotype
and the dominant model were significant after correc-
tion for multiple testing. The MTHFR c.677C . T,
MTHFR c.1298A . C, and SLC19A1 c.80A . G
polymorphisms were not associated with heart defect
risk in the children.

Discussion

Studies of animal models suggest that heart defects
associated with low folate/high homocysteine may
result from abnormal differentiation, migration,
and apoptosis in neural crest cells affecting primarily
the interventricular septum and the conotruncal
region.40,41 Several studies of the effects of folic
acid/multivitamin supplementation also suggest an
association between folate deficiency and conotruncal
defects/ventricular septal defect.4,42 In this cohort, we
found potential associations of single-nucleotide
polymorphisms in enzymes of folate metabolism with
ventricular septal defect and aortic valve stenosis.
Aortic valve stenosis has not been commonly reported
to be a folate-responsive heart defect; however, patients
with aortic valve stenosis have not been included in
many of these studies.

In this study, a significant association between
the MTRR c.66A . G variant in children and risk
for certain types of heart defects was observed. After
correction for multiple testing, the MTRR 66AG
genotype and the dominant model (AG and GG

versus AA) were found to significantly decrease risk
for ventricular septal defect. Maternal c.66A . G
genotype had no effect on heart defect risk in this
population. The results of published studies of this
variant and heart defect risk have been mixed. This
variant, in either the mother or child, was found to
have no impact on heart defect risk in mixed
pre- and post-fortification American cohorts –
grouped conotruncal and left-sided cardiac defects,
respectively43,44 – or in children with conotruncal
defects in a pre-fortification American cohort.45 In
contrast to our findings, in the Dutch population,
which is not folic acid fortified, maternal MTRR
66GG was found to increase risk for non-cono-
truncal heart defects – including aortic valve
stenosis, pulmonary stenosis, coarctation of the
aorta, atrial septal defect and others – when
combined with vitamin B12 deficiency.46 However,
in a second Dutch cohort, consisting primarily of
conotruncal and septal defects, there was no
association between either maternal or inherited
66GG genotype and heart defects, regardless of B12

status.47 Similarly conflicting results have been
obtained from investigations of this variant and
neural tube defect risk.15,21–23 These contrasting
results suggest that the effect of the MTRR variant
may depend on other factors – for example, genetic,
nutritional, environmental – within the population,
or that this variant may only affect risk for specific
subtypes of heart defects. In mice, both maternal
and embryonic MTRR deficiency were found to
increase ventricular septal defect incidence in

Table 4. Association of maternal folate-related single-nucleotide polymorphisms with risk of congenital heart defects in children,
recessive and dominant effects.

Recessive Dominant

Defect SNP OR Lower CL Upper CL p-value OR Lower CL Upper CL p-value

All CHD
MTHFR c.677C . T 1.04 0.46 2.36 0.9188 1.21 0.68 2.16 0.5201
MTHFR c.1298A . C 0.64 0.24 1.68 0.3670 1.08 0.61 1.90 0.8035
MTRR c.66A . G 0.67 0.36 1.24 0.2022 0.65 0.31 1.35 0.2481
SLC19A1 c.80A . G 0.76 0.39 1.46 0.4044 0.80 0.41 1.58 0.5191

AS
MTHFR c.677C . T 0.94 0.29 3.05 0.9221 1.37 0.59 3.14 0.4622
MTHFR c.1298A . C 0.46 0.09 2.34 0.3496 2.39 1.04 5.47 0.0398
MTRR c.66A . G 1.14 0.49 2.63 0.7584 0.76 0.28 2.11 0.6027
SLC19A1 c.80A . G 0.64 0.24 1.71 0.3726 0.88 0.34 2.29 0.8009

VSD
MTHFR c.677C . T 1.52 0.57 4.07 0.4073 2.08 0.93 4.62 0.0734
MTHFR c.1298A . C 0.52 0.13 2.11 0.3590 0.57 0.26 1.22 0.1480
MTRR c.66A . G 0.62 0.27 1.41 0.2532 0.58 0.23 1.43 0.2380
SLC19A1 c.80A . G 0.80 0.33 1.90 0.6073 0.64 0.27 1.49 0.3020

AS 5 aortic valve stenosis; CHD 5 congenital heart defects; CL 5 95% confidence limit; MTHFR 5 methylenetetrahydrofolate reductase;
MTRR 5 methionine synthase reductase; OR 5 odds ratio; SLC19A1 5 reduced folate carrier; SNP 5 single-nucleotide polymorphism;
VSD 5 ventricular septal defect
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offspring.25 However, it is not clear that the 66G
variant causes in vivo MTRR deficiency.20,48

We did not find an association between heart
defect risk and MTHFR c.677C . T genotype in
this pre-fortification Canadian cohort. The results of
studies of this variant and heart defects in other
non-fortified populations have been mixed. Some
groups have reported increased risk for certain
subtypes of heart defects associated with maternal32

or inherited49,50 TT genotype, whereas others have
not observed these effects.45,51–53 In the Dutch
population, the risk for conotruncal defects asso-
ciated with maternal MTHFR 677TT genotype was
increased in those who did not consume folic acid
supplements during the periconceptional period.32

Consistent with those findings, studies of MTHFR
c.677C . T in folic acid fortified populations have
found no link with heart defect risk,43,44,54,55

except in combination with maternal obesity.34

In this cohort, maternal MTHFR 1298AC
genotype was associated with a possible increase in
risk for aortic valve stenosis. This contrasts with the
findings from a pre-fortification American cohort
that did not observe any association between this
variant and aortic valve stenosis risk.55 In other non-
fortified populations, this variant was not linked to
risk for conotruncal defects45,52 or a mixed group of
heart defects.53 In a Dutch study, non-fortified
population, the 1298AC and CC genotypes in
children were reported to decrease risk for a mixed
group of heart defects, compared with those with the
1298AA genotype, unless their mothers consumed
folic acid supplements;33 maternal genotype had no
effect on risk in unsupplemented mothers, but the
1298AC and CC genotypes increased heart defect
risk relative to the 1298AA genotype in mothers that
were folic acid supplemented. However, the 1298AC
and CC genotypes in children were also associated
with a decreased risk for heart defects in a folic acid
fortified cohort,54 and the 1298CC genotype in
children was found to protect against conotruncal
defects in a mixed pre- and post-fortification
American cohort.43 No association between this
variant and risk for left-sided cardiac defects was
found in a second mixed pre- and post-fortification
American cohort.44 Clearly, the impact of this variant
on heart defect risk, particularly in combination with
folic acid intake, requires further investigation.

In this study, the SLC19A1 c.80A . G variant
was also not associated with heart defects. In
contrast, the 80GG and AG genotypes showed an
increase in risk for conotruncal defects in a
Californian population37 and heart defects in
general – predominantly ventricular septal defect
– in a Chinese population.56 In those studies,
low folate levels increased the risk attributed to theT
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variant. However, this association was not observed
in a second study of the Californian population.45

The associations with heart defect risk for the
MTHFR c.1298A . C variant in mothers and MTRR
c.66A . G variants in children may reflect the
metabolic role of these enzymes. MTHFR produces
the major circulating form of folate supplied to
embryos during development;57 therefore, maternal
MTHFR deficiency may cause foetal folate deficiency
resulting in abnormalities, whereas MTHFR defi-
ciency in the child may be compensated for by the
supply of methyltetrahydrofolate from the mother.
MTRR supports the folate-dependent remethylation
of homocysteine within cells and tissues. Therefore,
MTRR could have a greater role in one-carbon
metabolism within developing embryonic tissues,
leading to metabolic changes that affect heart defect
incidence.

The largely unsupplemented nature of this cohort
provides the opportunity to identify folate-responsive
relationships between these polymorphisms and heart
defect risk that may not be evident in more recent
North American cohorts. Clearly, gene–nutrient
interactions may play an important role in the impact
of variants of folate metabolism on heart defect risk,
and should be considered in future studies. In this
study, the number of patients was small when
subdivided by diagnosis; despite this limitation, we
observed some associations. Nonetheless, our findings
should be considered preliminary and further investi-
gation of these gene variants should be performed in
larger cohorts.

In conclusion, we identified possible associations
between certain types of congenital heart defects
and single-nucleotide polymorphisms in genes of
folate metabolism. The MTRR c.66A . G variant in
children may protect against specific heart defects,
such as ventricular septal defect. Additional studies of
folate-related variants and heart defect risk in larger
cohorts should be focused on specific classes of defects,
with particular emphasis on the potential for genetic
interactions between mother and child.
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