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In this paper, we propose a series expansion of the baroclinic torque in low-Mach-number
flows, so that the accuracy and universality of any buoyancy term could be examined
analytically, and new types of buoyancy terms could be constructed and validated. We
first demonstrate that the purpose of introducing a buoyancy term is to approximate the
baroclinic torque, and straightforwardly the error of any buoyancy term could be defined
with the deviation of its curl from the corresponding baroclinic torque. Then a regular
perturbation method is introduced for the elliptic equation of the hydrodynamic pressure
in low-Mach-number flows, resulting in a sequence of Poisson equations, whose solutions
lead to the series representation of the baroclinic torque and the new types of buoyancy
terms. It is found that the frame invariance of the momentum equation is maintained with
one of the new types of buoyancy terms. With the error definition of buoyancy terms and
the series representation of the baroclinic torque, the validity and accuracy of previous
and new buoyancy terms are examined. Finally, numerical simulations confirm that, with
a decreasing density variation or an increasing order of our new buoyancy term, the
simplified equations can converge to the original low-Mach-number equations.

Key words: compressible flows, convection

1. Introduction

The buoyancy effect in variable-density flows is important, especially for buoyancy-driven
flows whose kinetic energy originates from potential energy. The buoyancy effect was first
modelled in the pioneering work of Boussinesq (1903), who intuitively neglected small
density fluctuations in the momentum equation except for the term combined with the
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gravitational acceleration g, and introduced the gravitational buoyancy term ρ′g/ρ0. Here
ρ0(t) ≈ ρ(x, t) and ρ′(x, t) = ρ(x, t) − ρ0(t) are the constant reference density and the
corresponding density fluctuation, respectively. In recent decades, many theoretical and
numerical results obtained using Boussinesq’s buoyancy term have shown good agreement
with experimental measurements, thereby validating the correctness and effectiveness of
Boussinesq’s buoyancy term (Sharp 1983; Ahlers, Grossmann & Lohse 2009; Lohse &
Xia 2010). Besides gravitational acceleration, centrifugal acceleration in a rotating frame
could also induce the buoyancy effect. This was modelled by Barcilon & Pedlosky (1967),
Homsy & Hudson (1969) and Busse & Carrigan (1974) as −ρ′Ω × (Ω × r)/ρ0, where Ω
is the angular velocity and r is the vector pointing from the origin on the rotating axis to the
present location. For flows where different parts of the fluid container rotate independently,
Lopez, Marques & Avila (2013) introduced the buoyancy term −ρ′u · ∇u/ρ0 caused by
the convection term to model the centrifugal buoyancy in non-rotating frames with local
vortices. Kang, Yang & Mutabazi (2015) further simplified Lopez et al.’s buoyancy term
and applied it to a Taylor–Couette flow with variable density. Kang et al. (2019) also
introduced the buoyancy term 2ρ′u × Ω/ρ0 to account for the Coriolis effect. In order
to further reduce analytical and numerical complexity, a divergence-free approximation
is often used together with those buoyancy terms (Barcilon & Pedlosky 1967; Homsy &
Hudson 1969; Busse & Carrigan 1974; Lopez et al. 2013; Kang et al. 2015, 2019).

The greatest advantage of the previous buoyancy terms is their simplicity, and thus many
works have applied the buoyancy terms in theoretical analysis and numerical simulations
(Sharp 1983; Ahlers et al. 2009; Lohse & Xia 2010; Chandrasekhar 2013; Ng et al.
2015; Shishkina 2016; Yang, Verzicco & Lohse 2016; Horn & Aurnou 2018). However,
among the buoyancy terms described above, only the classical gravitational buoyancy term
(Spiegel & Veronis 1960; Gray & Giorgini 1976) and the classical centrifugal buoyancy
term (Barcilon & Pedlosky 1967) could be derived from the momentum equation for
compressible flows. The buoyancy terms introduced by Lopez et al. (2013) and Kang et al.
(2019) are rather subjective and their validity remains uncertain. On the other hand, the
accuracy of the previous buoyancy terms is very limited, and they can only be applied to
flow problems with very small density variations.

A worse defect of existing buoyancy terms is that they cannot keep the momentum
equation invariant under frame transformations, and this can be demonstrated with two
examples. First, in a translating and accelerating rigid container, the buoyancy term
caused by frame acceleration a could be −ρ′a/ρ0, with inertial force −a similar to a
uniform gravitational acceleration, but such an inertial force has no definition in the
inertial frame. Second, the centrifugal buoyancy term is based on the centrifugal force
in the rotating frame, but the centrifugal force has no definition in the inertial frame.
In order to extend the Boussinesq approximation including the buoyancy terms, various
works have analysed the Navier–Stokes (NS) equations and proposed more reasonable
approximations for larger density variation (Dutton & Fichtl 1969; Gough 1969; Durran
1989, 2008, 2013; Shirgaonkar & Lele 2006, 2007; Achatz, Klein & Senf 2010; Wood &
Bushby 2016). However, the results were mainly limited to specific flow problems, and
thus lack universality.

Fortunately, for general flows with velocity v∗ much smaller than the local sound
speed c∗ (Mach number Ma = v∗/c∗ � 1), the low-Mach-number (LMN) NS equations
(Paolucci 1982) can be a good approximation to the original NS equations. Since the
relative amplitude of the neglected motions is characterized by Ma2 (Paolucci 1982),
the LMN equations are likely to suffice for flows with Ma ≤ 0.1, which include a lot of
flows in nature and industry. By filtering out the weak sound waves and decomposing the
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Perturbation analysis of baroclinic torque

pressure into a hydrodynamic pressure and a thermodynamic pressure, the LMN equations
can overcome the difficulty in resolving sound speed (Paolucci 1982). Since the LMN
equations are more accurate than using the buoyancy terms when medium or large density
variation is considered, many researchers have applied them in their numerical simulations
(Paolucci 1990; Livescu & Ristorcelli 2007; Xia et al. 2016; Livescu 2020). However,
although the LMN approximation is accurate with Mach number approaching zero, the
equation for the hydrodynamic pressure is no longer a Poisson equation, but is an elliptic
equation coupled with density. This greatly increases the difficulty in theoretical analysis.
In addition, for the applications of the LMN equations in numerical simulations, some
efficient numerical algorithms for the Poisson equation cannot be used and the equations
have to be solved iteratively.

In a word, the previous buoyancy terms corresponding to the simplified momentum
equation are simple, but they do not satisfy the frame invariance and they lack accuracy
when the density variation is non-negligible. On the contrary, the LMN equations are
accurate and universal for LMN flows with arbitrary density variation, but they are
complicated for theoretical analysis. In the present paper, we compared the original LMN
momentum equation and the simplified one to clarify that the purpose of introducing
a buoyancy term is to approximate the baroclinic torque. With reference to the LMN
equations, an error analysis of the previous buoyancy terms can be performed and new
types of highly accurate and universal buoyancy terms can be proposed.

2. Analytical derivation

2.1. Low-Mach-number equations and buoyancy terms
Considering an LMN variable-density flow with reference length scale l∗r , reference
velocity u∗

r , reference density ρ∗
r and reference time scale t∗r = l∗r /u∗

r , the non-dimension-
alized governing equations can be written as (Paolucci 1982; Majda & Sethian 1985)

1
ρ

dρ

dt
+ ∇ · u = 0, (2.1a)

∂u
∂t

+ u · ∇u = − 1
ρ

∇Π + 1
ρ

∇ · T + f , (2.1b)

∂ρ

∂t
+ u · ∇ρ = Q. (2.1c)

Here, the non-dimensionalized hydrodynamic pressure Π = Π∗/(ρ∗
r u∗2

r ), viscous stress
tensor T (x, t) = T ∗(x∗, t∗)/(ρ∗

r u∗2
r ) and body force f (x, t) = f ∗(x∗, t∗)/(l∗−1

r u∗2
r ). The

expressions for T and f are assumed to be given. All effects contributing to the
material derivative of ρ, such as heat conduction, mass diffusion, heat source/sink
and chemical reactions (Livescu 2020), are included in the right-hand side term
Q(x, t) = Q∗(x∗, t∗)/(l∗−1

r ρ∗
r u∗

r ) of (2.1c), and Q(x, t) is assumed to be determined by all
possible variables except the velocity, such as x, t, temperature, constituent concentration,
etc. Governing equations of all variables contributing to Q (temperature, constituent
concentration, etc.) are assumed to be given. Furthermore, the fluid region V is assumed to
be finite, simply connected and time-dependent with volume V(t) in the present context.
The normal component of u at ∂V is assumed to be given at any time and consistent with
Q (mass conservation). All scalar, vector and tensor fields are assumed to be infinitely
differentiable in V .
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The continuity equation (2.1a) and momentum equation (2.1b) are the same as those
in the fully compressible NS equations. However, in the LMN approximation, the
thermodynamic pressure is considered to be spatially uniform and the hydrodynamic
pressure should be specified using the following equation (2.2) instead of the equation of
state. Taking the divergence of (2.1b) and projecting (2.1b) to the normal direction at the
boundary, we would obtain an elliptic equation of Π with Neumann boundary condition:

V : ∇ ·
(

1
ρ

∇Π

)
= −∇ · ∂u

∂t
− ∇ · (u · ∇u) + ∇ ·

(
1
ρ

∇ · T

)
+ ∇ · f ,

∂V : n ·
(

1
ρ

∇Π

)
= −n · ∂u

∂t
− n · (u · ∇u) + n ·

(
1
ρ

∇ · T

)
+ n · f .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.2)

Here the second-order differential operator of Π is coupled with ρ.
A widely used approach to decouple the hydrodynamic pressure and density is to replace

(2.1b) with a modified momentum equation,

∂u
∂t

+ u · ∇u = − 1
ρ0

∇Π̃ + 1
ρ

∇ · T + f + B, (2.3)

where ρ0(t) > 0 is the time-dependent reference density with the corresponding density
fluctuation ρ′(x, t) = ρ − ρ0, Π̃ is the new hydrodynamic pressure, which is governed by
a Poisson equation, and B is the buoyancy term. By default, other equations and terms
in (2.3) are kept the same, and thus the governing equation of ∂(∇ · u)/∂t will remain
unchanged. However, the baroclinic torque ρ−2∇ρ × ∇Π in the governing equation of
∂(∇ × u)/∂t corresponding to the original momentum (2.1b) will be lost due to the
decoupling of ρ and Π̃ . Therefore, the buoyancy term B should compensate the lost
baroclinic torque through

∇ × B = 1
ρ2 ∇ρ × ∇Π, (2.4)

in order to keep the governing equation of ∂(∇ × u)/∂t corresponding to (2.3) the same as
that corresponding to (2.1b). In other words, the purpose of introducing a buoyancy term
is to approximate the baroclinic torque. It can be further proved that the modified system
(2.1a), (2.3) and (2.1c) is equivalent to the original system (2.1) if and only if the buoyancy
term B satisfies the condition (2.4).

For an arbitrary buoyancy term, if the constraint (2.4) is not perfectly satisfied, we could
introduce the terms

∥∥∥∥∇ × B − 1
ρ2 ∇ρ × ∇Π

∥∥∥∥ and

∥∥∥∥∇ × B − 1
ρ2 ∇ρ × ∇Π

∥∥∥∥∥∥∥∥ 1
ρ2 ∇ρ × ∇Π

∥∥∥∥
(2.5a,b)

to characterize its error and relative error, respectively. Here, the spatial L2 norms ‖ · ‖ for
vector and scalar fields are defined as

‖v‖ =
√∫

V
v · v dV, and ‖φ‖ =

√∫
V

φ2 dV. (2.6a,b)
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Perturbation analysis of baroclinic torque

In order to analyse in detail the contribution of each term in (2.1b) to the baroclinic torque,
we introduce the notation

A = −∂u
∂t

, C = −u · ∇u and D = ρ−1∇ · T , (2.7a–c)

and decompose Π into four partial terms,

Π = ΠA + ΠC + ΠD + Πf , (2.8)

with ΠY (Y ∈ {A, C, D, f }) governed by

V : ∇ ·
(

1
ρ

∇ΠY

)
= ∇ · Y ,

∂V : n ·
(

1
ρ

∇ΠY

)
= n · Y .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.9)

Straightforwardly, the baroclinic torque can be decomposed into four partial terms
ρ−2∇ρ × ∇ΠY with Y ∈ {A, C, D, f }.

Correspondingly, a buoyancy term B could also be decomposed into four partial
buoyancy terms corresponding to A, C , D and f , respectively:

B = BA + BC + BD + Bf . (2.10)

It is reasonable to say that, for Y ∈ {A, C, D, f }, the target of a partial buoyancy term BY
is to approximate the corresponding partial baroclinic torque ρ−2∇ρ × ∇ΠY . Therefore
the error and relative error of BY can be defined, respectively, as

∥∥∥∥∇ × BY − 1
ρ2 ∇ρ × ∇ΠY

∥∥∥∥ and

∥∥∥∥∇ × BY − 1
ρ2 ∇ρ × ∇ΠY

∥∥∥∥∥∥∥∥ 1
ρ2 ∇ρ × ∇ΠY

∥∥∥∥
. (2.11a,b)

It should be noted that the above decomposition of a buoyancy term (2.10) is non-unique
since we only require that the buoyancy term B satisfies the constraint (2.4). Nevertheless,
preferred forms could be chosen for convenience. The baroclinic torque corresponding to
Y ∈ {A, C, D, f } could be rewritten as

1
ρ2 ∇ρ × ∇ΠY = ∇ ×

(
ρ′

ρ0ρ
∇ΠY

)
= 1

ρ0
∇

(
ρ′

ρ

)
× ∇ΠY . (2.12)

Therefore, instead of the trivial expressions −ρ−1∇Π and −ρ−1∇ΠY , the ‘exact’
buoyancy terms could be written as

B† = ρ′

ρ0ρ
∇Π and B†

Y = ρ′

ρ0ρ
∇ΠY , (2.13a,b)

which explicitly contain the density fluctuation.
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2.2. Regular perturbation analysis for the hydrodynamic pressure
In order to obtain the error scaling of any buoyancy term with respect to the amplitude
of density variation, a proper expansion of the baroclinic torque should be derived.
This could be achieved by introducing a regular perturbation method for the equation of
hydrodynamic pressure. With the previous definition of ρ0 and ρ′, (2.9) could be rewritten
as

V : ∇ ·
[(

1 − ρ′

ρ

)
∇ΠY

]
= ∇ · (ρ0Y ),

∂V : n ·
[(

1 − ρ′

ρ

)
∇ΠY

]
= n · (ρ0Y ).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.14)

In addition, we define ε(t) = maxV [|ρ′/ρ|] as the maximum value of relative density
fluctuation, and define η(x, t) = (ρ′/ρ)/ε(t) so that |η(x, t)| ≤ 1. If ε = 0, (2.14) becomes
a Poisson equation. If the fluid has density variation (ε > 0), we could choose an ansatz
for the expansion of ∇ΠY with respect to ε:

∇ΠY = ∇Π
(0)
Y + ε∇Π

(1)
Y + ε2∇Π

(2)
Y + · · ·

=
∞∑

k=0

(εk∇Π
(k)
Y ). (2.15)

By taking ansatz (2.15) into (2.14), ∇Π
(k)
Y in (2.15) could be computed from the

corresponding Poisson equation led by εk for each k ≥ 0:

k = 0:

{
V : ∇2Π

(0)
Y = ∇ · ρ0Y ),

∂V : n · ∇Π
(0)
Y = n · (ρ0Y ),

k ≥ 1:

⎧⎪⎪⎨
⎪⎪⎩
V : εk∇2Π

(k)
Y = εk−1∇ ·

(
ρ′

ρ
∇Π

(k−1)
Y

)
,

∂V : εkn · ∇Π
(k)
Y = εk−1n ·

(
ρ′

ρ
∇Π

(k−1)
Y

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.16)

It can be proved that , when ε < 1,

∞∑
k=0

(εk∇Π
(k)
Y ) = ∇ΠY (2.17)

(see supplementary material available at https://doi.org/10.1017/jfm.2021.896), i.e. the
ansatz (2.15) is correct when maxV [|ρ′/ρ|] < 1.

With the expansion (2.15), the partial baroclinic torque and the ‘exact’ partial buoyancy
term corresponding to Y ∈ {A, C, D, f } could be expanded when ε < 1:

1
ρ2 ∇ρ × ∇ΠY = 1

ρ0
∇

(
ρ′

ρ

)
×

∞∑
k=0

(εk∇Π
(k)
Y ),

B†
Y = ρ′

ρ0ρ

∞∑
k=0

(εk∇Π
(k)
Y ).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.18)
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Perturbation analysis of baroclinic torque

The nth-order partial buoyancy terms could be defined with the leading terms of the ‘exact’
partial buoyancy terms:

B(n)
Y = ρ′

ρ0ρ

n−1∑
k=0

(εk∇Π
(k)
Y ), n ≥ 1. (2.19)

Therefore, we can define the nth-order type-I buoyancy terms straightforwardly as

n ≥ 1: B(n) = B(n)
A + B(n)

C + B(n)
D + B(n)

f . (2.20)

In some circumstances, the flow is driven by the buoyancy effect induced by a large
conservative body force f = ∇Φ. According to (2.16), one has ∇Π

(0)
f = ρ0∇Φ = ρ0 f .

For this special kind of flow, we can define the nth-order type-II buoyancy terms as

n = 1: B̂(1) = ρ′

ρ0ρ
∇Π

(0)
f = ρ′

ρ
f ,

n ≥ 2: B̂(n) = B(n−1)
A + B(n−1)

C + B(n−1)
D + B(n)

f .

⎫⎪⎬
⎪⎭ (2.21)

It is easy to see that the first-order type-II buoyancy term is very close to the classical
Boussinesq-type buoyancy term when f is the gravitational acceleration or the centrifugal
acceleration. It should be noted that the ‘nth-order’ related to the two types of buoyancy
terms only denotes the highest order of expansion, instead of the accuracy. The detailed
computation procedures of type-I and type-II buoyancy terms can be found in the
supplementary material.

2.3. Frame invariance of buoyancy terms
Frame invariance is one of the most important criteria for universality of a theoretical
framework. Since body forces and some other terms in the momentum equation may be
different in translating or rotating frames, the invariance of buoyancy terms in different
inertial and non-inertial frames should be examined.

2.3.1. Static frame and translating frame
Consider a translating frame S moving with speed v0 + a(t − t0) relative to the static frame
SI ; here v0 and a are assumed to be constant. The flow variables in SI are marked with a
subscript ‘I’, while those in S have no subscript. Assuming that at t = t0 the two frames
coincide, the variables have the following transformation:

uI(x, t) = u(x − v0(t − t0) − a(t − t0)2/2, t) + v0 + a(t − t0),

ρI(x, t) = ρ(x − v0(t − t0) − a(t − t0)2/2, t).

}
(2.22)

And the transformation of A, C , D and f can be derived:

AI = A + v0 · ∇u − a,

C I = C − v0 · ∇u,

DI = D,

f I = f + a.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.23)

Clearly, in the translating frame S there is a non-inertial force −a which is similar to
a gravitational acceleration, and it can be used to construct a buoyancy term −ρ′a/ρ0 in
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(b)a(a) Ω

Figure 1. Sketch of flows with non-inertial general motions. (a) Stratified fluid inside an accelerating
container. (b) Stratified fluid rotating with the same angular speed as the container.

S following Boussinesq (1903). However, −ρ′a/ρ0 cannot be found in the static frame SI
where the acceleration a is not defined. In addition, the buoyancy term constructed with the
convection term (Lopez et al. 2013) is also not invariant under the present transformation.

The loss of invariance is due to the transformation of A, C , D and f . However, the sum
of the four terms remains unchanged according to (2.23), and consequently one has

n ≥ 0:
∑

Y∈{A,C,D,f }
∇Π

(n)
Y ,I =

∑
Y∈{A,C,D,f }

∇Π
(n)
Y , (2.24)

and thus B(n) with n ≥ 1 is also invariant:

B(n)
I = B(n). (2.25)

The analysis indicates that only the type-I buoyancy terms are invariant under the present
frame transformation. Other buoyancy terms, including the type-II buoyancy terms, are
unlikely to have this invariance because they are not based on the combination A + C +
D + f .

For a physical interpretation of this frame invariance, a specific example is discussed.
As shown in figure 1(a), consider a sealed container filled with static and stratified fluid,
which is forced to move with a constant horizontal acceleration a. Undoubtedly the
baroclinic effect will induce vorticity in the fluid, which can be approximated with the
Boussinesq-type buoyancy term −ρ′a/ρ0 caused by the inertial force −a in the translating
frame S attached to the container. However, in the static frame SI there is no definition for
an inertial force, indicating that in SI such a Boussinesq-type buoyancy term is invalid and
cannot predict the correct physical phenomena. This can be easily solved by the present
theory, since in SI the acceleration of the walls will induce the same term −a in the term
AI . Therefore, the buoyancy term −ρ′a/ρ0 in S turns out to be a part of B(1)

A,I in SI .

2.3.2. Static frame and rotating frame
For simplicity, we assume that the angular velocity Ω of the rotating frame S is constant,
that the z axis is the rotation axis, and that S coincides with the static frame SI at t = t0.
Again, the flow variables in SI are marked with a subscript ‘I’, while those in S have
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Perturbation analysis of baroclinic torque

no subscript. The variables between the two frames have the following transformation:

ur,I(r, φ, z, t) = ur(r, φ − Ω(t − t0), z, t),

uφ,I(r, φ, z, t) = uφ(r, φ − Ω(t − t0), z, t) + Ωr,

uz,I(r, φ, z, t) = uz(r, φ − Ω(t − t0), z, t),

ρI(r, φ, z, t) = ρ(r, φ − Ω(t − t0), z, t).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.26)

And the transformation of A, C , D and f can be derived:

AI = A + Ω

(
∂ur

∂φ
er + ∂uφ

∂φ
eφ + ∂uz

∂φ
ez

)
,

C I = C + Ω2rer + 2Ωu × ez − Ω

(
∂ur

∂φ
er + ∂uφ

∂φ
eφ + ∂uz

∂φ
ez

)
,

DI = D,

f I = f − Ω2rer − 2Ωu × ez.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.27)

Clearly, the buoyancy term ρ′C I/ρ0, which was constructed with the convection term in
the static frame SI (Lopez et al. 2013), is not equal to the sum of the buoyancy terms
corresponding to the convection term, centrifugal force and Coriolis force in the rotating
frame S.

The loss of invariance is also due to the transformation of A, C , D and f . However, the
sum of the four terms again remains unchanged according to (2.27). Therefore, only B(n)

with n ≥ 1 is invariant under this frame transformation.
Another specific example is worth discussing. As shown in figure 1(b), consider

a stratified fluid rotating with a sealed container with angular speed Ω = Ωez.
The baroclinic effect can be approximated with the Boussinesq-type buoyancy term
ρ′Ω2rer/ρ0 caused by the centrifugal force Ω2rer in the rotating frame S attached to
the container. However, in the static frame SI there is no definition for the centrifugal
force, which indicates that such a Boussinesq-type buoyancy term is invalid in SI and
it cannot predict the correct physical phenomena. This can also be easily solved by the
newly proposed type-I buoyancy terms, since in SI a rotating motion will induce the same
term Ω2rer in the convection term C I . Therefore, it turns out that the buoyancy term
ρ′Ω2rer/ρ0 in S is only a part of B(1)

C,I in SI .
It should be noted that, under frame transformations between inertial frames, the

invariance of type-II buoyancy terms and the Boussinesq gravitational buoyancy term is
preserved since f is kept the same. Therefore, they are still suitable for flow problems with
fixed boundaries.

2.4. Accuracy of buoyancy terms
In order to examine the accuracy of buoyancy terms at a fixed time t0, a continuous set
of instantaneous flow fields and reference densities {(u(x, t0; λ), ρ(x, t0; λ), ρ0(t0; λ))}
with a continuous parameter λ ∈ (0, ∞) is defined. In addition, we assume that u(x, t0; λ)
and ρ(x, t0; λ) are uniformly continuous in (x, λ) space, that ρ0(t0; λ) and ε(t0; λ) are
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continuous with λ, and that
lim
λ→0+

ε = 0. (2.28)

Naturally, a scalar φ(λ) is regarded to be O(εα) (or simply φ ∼ O(εα)) with α ∈ R, if

lim
λ→0+

φ

εα
= A, 0 < |A| < ∞. (2.29)

It should be emphasized that a valid buoyancy term must at least have relative error
converging to 0 when ε → 0. This is because, when compared with a trivial buoyancy
term 0, a buoyancy term with O(1) relative error may cause a larger deviation from the
real physics even for very small ε.

With the definitions of error and relative error of a buoyancy term (2.5a,b) or a
partial buoyancy term (2.11a,b) introduced in § 2.1, and the perturbation solution (2.18)
of baroclinic torque in § 2.2, the relative errors of several buoyancy terms can be estimated
as follows (detailed derivations are shown in the supplementary material).

(i) Classical gravitational buoyancy term ρ′g/ρ0 (Boussinesq 1903):

ε lim
λ→0+

‖∇η × (2η∇Π
(0)
f − ∇Π

(1)
f )‖

‖∇η × ∇Π
(0)
f ‖

+ o(ε). (2.30)

(ii) Classical centrifugal buoyancy term −ρ′Ω × (Ω × r)/ρ0 (Barcilon & Pedlosky
1967):

ε lim
λ→0+

‖∇η × (2η∇Π
(0)
f − ∇Π

(1)
f )‖

‖∇η × ∇Π
(0)
f ‖

+ o(ε). (2.31)

(iii) Buoyancy term −ρ′u · ∇u/ρ0 corresponding to convection term (Lopez et al. 2013):

lim
λ→0+

‖∇ × [η(ρ0C − ∇Π
(0)
C )]‖

‖∇η × ∇Π
(0)
C ‖

+ o(1). (2.32)

(iv) Coriolis buoyancy term 2ρ′u × Ω/ρ0 (Kang et al. 2019):

lim
λ→0+

‖∇ × [η(ρ0 f − ∇Π
(0)
f )]‖

‖∇η × ∇Π
(0)
f ‖

+ o(1). (2.33)

(v) The nth-order type-I buoyancy term B(n):

εn lim
λ→0+

‖∇η × ∇Π(n)‖
‖∇η × ∇Π(0)‖ + o(εn). (2.34)

(vi) The nth-order type-II buoyancy term B̂(n):

εn lim
λ→0+

‖∇η × [∇Π
(n)
f + ε−1∇(Π

(n−1)
A + Π

(n−1)
C + Π

(n−1)
D )]‖

‖∇η × ∇Π
(0)
f ‖

+ o(εn). (2.35)

Therefore, the classical buoyancy terms corresponding to the gravitational acceleration
(Boussinesq 1903) and the centrifugal force (Barcilon & Pedlosky 1967) are valid with
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Perturbation analysis of baroclinic torque

O(ε) relative errors, because the corresponding f are conservative. The buoyancy term
corresponding to the convection term (Lopez, Marques & Avila 2015) is invalid with O(1)

relative error. This is because the non-conservative part C − ρ−1
0 ∇Π

(0)
C of the convection

term contributes directly (without influencing the baroclinic torque) to ∂ω/∂t, and should
not appear in the buoyancy term. The buoyancy term corresponding to the Coriolis force
(Kang et al. 2019) is also invalid for the same reason. However, for two-dimensional
(2-D) flows with very small velocity divergence, the Coriolis force is approximately
conservative, and such a buoyancy term may be acceptable. The nth-order type-I buoyancy
term B(n) has O(εn) relative error, which means that B(n) could be made arbitrarily
accurate at a fixed ε < 1 by increasing n. For buoyancy-driven flows with f = ∇Φ and
(‖ f ‖/‖A + C + D‖) ∼ O(ε−1), B̂(n) has the same scaling of the relative error as B(n).

The relative errors shown above indicate that the value of ε may greatly influence the
accuracy of valid buoyancy terms. Let us define ρmax = maxV [ρ] and ρmin = minV [ρ].
When ρ0 ∈ (0, 2ρmin), one has ε < 1, and both B(∞) and B̂(∞) are ‘exact’. However,
a better choice to improve convergence might be ρ0 = 2ρmaxρmin/(ρmax + ρmin), which
minimizes ε to (ρmax − ρmin)/(ρmax + ρmin).

Generally, the accuracy requirement, flow properties and specific analytical/numerical
methods should all be considered to discuss the accuracy versus cost trade-off. We denote
TE and TP as the time required for solving an elliptic equation in the original LMN
equations and the time required for solving a Poisson equation, respectively. Usually, one
has TP < TE for numerical simulation with a computational grid suitable for a spectral
Poisson solver. As shown in § 2.4 and the supplementary material, in order to reduce the
relative error to O(εn) in each time step, using the modified momentum equation (2.3)
with B(n) requires (n + 1)TP for solving the Poisson equation, while using the modified
momentum equation (2.3) with B̂(n) requires nTP. For example, if B̂(n) is sufficient for
a specific problem and nTP < TE, solving the modified equations with B̂(n) is more
economical than solving the original LMN equations. More specifically, the vertical
convection presented in § 3.1 indicates that B̂(2) is likely to be accurate enough for most
cases with density ratio less than 1.727. Since the discrete cosine transform (DCT) can be
used to solve the Poisson equations in this case, 2TP is less than TE, making the modified
equations with B̂(2) a more economical choice over the LMN equations for this problem
when the density ratio is less than 1.727.

3. Numerical validation

Here we will use the numerical simulations of vertical convection and Rayleigh–Taylor
instability for a posteriori validations of the derivations in § 2. Since we are only
considering the error, both type-I and type-II buoyancy terms can be used, and we will
focus on the type-II buoyancy terms due to their higher computational efficiency. It is
expected that the simulation results using the modified momentum equation (2.3) equipped
with the type-II buoyancy terms (2.21) could converge to the simulation results of the
original momentum equation (2.1b) with relative errors of O(εn).

3.1. Vertical convection

3.1.1. Original equations
The flow set-up and original governing equations are completely equivalent to those
used in Wang et al. (2019). After non-dimensionalization, the 2-D flow region is
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V = [−0.5, 0.5]2. The coordinates x and y are those of the horizontal and vertical
directions, respectively; u and v are the corresponding velocity components; and λ ∈ (0, 1)

characterizes the difference of temperature T between the vertical walls. This problem
can be described by (2.1a) and (2.1b), together with the following governing equation for
temperature T and a relation between ρ and T:

∂T
∂t

+ u · ∇T = − 1
ρcp

[
∇ · J + γ − 1

V

∫
V

∇ · J dV
]

, (3.1a)

ρ = MT−1
(∫

V
dV
T

)−1

, (3.1b)

as well as the boundary conditions (Wang et al. 2019)

x = ±0.5: u = 0, T = 1 ∓ λ, (3.2a)

y = ±0.5: u = 0, ∂T/∂y = 0. (3.2b)

Straightforwardly, the density source term Q in (2.1c) can be derived as

dρ

dt
= Q = 1

T

(
∇ · J − 1

V

∫
V

∇ · J dV
)

. (3.3)

Here the specific heat ratio γ = 1.4. The total mass M, the total volume V and the isobaric
specific heat cp are all assumed to be 1. The body force f = −(2λ)−1ey; the viscous stress
tensor and heat flux are

T = μ[∇u + (∇u)T − 2
3 I(∇ · u)], J = −κ∇T, (3.4a,b)

respectively, where μ and κ follow the Sutherland laws:

μ =
√

Pr
Ra

T1.5 1 + Sμ

T + Sμ

, κ =
√

1
RaPr

T1.5 1 + Sκ

T + Sκ

, (3.5a,b)

with Sμ = 0.368 and Sκ = 0.648, and Ra and Pr are the Rayleigh number and Prandtl
number, respectively.

The LMN equations are solved using a second-order central difference code on
a uniform grid. The corresponding hydrodynamic pressure equation (2.2) is solved
using the successive over-relaxation (SOR) method. Using a time-stepping approach,
steady solutions (ū(x), T̄(x)) are achieved in the sense of machine precision. The code
is validated at Ra = 106, Pr = 0.71 and varying λ. The Oberbeck–Boussinesq (OB)
approximation can be simulated in the present code with λ ≈ 0. With increasing λ, the
non-OB effect will emerge and it is non-negligible in the cases with λ = 0.2, 0.4 and 0.6.
The Nusselt numbers Nu from the present simulations are compared with the reference
values from Wang et al. (2019). As shown in table 1, the present code can accurately predict
Nu for all cases with relative deviations less than 0.1 %, demonstrating the correctness of
the present code in a wide range of λ.

Using the present code corresponding to the LMN equations, 13 simulations are
performed on a uniform 256 × 256 grid at Ra = 106, Pr = 0.71 and λ = 0.6 × (2/3)n

with integer n ranging from 0 to 12. The 13 cases are regarded as the reference cases
with the steady flow fields (ū(x; λ), T̄(x; λ)), which will be used to assess the results
corresponding to different orders of the type-II buoyancy terms.
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Perturbation analysis of baroclinic torque

Ra 106 (OB) 106 (λ = 0.2) 106 (λ = 0.4) 106 (λ = 0.6)

Nu 8.832 8.814 8.735 8.597
Nuref 8.830 8.806 8.732 8.602
|Nu − Nuref |/Nuref 2.3 × 10−4 9.1 × 10−4 3.4 × 10−4 5.8 × 10−4

Table 1. Comparison of Nusselt numbers Nu at Ra = 106, Pr = 0.71 and varying λ from present simulations
and the reference works from Wang et al. (2019). Note that the grid is uniform and its size is 256 × 256.

3.1.2. Modified equations
In order to apply the type-II buoyancy terms, the modified momentum equation (2.3)
is used to substitute (2.1b), while the other basic equations and parameters are kept
unchanged. In addition, ρ0 is chosen as M(

∫
V dV/T)−1, so that ε = maxV [|ρ′/ρ|] ≡ λ.

Since ‖ f ‖ ∼ O(ε−1) and ‖A + C + D‖ ∼ O(1), an nth-order type-II buoyancy term
B̂(n) has a relative error of O(εn) according to § 2.4. Clearly, the error of B̂(n) is also
O(εn). Four groups of steady flow fields (ū(n), T̄(n)) are defined corresponding to different
orders of type-II buoyancy terms B̂(n), with n = 1, 2, 3, ∞. All other flow variables have
the same superscripts as the corresponding buoyancy terms.

The modified equations are solved using a finite-difference code which is almost the
same as that described in § 3.1.1, except that the Poisson equations are decoupled using
DCT and solved directly (Zhang & Bao 2015; Zhang et al. 2020). The simulation results
using this code and the Boussinesq approximation are compared with those in de Vahl
Davis & Jones (1983) or Wang et al. (2019) for Ra = 104, 105, 106 and Pr = 0.71, and
the relative errors are again less than 0.1 %. Although an infinite sequence of Poisson
equations is required for computing B̂(∞) theoretically, solving 100 extra Poisson equations
for each time step is sufficient to make the residual converge to 0 in the sense of machine
precision for ε ≤ 0.6. Each group of flow fields described by the modified equations have
the same parameters as the 13 cases described in § 3.1.1, that is, Ra = 106, Pr = 0.71 and
λ = 0.6 × (2/3)n with integer n ranging from 0 to 12.

3.1.3. Simulation results
A further normalized temperature is defined as θ = (T − 1)/2λ. Figure 2 shows the
contours and isolines of θ̄ , θ̄ (1), θ̄ (2) and θ̄ (3), with ε = λ = 0.6 and ε = λ = 0.178. Here
ε = 0.6 corresponds to a large density variation (maxV [ρ]/ minV [ρ] ≡ 4) and ε = 0.178
corresponds to a medium density variation (maxV [ρ]/ minV [ρ] ≡ 1.43). For a large
density variation (ε = 0.6), figure 2(b) indicates that the first-order type-II buoyancy
term B̂(1), which is very close to the Boussinesq gravitational buoyancy term, is a coarse
approximation and could only predict qualitative properties of the steady flow. To improve
the accuracy, B̂(2) with a higher order could be used, and figure 2(c) shows that the error
is very small. It should be emphasized that B̂(2) only requires solving one extra Poisson
equation, which is not very expensive for the present solver. For even better approximation,
B̂(3) could be used (figure 2d). Fortunately, when the density variation is not too large
(ε = 0.178), solving one extra Poisson equation seems sufficient, because the error caused
by B̂(2) is already indiscernible, as indicated by figure 2(g).

To show the accuracy of type-II buoyancy terms and the ‘exact’ buoyancy term in detail,
the relative errors of the steady ū and θ̄ fields corresponding to buoyancy terms B̂(1),
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Figure 2. Contours and solid isolines with isovalues −0.4 : (0.1) : 0.4 of (a,e)θ̄ , (b, f )θ̄ (1), (c,g)θ̄ (2) and
(d,h)θ̄ (3). Physical parameters are Ra = 106, Pr = 0.71 and (a–d)λ = 0.6 and (e–h)λ = 0.178. The purple
dashed lines in (b–d, f –h) are the isolines of θ̄ with the corresponding λ.

B̂(2), B̂(3) and B̂(∞) are shown in figure 3(a,b). It is clearly seen that the relative errors
of (ū(1), θ̄ (1)), (ū(2), θ̄ (2)) and (ū(3), θ̄ (3)) are O(ε), O(ε2) and O(ε3), respectively. This
indicates that the error of (ū(n), θ̄ (n)) has the same scaling as the error of B̂(n). Such a
result can be explained using the vorticity equations at steady state. For n ≥ 1, we define

δu(n) = ū(n) − ū, δT(n) = T̄(n) − T̄, δθ(n) = θ̄ (n) − θ̄ = 2εδT(n) (3.6a–c)

and

Ψ (n)(u, T) = ∇ ×
[

u · ∇u − 1
ρ(T)

∇ · T (u, T) − B̂(n)(u, T)

]
. (3.7)

Using the fact that ∂ω̄/∂t = 0 and ∂ω̄(n)/∂t = 0, one has

∇ × B̂(n)(ū, T̄) − 1
ρ2(T̄)

∇ρ(T̄) × ∇Π(ū, T̄)

= Ψ (n)(ū + δu(n), T̄ + δT(n)) − Ψ (n)(ū, T̄). (3.8)

It seems that, with (ū, T̄) fixed, the leading terms of the right-hand side of (3.8) should
be characterized by δu(n) and δT(n) and their differentials. However, since ∇ × B̂(n) in
Ψ (n) contains a large coefficient f ∼ O(ε−1), the influence of δT(n) on Ψ (n) is amplified
by ε−1. Therefore, the O(εn) scaling of the error of B̂(n) should be inherited by δu(n) and
δθ(n) via the implicit equation (3.8). Figure 3(c) shows the relative errors of Nu. Different
from the results of flow fields, Nu(1) and Nu(2) both have the same O(ε2) scaling of relative
error, and Nu(3) has an O(ε4) scaling of relative error. The unexpected one order higher
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‖ū(1) − ū‖/‖ū‖
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Figure 3. Relative errors of steady flow fields and properties. (a) Relative errors of velocity fields. (b) Relative
errors of temperature fields. (c) Relative errors of Nusselt numbers. Errors not shown in (c) are machine zero.

in accuracy of Nu(1) and Nu(3) is not fully understood, but is probably caused by certain
symmetry of the flow field.

For the ‘exact’ buoyancy term B† = B̂(∞) with no error theoretically, it can also be
seen from figure 3(a,b) that the steady flow fields (ū(∞), T̄(∞)) are equal to (ū, T̄) in
the sense of machine precision. In addition, figure 3(c) shows that the relative errors of
Nu(∞) are also negligible in the sense of machine precision. From the above results, we
have confirmed by numerical simulations that for ε ≤ 0.6(maxV [ρ]/ minV [ρ] ≤ 4), the
modified equation (2.3) with the ‘exact’ buoyancy term B† = B̂(∞) is equivalent to the
original LMN equations.

Figure 3 further suggests the valid ε range for each buoyancy term to achieve
the required accuracy. For example, if the error bound is 1 % for both the velocity
and temperature fields, B̂(1) could only be used for ε ≤ 0.035, while the more
accurate B̂(2) could be used for ε ≤ 0.267(maxV [ρ]/ minV [ρ] ≤ 1.727), and B̂(3) is
valid for ε ≤ 0.4. Therefore, for most flows with small and medium density variation
(maxV [ρ]/ minV [ρ] ≤ 1.727), B̂(2) should be accurate enough, and it only requires solving
one extra Poisson equation (see Appendix A for the detailed computation procedure
of B̂(2)).
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3.2. Rayleigh–Taylor instability

3.2.1. Original equations
After non-dimensionalization, the 2-D flow region is V = [−0.5, 0.5] × [−1, 1]. The
coordinates x and y and the velocity components u and v are those in the horizontal and
vertical directions, respectively. The Atwood number A ∈ (0, 1) characterizes the density
ratio, and ρH = 1 + A and ρL = 1 − A are defined as the density of pure heavy and light
fluids, respectively. The initial shape of the interface is sinusoidal, with wavelength λ = 1,
amplitude a and characteristic thickness b. The LMN equations (2.1a)–(2.1c) could be
used here with the following boundary and initial conditions (Wei & Livescu 2012):

x = ±0.5: u = 0, ∂ρ/∂x = 0, (3.9a)

y = ±1: u = 0, ∂ρ/∂y = 0, (3.9b)

t = t0: u = 0, ρ = 1 − A tanh([y + a cos(2πx)]/b). (3.9c)

Here, the body force f = (1 + A−1)ey; and the viscous stress tensor T and density
diffusion term Q are defined as

T = ρ

Re

[
∇u + (∇u)T − 2

3
I(∇ · u)

]
, Q = ρ∇ ·

(
1

ReSc
∇ ln ρ

)
, (3.10a,b)

with Re and Sc being the Reynolds number and Schmidt number, respectively (Wei &
Livescu 2012).

The LMN equations are solved using a second-order central difference code on an Nx ×
Ny = 512 × 1024 uniform grid. The corresponding hydrodynamic pressure equation (2.2)
is solved using the SOR method, which is the same as that used in § 3.1. Time marching is
performed using the second-order explicit Adams–Bashforth method.

In order to compare with the experimental results in Waddell, Niederhaus & Jacobs
(2001), a reference LMN case is simulated with parameters A = 0.155, Re = 6000, Sc =
100, a = 0.02 and b = 0.01. It should be emphasized that the parameters, except for the
Atwood number, were not clearly presented in Waddell et al. (2001). However, many test
cases with different parameters suggest that the amplitude h(t) (defined with the largest
vertical distance between two points on the interface θ = 0) is not sensitive to Re, Sc and b
in a reasonable range. In addition, by choosing a small a = 0.02 and a proper t0 = −0.232,
the h(t) obtained from the present simulation can match well with the experimental results
at A = 0.155 from Waddell et al. (2001), as shown in figure 4(a). Therefore, we believe
that the LMN equations can well describe the A = 0.155 case considered in Waddell
et al. (2001), and the numerical code is reliable. For clarity, the flow fields and h(t) of
the reference LMN case are marked with superscript ‘†’.

3.2.2. Modified equations
In order to test the performance of the buoyancy terms, the modified momentum equation
(2.3) is used, while other equations and basic parameters remain unchanged. Here ρ0 is
chosen as 1 and thus ε = 0.183. The buoyancy terms tested are:

BB = ρ′

ρ0
f , BL = ρ′

ρ0
( f − u · ∇u) and B̂(n) (n = 2, 3). (3.11a–c)

Here, BB is the Boussinesq buoyancy term and BL is the buoyancy term from Lopez
et al. (2013). With the modified equations, four cases corresponding to the buoyancy
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Figure 4. (a) Interface fluctuation amplitudes of the LMN reference case and the experiment (Waddell et al.
2001). (b) Errors of interface fluctuation amplitudes of cases with buoyancy terms.

terms listed above are solved using a finite-difference code almost the same as that for
the LMN equations, except that the Poisson equations are solved using DCT as mentioned
in § 3.1.2. The computed flow fields and interface amplitudes have the same superscripts
as the corresponding buoyancy terms.

3.2.3. Simulation results
Figure 4(b) shows the errors of the interface fluctuation amplitudes h(t) computed from
different buoyancy terms, and figure 5 shows the normalized density θ fields at t = 1.54.
Here, θ = (ρ − 1)/2A. Figure 5(a) shows that the motions of the ascending heavy fluid
(spike) and the descending light fluid (bubble) are not fully symmetric (Waddell et al.
2001). It is seen that the spike front is above y = 0.4 while the bubble fronts are above
y = −0.4. Such asymmetry is not well predicted by the simplest buoyancy term BB, which
can be indicated from figure 5(b), where the height of the spike front and the depth of the
bubble fronts are almost the same. In addition, hB is larger than h† at t = 1.54 as shown in
figure 4(b). The revised buoyancy term BL with an extra term −ρ′u · ∇u/ρ0 (Lopez et al.
2013) aims to reduce the error by a factor of ε. However, figure 5(c) indicates that the error
of θL is in the same scale as that of θB, and the error of hL turns out to be even larger than
the error of hB in the range 1.95 < t − t0 < 2.2 (figure 4b). There are two main reasons.
First, as explained in § 2.4, the non-conservative part of the convection term is contained in
−ρ′u · ∇u/ρ0 and causes an O(ε) error. Second, the buoyancy term corresponding to the
large body force f ∼ O(ε−1) requires further approximation. Therefore, considering the
small viscosity and diffusivity, a buoyancy term with much better performance than BB

should at least contain B(2)
f and B(1)

C . The significant improvement of accuracy achieved

by B̂(2) can be indicated by figure 5(d), where the difference of the interface between θ(2)

and θ† is hardly discernible. Clearly, the asymmetric motions of the spike and bubbles are
recovered by B̂(2). This result suggests that such asymmetry is mainly caused by a part of
the baroclinic torque which is neglected by the Boussinesq buoyancy term, and this part
can be well described by two correction terms B(1)

C and B(2)
f − ρ′ f /ρ0. This can be useful

in the theoretical analysis on baroclinic effects in Rayleigh–Taylor instability. In addition,
the error of h(2) is greatly reduced as compared with that of hB (figure 4b), indicating that
B̂(2) is a higher-order correction instead of BL. Figure 4(b) also shows that the error of h(3)
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Figure 5. Contours and solid isolines with isovalue 0 at t = 1.54 of (a)θ†, (b)θB, (c)θL and (d)θ(2). The
purple dashed lines in (b–d) represent the isoline of θ†. White lines denote the vertical positions of spike

fronts.

is significantly reduced as compared with that of h(2). This supports the convergence of
the modified equations (§ 3.2.2) with B̂(n) and increasing n.

4. Conclusion

In the present paper, a regular perturbation method is applied to the hydrodynamic
pressure equation, leading to a sequence of Poisson equations. The solutions of the
Poisson equations form a series expansion of baroclinic torque, and thus the error
analysis of any buoyancy term can be performed. We examined the errors related to
several existing buoyancy terms, and identified invalid buoyancy terms which may lead
to wrong predictions on flow physics. New types of buoyancy terms constructed with
the perturbation solutions, namely the nth-order partial buoyancy terms, type-I buoyancy
terms and type-II buoyancy terms, are proved to be accurate theoretically and numerically.
In addition, we discussed the frame invariance of the buoyancy terms and found that
the type-I buoyancy terms are invariant under classical frame transformations, while the
Boussinesq gravitational buoyancy term and the type-II buoyancy terms are invariant
under frame transformations between inertial frames.

Two numerical cases, static vertical convection and transient Rayleigh–Taylor instability,
were simulated to examine the accuracy of our newly proposed type-II buoyancy terms.
The results confirmed that the relative error of B̂(n) is O(εn), as expected. Furthermore, the
results in Rayleigh–Taylor instability suggest that the extra contribution from B̂(2) over the
Boussinesq buoyancy term is the key factor to determine the asymmetry of the evolution
of the bubbles and spikes. This may help us to understand the underlying physics related
to the baroclinic effect theoretically.

Finally, we would like to stress that the present type-I and type-II buoyancy terms might
be useful in variable-density flow simulations where spectral Poisson solvers are used.
In addition, numerical simulations indicate that for buoyancy-driven flows with small or
medium density variation, the second-order type-II buoyancy term is sufficiently accurate
and it only requires one extra Poisson equation to be solved.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.896.
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Appendix A. Numerical procedure for B̂(2)

Following the definition (2.21), the second-order type-II buoyancy term B̂(2) can be written
as

B̂(2) = ρ′

ρ
f + ερ′

ρ0ρ
∇Π̂(1), (A1)

where Π̂(1) could be computed by solving the Poisson equation

V : ∇2Π̂(1) = ε−1ρ0

[
∇ ·

(
C + D + ρ′

ρ
f
)

+ ∂

∂t

(
Q
ρ

)]
,

∂V : n · ∇Π̂(1) = ε−1ρ0

[
n ·

(
C + D + ρ′

ρ
f
)

+ ∂(n · u)

∂t
− ∂n

∂t
· u

]
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A2)
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