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A COMPARISON OF NUMERICAL
METHODS FOR THE SOLUTION OF
CONTINUOUS-TIME DSGE MODELS
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This study evaluates the accuracy of a set of techniques that approximate the solution of
continuous-time Dynamic Stochastic General Equilibrium models. Using the neoclassical
growth model, I compare linear-quadratic, perturbation, and projection methods. All
techniques are applied to the Hamilton–Jacobi–Bellman equation and the optimality
conditions that define the general equilibrium of the economy. Two cases are studied
depending on whether a closed-form solution is available. I also analyze how different
degrees of non-linearities affect the approximated solution. The results encourage the use
of perturbations for reasonable values of the structural parameters of the model and
suggest the use of projection methods when a high degree of accuracy is required.
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1. INTRODUCTION

During the last 20 years macroeconomy has experienced a convergence in method-
ology to what is known today as Dynamic Stochastic General Equilibrium (DSGE)
models [see Blanchard (2009)]. In general, it is not possible to derive analytical
solutions for the policy functions that describe the equilibrium outcomes of these
models. Economists have restored to numerical methods that differ in accuracy
and computational costs to approximate these unknown functions. The differences
across methods were initially studied in Taylor and Uhlig (1990) and later on in
Aruoba et al. (2006) for discrete-time economies. However, little attention has been
paid in this regard to structural stochastic dynamic models in continuous-time.
This paper attempts to fill this gap in the literature, and therefore, it complements
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previous works by Judd (1996), Gaspar and Judd (1997), Judd (1998), Miranda
and Fackler (2002), Kompas and Chu (2012), and Posch and Trimborn (2013).

Macroeconomic models in continuous-time exhibit some theoretical and com-
putational features that make it, in some cases, more attractive than their discrete-
time counterpart. They are sometimes preferred because of their analytical
tractability. In fact, it is possible to derive closed-form solutions for a wider
class of models without the need for strong parametric restrictions. In addition,
since the decision interval of the model is not tied to the observation interval in the
data, continuous-time models do not impose a priori a perfect synchronization of
decisions among economic agents. They also allow for a clear distinction between
flows and stocks in the economy as shown for example in Bergstrom (1984) and
Harvey and Stock (1989). Continuous-time methods have also become popular in
macro-finance since they provide a simple and tractable framework to integrate
asset pricing theories studied in the finance literature to the real side of the econ-
omy. Examples of the potential benefits of continuous-time macro-finance models
include Brennan (1998), Grinols and Turnovsky (1993), Xia (2001), Posch (2011),
Wachter (2013), among many others. Finally, continuous-time methods are also
well-suited to study situations where actions are taken infrequently because they
entail a fixed cost [“impulse control" problems as described in Stokey (2009)]. For
instance, the decision of a country to default on its sovereign debt under different
monetary policy regimes can be analyzed using these techniques, as in Nuño and
Thomas (2015).

From a computational perspective, continuous-time models are a promising tool
to the extent that the optimality conditions that describe the equilibrium allocations
of a stochastic economy are deterministic [Chang (2009)]. Therefore, there is no
need to approximate expected values, and hence, the computational cost and the
numerical errors can be reduced. As shown in Doraszelski and Judd (2012), the
continuous-time framework also reduces the curse of dimensionality given that the
dynamic programming equation does not include any composition of functions or
expectation operators. However, these advantages come at a small cost as now the
problem requires the approximations of the second-order derivatives of the value
function.

The purpose of this paper is to assess the performance of different numerical
methods to compute an approximated solution of continuous-time DSGE mod-
els based on the maximized Hamilton–Jacobi–Bellman (HJB) equation and the
first-order conditions that describe the general equilibrium of the economy. In
particular, I compare the results obtained from using (i) linear-quadratic (LQ) ap-
proximations; (ii) first- and second-order perturbations; and (iii) projection meth-
ods. Despite being all well-known procedures, little is known about their relative
performance. The methods are evaluated in terms of accuracy and computing time
when applied to a continuous-time version of the stochastic neoclassical growth
model with endogenous labor studied in Aruoba et al. (2006). Under a suitable
parameterization, the model admits a closed-form solution that can be used to
assess the different approximations.1 The robustness of the methods is checked by
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using alternative calibrations that differ in the degree of non-linearities introduced
into the model.

Three main results are obtained from this exercise. First, I find that despite
their conceptual and computational differences, all methods provide an acceptable
degree of accuracy around the deterministic steady state. This result is robust to
different values of the volatility of the exogenous processes as long as the risk
aversion parameter is not unreasonably high. Outside the deterministic steady state,
projection methods are the most reliable and stable, although highly dependent on
a good initial guess.

Second, despite perturbation being only locally accurate, the increase in the
order of approximation, which can be done at a low additional computational cost,
improves substantially the goodness of fit. However, as mentioned in Den Haan
and De Wind (2010) and Aldrich and Kung (2010), some caution is needed when
relying in the virtues of perturbation since Taylor approximations are only accurate
within a radius of convergence around the point of approximation. Hence, if the
grid of the state variables includes values that lie outside this radius of convergence,
a local approximation can deteriorate rapidly regardless of its order.

Third, LQ approximations are usually less accurate than perturbation methods
despite both of them using the same local information to build the approximation.
When the method is applied to models with linearized constraints, the policy
functions are incorrectly approximated outside the deterministic steady state.
However, if the constraints are linear by construction, the optimal policies are
correctly approximated for a given radius of convergence. Such a distinction does
not affect the approximation of the value function.

Similar to the recommendations of Aruoba et al. (2006) for discrete-time mod-
els, the results obtained in this paper should stimulate the use of perturbation
methods, preferably with orders of approximation higher than one, and suggest
relying on projection techniques whenever high accuracy and stability are needed.

The rest of the paper is organized as follows. Section 2 describes the general
stochastic control problem and summarizes the different methods used to approx-
imate its solution. Section 3 presents the benchmark model that will be used to
test the different numerical techniques and establishes the conditions under which
a closed-form solution exists. Section 4 reports the numerical results and accuracy
measures obtained under different setups and calibrations, and presents a brief
discussion on computing time. Finally, Section 5 concludes.

2. GENERAL PROBLEM AND SOLUTION METHODS

Let (�,F , P ) be a filtered probability space with filtration {Ft } , st ∈ S ⊂ Rm
+ an

m-dimensional vector of predetermined endogenous and exogenous state variables
at time t with right-continuous sample paths, left-hand limit, and initial value s0,
and ct ∈ D (S) ⊂ Rn

+ an n-dimensional vector of non-negative endogenous-
control variables at time t whose coordinates are functions of the state variables.
The set D (S) denotes the set of admissible controls. The evolution of the state

https://doi.org/10.1017/S1365100516000821 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100516000821


1558 JUAN CARLOS PARRA-ALVAREZ

vector is given by the autonomous controlled diffusion process:

dst = μ (st , ct ) dt + �1/2 (st , ct ) dBt , (1)

where μ(st , ct ) ∈ Rm and �1/2(st , ct ) ∈ Rmp are the real-valued drift vector
Lipschitzian function and real-valued square root variance–covariance matrix Lip-
schitzian function, respectively. Bt is a p-dimensional vector of standard Brownian
motions representing stochastic disturbances that affect the state variables. Define
�(st , ct ) = �1/2(st , ct )�

1/2(st , ct )
′ ∈ Rmp to be the variance–covariance matrix

of those disturbances.
The decision problem of the agent corresponds to the autonomous discounted

stochastic optimal control problem:

V (s0) = max
{ct }∞t=0∈D(st)

E0

∞∫
0

e−ρtπ (st , ct ) dt,

subject to equation (1) and s0 given, where E0 denotes the expectation operator
conditional on the information available at time t = 0, ρ > 0 is a constant
discount factor, and π(st , ct ) ∈ R is the time-homogeneous, continuous, and
integrable objective function. For simplicity, it is assumed that the variance–
covariance matrix of the disturbances is control independent. The function V (s0) ∈
R denotes the maximum expected value, or value function, obtained at t = 0 when
s = s0.

A necessary condition for optimality is given by the HJB equation2:

0 = max
ct∈D(st )

{
π (st , ct ) − ρV (st ) + μ (st , ct )∇V (st ) + 1

2
trace

(
� (st ) ∇2V (st )

)}
,

(2)
where ∇V (st ) is the gradient of the value function and ∇2V (st ) is the associated
Hessian matrix.

The first-order conditions for any interior solution are:

πc (st , ct ) + μc (st , ct )∇V (st ) = 0, (3)

for each ct ∈ ct , which implicitly makes the vector of controls a function of
the state vector, ct = P(st ). The vector function P : Rm → D(st ) maps every
possible value of the state vector at time t into the optimal control vector. The
implicit maximized (concentrated) HJB equation reads as follows:

0 = π (st ,P (st )) − ρV (st ) + μ (st ,P (st ))∇V (st ) + 1

2
trace

(
� (st )∇2V (st )

)
,

(4)
which together with the first-order conditions determines the unknown functions
V (st ) and P (st ) and forms the basis for all the numerical procedures to be
introduced later. A solution to the stochastic optimal control problem amounts to
finding these unknown functions such that they solve the continuum of problems
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described by equation (2). The mapping P is called policy function and represents
the optimal response of agents to a given set of state values.

In general, a solution to this problem can not be found analytically, and it is
necessary to use numerical methods to approximate it. In the following subsec-
tions, I briefly introduce different methods to numerically solve continuous-time
stochastic optimal control problems. In particular, I use LQ approximations, per-
turbations, and projection methods. Alternative techniques can be found in Tapiero
and Sulem (1994), Candler (2004), Posch and Trimborn (2013), and Achdou et al.
(2014). For a detailed explanation of each of the techniques I refer the reader to
the reference list.

2.1. Linear-Quadratic Approximation

LQ approximation uses local information to replace the original non-linear
stochastic optimal control problem with a more tractable problem for which a
solution can be easily found. In fact, it can be shown that the resulting policy
functions are linear in the state variables. LQ approximations have been exten-
sively used in economics. The first attempts to apply this technique in the field
can be found in Magill (1977a) for deterministic models and in Magill (1977b) for
stochastic models, even though the method only became popular after the seminal
paper of Kydland and Prescott (1982). Further developments and implementation
alternatives can be found in Anderson et al. (1996).

Formally, let ŝt = (st − sss) and ĉt = (ct −css) denote the absolute deviations of
the state and control variables from their deterministic steady-state values, respec-
tively. The LQ method approximates the original non-linear problem in (ŝt , ĉt ) by
constructing a second-order Taylor expansion of the objective function, π(st , ct ),
and a first-order Taylor expansion of equation (1) around the deterministic steady
state of the model. The LQ stochastic control problem is given by:

V (ŝ0) = max
{ĉt }∞t=0∈D(ŝt )

E0

∞∫
0

e−ρt
(
ŝ′
tRŝt + ĉ′

tQĉt + 2ĉ′
tW

′ŝt

)
dt,

subject to:

dŝt = [μs(sss, css)ŝt + μc(sss, css)ĉt ]dt + �1/2(sss)dBt ,

where now ŝt is an (1+m)×1 vector with the first element being the constant 1. The
matrices μs(sss, css), μc(sss, css), and �1/2(sss) are of dimensions (1+m)×(1+m),
(1 + m) × n, and (1 + m) × p respectively with the elements of their first rows
all equal to zero. Furthermore, R, Q, and W are the (1 + m) × (1 + m), n × n,
and (1 + m) × n matrices resulting from the second-order Taylor expansion of
π(st , ct ), respectively. A detailed derivation of their components can be found in
McCandless (2008).
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Following Ljungqvist and Sargent (2004), I introduce an equivalent problem
without cross-products between the states and controls. The transformed LQ
stochastic control problem becomes:

V (ŝ0) = max
{ĉt }∞t=0∈D(ŝt )

E0

∞∫
0

e−ρt
(

ŝ′
t R̄ŝt + ĉ�′

t Qĉ�
t

)
dt,

subject to:

dŝt = [
μ̄s

(
sss, css) ŝt + μc

(
sss, css) ĉ�

t

]
dt + �1/2 (

sss) dBt ,

with R̄ = R − WQ−1W′ and μ̄s(sss, css) = μs(sss, css) − μc(sss, css)Q−1W′, and
where the new control vector ĉ�

t is related to the original control ĉt by ĉ�
t =

Q−1W′ŝt + ĉt .
The associated HJB equation for the transformed LQ problem is given by:

0 = max
{ĉ�

t }∞t=0∈D(ŝt )

{(
ŝ′
t R̄ŝt + ĉ�′

t Qĉ�
t

)
− ρV (ŝt ) + (

μ̄s
(
sss, css

)
ŝt

+μc
(
sss, css

)
ĉ�
t

) ∇V (ŝt ) + 1

2
trace

(
�

(
sss

) ∇2V (ŝt )
)}

,

where the first-order conditions for any interior solution are:

ĉ�
t = −1

2
Q−1

[
μc

(
sss, css

)′ ∇V (ŝt )
′
]
,

i.e., the controls are linear in the co-state variables, ∇V (ŝt ).
Let Ṽ (st ) and P̃(st ) denote the approximated value and policy functions. Using

a guess-and-verify method, it can be shown that the optimal policy functions for
the LQ problem are given by:

P̃ (st ) = css − Q−1
[
W′ + μc

(
sss, css

)′
�1

]
ŝt ,

with associated value function:

Ṽ (ŝt ) = �0 + ŝ′
t�1ŝt ,

where �1 is the solution to the continuous-time algebraic Riccati equation:

0 =
[
μ̄s

(
sss, css

)′ − ρ

2
Im+1

]
�1 + �1

[
μ̄s

(
sss, css

) − ρ

2
Im+1

]
− [

�1μc
(
sss, css

)]
Q−1

[
μc

(
sss, css

)′
�1

]
+ R̄,

with Im+1 and (m + 1) identity matrix, and:

�0 = 1

ρ
trace

(
�

(
sss

)
�1

)
.
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An undesirable property of the LQ approximation is the imposition of the cer-
tainty equivalence property on the optimal policy function for stochastic models.
In particular note that ct is unaffected by �0, the only parameter that depends on
the stochastic assumptions made on the exogenous forces that drive the economy.

Moreover, the LQ method delivers slope coefficients of the approximated policy
function that are significantly different from the true coefficients whenever the con-
straints of the optimization problem are non-linear, and thus linearized by means
of a first-order Taylor expansion. This issue, usually referred to as the “naive” LQ
approximation, was initially pointed out in Judd (1998) and more recently studied
in Benigno and Woodford (2012). The divergence in the approximated coefficients
emerges as no information about the curvature of the state processes is included
in the approximation of the objective function.

One way to overcome this inaccuracy is by reformulating the original non-linear
stochastic control problem in such a way that the state processes are linear. De-
pending on the model at hand, this can be achieved by substituting the restrictions
of the problem into the objective function and using some linear non-stochastic
relations, e.g., market clearing or national account identities, to redefine the drift
of the state variables [see Kydland and Prescott (1982)].

2.2. Perturbation Method

The perturbation method approximates the true value and policy functions by
means of the implicit function theorem and the Taylor series expansion theorem.
The outcome will be a polynomial that approximates the true solution in a neigh-
borhood of a known solution. Following Judd (1998) and Kimball (2014), the
perturbation method can be summarized by the following simple steps:

1. Express problems (2) and (3) as a continuum of problems parameterized by the added
perturbation parameter ε with the solution for the case ε = 0 known.

2. Differentiate the continuum of problems with respect to the control variables, ct , the
state variables, st , and the perturbation parameter, ε. Where possible use the envelope
condition to simplify the resulting system of equations.

3. Solve for the implicitly defined derivatives at st = s0 and ε = 0, where s0 denotes
the vector of approximation points. For the benchmark model studied in Section 3,
the approximation is made around the deterministic steady state, s0 = sss, and the
associated deterministic model, ε = 0.

4. Compute the desired order of approximation by means of Taylor’s theorem and set
ε = 1. In general, the order of approximation should be determined by the first
non-trivial term or dominant term, that is, apply a Taylor approximation until the first
zero term is reached.

Formally, the autonomous diffusion process in equation (1) is extended with
the new parameter ε that measures the amount of variance in the model:

dst = μ (st , ct ) dt + √
ε�1/2 (st ) dBt ,
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and hence, the “perturbed" maximized HJB equation and first-order conditions
are given by:

0 = π (st ,P (st , ε)) − ρV (st , ε) + μ (st ,P (st , ε))∇V (st , ε)

+ 1

2
ε trace

(
� (st ) ∇2V (st , ε)

)
,

and
πc (st ,P (st , ε)) + μc (st ,P (st , ε))∇V (st , ε) = 0.

Following Gaspar and Judd (1997), the perturbation technique is based on the
computation of a Taylor approximation for the unknown functions V (st , ε) and
P(st , ε) that take into account not only deviations of the state variables from
their steady-state values ŝt ≡ (st − sss), but also deviations from the deterministic
model as measured by ε. In particular, the second-order perturbation, expressed
in its tensor form, is given by

Ṽ (st , ε) = V ss,0 + V
ss,0
i ŝi

t + V ss,0
ε ε + V

ss,0
iε ŝi

t ε + 1

2
V

ss,0
ij ŝi

t ŝ
j
t + 1

2
V ss,0

εε ε2,

P̃ (st , ε) = P ss,0 + P ss,0
i ŝi

t + P ss,0
ε ε + P ss,0

iε ŝi
t ε + 1

2
P ss,0

ij ŝi
t ŝ

j
t + 1

2
P ss,0

εε ε2,

where V ss,0 ≡ V (sss, 0), V
ss,0
i ≡ ∑

i
∂V (sss,0)

∂si
t

, V ss,0
ε ≡ ∂V (sss,0)

∂ε
, V

ss,0
iε ≡∑

i
∂V (sss,0)

∂si
t ∂ε

, V
ss,0
ij ≡ ∑

i

∑
j

∂2V (sss,0)

∂si
t ∂sj

t

, and V ss,0
εε ≡ ∂2V (sss,0)

∂ε2 for i, j = {1, . . . , m}
and where ŝi

t denotes the ith component of the vector (st − sss). For the policy
function approximation a similar notation is used for each of its n components.

The constant terms in the approximations are given by the deterministic steady
state of the model. As shown in Gaspar and Judd (1997) and Judd (1998) the terms
associated with the first-order approximation of the policy function, i.e., Pss,0

i for
all i ∈ s and every n, correspond to the solution of a Ricatti equation with l roots,
where l is the number of equilibrium paths. Once the stable path is chosen, the
first-order approximation is completed and the computation of higher-order terms
becomes relatively simple since they are defined by the solution of linear systems
of equations.3

The main difference between perturbation methods for discrete-time and
continuous-time models is the existence of certainty equivalence. In discrete-
time, the first-order terms associated with the perturbation parameter are always
zero regardless of the properties of the economic model, making linearization
and first-order perturbation an equivalent procedure [see Judd (1998), Binsbergen
et al. (2012), and Caldara et al. (2012)]. However, as discussed in Judd (1996)
and in Gaspar and Judd (1997), the approximation of continuous-time stochastic
problems will display certainty equivalence if and only if the economic model ex-
hibits the property itself; for example, when the utility function is quadratic and/or
the diffusion terms are not only control but state independent. In this case, first-
order perturbation and linearization methods are not equivalent. This difference
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is particularly relevant for the computation of time-varying risk premia in macro-
finance models. While discrete-time models require a third-order perturbation to
achieve such time variation, continuous-time models only require a second-order
perturbation given that a first-order approximation already delivers a constant
premium.

2.3. Projection Methods

Projection-based methods are a widely used technique in applied mathematics
and numerical analysis to solve infinite-dimensional functional equations like the
HJB equation. It does so by approximating the unknown function by the closest
function in the polynomial space. This strategy transforms the original problem
into the problem of finding the coefficients of the approximating function.

Formally, let N1(V (st )) = 0 denote the functional operator defined by the HJB,
i.e., it defines a continuous operator that maps all possible value functions into the
HJB equation. In particular, this map is given by:

N1 (V (st )) := max
ct

{
π (st , ct ) − ρV (st ) + μ (st , ct ) ∇V (st )

+ 1

2
trace

(
� (st ) ∇2V (st )

)} = 0,

where ct is computed from the first-order conditions of the problem in equation
(3).

Let Q = {φk}Kk=0 be a given family of univariate polynomials. The first step of
any projection method is to assume a parametric approximation for the unknown
real-valued function V (st ):

Ṽ (a, st ) = �(st ) a, st ∈ S ⊂ Rm
+,

where a = (a0, . . . , aK) and �(st ) = ∏m
i=1 φi

ki
is the m-fold tensor product

polynomial for all ki = 0, 1, . . . , K and all i = 1, . . . , m4. Thus, for each st ∈
S ⊂ Rm

+ the maximized HJB equation becomes:

0 = max
ct

{
π (st , ct ) − ρ� (st ) a + μ (st , ct )∇�(st ) a

+ 1

2
trace

(
� (st ) ∇2�(st ) a

)}
,

with first-order conditions:

πc (st , ct ) + μc (st , ct )∇�(st ) a = 0,

for each ct ∈ ct , where ∇�(st ) and ∇2�(st ) denote the gradient and Hessian
matrix of �(st ), respectively. Note that the transformed problem is now finite-
dimensional. Instead of looking on the function of spaces for V (·), the task
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is to compute the (K + 1) coefficients {ak}Kk=0 such that the residual function,
R(a; st ) := N1(Ṽ (a, st )), is “as close to” zero as possible.

The second part of any projection method is to define a measure of “closeness".
Different projection methods imply different conditions on the residual function
when evaluated at different grid points. In particular, I consider two types of
projections: the least-squares projection method and the collocation method. The
former searches for the vector of parameters, aLS, that minimizes the sum of
squared residuals along all the grid points, whereas the latter looks for the vector
of parameters, aCOL, that makes the residual function zero at all grid points. The
implementation relies on a numerical optimization algorithm to find aLS and on
a root-finding algorithm to find aCOL. A detailed formulation of the different
projections can be found in Judd (1998) and Heer and Maussner (2009).5

When the problem at hand is highly non-linear, it is useful to make a simple
extension of the method described above. In order to give more flexibility to the
approximation and increase the accuracy of the algorithms, it is recommendable to
apply the projection technique to more than one functional equation. In particular,
it is optimal to approximate not only the HJB equation but also the policy functions
resulting from the non-linear first-order conditions, that is:

[N1 (V (st ))

N2 (P (st))

]
= 0,

where the second set of equations comes from the first-order conditions of the
stochastic control problem:

N2 (P (st)) := πc (st ,P (st)) + μc (st ,P (st)) ∇V (st ) = 0.

I now define two different parametric approximations:

Ṽ (a, st ) = �a (st ) a and P̃ (b, st ) = �b (st ) b, ∀st ∈ S ⊂ Rm
+,

which allow for more flexibility in the approximation through different basis func-
tions and basis points for each of the functional equations. Under this extension, the
problem becomes that of finding two different set of parameters a and b such that
the residual function R(a, b; st ) := [N1(Ṽ (a, st )),N2(P̃(b, st ))]� is “as close to"
zero as possible.

Regarding the selection of Q, I choose the set of orthogonal polynomials gen-
erated by the Chebyshev function. The grid or nodal points of the state vector
used in the approximation correspond to the zeros of the Chebyshev polynomials.
The combination of Chebyshev basis and nodes yields an extremely well-behaved
projection equation that can be solved accurately and efficiently even for high
degrees of approximation [Judd (1998)]. For this choice, the state variables in
S ⊂ Rm

+ must be transformed from their original domain since the Chebyshev
polynomials are only defined in [−1, 1]. This is achieved by using the map
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�(s
j
t ) = (2s

j
t − sj − sj )/(sj − sj ), where s

j
t ∈ [sj , sj ] and sj , sj are the

predefined bounds of the j th state variable.

3. BENCHMARK MODEL

I consider, as a test case, a modified version of the Real Business Cycle (RBC)
model described in Aruoba et al. (2006) where time is continuous, the capital
stock is subject to random shocks, and shocks to total factor productivity (TFP)
are heteroscedastic. The one-good in this economy is produced according to a
constant return to scale technology:

Yt = AtK
α
t L1−α

t , α ∈ (0, 1) , (5)

where At denotes the stationary TFP, Kt the aggregate capital stock, and Lt the
fraction of hours worked. I assume that the TFP is driven by a Cox–Ingersoll–Ross
(CIR) mean reverting stochastic process of the form:

dAt = κ (ω − At) dt + η
√

AtdBA,t , κ, ω > 0 and A0 > 0 given, (6)

where BA,t is a standard Brownian motion and η > 0 denotes the volatility of the
TFP. This process ensures that the random variable At only takes positive values.

On the other hand, aggregate capital, Kt , is accumulated according to

dKt = (It − δKt) dt + σKtdBK,t , K0 > 0 given, (7)

where It is the gross rate of investment, δ > 0 is the depreciation rate, and BK,t

an exogenous aggregate Brownian shock with volatility σ > 0. These shocks
can be interpreted as exogenous variation in the marginal efficiency of investment
and/or in the future productivity of the capital stock as justified in Furlanetto
and Seneca (2014) and Brunnermeier and Sannikov (2014). In particular, these
shocks represent changes in the firm’s expected future cash flows that could
undercapitalize the firm, or alter its balance sheet. Alternative interpretations of
shocks to capital accumulation can be found in Wälde (2011) and Gourio (2012).

The representative firm producing the one-good in the economy is owned by
households and assumed to operate in competitive markets. The optimal demands
for capital and labor are:

rt = αAtK
α−1
t L1−α

t and wt = (1 − α)AtK
α
t L−α

t , (8)

where rt is the rental rate of capital and wt is the real wage rate.
Following Turnovsky and Smith (2006) and Posch (2011), the representa-

tive household maximizes the expected discounted life-time utility derived from
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consumption, Ct , and leisure, (1 − Lt):

max
{Ct ,Lt }∞t=0

E0

∞∫
0

e−ρt

(
Ct (1 − Lt)

ψ
)1−γ

1 − γ
dt, ψ ≥ 0, γ > 0,

subject to the intertemporal budget constraint

dKt = ((rt − δ)Kt + wtLt − Ct) dt + σKtdBK,t , (9)

where ρ > 0 is the rate of time preference, ψ measures preference for leisure,
and γ denotes the inverse of the intertemporal elasticity of substitution (IES).
To ensure concavity of the utility function the consumption–leisure measure of
relative risk aversion has to be greater or equal to zero, i.e., γ − (1 − γ )ψ ≥ 0
[Swanson (2012)].

Under competitive markets the equilibrium allocations in a decentralized econ-
omy coincide with those of a social planner: A benevolent planner maximizes the
utility of the representative household subject to the production function [equation
(5)], the evolution of the TFP [equation (6)], the evolution of the capital stock
[equation (7)], the market clearing condition Yt = Ct + It and some initial values
K0 > 0 and A0 > 0. The first-order conditions for any interior solution are:

(
Ct (1 − Lt)

ψ
)1−γ

Ct

= VK (Kt , At ) , (10)

ψ

(
Ct (1 − Lt)

ψ
)1−γ

(1 − Lt)
= (1 − α) AtK

α
t L−α

t VK (Kt , At ) , (11)

making optimal consumption and the optimal fraction of hours worked implicit
functions of the state variables, i.e., Ct = C (Kt,At ) and Lt = L (Kt,At ).
The solution to the planner’s problem is fully characterized by the maximized
(concentrated) HJB equation:

ρV (Kt , At ) =
(
C (Kt,At ) (1 − L (Kt,At ))

ψ
)1−γ

1 − γ

+ (
AtK

α
t L (Kt , At )

1−α − δKt − C (Kt,At )
)
VK (Kt , At )

+ κ (ω − At) VA (Kt , At ) + 1

2
σ 2K2

t VKK (Kt , At ) + 1

2
η2AtVAA (Kt , At ) ,

(12)

for any t ∈ [0,∞) and where V (Kt , At ) is the value function and denotes the
value at instant t of the planner’s expected utility along the optimal program.
Equation (12) defines a functional equation in the unknown value and policy
functions. Solving for the equilibrium of this economy amounts to find in the
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space of functions for V (Kt , At ), C(Kt,At ), and L(Kt,At ) such that given a
random path for the exogenous process, {At }∞t=0, and an initial condition K0 > 0:

1. the planner solves his problem, i.e., equation (12) is satisfied at every instant of time,
2. the accumulation constraints (6) and (7) are satisfied at every instant of time, and
3. the goods market clears, Yt = Ct + It .

In general, the planner’s problem does not admit a closed-form solution. How-
ever, under some parametric restrictions it is possible to derive analytical expres-
sions for the value and policy functions. The parameterizations under which it
is possible to derive a closed-form solution provide a benchmark to assess the
accuracy of the numerical approximations.

PROPOSITION 3.1 (Constant savings function). Suppose that total factor
productivity is constant, i.e., At = Ā. Let ψ > 0, γ ≥ 1 and ρ = ρ̄ with

ρ̄ = − (1 − αγ )

(
δ + 1

2
αγσ 2

)
> 0,

then, the value function is given by

V (Kt , Ā) = �
K

1−αγ
t

1 − αγ
, (13)

where the constant � is given by

� =
(

− (1 − s)(1−γ ) Ā(1−γ )L(1−α)(1−γ )(1 − L)ψ(1−γ )

(1 − γ ) ĀL(1−α) − (1 − γ ) (1 − s)ĀL(1−α)

)
,

and

1 − s ≡ (1 − α) (1 − L)

ψL

denotes the constant propensity to consume out of income. Then, the optimal
consumption will be a constant fraction of income:

C(Kt, Ā) = (1 − s)ĀKα
t L1−α, (14)

and the optimal fraction of hours supplied will be constant:

L(Kt, Ā) = γ (1 − α)

γ (1 − α) − ψ(1 − γ )
∈ [0, 1] . (15)

Proof. See Posch (2011)

Using equations (6)–(8), (10), and (11) together with the first-order derivatives
of equation (12) with respect to the state variables, it is possible to derive the
deterministic steady state of the economy. This is given by the quantities: rss =
ρ +δ, Ass = ω, Lss = (1−α)/(1+ψ−α− αψδ

ρ+δ
), Kss = (αAss/(ρ +δ))

1
1−α Lss, wss = (1−

α)Ass(Kss)α(Lss)−α , Css = (rss−δ)Kss+wssLss , and V ss = (Css(1−Lss)ψ )1−γ/ρ(1−γ ),
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which will be used for the implementation of the perturbation method and the LQ
approximation.

The model just outlined has an equivalent representation with investment and
leisure as control variables. Under this alternative setup the drift of the stochas-
tic differential equation describing the capital stock is linear in the control and
state variables. This formulation will be used later to compute an alternative LQ
approximation of the policy functions with correct coefficients as mentioned in
Section 2.1. This representation can be found in Appendix A.1.

4. NUMERICAL RESULTS

4.1. Calibration

To evaluate the performance of the different numerical methods I carry out two
types of exercises. First, I use the analytical solution in Proposition 3.1 to assess
their accuracy by comparing deviations of the numerical approximations from the
true solution. Later, I use the model without parametric restrictions and evaluate
their relative performance using a different set of accuracy measures.

The parameter values used in both exercises are taken from Aruoba et al. (2006)
and match some salient features of the US economy. They are reported in the
last column of Table 1. The rate of time preference is set to ρ = 0.0105 to
match a 4% annual interest rate; the risk aversion parameter γ is fixed to 2, a
value widely used in the literature; the share of labor in aggregate output and
the depreciation rate are set to α = 0.4 and δ = 0.0196, respectively, whereas
the leisure preference parameter is fixed to ψ = 1.8011 to match a labor supply
of 31% in the steady state. Regarding the stochastic components of the model,
the volatility of the capital stock accumulation is set equal to zero to match the
calibration used in Aruoba et al. (2006), whereas κ , ω, and η are chosen to match the
properties of the Solow residual in the US economy. In particular, η = 0.007 and
κ = 0.05 closely match the statistical properties of the Solow residual derived from
equation (5) under the assumption that changes in the quarterly stock of capital are
approximately zero. This choice of parameters implies a model’s output volatility
of Std[log (Yt )] = 1.09% per quarter, close to that observed in the post-war period,
Std[log (GDP)] = 0.96%.

However, the first exercise uses the modified parameterization reported in the
first column of Table 1, which allows me to use the closed-form solution in
Proposition 3.1. The risk aversion parameter is then set to 3.85 to obtain a “knife-
edge” value for the rate of time preference, ρ̄, close to 0.0105; the TFP is fixed
to At = Ā = 1 for all t ; and to allow for some randomness I set the standard
deviation of the shocks to the capital stock, σ , to be 0.001.

In Section 4.3, the second exercise is repeated using alternative calibrations in
order to check the robustness of the solution methods to different degrees of non-
linearities of the model arising from the risk aversion parameter and the volatility
of the disturbances. Table 2 summarizes the alternative scenarios.

https://doi.org/10.1017/S1365100516000821 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100516000821


CONTINUOUS-TIME DSGE MODELS 1569

TABLE 1. Benchmark calibration

Parameter Analytical sol. No analytical sol.

ρ ρ̄ 0.0105
ψ 1.8011 1.8011
γ 3.85 2.00
α 0.4 0.4
δ 0.0196 0.0196
σ 0.001 0.000
κ N.A. 0.05
ω N.A. 1.00
η N.A. 0.007
Ā 1.00 N.A

In the model, time is measured in quarters and parameter values should be interpreted accordingly. The aggregate
capital stock in the economy evolves according to

dKt = (
AtK

α
t L1−α

t − δKt − Ct

)
dt + σKtdBK,t ,

where BK,t is a standard Brownian motion. The dynamics of total factor productivity is given by

dAt = κ (ω − At ) dt + η
√

AtdBA,t ,

where BA,t is a standard Brownian motion independent of BK,t . The representative agent has standard preferences
defined by Vt = Et

[∫ ∞
t

e−ρt u (Cs , Ls) ds
]
, where

u (Ct , Lt ) =
(
Ct (1 − Lt )

ψ
)1−γ

1 − γ
.

TABLE 2. Sensitivity analysis

η = 0.007 η = 0.035

Case σ = 0.000 σ = 0.001 σ = 0.000 σ = 0.001

γ = 0.65 M1 M3 M6 M8
γ = 2 Benchmark M4 M7 M9
γ = 10 M2 M5 Extreme I Extreme II

The value γ = 0.65 was chosen in such a way that the concavity condition for the utility function was fulfilled
given the calibrated value of ψ .

4.2. Value Function, Policy Functions, and HJB Equation Residuals

Figure 1 plots the approximated value and policy functions and their corresponding
true values under Proposition 3.1. From the analytical solution it is clear that the
value function exhibits a very steep slope for low values of the capital stock.
Therefore, it seems relevant to include values of the capital stock that are away
from its deterministic steady state in order to compare the performance of the
approximation methods around regions where the value function is highly non-
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Ā

)

Value function

 

 

Perturbation order 1
Perturbation order 2
Collocation
OLS
LQ: Consumption

LQ: Investment

True policy function

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

1

1.1

1.2

1.3

1.4

1.5

Consumption Function

C
(K

t
,
Ā
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FIGURE 1. Approximated vs. true value and policy functions. The graph plots the value
function and the policy functions for consumption and labor supply along the interval
[0.5K ss, 1.5K ss] using different approximation methods as well as the closed form repre-
sentation available under Proposition 3.1.

linear. The approximations are computed along the interval [0.5Kss, 1.5Kss]. For
projection methods, I first compute a 17th degree Chebyshev approximation using
the true function values as a starting point. Given the width of the state-space, a
fewer number of nodes result in non-accurate and non-smooth policy functions.
Once the coefficients of the approximated solution are found, I use linear interpo-
lation on a set of nK = 1000 equally spaced points to evaluate the accuracy of the
method. The same number of equally spaced points in the state-space are used to
evaluate the local approximation methods.6

As expected from theory, global approximations (projection methods) outper-
form local approximations (perturbation and LQ approximations) for levels of the
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capital stock away from its steady state. However, note the improvement obtained
by moving from a first to a second-order perturbation, in particular, the correction
of about 100% in the curvature of the value function at the lower bound of the
grid. Hence, provided that such an approximation remains within the radius of
convergence as we increase the order of perturbation, this result encourages the
computation of higher-order perturbations which, as will be shown later, come at
no significant extra computing cost.

Regarding the accuracy of the LQ approximation, two points are worth to men-
tion. First, when the “naive" LQ approximation is used, the slopes of the policy
functions are miscalculated as discussed in Section 2.1. This can be easily iden-
tified in the middle panel of Figure 1 under the label LQ:consumption. However,
if the equivalent representation described in Appendix A.1 is used, the slopes of
the approximations are correctly computed as shown by LQ:investment. Since the
restrictions of the alternative optimization problem are linear, no information is
lost in the approximation step of the objective function. Second, the effect of linear
vs. linearized budget constraints affects the approximation of the value function
in a less considerable way.

To complement the previous findings, I compute the following measures intro-
duced in Collard and Juillard (2001) to evaluate the quality of the approximations:

El
1 = 100 × 1

nK

nK∑
i=1

∣∣∣∣∣f (Ki, A
ss) − f̂ l (Ki, A

ss)

f (Ki, Ass)

∣∣∣∣∣ ,
and

El
∞ = 100 × max

i

{∣∣∣∣∣f (Ki, A
ss) − f̂ l (Ki, A

ss)

f (Ki, Ass)

∣∣∣∣∣
}

,

where f (Ki, A
ss) denotes the true solution of either the value or the policy func-

tions evaluated at grid point i, f̂ l(Ki, A
ss) the approximation obtained by method

l evaluated at grid point i, and nK the number of grid points in the state-space. The
statistic El

1 measures the average relative error of using the approximation instead
the true solution, whereas El

∞ measures the maximum relative error. Sometimes,
the latter is preferred since it bounds the error made by using the approximation
instead of the true function [Aruoba et al. (2006)]. The results are shown in
Table 3.

Overall, the results suggest the use of projection methods over the alternatives
for the solution of continuous-time DSGE models: a maximum error of 0.16%
for the case of the value function when using collocations. However, as it will
be shown later, a greater level of accuracy requires more computing time relative
to perturbation or LQ methods, which might relegate it from an econometric
perspective where the solution of the model is needed at each iteration of the
estimation procedure, e.g., maximum likelihood. On the other hand, one alternative
to improve the accuracy of perturbation for any given degree of approximation is
to use rational functions. This parametric method, known as Padé approximations,
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TABLE 3. Accuracy check for benchmark model under Proposition 3.1 (%)

Value function Consumption Labor supply

Method E1 E∞ E1 E∞ E1 E∞

Perturbation 1 11.2008 57.1436 6.8988 60.7601 0.0000 0.0001
Perturbation 2 6.6285 47.4301 3.1341 36.3450 0.0000 0.0000
Collocation 0.0275 0.1592 0.0948 0.4635 0.1201 0.5224
Least squares 0.0229 0.0904 0.0962 0.3863 0.1186 0.4430
LQ (cons.) 9.1221 53.3116 24.2086 135.8970 5.6952 13.5280
LQ (inv.) 6.6287 47.4303 2.4204 21.3193 0.0003 0.0004

The table reports the average relative error, E1, and the maximum relative error E∞ between the approximated and
true policy functions using each of the different approximation methods in percentage terms. Results are reported
for the value function and the policy functions for consumption and labor supply.
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FIGURE 2. Numerical error for benchmark model under Proposition 3.1. The graph plots
the log10 magnitude of the relative numerical error made by using the approximated value
function along the interval [0.5K ss, 1.5K ss]. The error is relative to the true value function.

has been proven to perform better away from the steady state. Judd and Guu
(1993) discuss its application in the context of a one state–one control variable
continuous-time stochastic growth model.7

Figure 2 plots the log10 magnitude of the relative numerical error obtained from
the approximation of the value function along all the state-space. A value of −6
indicates that for every million of units of welfare, the agent makes an error of
1 unit by using the approximation instead of the true function. The plot depicts the
global nature of projection methods as well as the local nature of perturbation and
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LQ methods where the approximation deteriorates as the capital stock moves away
from the steady state. However, note how the use of a second-order perturbation
or a LQ approximation with linear constraints reduces this error.

Next, I consider the general case where no closed-form solution is available.
The state-space in this scenario is given by R2

+. The approximations are com-
puted over [0.5Kss, 1.5Kss] × [A,A] where the grid along the TFP lattice is
designed following Heer and Maussner (2009): I set (A − A) equal to a multi-
ple of σA =

√
ω(η2/2κ), which corresponds to the limiting standard deviation of

equation (6).8 In particular, the grid for the TFP is defined as [Ass−5σA,Ass+5σA]
which for the AR(1) discrete-time representation of the Ornstein–Uhlenbeck pro-
cess has been shown to be a reasonably good approximation.

Projection methods use nine Chebyshev basis functions, and their initial values
are set according to the following rule-of-thumb: first obtain a local approximation
by means of a first-order perturbation; and then use this as an initial guess for the
least-squares approximation. Once a reasonable approximation has been found
(usually before 100,000 iterations using a trust-region-dogleg algorithm), use it as
an initial guess for the collocation method. When the latter converges, use it as a
starting value for the least-squares algorithm again to check for robustness. I use
the least-squares residual function first since it is less demanding in terms of the
projection criterion.

Figure 3 plots the value and policy functions for each of the numerical methods
using 301 grid points in each lattice and fixing the TFP at its steady-state value.
Plots for different values of the TFP can be easily derived and are available
upon request. A similar pattern to that described previously is obtained. All the
approximations are almost indistinguishable around the steady-state value of the
capital stock. However, some differences are found when moving away from that
point. In particular, LQ:consumption and perturbation of order one tend to diverge
outside the steady state from the approximations obtained by LQ:investment,
second-order perturbation, and projection methods.

The statistics E1 and E∞ defined previously cannot be used to evaluate the
performance of the different approximation methods since no closed-form solution
is available.9 Therefore, I follow Judd and Guu (1993) and compute the unit free
vector of HJB equation residuals for each of the procedures. A similar measure,
usually called Euler equation errors, is used in discrete-time analysis of DSGE
models.10 The idea is to check how much N1(V̂ (Ki, Aj )) for i = 1, . . . , nK ,
j = 1, . . . , nA, as a fraction of the discounted steady-state value function, differs
from the zero function.11 I define the HJB equation residuals as:

Rl
HJB

(
Ki,Aj

) ≡
(
N1

(
V̂ l

(
Ki,Aj

))
ρV̂ l (Kss, Ass)

)
,

for all i, j in the state-space and approximation method l.12 This measure can be
interpreted as the relative optimization error incurred by the use of the approxi-
mated value and policy functions. It is an optimization error since the residuals
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FIGURE 3. Approximated value and policy functions for benchmark calibration. The graph
plots the value function and the policy functions for consumption and labor supply along
the interval [0.5K ss, 1.5K ss] and At = Ass using different approximation methods.

are computed from the maximized HJB equation. The results are summarized in
Table 4 where I have computed the statistics:

Ẽl
1 = 1

nAnK

nA∑
j=1

nK∑
i=1

Rl
HJB

(
Ki,Aj

)
and Ẽl

∞ = max
i,j

{
Rl

HJB

(
Ki,Aj

)}
,

where Ẽl
1 is the average HJB equation residual and Ẽl

∞ is the maximum HJB
equation residual. As before, the maximum HJB equation residual bounds the error
made by using a particular approximation method. Once again global methods
outperform local methods. Furthermore, the differences between first- and second-
order perturbation indicate that the increase in the order of approximation reduces
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TABLE 4. HJB residuals for benchmark calibration

Method Ẽ1 Ẽ∞

Perturbation 1 −1.6243 −0.5889
Perturbation 2 −2.3272 −0.8374
Collocation −5.4546 −4.8822
Least Squares −5.3024 −4.5718
LQ (cons.) −0.8691 −0.1122
LQ (inv.) −0.6340 −0.1147

The table reports the average HJB residual, Ẽ1, and the maximum HJB residual, Ẽ∞, for each of approximation
methods when applied to the approximation of the value function.

the numerical error in almost 100%. A similar conclusion is obtained by looking
at both types of LQ approximations.

Figure 4 plots a transversal cut of the HJB equation residuals for At = Ass.
Figure A.1 in Appendix A.2 presents the HJB equation residuals on both dimen-
sions of the state-space for each of the numerical procedures. The superiority
of global methods relative to perturbation methods in both dimensions of the
state-space is clear from the results.

4.3. Robusteness Check

Table 5 reports the maximum HJB equation residuals under the alternative cali-
brations in Table 2. In particular, I analyze the effects of different values of the
risk aversion parameter and of increased volatility of shocks to productivity and
capital stock. These alternative scenarios can be used to assess the performance
of each of the approximation methods for different degrees of non-linearities in
the model. As an example, consider the scenario M7 in Table 2. By increasing the
TFP volatility from 0.007 to 0.035, while keeping the remaining parameters fixed
at the benchmark calibration, I evaluate the accuracy of the different methods to
approximate the solution of a model economy with a quarterly output volatility of
approximately 3.89%, that is, 280 basis points higher than in the benchmark econ-
omy. The value and policy functions as well as the transversal cuts of the residuals
are not plotted due to space considerations but are available upon request.

In terms of the relative performance of the numerical methods, the results are
robust to changes in the degree of non-linearities. Nevertheless, global methods
require additional computing time to converge relative to the benchmark case,
especially when the coefficient of risk aversion is high. In other words, changes
in the concavity of the utility function, and hence, in the concavity of the value
function reduce the computational efficiency of projection methods. Furthermore,
this effect dominates when compared to the additional computing time induced by
changes in the variance of the shocks. Despite this result, global methods exhibit
a superior level of accuracy relative to perturbations and LQ approximations.
The performance of the local methods deeply deteriorates for high levels of the
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FIGURE 4. HJB residuals for benchmark calibration. The graph plots the log10 magnitude
of the HJB residual along the interval [0.5K ss, 1.5K ss] for the different approximation
methods.

TABLE 5. Maximum HJB residuals for alternative calibrations

Pert. 1 Pert. 2 Coll. LS LQ (con.) LQ (inv.)

M1 −0.7104 −1.0813 −2.9793 −2.9793 −0.4211 −0.3793
M2 1.2829 1.2766 −4.4311 −3.7181 1.5801 1.6142
M3 −0.7104 −1.0813 −2.9793 −2.9801 −0.4211 −0.3793
M4 −0.5890 −0.8375 −4.8822 −4.8511 −0.1122 −0.1146
M5 1.2830 1.2766 −4.4313 −4.2401 1.5801 1.6142
M6 −0.5497 −0.7261 −2.4306 −2.4306 −0.0643 0.0441
M7 −0.3938 −0.7039 −3.1427 −3.1254 0.2949 0.4192
M8 −0.5536 −0.7252 −2.4306 −2.4305 −0.0643 0.1070
M9 −0.3984 −0.7039 −3.1456 −3.1476 0.2949 0.4192
Extreme 1 2.8473 2.5840 −2.3470 −2.3740 2.0828 2.2600
Extreme 2 2.8474 2.5841 −2.3742 −2.3742 2.0828 2.2600

The table reports the maximum HJB residual Ẽ∞ for each of approximation methods when applied to the
approximation of the value function under the different scenarios of Table 2.

risk aversion parameter as can be seen from HJB equation residuals crossing the
zero line under the extreme calibrations and scenarios M2 and M5.13 Similar
conclusions are obtained with the average HJB residuals, Ẽ1.

To reduce the impact of non-linearities on the implementation of projection
methods the rule-of-thumb suggested in Section 4.2 is complemented in the fol-
lowing recursive manner: Approximate the unknown functions on a narrow grid
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for the capital stock, e.g., between [0.95Kss, 1.05Kss], using as an initial guess
the solution from perturbation. Once a solution has been found, increase the size
of this lattice by a small amount, e.g., ±0.05Kss, while keeping fixed the number
of nodes in both dimensions and using as an initial value the previous solution.
Continue in this way until the solution for the desired grid has been found.

Although the accuracy of the different methods is similar to that reported for
discrete-time models, two main differences of economic importance emerge when
comparing my results to those reported in Aruoba et al. (2006).

First, high levels of risk aversion and extreme values of the volatility of shocks
yield levels of consumption and labor supply in the continuous-time setup that
differ substantially across approximation methods. On average, labor supply and
aggregate consumption are 51% higher and 23% lower respectively when using
perturbation and/or LQ methods relative to the levels obtained by projection meth-
ods. Although Aruoba et al. (2006) argue that this difference could be explained
by the certainty equivalence property that holds for discrete-time models, the fact
that first-order perturbation applied to continuous-time models does not exhibit
such a property invalidates their argument.

Second, Aruoba et al. (2006) conclude that for levels of γ > 40, highly risk-
averse agents will work hard whenever the capital stock is high in order to accu-
mulate even more capital to insure themselves against unforeseen bad times. In
that case, the slope of the labor supply function is shown to switch from negative
to positive. However, I find that for the model of Section 3, a value of γ = 10
already exhibits such a precautionary behavior.

The question of what explains the different levels of the aggregate variables and
what is the correct threshold for γ that shifts the slope of the labor supply function
remains unanswered and should be addressed in future research.

4.4. A Note on Implementation and Computing Time

I conclude this section with some remarks on the implementation and computing
time, although as argued in Aruoba et al. (2006) the running time for each of
the algorithms is of minor relevance when compared with the programming and
debugging time used in coding. Regarding the implementation, global methods
and the LQ approximation are implemented in Matlab R© 7.11.0. For projection
methods, I rely on the CompEcon Toolbox developed by Miranda and Fackler
(2002) to compute the Chebyshev polynomials and the Chebyshev nodes. On
the other hand, perturbation methods are implemented in Mathematica R© 7.0. The
main reason for using a different software for the latter is the inability of the
Symbolic Toolbox of Matlab R© to compute and evaluate derivatives of implicit
functions with respect to the state variables. All the computations are performed
in a 2.53 GHz Intel R© CoreTM2 Duo running Windows 7.

In terms of computing time, perturbation methods are the fastest with a first-
order approximation taking about 0.049 seconds to deliver the model’s solution
under the benchmark calibration. The second-order perturbation takes 0.577 sec-
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onds. Although using the same local information to compute the approximation,
LQ methods require between 0.651 and 2.167 seconds depending on whether the
budget constraint is linear or not. Finally, their dependence on an appropriate initial
guess makes projection methods the slower among the techniques studied in this
article.14 The collocation method uses 2.976 seconds to approximate the unknown
functions, whereas the least-squares method requires 965 seconds. However, it
is important to keep in mind that, conditional on an good initial guess, global
methods produce approximations that are closer to the true policy functions.

Although not being directly comparable, the previous computing times provide
initial and non-formal evidence indicating that continuous-time DSGE models can
be solved faster than their discrete-time counterpart. The computing times for the
discrete-time version of the benchmark model studied in this paper are reported in
Aruoba et al. (2006), and for the case of perturbation and projection methods the
authors report much higher running times. A formal assessment of this conclusion
should be addressed in future research.

5. CONCLUDING REMARKS

This article describes and compares different numerical methods to approximate
the solution of continuous-time DSGE models in the spirit of Taylor and Uhlig
(1990), Aruoba et al. (2006), and Caldara et al. (2012). A continuous-time version
of the stochastic neoclassical growth model with endogenous labor studied in
Aruoba et al. (2006) is used as a test case. Under plausible parameterizations, this
version of the model admits a closed-form solution that can be used to check the
accuracy of the different solution methods by measuring how far the approxima-
tions are from the true solution. When the model is left unrestricted, alternative
measures based on the HJB equation residuals are used to evaluate the performance
of the approximations. In particular, I compare the results obtained from using (i)
LQ approximations; (ii) first and second-order perturbation; and (iii) projection
methods.

Similarly to the discrete-time case, I find projection methods to be more accurate
and robust than perturbations for a wide range of values of the state-space centered
around the deterministic steady state. Their accuracy extends to different degrees
of non-linearities. In particular, I study the effect of different values of the risk
aversion parameter and higher values of the volatility of the shocks that hit the
economy. This becomes a relevant issue not only for its qualitative and quantitative
economic implications but also from an econometric perspective. When concerned
about the estimation of the structural parameters of the model, the econometrician
will be interested in studying the global shape of the approximated likelihood
function. This will not be possible if the solution of the model is built from
a local approximation. Furthermore, as shown in Rubio-Ramı́rez and Fernández-
Villaverde (2005), it is possible to obtain a better fit of the model to the data as well
as more accurate point estimates of the moments of the model by exploiting the
non-linear structure of the economic model, which can only be achieved through
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the use of global methods. However, all these advantages come at a non-negligible
cost. A good initial guess for the value function is required in order to obtain a
good approximation that increases the computing time of the solution and hence
compromises the feasibility of any econometric procedure.

On the other hand, the fit of perturbation and LQ approximations deteriorate
when the degree of non-linearities is increased. In particular, they deliver approx-
imated value and policy functions with a different level to that obtained by global
methods. It has been argued previously in the literature that this could be explained
by the lack of volatility correction implied by the certainty equivalence property.
However, as mentioned in this paper, perturbation methods do not exhibit this
property in the continuous-time framework and the same results are still obtained.
A future line of research should include the study of this result more deeply.

From an econometric point of view, the use of perturbations is usually preferred
since it makes the estimation of the deep parameters of the model simple and
fast. However, as described in Fernández-Villaverde et al. (2006), the approxima-
tion error arising from the solution modifies the likelihood function. Ackerberg
et al. (2009) have shown from a classical perspective that as the sample size
increases the convergence of the parameters of interest to the true parameter
vector is bounded by a term that is of the same magnitude as the approximation
error made in the solution of the model. In addition, the period by period error
made in the approximation accumulates at a rate exactly equal to the rate at
which the sample size grows, making the approximated likelihood diverge from
the exact likelihood. One way to circumvent these problems is to increase the
order of the approximation in the solution step that comes at a very low com-
putational cost, provided that such approximation remain within the radius of
convergence.

Finally, after gathering the computing times of each of the numerical methods,
I find that continuous-time DSGE modeling proves to be a promising area of
future research when compared to the discrete-time framework. The approxima-
tion methods use much less computing time in both perturbation and projection
methods since there is no need to approximate composition of unknown functions,
neither to numerically approximate the integrals associated with expected values.

NOTES

1. Although the findings reported in this article are model dependent, they help to understand the
different approximation methods, and a priori should carry over to other models.

2. A formal derivation of the HJB equation can be found in Chang (2009).
3. As mentioned in Judd (1998), the stable path corresponds to the root of the Ricatti equation that

ensures concavity of the value function at the deterministic steady state. In other words, pick the Pss,0
i

compatible with V
ss,0
ii < 0. If all the roots fulfill this condition, then it is not possible to proceed due

to the existence of indeterminacies in the economic model.
4. The family of multivariate polynomials generated by tensor products has the disadvantage of

growing exponentially with the dimension of the state-space. One way to overcome this problem is to
use the complete set of polynomials as discussed in Judd (1998) and Heer and Maussner (2009).

https://doi.org/10.1017/S1365100516000821 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100516000821


1580 JUAN CARLOS PARRA-ALVAREZ

5. A third type of projection called Garlekin projection is sometimes used in the literature. However,
I do not treat it here since it usually delivers an approximation similar to that of least squares.
Furthermore, by focusing only on collocation and least square projections I cover, from a more
technical point, both orthogonal and non-orthogonal residual functions respectively as explained in
McGrattan (2004).

6. The tolerance level for the iterative algorithms is fixed at E = 1.4901e−8.
7. Note that the perturbation method outperforms the projection method for the case of the labor

supply. This is due to the fact that for the solution under Proposition 3.1, labor supply is constant but
still its approximation depends on the approximation of a highly non-linear value function through
equation (11).

8. See Cox et al. (1985) for a derivation of this formula.
9. In the discrete-time literature it is common to use as “true solution” the approximation obtained

by value function iteration due to its convergence properties.
10. Alternative accuracy checks like the one proposed in Den Haan and Marcet (1994), or the

simulation based assessments used in Taylor and Uhlig (1990) and Aruoba et al. (2006), are not used
in this paper due to their discrete-time nature. Their implementation require a discretization procedure
for the partial/stochastic differential equations that describe the model adding more errors to those
already obtained in the approximation stage of the value and policy functions.

11. For projection methods, this measure is computed for the interpolated value and policy functions
and not for the functions at the approximation nodes.

12. To prevent for under- and over-flow problems, the measure is corrected by computing its base
10 logarithm and adding a small number, respectively.

13. Simple simulations show that the time paths generated by the models with all the alternative
calibrations are nonexplosive, and hence, perturbation methods remain valid approximations even for
high degrees on nonlinearities.

14. To compute the approximations when no closed form is available, I follow the rule-of-thumb
described in Section 4.2. However, it is important to keep in mind that this rule favors the collocation
method over least squares since more time is used in the latter in order to find a good initial candidate
for the former.
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APPENDIX

A.1. EQUIVALENT BENCHMARK MODEL

By using the aggregate resource constraint of the economy, Yt = Ct + It , equations (5) and
(7), the model described in Section 3 can be written in the following equivalent way:

V (K0, A0) ≡ max
{It ,Lt }∞t=0

E0

∞∫
0

e−ρt

((
AtK

α
t L1−α

t − It

)
(1 − Lt)

ψ
)1−γ

1 − γ
dt,

subject to:

dKt = (It − δKt ) dt + σKtdBK,t ,

dAt = κ (ω − At) dt + η
√

AtdBA,t ,
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where now the control variables are the level of investment, It , and the fraction of hours
worked, Lt . Note that under this alternative representation, the drift function of both
stochastic state processes is linear in the control and state variables.

Once the model has been solved for their respective policy functions it is possible to
recover the level of optimal consumption by using the aggregate resource constraint:

Ct = AtK
α
t L (Kt , At )

1−α − I (Kt , At ) .

A.2. HJB RESIDUALS

FIGURE A.1. HJB residuals Kt and At . The graph plots the HJB residuals under the
benchmark calibration along the entire state space for the different approximation methods.
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