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Sufficient conditions are given for an autonomous differential system

dx

dt
= f(x), x ∈ D,

to have a single point global attractor (repeller) with f continuously differentiable
almost everywhere. These results incorporate those of Hartman and Olech as a
special case even when the condition f ∈ C1(D, R

N ) is fully met. Moreover, these
criteria are simplified for a class of region-wise linear systems in R

N .

1. Introduction

Region-wise linear systems have been used to model real-world phenomena. For
example, Chua and Yang [2,3], Li and Dayan [10] and Li, Huang and Zhu [12] used
region-wise linear differential systems to model neural networks. The interest in this
type of systems is due to its applicability not only to neural networks but also to
electrical circuits (see, for example, [5,9,13]). Besides, it can also be applied to the
construction of a variety of mechanical models by connecting different masses with
springs and stops. These show the practical need to investigate such systems. It is
well known that linear autonomous systems (LASs) have the following two features:
no limit cycles exist (in any two-dimensional plane) and the global dynamics is
completely determined by local behaviour near a critical point. For region-wise
LASs, however, neither of the two features survives. This is demonstrated by the
system

x′ = A(x1)x + b, x ∈ R
2, (1.1)

where b = (1, 2)T, the transpose of (1, 2), and

A(x1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
−1 2
−2 −1

)
, x1 � 0,

(
8 2

−8 −1

)
, x1 < 0.

(1.2)

System (1.1) has a unique critical point (1, 0), which is a stable focus but not
globally asymptotically stable. Indeed, there is a δ ∈ (0, 1) such that the trajectory
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of (1.1) passing through the point (0,−δ) is a cycle and it is a global repeller in
R

2 \ {(1, 0)}. This example shows that region-wise LASs are globally nonlinear.
Note that A(x1)x is continuous but not differentiable on the set S = {(x1, x2) ∈
R

2 : x1 = 0} and M(S), the Lebesgue measure of S, is zero. Thus, the right-hand
side of (1.1) is C1 almost everywhere in R

2.
Recall that most available results for a nonlinear autonomous system

x′ = f(x), x ∈ D, (1.3)

where D ⊂ R
N is a simply connected open set, are based on the assumption that

f ∈ C1(D, RN ). (1.4)

Since region-wise LASs do not satisfy (1.4), none of the results for (1.3) with (1.4)
can be applied to region-wise LASs directly without further clarification. Therefore,
there is also a theoretical need to investigate the global behaviour of region-wise
LASs in particular, and nonlinear systems with non-smooth vector fields in general.
In this paper, however, we restrict our interest only to systems with continuous
almost C1 vector fields although the results obtained here might further be extended
to some systems with discontinuous vector fields.

Under condition (1.4), the matrix

H(x) =
1
2

(
∂f

∂x
+

(
∂f

∂x

)T )

(where ∂f/∂x is the Jacobian matrix of f and (∂f/∂x)T is the transpose of ∂f/∂x)
is continuous, and so are the eigenvalues of H arranged as

λ1 � λ2 � · · · � λN , (1.5)

on D. Among many of the results obtained for (1.3) in terms of the λi, we highlight
the following, which are relevant to this paper.

(I) If λ1 + λ2 < 0 on D = R
N , then each bounded semi-orbit of (1.3) converges

to a critical point [15].

(II) If λ1+λ2 < 0 for all x ∈ D = R
N or λN−1+λN > 0 for all x ∈ R

N , then there
is no simple closed rectifiable curve that is invariant with respect to (1.3). In
particular, (1.3) has no non-constant periodic solution [11,14,15].

(III) Assume that the origin is the only critical point, it is locally asymptoti-
cally stable, λ1 + λ2 � 0 in R

N and
∫ ∞

p(u) du diverges, where p(u) =
min|x|=u |f(x)|. Then the origin is globally asymptotically stable [6].

(IV) If f(0) = 0 and λ1 < 0, then the origin is globally asymptotically stable
(see [6] and the references therein).

Now suppose the existence of a closed set D0 ⊂ D with M(D0) = 0 such that

f ∈ C(D, RN ) and f ∈ C1(D \ D0, R
N ) (1.6)

instead of (1.4). Our obvious questions are whether (I)–(IV) are still valid for some,
if not all, systems (1.3) with (1.6) and whether they can be extended further.
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The answers for (II) are yes. It is known that (II) is an extension of Bendixson’s
criterion [1] from systems in D = R

2 to systems (1.3) with (1.4) in R
N . Smith [15]

first gave the extension under the condition λ1 + λ2 < 0 in R
N . Muldowney and

Li [11,14] gave more general conditions,

µ

((
∂f

∂x

)[2] )
< 0 or µ

(
−

(
∂f

∂x

)[2] )
< 0, (1.7)

where (∂f/∂x)[2] is the second additive compound
(
N
2

)
×

(
N
2

)
matrix of ∂f/∂x

and µ is the Lozinskǐı norm (to be defined later). When |y| = (yTy)1/2 in R
N ,

(1.7) becomes λ1 + λ2 < 0 or λN + λN−1 > 0, incorporating Smith’s extension as a
particular instance. Hou [7] further extended (II) to some systems (1.3) with (1.6),
including a class of region-wise LASs, under the conditions

sup
x∈B\D0

µ

((
∂f

∂x

)[2] )
< 0 or sup

x∈B\D0

µ

(
−

(
∂f

∂x

)[2] )
< 0 (1.8)

for every bounded set B ⊂ D.
The answers to the two questions above for (I) given by Smith [15] will be dealt

with separately. In this paper, we are mainly concerned with the extension of (III)
and (IV) to (1.3) with (1.6). Sufficient conditions in terms of

µ

(
∂f

∂x

)
and µ

((
∂f

∂x

)[2] )

will be derived for (1.3) to have a single point global attractor (repeller). The main
results for (1.3) with (1.6) will be given in § 2 and their proofs will be left to § 3.
Finally, a class of region-wise LASs will be dealt with in § 4.

2. Global attraction for general systems

In this section, we are concerned with global attraction of a critical point x0 ∈ D
of a system

x′ = f(x), x ∈ D, (2.1)

where D ⊂ R
N is a simply connected open set and f ∈ C(D, RN ). By a solution of

a differential equation, we mean an absolutely continuous function on an interval
that satisfies the equation almost everywhere in the interval.

Let Ik = {1, 2, . . . , k} for any integer k > 0 and let | · | be any norm in R
N with

the property
|ȳ| = |y̌| � |y| for all y ∈ R

N , (2.2)

where y̌ ∈ R
N with y̌i = yi or y̌i = 0 for each i ∈ IN and ȳ ∈ R

m is composed of all
the non-zero components of y̌. For an N ×N matrix A, |A| is derived from the norm
| · | in R

N and µ(A) (the Lozinskǐı logarithmic norm of A) is defined (see [4, pp. 41,
58] or [14] for this concept and lemma 2.4 given below) to be

µ(A) = D+|I + hA|h=0, (2.3)

where D+ denotes the right-hand derivative.
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Theorem 2.1. Assume that the following hold.

(a) f ∈ Lip(B, RN ) (i.e. f on B is Lipschizian) for every bounded set B ⊂ D and
there is a closed set D0 ⊂ D satisfying M(D0) = 0 and f ∈ C1(D \ D0, R

N ).

(b) For every x0 ∈ D0, either x0 is an isolated critical point or there is a δ > 0
such that x(t, x0) �∈ D0 for 0 < |t| < δ.

(c) No solution of (2.1) will approach ∂D (the boundary of D) in a positive (or
negative) finite time.

(d) In D (2.1) has a bounded solution x(t, x1) for t � 0 (or t � 0).

Then (2.1) has a single point global attractor (or repeller) if (2.4) (or (2.5)) holds
for every bounded set B ⊂ D:

ρB = sup
x∈B\D0

µ

(
∂f

∂x
(x)

)
< 0, (2.4)

γB = sup
x∈B\D0

µ

(
−∂f

∂x
(x)

)
< 0. (2.5)

Remark 2.2. Condition (a) guarantees the existence and uniqueness of a solution
and the continuity of ∂f/∂x almost everywhere on D. Condition (b) implies that
‘∂f/∂x(x(t, x0)) for any fixed solution x(t, x0) on an interval is continuous almost
everywhere and locally integrable’. Indeed, the part in quotation marks is what we
need in the proof, so it may replace (b) in theorem 2.1. Condition (c) is obviously
met when D = R

N as ∂D = ∅. This remark applies to all the results given in this
section. In § 4 we shall see that most of these conditions will become redundant for
a class of region-wise LASs.

Remark 2.3. The existence of a critical point is not a condition but a part of the
conclusion of theorem 2.1. However, if we know that x0 ∈ D is a critical point, then
condition (d) is fulfilled and the conclusion says that every solution has the limit
x0 as t → ∞ (or t → −∞).

In some cases of | · |, µ(A) has explicit expressions in terms of the entries or
eigenvalues of 1

2 (A + AT).

Lemma 2.4. Corresponding to the three definitions of |v| given by

sup
i

|vi|,
∑

i

|vi| and
(∑

i

v2
i

)1/2

,

µ(A) is equal to

sup
i

(
Re aii +

∑
j �=i

|aij |
)

, sup
i

(
Re aii +

∑
j �=i

|aji|
)

and λ1,

respectively, where the λi are the eigenvalues of 1
2 (A+AT) with λ1 � λ2 � · · · � λN .

https://doi.org/10.1017/S0308210500004133 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500004133


Global attraction 819

According to lemma 2.4 we can replace (2.4) and (2.5) by inequalities involving
the entries or eigenvalues of H = 1

2 (∂f/∂x + (∂f/∂x)T) and obtain the following.

Corollary 2.5. Under conditions (a)–(d) of theorem 2.1, (2.1) has a single point
global attractor (or repeller) if any one of (2.6)–(2.8) (or (2.9)–(2.11)) holds for
every bounded set B ⊂ D,

sup
x∈B\D0

{
max

1�i�N

∂fi

∂xi
+

∑
j �=i

∣∣∣∣ ∂fi

∂xj

∣∣∣∣
}

< 0, (2.6)

sup
x∈B\D0

{
max

1�i�N

∂fi

∂xi
+

∑
j �=i

∣∣∣∣∂fj

∂xi

∣∣∣∣
}

< 0, (2.7)

sup
x∈B\D0

λ1 < 0, (2.8)

inf
x∈B\D0

{
min

1�i�N

∂fi

∂xi
−

∑
j �=i

∣∣∣∣ ∂fi

∂xj

∣∣∣∣
}

> 0, (2.9)

inf
x∈B\D0

{
min

1�i�N

∂fi

∂xi
−

∑
j �=i

∣∣∣∣∂fj

∂xi

∣∣∣∣
}

> 0, (2.10)

inf
x∈B\D0

λN > 0, (2.11)

where the λi are the eigenvalues of H satisfying λ1 � λ2 � · · · � λN .

Remark 2.6. When D0 = ∅ and D = R
N , condition (a) becomes f ∈ C1(RN , RN ),

(b) and (c) vanish by remark 2.2, and supx∈B\D0
and infx∈B\D0 in (2.6)–(2.11) are

redundant. Therefore, Olech’s result (IV) (see [6] and the references therein) given
in § 1 is only a particular case of theorem 2.1.

For an N ×N matrix A = (aij), the second additive compound A[2] is a matrix of(
N
2

)
×

(
N
2

)
, defined as follows. For any integer i ∈

{
1, 2, . . . ,

(
N
2

)}
, let (i) = (i1, i2) be

the ith member in the lexicographic ordering of the set {(i1, i2) : 1 � i1 < i2 � N}.
The entries of A[2] = (ãij) are given by

ãij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ai1i1 + ai2i2 if (i) = (j),

(−1)r+sairjs
if ir �∈ {j1, j2}, js �∈ {i1, i2}
but {i1, i2} \ {ir} = {j1, j2} \ {js},

0 otherwise.

For instance, when N = 3,

A[2] =

⎛
⎝a11 + a22 a23 −a13

a32 a11 + a33 a12

−a31 a21 a22 + a33

⎞
⎠ if A =

⎛
⎝a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠ .

For any v1, v2 ∈ R
N , their external product v1 ∧ v2 is a vector in R

(N
2 ) defined by

(v1 ∧ v2)i =

∣∣∣∣∣v
1
i1

v2
i1

v1
i2

v2
i2

∣∣∣∣∣
for each i ∈

{
1, 2, . . . ,

(
N
2

)}
with (i) = (i1, i2).
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Theorem 2.7. In addition to conditions (a)–(c) of theorem 2.1, we also assume
that the following hold.

(i) For any bounded half orbit Γ+(x0) (or Γ−(x0)), we have Γ+(x0) ⊂ D (or
Γ−(x0) ⊂ D), where the overbar denotes closure.

(ii) x0 ∈ D is the unique critical point and it is a local attractor (or repeller).

(iii) With p(s) = min|x|=s |f(x)|,
∫ ∞

p(s) ds diverges if D is unbounded.

Then, for any | · | equivalent to the Euclidian norm ‖ · ‖, x0 is a global attractor (or
repeller) if (2.12) (or (2.13)) holds for x ∈ D \ D0:

µ

(
∂f

∂x

[2]

(x)
)

� 0, (2.12)

µ

(
−∂f

∂x

[2]

(x)
)

� 0. (2.13)

The corollary below is an immediate consequence of theorem 2.7, lemma 2.4 and
the definition of (∂f/∂x)[2].

Corollary 2.8. Under the assumptions of theorem 2.7, x0 is a global attractor
(or repeller) if any one of (2.14)–(2.16) (or (2.17)–(2.19)) holds for x ∈ D \ D0:

max
1�r<s�N

∂fr

∂xr
+

∂fs

∂xs
+

∑
q �=r,s

(∣∣∣∣ ∂fr

∂xq

∣∣∣∣ +
∣∣∣∣ ∂fs

∂xq

∣∣∣∣
)

� 0, (2.14)

max
1�r<s�N

∂fr

∂xr
+

∂fs

∂xs
+

∑
q �=r,s

(∣∣∣∣ ∂fq

∂xr

∣∣∣∣ +
∣∣∣∣∂fq

∂xs

∣∣∣∣
)

� 0, (2.15)

λ1 + λ2 � 0, (2.16)

min
1�r<s�N

∂fr

∂xr
+

∂fs

∂xs
−

∑
q �=r,s

(∣∣∣∣ ∂fr

∂xq

∣∣∣∣ +
∣∣∣∣ ∂fs

∂xq

∣∣∣∣
)

� 0, (2.17)

min
1�r<s�N

∂fr

∂xr
+

∂fs

∂xs
−

∑
q �=r,s

(∣∣∣∣ ∂fq

∂xr

∣∣∣∣ +
∣∣∣∣∂fq

∂xs

∣∣∣∣
)

� 0, (2.18)

λN−1 + λN � 0, (2.19)

where the λi are the eigenvalues of H satisfying λ1 � λ2 � · · · � λN .

Remark 2.9. When D0 = ∅ and D = R
N , conditions (a)–(c) in theorem 2.1

become f ∈ C1(RN , RN ) and (i) is automatically met. If (2.16) holds, corollary 2.8
coincides with Hartman and Olech’s result (III) [6] given in § 1.

Example 2.10. Viewing the system

x′
1 = x3

1 + 1
4 |x2 − x3| + 53

8128 ,

x′
2 = 1

4 |x1| + 2x2 − 1
4x3,

x′
3 = 1

8x1 − 1
4x2 + 4x3

⎫⎪⎬
⎪⎭ (2.20)
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as (2.1), we have D = R
3, D0 = {x ∈ R

3 : x1 = 0 or x2 = x3}, f ∈ C1(R3 \D0, R
3)

and f ∈ Lip(B, R3) for every bounded set B ⊂ R
3. There is only one critical

point x0 = (− 1
4 ,− 31

1016 , 3
508 ) and the linearized system at x0 has the characteristic

equation
λ3 − 99

16λ2 + 287
32 λ − 307

256 = 0.

As 99
16 × 287

32 > 307
256 , by the Routh–Hurwitz criterion, every eigenvalue has a positive

real part, so x0 is a local repeller. Since the conditions (a)–(c) of theorem 2.1,
(i)–(iii) and (2.18), which becomes 2 − 3

8 > 0, are satisfied, x0 is a global repeller.

3. The proofs of theorems 2.1 and 2.7

In the proofs of the main results, an estimate of solutions of a linear system and
the existence of ∂x(t, x0)/∂x0 will be needed.

Lemma 3.1 (see [4]). Every solution of x′(t) = A(t)x(t) satisfies

|x(t0)| exp
(

−
∫ t

t0

µ(−A(s)) ds

)
� |x(t)| � |x(t0)| exp

(∫ t

t0

µ(A(s)) ds

)
(3.1)

for t � t0.

Lemma 3.2 (see [7, lemma 2.9]). Under conditions (a) and (b) of theorem 2.1,
∂x(t, x0)/∂x0 is continuous in (t, x0) and is a fundamental matrix solution of the
variational equation

y′(t) =
∂f

∂x
(x(t, x0))y(t) (3.2)

if x0 is not a critical point of (2.1) in D0.

Proof of theorem 2.1. We first assume that (2.4) holds and a solution x(t, x1) of
(2.1) is bounded for t � 0.

(α) If x(t, x1) ≡ x1, i.e. x1 is a critical point, then we need only show that

lim
t→∞

x(t, x2) = x1 (3.3)

for every x2 ∈ D \ {x1}. Since D is connected, there is a one-to-one mapping
ψ ∈ Lip([0, 1], D) such that ψ(0) = x1 and ψ(1) = x2. By (b), there are at most
a finite number of s ∈ [0, 1] such that ψ(s) ∈ D0 is a critical point. Then, for
any t0 > 0, as long as x(t0, ψ(s)) exists for all s ∈ [0, 1], lemma 3.2 ensures that
ψt(·) = x(t, ψ(·)) ∈ Lip([0, 1], D) and

d
ds

ψt(s) =
∂

∂x0
x(t, ψ(s))

dψ(s)
ds

(3.4)

for each t ∈ [0, t0] and almost every s ∈ [0, 1]. Moreover, when (3.4) holds, dψt(s)/ds
in t is a solution of (3.2) with x0 replaced by ψ(s). It then follows from lemma 3.1
that ∣∣∣∣ d

ds
ψt(s)

∣∣∣∣ �
∣∣∣∣dψ(s)

ds

∣∣∣∣ exp
(∫ t

0
µ

(
∂f

∂x
(x(	, ψ(s)))

)
d	

)
(3.5)
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for t ∈ [0, t0]. Let 	0 be the length of the curve given by x = ψ(s) for s ∈ [0, 1], i.e.

	0 =
∫ 1

0

∣∣∣∣dψ(s)
ds

∣∣∣∣ ds,

and let B = {x ∈ D : |x − x1| � 	0 + 1}. Now that |ψ(s) − x1| � 	0 < 	0 + 1 for all
s ∈ [0, 1], we claim that

|ψt(s) − x1| < 	0 + 1, (3.6)
so that ψt(s) ∈ B, for all s ∈ [0, 1] and t ∈ [0, t0]. Indeed, if this is not true, by
continuous dependence upon initial values there are s1 ∈ (0, 1] and t1 ∈ (0, t0] such
that (3.6) holds for (s, t) ∈ [0, s1] × [0, t1] with (s, t) �= (s1, t1) but |ψt1(s1) − x1| =
	0 + 1. On the other hand, however, (2.4) and (3.5) yield

|ψt1(s1) − x1| �
∫ s1

0

∣∣∣∣ d
ds

ψt1(s)
∣∣∣∣ ds

�
∫ s1

0

∣∣∣∣dψ(s)
ds

∣∣∣∣eρBt1 ds

< 	0.

The contradiction shows our claim. By (c), x(t, ψ(s)) exists and satisfies (3.6) for
all s ∈ [0, 1] and t � 0. Hence,

|x(t, x2) − x1| �
∫ 1

0

∣∣∣∣ d
ds

ψt(s)
∣∣∣∣ ds � 	0eρBt → 0

as t → ∞.

(β) Suppose that x1 is not a critical point. By condition (d), there is a bounded set
B ⊂ D such that x(t, x1) ∈ B for all t � 0. Then, for t � 0 and s � 0,

d
ds

x(t + s, x1) =
d
ds

x(t, x(s, x1)) =
∂

∂x0
x(t, x(s, x1))f(x(s, x1)).

By lemma 3.2, dx(t+s, x1)/ds in t is a solution of (3.2) with x0 replaced by x(s, x1).
Hence, by lemma 3.1 and (2.4),∣∣∣∣ d

ds
x(t + s, x1)

∣∣∣∣ � eρBt|f(x(s, x1))|.

From this we obtain∫ ∞

0

∣∣∣∣dx(t, x1)
dt

∣∣∣∣ dt =
∞∑

k=0

∫ 1

0

∣∣∣∣ d
ds

x(k, x(s, x1))
∣∣∣∣ ds

�
∞∑

k=0

eρBk

∫ 1

0
|f(x(s, x1))| ds < ∞.

As

|x(t2, x1) − x(t1, x1)| �
∫ t2

t1

∣∣∣∣dx(s, x1)
ds

∣∣∣∣ dt

for any t2 > t1 � 0, by the Cauchy convergence principle there is an x0 ∈ D such
that limt→∞ x(t, x1) = x0. From (α) we know that x0 is a global attractor.
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If (2.5) holds for every bounded set B ⊂ D and x(	, x1) is bounded for 	 � 0, by
letting 	 = −t the above reasoning shows the existence of a global repeller.

Lemma 3.3. For any y1, y2 ∈ R
N and A ∈ R

N×N , we have

(Ay1) ∧ y2 + y1 ∧ (Ay2) = A[2](y1 ∧ y2). (3.7)

Proof. Let (i) = (i1, i2) and (j) = (j1, j2) with 1 � i1 < i2 � N and 1 � j1 < j2 �
N . Then, by the definitions of ∧ and A[2], we have

(A[2](y1 ∧ y2))i =
N(N−1)/2∑

j=1

a
[2]
ij

∣∣∣∣∣y
1
j1

y2
j1

y1
j2

y2
j2

∣∣∣∣∣
= −

∑
1�j1<i1

ai2j1

∣∣∣∣∣y
1
j1

y2
j1

y1
i1

y2
i1

∣∣∣∣∣ +
∑

i1<j2�N,j2 �=i2

ai2j2

∣∣∣∣∣y
1
i1

y2
i1

y1
j2

y2
j2

∣∣∣∣∣
+ (ai1i1 + ai2i2)

∣∣∣∣∣y
1
i1

y2
i1

y1
i2

y2
i2

∣∣∣∣∣ +
∑

1�j1<i2,j1 �=i1

ai1j1

∣∣∣∣∣y
1
j1

y2
j1

y1
i2

y2
i2

∣∣∣∣∣
−

∑
i2<j2�N

ai1j2

∣∣∣∣∣y
1
i2

y2
i2

y1
j2

y2
j2

∣∣∣∣∣
=

N∑
k=1

y1
k(ai1ky2

i2 − ai2ky2
i1) +

N∑
k=1

y2
k(ai2ky1

i1 − ai1ky1
i2)

= ((Ay1) ∧ y2 + y1 ∧ (Ay2))i.

Thus (3.7) holds.

Lemma 3.4. For any u, v ∈ R
N with the Euclidean norm ‖ · ‖,

‖u ∧ v‖2 = ‖u‖2‖v‖2 − (uTv)2. (3.8)

In particular, ‖u ∧ v‖ = ‖u‖‖v‖ if u and v are perpendicular.

Proof. By the definition of ∧, we have

‖u ∧ v‖2 =
∑

1�i<j�N

∣∣∣∣ui vi

uj vj

∣∣∣∣
2

=
∑

1�i<j�N

(u2
i v

2
j + u2

jv
2
i − 2uiviujvj)

=
N∑

i,j=1

u2
i v

2
j −

N∑
i=1

u2
i v

2
i − 2

∑
1�i<j�N

uiviujvj

=
( N∑

i=1

u2
i

)( N∑
j=1

v2
j

)
−

( N∑
i=1

uivi

)2

= ‖u‖2‖v‖2 − (uTv)2.

From this it follows that ‖u ∧ v‖ = ‖u‖‖v‖ if uTv = 0.

Lemma 3.5. For any ϕ ∈ C1([0, 1], RN ) and g ∈ C(RN , RN ), the inequality∫ 1

0
|g(ϕ(t))|

∣∣∣∣dϕ

dt

∣∣∣∣ dt �
∫ M

m

min
|x|=s

|g(x)| ds (3.9)
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holds in any norm | · |, where

m = min
0�t�1

|ϕ(t)| and M = max
0�t�1

|ϕ(t)|.

Proof. On every subinterval [s1, s2] ⊂ [m, M ], there is at least one subinterval
I = [t1, t2] ⊂ [0, 1] such that

s1 = min
t∈I

|ϕ(t)| = min{|ϕ(t1)|, |ϕ(t2)|},

s2 = max
t∈I

|ϕ(t)| = max{|ϕ(t1)|, |ϕ(t2)|}.

Then∫ t2

t1

|g(ϕ(t))|
∣∣∣∣dϕ

dt

∣∣∣∣ dt � min
t∈I

|g(ϕ(t))|
∫ t2

t1

∣∣∣∣dϕ

dt

∣∣∣∣ dt � min
s1�|x|�s2

|g(x)|||ϕ(t2)| − |ϕ(t1)||

= min
|x|=s0

|g(x)|(s2 − s1)

for some s0 ∈ [s1, s2]. Since g and dϕ/dt are continuous, (3.9) follows from the
above inequality and the definition of a definite integral.

In the proof of theorem 2.7, we shall use Hartman and Olech’s idea of considering
in R

N a two-dimensional surface composed of trajectories of (2.1) and curves on this
surface perpendicular to those trajectories of (2.1). For a fixed solution x(t, x0) ∈ D
on [0, ω) and any unit vector u ∈ R

N perpendicular to the trajectory of (2.1) at
x0, i.e. uTf(x0) = 0, we consider the solution x(t, x0 + ru) for r � 0 and t � 0.
By continuous dependence on initial values, the trajectories of these solutions for
r ∈ [0, r0], r0 > 0 small enough, and t � 0 form a two-dimensional surface S. For
each s ∈ [0, ω), we look for a curve γ(s) on S given by

y(r) = x(T, x0 + ru) for r ∈ [0, r0], (3.10)
y(0) = x(s, x0), (3.11)

such that γ is perpendicular to each trajectory in S, i.e.

f(x(T, x0 + ru))T
dy(r)
dr

= 0. (3.12)

Obviously, T must be a function of (r, s). From (3.10) we find that

dy(r)
dr

= f(x(T, x0 + ru))
dT

dr
+

∂x

∂x̃0
(T, x0 + ru)u, (3.13)

where x̃0 denotes the initial value of x. From (3.12) and (3.13) we obtain

dT

dr
= −f(x(T, x0 + ru))T(∂x/∂x̃0)(T, x0 + ru)u

f(x(T, x0 + ru))Tf(x(T, x0 + ru))
, (3.14)

provided that x0 + ru is not a critical point. Then T is a solution of (3.14) with
T (0, s) = s.

For any set S0, a point p0 and a number ε > 0, we denote the open ball with
centre p0 and a radius ε by B(p0, ε), the union of balls with a radius ε and centres
in S0 by B(S0, ε), and the distance between p0 and S0 by dist(p0, S0).
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Proof of theorem 2.7. Assume that (2.12) holds and x0 is a local attractor. Since the
domain A of attraction of x0 is open, there is a value d > 0 such that B(x0, d) ⊂ A.
Now suppose that x0 is not globally attractive. Then ∂A is a closed non-empty set.
We can always take an x0 ∈ ∂A satisfying |x0 − x0| = dist(x0, ∂A) and find a unit
vector u ∈ R

N and a small r0 > 0 such that uTf(x0) = 0 and x0 + ru ∈ A for
r ∈ (0, r0].

(α) If x(t, x0) is bounded, by conditions (c) and (i), x(t, x0) exists on [0,∞) and
B(Γ+(x0), ε) ⊂ D\B(x0, d/2) for some ε > 0. By condition (ii), there is a δ > 0 such
that |f(x)| � δ for x ∈ B(Γ+(x0), ε). We show that x(t, x0 + ru) ∈ B(Γ+(x0), ε) for
all t ∈ [0,∞) and r ∈ [0, r0] when r0 > 0 is small enough.

By conditions (ii), (a), (b) and lemma 3.2, the right-hand side of (3.14) is contin-
uous in (r, T ) and locally Lipschitzian in T . Therefore, (3.14) has a unique solution
T with T (0) = s for each s � 0. Substituting T into (3.10), we obtain a unique
curve γ(s) perpendicular to the trajectories of (2.1) on S. Let

z(T ) = f(x(T, x0 + ru)) ∧ dy(r)
dr

. (3.15)

Note that

df

dT
(x(T, x0 + ru)) =

∂f

∂x
(x(T, x0 + ru))f(x(T, x0 + ru)) (3.16)

and, from (3.13) with (3.14) and lemma 3.2,

d
dT

(
dy(r)
dr

)
=

∂f

∂x
(x(T, x0 + ru))

dy(r)
dr

+ f(x(T, x0 + ru))
d

dT

(
dT

dr

)
. (3.17)

From the definition of ∧, it is obvious that f ∧ f = 0. Then, from (3.15)–(3.17),
lemma 3.3 and the definition of ∧,

dz(T )
dT

=
df

dT
(x(T, x0 + ru)) ∧ dy(r)

dr
+ f(x(T, x0 + ru)) ∧ d

dT

(
dy(r)
dr

)

=
(

∂f

∂x
(x(T, x0 + ru))f(x(T, x0 + ru))

)
∧ dy(r)

dr

+ f(x(T, x0 + ru)) ∧
(

∂f

∂x

(
x(T, x0 + ru)

)
dy(r)
dr

)

=
∂f

∂x

[2]

(x(T, x0 + ru))z(T ).

This, together with lemma 3.1 and the assumption (2.12), gives

|z(T1)| � |z(T0)| exp
(∫ T1

T0

µ

(
∂f

∂x

[2]

(x(T, x0 + ru))
)

dT

)
� |z(T0)|

for T1 � T0. Since the solution T of (3.14) is a function of (r, s) and s1 > s2 implies
T (r, s1) > T (r, s2) by uniqueness, we have

|z(T (r, s))| � |z(T (r, 0))| (3.18)
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for s � 0 and r ∈ [0, r0]. As | · | is equivalent to ‖ · ‖, by lemma 3.4 and (3.15) there
is a constant K > 0 such that

|z(T (r, s))| � K|f(x(T, x0 + ru))|
∣∣∣∣dy(r)

dr

∣∣∣∣ � δK

∣∣∣∣dy(r)
dr

∣∣∣∣
as long as x(T, x0 + ru) ∈ B(Γ+(x0), ε). Choose r0 > 0 such that

2
∫ r0

0
|z(T (r, 0))| dr < εδK and |x(T (r, 0), x0 + ru) − x0| < 1

2ε

for all r ∈ [0, r0]. We show that

x(T (r, s), x0 + ru) ∈ B(Γ+(x0), ε), for s � 0, r ∈ [0, r0], (3.19)

by contradiction. Suppose (3.19) is not true. Then there is an s1 > 0 and r1 ∈ (0, r0]
such that

|x(T (r, s), x0 + ru) − x(s, x0)| < ε

for all (r, s) ∈ [0, r1] × [0, s1] with (r, s) �= (r1, s1) but

|x(T (r1, s1), x0 + r1u) − x(s1, x0)| = ε. (3.20)

But, from (3.18) and the inequalities following it, and the choice of r0,

|y(r1) − y(0)| �
∫ r1

0

∣∣∣∣dy(r)
dr

∣∣∣∣ dr � 1
δK

∫ r0

0
|z(T (r, 0))| dr < 1

2ε

for s = s1, i.e.
|x(T (r1, s1), x0 + r1u) − x(s1, x0)| < 1

2ε.

This contradiction to (3.20) shows (3.19). It can be shown that T (r, s) → ∞ as
s → ∞ for all r ∈ [0, r0] (see [8, lemma 6]). Therefore, x(t, x0 + ru) ∈ B(Γ+(x0), ε)
for all r ∈ [0, r0] and t � 0. Since B(Γ+(x0), ε) ∩ B(x0, d/2) = ∅, this shows that
x0 + ru �∈ A for r ∈ [0, r0], a contradiction to the choice of x0 and u.

(β) Suppose x(t, x0) is unbounded on [0, ω). We can then choose a sequence {tn} ⊂
[0, ω) such that tn < tn+1,

|x(tn, x0)| = max
0�t�tn

|x(t, x0)|, tn → ω and |x(tn, x0)| → ∞ as n → ∞.

By (3.18) and the inequalities following it, we have∫ r0

0
|f(x(T (r, s), x0 + ru))|

∣∣∣∣dy(r)
dr

∣∣∣∣ dr � 1
K

∫ r0

0
|z(T (r, 0))| dr.

Let

mn = min
0�r�r0

|x(T (r, tn), x0 + ru)| and Mn = max
0�r�r0

|x(T (r, tn), x0 + ru)|.

Then, by lemma 3.5,∫ Mn

mn

min
|x|=�

|f(x)| d	 � 1
K

∫ r0

0
|z(T (r, 0))| dr.
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As Mn � |x(tn, x0)|, by the choice of tn we must have limn→∞ Mn = ∞ and, by
condition (iii), limn→∞ mn = ∞. This implies the unboundedness of x(t, x0 + ru)
on [0,∞) for each r ∈ (0, r0]: a contradiction to limt→∞ x(t, x0 + ru) = x0.

The contradictions in (α) and (β) have shown that x0 is a global attractor.
If (2.13) holds and x0 is a local repeller, then the above reasoning with the

replacement of t by t′ = −t shows that x0 is a global repeller.

4. Global attraction for region-wise linear systems

In this section, we investigate global asymptotic behaviour of solutions of the system

x′ = L(x) + b, x ∈ R
N , (4.1)

where b ∈ R
N is a constant, L ∈ C(RN , RN ) and L is linear in each of the 2N

closed cones bounded by the coordinate planes {x ∈ R
N : xi = 0}, i ∈ IN . In other

words, in each such cone ∂L(x)/∂x is a constant matrix and

L(x) =
∂L(x)

∂x
x (4.2)

(see [7, § 3] for a more detailed description of (4.1)). On viewing (4.1) as (2.1), we
have D = R

N and D0 = {x ∈ R
N : xi = 0 for some i ∈ IN}, though a smaller set

might be taken as D0 for each individual system (e.g. see the example given in § 1).
For any x0 ∈ R

N , the solution x(t, x0) of (4.1) with x(0, x0) = x0 exists on R due to
the region-wise linearity of L. Moreover, by [7, lemma 3.1], for any T > 0, the zero
set of each component of x(t, x0) on [0, T ] is either finite or the union of a finite
set and some interval(s). Thus, since it is possible for x(t, x0) to stay in D0 on an
interval, (4.1) satisfies conditions (a) and (c), but not (b), of theorem 2.1. Therefore,
superficially, the results given in § 2 may not be applicable to every system (4.1).
In reality, however, less restrictive conditions should be expected for (4.1) due to
its region-wise linearity. We shall see that some requirements of theorems 2.1 and
2.7 will become redundant for (4.1).

Theorem 4.1. System (4.1) has a single point global attractor (or repeller) if (4.3)
(or (4.4)) holds,

ρ = max
x∈P

µ

(
∂L(x)

∂x

)
< 0, (4.3)

η = max
x∈P

µ

(
−∂L(x)

∂x

)
< 0, (4.4)

where P = {x ∈ R
N : |xi| = 1 for all i ∈ IN}.

Proof. Assume that (4.3) holds and suppose that (4.1) has a critical point x0. Then,
for any x1 ∈ R

N \ {x0}, we have

(x(t, x1) − x0)′ = L(x(t, x1)) − L(x0),
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so that

|x(t + h, x1) − x0| =
∣∣∣∣x(t, x1) − x0 +

∫ h

0
(L(x(t + s, x1)) − L(x0)) ds

∣∣∣∣
� |x(t, x1) − x0 + h(L(x(t, x1)) − L(x0))|

+
∫ h

0
|L(x(t + s, x1)) − L(x(t, x1))| ds

for t � 0 and h � 0. If x0 ∈ R0 and x(t, x1) ∈ R0 for a fixed t, where R0 is a closed
cone bounded by the N coordinate planes, then

L(x(t, x1)) − L(x0) = L(x(t, x1) − x0) =
∂L

∂x
(x(t, x1) − x0).

By (2.3) and (4.3),

D+|x(t, x1) − x0|

= lim
h→0+

1
h

(|x(t + h, x1) − x0| − |x(t, x1) − x0|)

� lim
h→0+

1
h

(∣∣∣∣x(t, x1) − x0 + h
∂L

∂x
(x(t, x1) − x0)

∣∣∣∣ − |x(t, x1) − x0|
)

� lim
h→0+

1
h

(∣∣∣∣I + h
∂L

∂x

∣∣∣∣ − 1
)

|x(t, x1) − x0|

� ρ|x(t, x1) − x0|.

Suppose x(t, x1) and x0 are not in the same closed cone R0. Then there are
y1, y2, . . . , yk, k ∈ IN , in D0 such that, with y0 = x0 and yk+1 = x(t, x1), the yi are
on a straight line and yi−1, yi for each i are in one closed cone. Hence,

|x(t, x1) − x0| =
k+1∑
i=1

|yi − yi−1|,

L(yi) − L(yi−1) = L(yi − yi−1) =
∂L

∂x
(yi − yi−1)

for i ∈ Ik+1, and

L(x(t, x1)) − L(x0) =
k+1∑
i=1

L(yi − yi−1) =
k+1∑
i=1

∂L

∂x
(yi − yi−1).

Again, by (2.3) and (4.3),

D+|x(t, x1) − x0| �
k+1∑
i=1

µ

(
∂L

∂x

)
|yi − yi−1| � ρ|x(t, x1) − x0|.

Therefore, for all t � 0,

|x(t, x1) − x0| � eρt|x1 − x0|

so limt→∞ x(t, x1) = x0.
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Next we show that (4.1) must have a critical point. Suppose that x1 ∈ R
N is

not a critical point. Then, for each s � 0 and every t ∈ [0, 1], x(t + s + h, x1) and
x(t + s, x1) are in one closed cone R0 for all sufficiently small h > 0. Hence, as

lim
h→0

1
h

(x(t + s + h, x1) − x(t + s, x1)) = L(x(t + s, x1)) + b,

we have

D+

∣∣∣∣dx(t + s, x1)
ds

∣∣∣∣
= lim

h→0+

1
h

(|L(x(t + s + h, x1)) + b| − |L(x(t + s, x1)) + b|)

� lim
h→0+

1
h

(∣∣∣∣
(

I + h
∂L

∂x

)
(L(x(t + s, x1)) + b)

∣∣∣∣ − |L(x(t + s, x1)) + b|
)

� µ

(
∂L

∂x

)
|L(x(t + s, x1)) + b|

� ρ

∣∣∣∣dx(t + s, x1)
ds

∣∣∣∣.
Thus, ∣∣∣∣dx(t + s, x1)

ds

∣∣∣∣ � eρt

∣∣∣∣dx(s, x1)
ds

∣∣∣∣
for all t ∈ [0, 1]. By integration,∫ ∞

0

∣∣∣∣dx(t, x1)
dt

∣∣∣∣ dt =
∞∑

k=0

∫ 1

0

∣∣∣∣dx(t + k, x1)
dt

∣∣∣∣ dt

�
∞∑

k=0

∫ 1

0
eρk

∣∣∣∣dx(t, x1)
dt

∣∣∣∣ dt < ∞.

As

|x(t2, x1) − x(t1, x1)| �
∫ t2

t1

∣∣∣∣dx(t, x1)
dt

∣∣∣∣ dt

for any t2 � t1 � 0, by the Cauchy convergence principle limt→∞ x(t, x1) = x0 for
some x0 ∈ R

N . Clearly, x0 is a critical point.
The above reasoning shows that (4.3) implies the existence of a critical point x0

that is globally attractive. If (4.4) holds, by putting t = −t′ and following the same
argument as above, we obtain a critical point that is a global repeller.

The corollary below is an immediate consequence of theorem 4.1 and lemma 2.4.

Corollary 4.2. System (4.1) has a single point global attractor (or repeller) if
any one of (4.5)–(4.7) (or (4.8)–(4.10)) holds:

max
x∈P,1�i�N

{
∂Li

∂xi
+

∑
j �=i

∣∣∣∣∂Li

∂xj

∣∣∣∣
}

< 0, (4.5)
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max
x∈P,1�i�N

{
∂Li

∂xi
+

∑
j �=i

∣∣∣∣∂Lj

∂xi

∣∣∣∣
}

< 0, (4.6)

max
x∈P

λ1 < 0, (4.7)

min
x∈P,1�i�N

{
∂Li

∂xi
−

∑
j �=i

∣∣∣∣∂Li

∂xj

∣∣∣∣
}

> 0, (4.8)

min
x∈P,1�i�N

{
∂Li

∂xi
−

∑
j �=i

∣∣∣∣∂Lj

∂xi

∣∣∣∣
}

> 0, (4.9)

min
x∈P

λN > 0, (4.10)

where the λi are the eigenvalues of 1
2 ((∂L/∂x)T + ∂L/∂x) satisfying λ1 � λ2 �

· · · � λN and P = {x ∈ R
N : |xi| = 1 for all i ∈ IN}.

Theorem 4.1 and corollary 4.2 are particularly useful when it is not obvious
whether or not (4.1) has a critical point or when there is a critical point x0 ∈ D0.
In the latter case, it is not a trivial matter to find out the local behaviour near x0 if
N > 2. The following example demonstrates that theorem 4.1 and corollary 4.2 are
sufficient conditions for (4.1) to have a single point global attractor (or repeller).

Example 4.3. Consider the system

x′ = A(x1)x, x = (x1, x2)T ∈ R
2, (4.11)

where, with a ∈ R,

A(x1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
−1 2
−2 −1

)
, x1 � 0,

(
a 2

−2 −1

)
, x1 < 0.

(4.12)

Clearly, the origin ‘O’ is a critical point. If a < 0, then (4.7) is satisfied so O is a
global attractor. If a � 0, none of the conditions (4.5)–(4.10) are met. However, by
solving (4.11) explicitly, we know that O is a global attractor for a < 11

5 , a centre
for a = 11

5 , and a global repeller for a > 11
5 .

Remark 4.4. Consider the system (4.1) with b = 0 and assume that every eigen-
value of ∂L/∂x has a negative (or positive) real part for all x ∈ P , where P is given
in theorem 4.1. Is the origin a global attractor (or repeller)? Further investigation
is needed on this.

Example 4.5. Consider the system

x′ = (AD(x) − I)x + b, (4.13)

where A = (aij) ∈ R
N×N , b ∈ R

N , I is the identity matrix and D : R
N → R

N×N

is given by
D(x) = diag

[
d(x1), d(x2), . . . , d(xN )

]
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with d(s) = 1 for s > 0 and d(s) = 0 for s � 0. Li and Dayan [10] used (4.13)
as a neural network model and briefly discussed the relationship on local stability
between (4.13) and another region-wise linear system. Now, applying (4.5)–(4.7) to
(4.13), we find that (4.13) has a single point global attractor if

max
1�i�N

(∑
j �=i

|aij | − αi

)
< 0,

max
1�i�N

(∑
j �=i

|aji| − αi

)
< 0

or

max
1�i�N

(
1
2

∑
j �=i

(|aij | + |aji|) − αi

)
< 0

holds, where αi = min{1, 1 − aii}.

Theorem 4.6. Assume that (4.1) satisfies the following:

(i) x0 ∈ R
N is the unique critical point and it is a local attractor (or repeller);

(ii) no non-trivial solution will stay in D0 for t in any interval.

Then x0 is a global attractor (or repeller) if (4.14) (or (4.15)) holds for x ∈ P :

µ

(
∂L

∂x

[2]

(x)
)

� 0, (4.14)

µ

(
−∂L

∂x

[2]

(x)
)

� 0, (4.15)

where P = {x ∈ R
N : |xi| = 1 for all i ∈ IN}.

Remark 4.7. Theorem 4.6 is a direct translation from theorem 2.7. It is tempting
to assume that the condition (ii) is not essential. However, it is difficult to clarify
this, and further investigation is needed.

The next result is an analogue of corollary 2.8.

Corollary 4.8. Under the assumptions of theorem 4.6, x0 is a global attractor
(or repeller) if any one of (4.16)–(4.18) (or (4.19)–(4.21)) holds for x ∈ P :

max
1�r<s�N

∂Lr

∂xr
+

∂Ls

∂xs
+

∑
q �=r,s

(∣∣∣∣∂Lr

∂xq

∣∣∣∣ +
∣∣∣∣∂Ls

∂xq

∣∣∣∣
)

� 0, (4.16)

max
1�r<s�N

∂Lr

∂xr
+

∂Ls

∂xs
+

∑
q �=r,s

(∣∣∣∣∂Lq

∂xr

∣∣∣∣ +
∣∣∣∣∂Lq

∂xs

∣∣∣∣
)

� 0, (4.17)

λ1 + λ2 � 0, (4.18)
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min
1�r<s�N

∂Lr

∂xr
+

∂Ls

∂xs
−

∑
q �=r,s

(∣∣∣∣∂Lr

∂xq

∣∣∣∣ +
∣∣∣∣∂Ls

∂xq

∣∣∣∣
)

� 0, (4.19)

min
1�r<s�N

∂Lr

∂xr
+

∂Ls

∂xs
−

∑
q �=r,s

(∣∣∣∣∂Lq

∂xr

∣∣∣∣ +
∣∣∣∣∂Lq

∂xs

∣∣∣∣
)

� 0, (4.20)

λN−1 + λN � 0, (4.21)

where the λi are the eigenvalues of

1
2

((
∂L

∂x

)T

+
∂L

∂x

)

satisfying λ1 � λ2 � · · · � λN and P = {x ∈ R
N : |xi| = 1 for all i ∈ IN}.

Example 4.9. Consider the system

x′ = A(x1)x + b, x = (x1, x2)T ∈ R
2, (4.22)

where b = (b1, b2)T ∈ R
2 and A(x1) is given by (4.12). Then, for any b satisfying

b1+2b2 > 0 and any a � 1, (4.22) has a local stable focus x0 = 1
5 (b1+2b2, b2−2b1)T

and, by (4.18), x0 is a global attractor.
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