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The instability of the interface between a dielectric and a conducting liquid, excited
by a spatially homogeneous interface-normal time-periodic electric field, is studied
based on experiments and theory. Special attention is paid to the spatial structure of
the excited Faraday waves. The dominant modes of the instability are extracted using
high-speed imaging in combination with an algorithm evaluating light refraction at the
liquid–liquid interface. The influence of the liquid viscosities on the critical voltage
corresponding to the onset of instability and on the dominant wavelength is studied.
Overall, good agreement with theoretical predictions that are based on viscous fluids in
an infinite domain is demonstrated. Depending on the relative influence of the domain
boundary, the patterns exhibit either discrete modes corresponding to surface harmonics or
boundary-independent patterns. The agreement between experiments and theory confirms
that the electrostatically forced Faraday instability is sufficiently well understood, which
may pave the way to control electrostatically driven instabilities. Last but not least, the
analogies to classical Faraday instabilities may enable new approaches to study effects
that have so far only been observed for mechanical forcing.
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1. Introduction

The first systematic investigation of the parametric excitation of a liquid layer on top
of a vibrating plate was reported by Faraday (1831), wherein the free fluid interface
exhibits a variety of patterns. Faraday used several techniques to visualize the interfacial
patterns, including the admixture of tracer particles to the fluid, investigating light
reflections, as well as the correlation of light absorption in a dyed liquid to the film
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thickness. The dominant pattern showed a dependency on the excitation frequency as
well as the amplitude, and Faraday reported the interface to oscillate with half the
excitation frequency. The latter observation was challenged by Matthiessen (1868, 1870),
who observed oscillations of the surface patterns with the same frequency as the actuation
(isochronous). In an attempt to clarify the contradictory results, Rayleigh (1883) repeated
the original experiments by Faraday and determined the interface to oscillate with half
the driving frequency. The theoretical description of the instability of a liquid layer under
harmonic oscillation was provided by Benjamin & Ursell (1954) in the limiting case of
an ideal fluid, resulting in a Mathieu equation. Depending on the forcing parameters,
interface oscillations isochronous with the forcing frequency (harmonic) or with half the
forcing frequency (subharmonic) are permitted, providing an explanation of the differing
observations. Later on, the effects of viscosity were incorporated into the stability analysis
by Kumar & Tuckerman (1994) utilizing Floquet analysis. While the inviscid theory results
in instability even at negligible forcing, viscous effects lead to finite forcing amplitudes
required to induce instability. With increasing liquid viscosity, the onset of instability
shifts to higher driving amplitudes. Comparison with experiments demonstrated good
agreement both for the critical forcing amplitude as well as the wavelengths observed
for the instability.

Analogous to the mechanical forcing, electric fields at fluid interfaces can induce
instabilities. Yih (1968) analysed the electrohydrodynamic equivalent to the work of
Benjamin & Ursell, where an interface between a conducting and a dielectric liquid was
exposed to a periodically varying electric field. The stability analysis of the inviscid fluids
resulted in a Mathieu equation, but since the Maxwell stress at the interface is proportional
to the square of the electric field, the interface oscillates either isochronously or with
twice the frequency of the applied voltage. Around the same time, other research efforts
involving electric fields acting on fluid interfaces were directed towards the response of a
liquid layer to a perpendicular DC field (Taylor & McEwan 1965), as well as the parametric
forcing in an AC field (Briskman & Shaidurov 1968). Further coupling mechanisms
between interfacial flow and electric fields were investigated in the context of induced
fluidic motion by travelling waves (Melcher 1966), tangential electric fields (Melcher &
Schwarz 1968) and interface shaping by electric fields (Jones & Melcher 1973). Iino,
Suzuki & Ikushima (1985) used an electrically induced resonance to determine the surface
tension of liquid helium. More recently, Robinson et al. (2000, 2001, 2002) analysed
the actuation of a liquid layer in an AC field within an ozone generator. Roberts &
Kumar (2009) investigated DC and AC actuation of a thin liquid film in the context of
pillaring instabilities and used the AC component as an additional means of control over
the pillar dimensions. The instability of a dielectric–dielectric interface was investigated
by Gambhire & Thaokar (2010), and conductivity effects were specifically addressed by
Gambhire & Thaokar (2012). Also, the instability of the interface between a dielectric and
a conducting liquid under AC fields accounting for Debye layer effects was studied by
Gambhire & Thaokar (2014). Pillai & Narayanan (2018) simulated the nonlinear evolution
of the interface between an conductor and dielectric in the long-wavelength limit under an
oscillatory electric field, demonstrating that the amplitudes of the Faraday waves saturate,
without further growth.

Only recently, the theory of Yih (1968) was extended to incorporate viscous effects,
similarly to the extension of Kumar & Tuckerman (1994) in the case of the mechanically
actuated Faraday instability. First, Bandopadhyay & Hardt (2017) used Floquet theory to
study the stability of a perfect dielectric on top of a perfectly conducting fluid, relating the
critical voltage and the instability wavenumber. The marginal stability curve was obtained
for single-frequency and multiple-frequency forcing. For single-frequency harmonic
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oscillations, the interface oscillates isochronously with the forcing frequency, and upon
multi-frequency excitation or additional DC offset, the marginal stability curve shows
both harmonic and subharmonic tongues. Ward, Matsumoto & Narayanan (2019) extended
the model by relaxing the assumption of perfectly dielectric and perfectly conducting
liquids and based their analysis on the leaky-dielectric model. Additionally, the voltage
corresponding to onset of instability for varying driving frequencies was validated for two
experimental test cases, showing good agreement with theory. Due to the restrictions of
the experimental set-up, no information could be retrieved about the dominant pattern
wavelengths. Instead, it was reported that the experimental domain was sufficiently
dimensioned to exclude any finite-size effects and that, for all observed instability modes,
a multitude of wavelengths emerged. The goal of the present paper is to extend the
experimental exploration of the electrostatically driven Faraday instability by analysing the
spatial structure of the instability and by determining the pattern wavelengths. Especially
the fact that a multitude of wavelengths was observed by Ward et al. for all experimental
conditions above the critical threshold warrants further exploration, since it contrasts
observations made for mechanically actuated Faraday waves. Here, usually a dominant
pattern wavelength emerges, as will be discussed below.

While the experimental work on electrically actuated Faraday waves is limited, a large
body of work exists on mechanically actuated Faraday waves. Using inviscid theory,
Benjamin & Ursell (1954) showed that the surface deflection of the Faraday instability
can be expanded in a complete orthogonal set of eigenfunctions, which for a circular
cylinder of radius R are of the form Sl,n = Jl(kl,nr) cos(lθ), where Jl denotes the Bessel
function of the first kind with positive integer values l, θ the azimuthal coordinate,
and kl,n the nth zero of J′

l(kl,nR). These discrete modes exhibit a specific dominant
wavenumber kl,n and the authors used the (2,1) mode for comparison between theory
and experiments. Similar modes were observed by Dodge, Kana & Abramson (1965)
and showed good agreement with the inviscid theory. Secondary instabilities at higher
driving amplitudes were observed by Gollub & Meyer (1983), with successive transitions
to spatial disorder of the initially ordered system. The interactions of different modes with
adjacent wavenumbers were investigated by Ciliberto & Gollub (1984), where periodic
and chaotic fluctuations between modes, as well as their superpositions, were observed.
Douady & Fauve (1988) studied the Faraday instability in a square container, leading to
rectangular patterns. Also, the role of the meniscus at the container wall was discussed,
since the presence of a sidewall meniscus influences the pattern selection. In subsequent
work (Douady 1990), the influence of the lateral boundary condition was further explored.
Here, meniscus effects were suppressed by pinning the meniscus and using a brim-full
container, resulting in pure modes. Contrarily, edge waves were introduced into the domain
when a meniscus with a contact angle different from 90◦ was present, which coupled to the
parametric excitation. The time average of chaotic patterns was studied by Gluckman et al.
(1993), revealing a highly ordered time-averaged system due to the long-range interactions
with the boundaries of a moderately large container. While previous research attempted to
reduce the meniscus effects at the domain boundary by pinning the contact line, Batson,
Zoueshtiagh & Narayanan (2013) used a different approach, where by proper selection
of fluids a wetting film at the wall was established, mimicking a moving contact line.
Thereby, the stress-free boundary condition was mimicked, allowing comparison with
theory, without including the effects of contact line dissipation. Recently, Shao et al.
(2021) investigated the mode selection in a brim-full container and demonstrated the
emergence of the first 50 resonant modes. If a concave meniscus was present, edge waves
were introduced, leading to complex mode mixing.
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The influence of the boundary depends on the magnitude of the dissipation: if the
dissipation is small, only a small band of wavenumbers becomes unstable above the onset
voltage, and the pattern selection depends on the allowed modes of the container. For larger
dissipation, a wide band of wavenumbers becomes unstable, and the pattern is selected by
nonlinearities and independent of the boundary (Edwards & Fauve 1994). In the literature,
a variety of patterns were reported. For example, Tufillaro, Ramshankar & Gollub (1989)
observed a rectangular pattern upon initial instability formation, which transitioned into a
disordered pattern with increasing driving amplitude. Edwards & Fauve (1994) observed
lines, squares, circles and spirals for the single-frequency forcing, and more complex
patterns upon multiple-frequency forcing. Also, the container-size influence was analysed,
demonstrating that both high viscosity and high-frequency driving increase the dissipation,
rendering the system independent of the boundary. The corresponding extension of the
work of Kumar & Tuckerman (1994) to multiple-frequency forcing was performed by
Besson, Edwards & Tuckerman (1996), and validated experimentally. In the following,
amplitude- and phase-resolved measurements of hexagonal and square structures were
performed by Kityk et al. (2005). The role of the frequency shift between the different
driving frequencies was analysed by Epstein & Fineberg (2008), resulting in a criterion
for mode mixing to occur. For additional information on Faraday instabilities, the reader
is referred to dedicated reviews on this topic, e.g. Nevolin (1984), Miles (1990), Perlin &
Schultz (2000) and Müller, Friedrich & Papathanassiou (2011).

From this short overview over the literature of mechanically excited Faraday waves,
it is apparent that both boundary-dominated systems as well as boundary independent
systems exhibit typical pattern wavelengths, which can even be retained after secondary
transitions to chaotic regimes. The present work aims to clarify which wavelengths and
instability patterns are observed for the electrostatically driven Faraday instability, in order
to extend the experiments performed by Ward et al. (2019). Also, we wish to scrutinize
the reported emergence of a multitude of wavelengths, without the presence of defined
eigenmodes, as this observation differs from the results obtained for mechanical actuation.
The remainder of the paper is structured as follows: in § 2, the experimental set-up
and the light refraction-based method to measure the pattern wavelength are introduced,
jointly with the interface reconstruction algorithm and the theoretical description. In
§ 3, experimentally obtained critical voltages and pattern wavelengths are presented for
varying electrolyte conductivity and liquid viscosity. Furthermore, the spatial structure
of the instability is presented, revealing the existence of discrete instability modes and
superpositions thereof. Also, the transition to a boundary-independent spatial structure of
the instability is observed for higher viscosity and driving frequency. Finally, the results
are summarized and discussed in § 4.

2. Experimental details and theoretical description

2.1. Experimental set-up
The experimental set-up is shown in figure 1(a). It consists of a cylindrical chamber, a high
voltage power source (HVS448 6000D, LabSmith, USA), a CMOS camera (FASTCAM
Mini AX, Photron, Japan) with a macro objective (SWM VR ED IF Micro 1:1, Nikon,
Japan), a LED panel (NL480, NEEWER, China) and a mirror cut from a silicon wafer. The
central part of the set-up is the cylindrical chamber that is described in the following and
represents a modification of the set-up used by Ward et al. (2019). A circular plate made of
stainless steel with a rectangular cut out of 4.6 cm × 4.6 cm serves as the bottom electrode,
leading to an observation region size of approximately 3.5 cm × 3.5 cm. In order to allow
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Figure 1. Experimental set-up and image processing principle. (a) Schematic of the experimental set-up used
throughout this study. A high voltage source is connected to the upper and lower electrodes of a cylindrical
container with diameter d. The container is filled with KCl solution up to a certain height h2. With a layer
of silicone oil of height h1 above the KCl solution the container is entirely filled. On the upper electrode
surface, a grid is formed by laser engraving. The grid is imaged during an experiment by a high-speed camera
via a mirror. Illumination is performed using a LED panel with a diffusor from below. (b) Schematic of the
measurement principle. The grid with a line spacing of 0.5 mm at the upper electrode is imaged and appears
distorted due to refraction at the liquid–liquid interface. From the distorted image, the original interface shape
can be reconstructed.

leakage free optical access from below, a rectangular glass window is glued into the cut
out using an UV adhesive (NOA68, Thorlabs, Germany), such that the electrode and the
window form a planar connection at the inside of the chamber. A glass cylinder of height
h ≈ h1 + h2 and diameter d allows optical observations from the side. In the present study
d = 125, h1 = 5, and h ≈ 35 mm. The cylinder is arranged between the bottom and the
top electrode by a non-conductive plastic holder, fixed by a set of plastic screws. Gaskets
(EPDM, APSOparts, Germany) between the glass cylinder and the electrodes assure a
leakage free connection. A filling port located close to boundary of the cylindrical top
plate with a diameter of 1 cm allows filling the chamber with liquids. At the surface of the
upper electrode facing the inside of the chamber, a grating is applied using laser ablation,
with a line distance of 0.5 mm. The grid is imaged through the liquid–liquid interface, and
due to refraction, a distorted image is recorded (see figure 1(b), red). From the distorted
image, the original liquid–liquid interface can be reconstructed, following the procedure
outlined by Moisy, Rabaud & Salsac (2009), as detailed in § 2.5.

To allow optical inspection of the chamber, a rectangular mirror fabricated from a
silicon wafer is mounted onto a goniometer (OWIS, Germany). It redirects the optical path
by 90◦, allowing recording by the horizontally oriented high-speed camera via a macro
objective. The goniometer allows fine adjustment of the optical path in two directions.
The illumination of the chamber is performed by a LED panel with a diffusor through the
glass window from below, leading to a dark grid appearing on a bright background. An
electric potential difference can be applied between the top and the bottom electrode via
connecting each to a separate channel of a high voltage source. The latter allows generating
an AC voltage signal of ±6000 V peak to peak, within a sufficiently large frequency range.
At each of the electrodes, a voltage of the form U0/2 sin(2πf ) with different sign is
applied, so that an overall potential difference U0 sin(2πf ) is present. The camera and
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the high voltage source are both connected to a computer and can be controlled via the
appropriate software from the hardware supplier (Photron Fastcam Viewer and Labsmith
Sequence).

2.2. Experimental procedure
In order to minimize the influence of any pollutant on the liquid and interfacial properties,
all parts of the chamber are cleaned thoroughly by rinsing them with isopropanol,
followed by deionized (DI) water. Then, the parts are blown dry in a nitrogen stream
and subsequently assembled to form a leakage free chamber, as sketched in figure 1(a).
The chamber is then placed onto a support rack on an air-cushioned optical table, and
aligned horizontally. Prior to the experiments, the optical components are aligned to ensure
a distortion-free, focused image of the grid at the upper electrode. Afterwards, the chamber
is filled by first pipetting the bottom liquid through the filling hole up to a level h2 and then
carefully adding a layer of silicone oil above the bottom liquid by the same technique, until
it overflows the filling hole. The liquids used in this study and their properties are described
in § 2.3. Before filling, the liquids are degassed within an excesscator for at least 30 min
to avoid gas bubbles in the set-up. The filling port is being covered to avoid dust or other
pollutants to enter the chamber after filling. Subsequently, the electrodes are connected to
the two separate channels of the high voltage source. Then, the grid is focused by adjusting
the focal plane of the objective.

In order to measure the critical voltage for a given pair of liquids and a given excitation
frequency, the driving signal is chosen with an amplitude well below the theoretically
calculated critical voltage. Then, the excitation is switched on and the system response,
i.e. the interface oscillation, is observed for three minutes, both through the camera
image and through the side wall of the glass cylinder. The excitation voltage amplitude
is subsequently increased, and the experiment is repeated as described above. In most
cases, it is possible to clearly distinguish between edge waves stemming from the domain
boundary and a critical interface response, i.e. Faraday waves. If the response of the system
exhibits Faraday waves, the image of the grid is recorded for 1 s at a framerate of 1000 f.p.s.
(f.p.s. – frames per second), starting 150 s after the voltage has been applied. Responses
without dedicated Faraday patterns are not recorded to reduce data overhead. In case of
an unclear or mixed system response, recordings are made for subsequent clarification via
image evaluation. As described in § 2.5, the data are post-processed in order to identify the
type of system response. In case of strong instabilities, it is necessary to stop an experiment
before three minutes have passed in order to prevent the bottom phase to touch the upper
electrode, since the deformation amplitude of the interface may increase continuously until
the interface contacts the upper electrode locally. In case of electric breakdown, liquid
of the bottom phase adheres to the upper electrode and influences the electric field in
subsequent experiments, thus necessitating a disassembly and cleaning of the chamber.
In case of the interface touching the upper electrode, the data were excluded from the
wavelength evaluation, while they were included in the evaluation of the critical voltage.

2.3. Fluids
The conducting lower phase consists of mixtures of DI water (specific resistance
18.2 M� cm, Milli-Q Integral 3, Millipore) and glycerol (CAS: 56-81-5, Quality: ≥99.5 %
water free, Sigma-Aldrich and Carl Roth, both Germany). Three different mass fractions
of glycerol are used: 0 wt%, 60 wt% and 70 wt%. Before use, the two components were
thoroughly mixed by magnetic stirrer for at least 24 h to ensure a homogeneous mixture.
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Liquid density viscosity relative permittivity refractive index
(g ml−1) (mPa s) (–) (–)

0.65 cSt 0.746 ± 0.015 0.48 ± 0.01 (c) 2.18 (l) 1.376
1 cSt 0.810 ± 0.005 0.81 ± 0.01 (c) 2.31 (l) 1.383
5 cSt 0.911 ± 0.000 4.55 ± 0.00 (c) 2.49 (l) 1.397
0 wt% 0.996 ± 0.010 1.00 (l) — 1.333
60 wt% 1.153 ± 0.004 9.38 ± 0.43 — 1.412
70 wt% 1.185 ± 0.022 19.69 ± 0.29 — 1.427

Table 1. Physical properties of the used liquids. The upper row shows data for the dielectric liquids
representing the upper phase, while the bottom row depicts data for the conducting liquids of the lower phase.
Mean values together with standard deviations are reported. In case of viscosity and dielectric permittivity, the
values are calculated (c), or taken from the respective data sheet (l).

Lower phase upper phase interfacial tension
(mN m−1)

0 wt% 0.65 cSt 39.6 ± 0.4
1 cSt 42.0 ± 0.1
5 cSt 35.9 ± 0.1

60 wt% 0.65 cSt 27.4 ± 0.1
70 wt% 0.65 cSt 25.7 ± 0.4

Table 2. Interfacial tensions between specific fluids. Mean values together with standard deviations are
reported.

A defined amount of potassium chloride (KCl, CAS: 7447-40-7, Quality: ACS Reagent,
Sigma-Aldrich, Germany) is added to the bottom phase to increase the conductivity. A
concentration of cKCl = 0.001 mol l−1 is used, except for the experiments performed to
specifically measure the influence of the concentration. The fluid data reported in table 1
and the interfacial tensions in table 2 were determined with this particular concentration.
For the sake of simplicity, the bottom phase fluids are identified by their glycerol mass
fraction as 0 wt%, 60 wt% and 70 wt%. Three silicone oils of different viscosity are used
(Silikonöl AK 0.65, Silikonöl B1 and Silikonöl B5, Silikon Profis, Germany) as dielectric
liquids, and hereinafter identified according to their kinematic viscosity as 0.65, 1 and
5 cSt. The fluid properties are summarized in table 1 and the interfacial tensions in table 2.
In Appendix A we report how the fluid properties were measured.

2.4. Theoretical description
The theoretical description of the instability is a modification of the approach by
Bandopadhyay & Hardt (2017), where the upper liquid is considered to be a perfect
dielectric, and the lower liquid to be a perfect conductor. Different from Bandopadhyay
& Hardt (2017), it is assumed that the upper layer thickness is small compared with that
of the lower layer, h1/h2 � 1, in order to simplify the resulting system of equations.
The theoretical approach is described in Appendix B, and only the key ideas will be
summarized in the following. Apart from the work by Bandopadhyay & Hardt (2017),
a theoretical description exists that takes into account that the dielectric phase can have a
non-negligible conductivity (Ward et al. 2019). The authors have shown that the results
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Figure 2. Theoretical results obtained for the fluid pair of 0.65 cSt silicone oil and 0 wt% glycerol (described
in § 2.3). (a) Marginal stability curve for a driving frequency of f = 2 Hz. Different wavenumbers become
unstable at different voltages, and the critical voltage Ucrit represents the voltage corresponding to onset of
instability considering all wavenumbers. (b) Stability map. For otherwise fixed parameters, the critical voltage
is plotted vs the driving frequency, and represents the experimentally measurable stability curve. (c) Critical
wavelength as a function of critical voltage. Corresponding wavelengths are expected to be observed close to
the onset of instability.

by Bandopadhyay & Hardt (2017) are reproduced in the limiting case of an infinite
conductivity ratio. This assumption is specifically revisited in § 3.1.

The system under investigation in Bandopadhyay & Hardt (2017) consists of two
immiscible fluid layers with thicknesses h1, h2 between two planar electrodes, as depicted
in figure 1(a), extending infinitely in the lateral direction. The density ρi and the dynamic
viscosity ηi of both fluids are given, as well as the relative permittivity of the dielectric
liquid ε1. The interface is located at the z-position ζ(xs, t), where xs denotes the position
in the xy-plane. The governing equations of the problem are Laplace’s equation of
electrostatics in the dielectric liquid, and the continuity and Navier–Stokes equations in
both liquids. The problem is solved using a domain perturbation method for the fluid
interface in combination with Floquet theory. Following the mathematical derivation
outlined in Appendix B, a generalized eigenvalue problem of the form

AZ = Ma B Z , (2.1)

is obtained, with the matrices A, B and the vector Z containing the Fourier coefficients of
ζ . The parameter Ma denotes the Mason number, which is defined as

Ma = ε1U2
0

4η1ωh2
1
, (2.2)

where ω denotes the angular frequency of the driving electric field. It is important to note
that the theoretical description is non-dimensional, however, in the following, the results
are shown in dimensionalized form in order to make them more accessible to the reader. As
the problem converges for a finite number of Fourier modes, as shown by Bandopadhyay
& Hardt (2017), (2.1) can be used to obtain the marginal stability curve for a given set of
fluid pairs, driving frequency and perturbation wavenumber k. As shown in the example
displayed in figure 2(a), the marginal stability curve takes the shape of tongues in the
voltage–wavenumber space, characteristic for Faraday instabilities. The lowest voltage for
a given fluid pair and driving frequency corresponds to the critical voltage Ucrit above
which the Faraday instability is expected to occur. The corresponding wavenumber kth is
the most unstable wavenumber, which we expect to observe close to the critical voltage.

Experimentally, the marginal stability curve for a given driving frequency is not readily
measurable. Upon increasing the driving voltage amplitude at a given frequency, a specific
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wavenumber kth becomes unstable first, at a corresponding critical voltage amplitude
Ucrit. With increasing amplitude, more wavenumbers become unstable. However, in the
absence of an exclusion mechanism, e.g. a finite domain size, we can only determine
the onset of instability, not the onset for each individual wavenumber k. However, the
critical voltage Ucrit and the corresponding wavelength λth can be measured for different
driving frequencies, as shown in figure 2(b,c). For the comparison with experimental
observations, both the critical voltage Ucrit and the corresponding wavelength λth are
used in the following. Therefore, we will compute both quantities for varying driving
frequencies, with the experimental parameters as input values, and use them to assess
the accuracy of the theoretical model.

Before proceeding to the evaluation of the experiments, it is important to emphasize
that the utilized stability analysis is linear. Therefore, it is not possible to distinguish the
nature of transition from the rest state to an oscillatory state of the interface. Above a
critical voltage, the system changes its qualitative long-time asymptotic behaviour, as the
rest state becomes unstable. Then, at least one stable oscillatory state emerges, which is
referred to as bifurcation. In this regime, an infinitesimal perturbation grows exponentially,
until nonlinearities limit the growth. Bifurcations can be further characterized depending
on the transitions between stable solution branches (Cross & Hohenberg 1993): in case the
transition from the stable rest state to the oscillatory state is continuous as a function of
the control parameter (here: forcing voltage amplitude), it is supercritical. Upon reduction
of the forcing below the critical voltage, the system returns to its rest state. On the
other hand, it is also possible that an oscillation persists if the forcing is reduced below
the onset voltage. Then, both the rest state as well as at least one oscillatory state are
stable simultaneously, which is denoted as subcritical bifurcation. Here, the nonlinearities
promote the instability instead of damping it. Subcritical bifurcation manifests itself as
hysteresis and an ambiguity in the determination of the instability threshold, where the
instability requires a certain amount of forcing to develop from the rest state, and a
second threshold emerges, below which the rest state is recovered. For mechanical forcing
of Faraday instabilities, the existence of hysteresis has been discussed and observed
(Douady 1990; Craik & Armitage 1995; Chen & Wu 2000), and recently, the influence
of the forcing and dissipation on the dispersion relation has been revisited analytically
(Rajchenbach & Clamond 2015). In that context, it was shown that the detuning of
the oscillation frequencies of Faraday waves compared with the eigenfrequencies of the
unforced, undamped interface modes plays a crucial role, as well as the viscous dissipation.
As was shown by Rajchenbach & Clamond, the nature of the bifurcation depends on
the exact parameters of the dispersion relation, and can differ between short and long
wavelengths compared with the liquid layer thickness, leading to supercritical bifurcation
or subcritical bifurcation, respectively.

In the aforementioned works, a single liquid layer in contact with air was forced
mechanically, but subcritical bifurcation can also be observed for electrostatic actuation.
In agreement with the work by Rajchenbach & Clamond (2015), Pillai & Narayanan
(2018) showed numerically that an electrostatically forced thin film exhibits subcritical
bifurcation, with hysteresis occurring. For driving amplitudes below the onset voltage
according to linear stability theory, an initial perturbation can either develop into Faraday
waves, or decay to the rest state. In addition to the hysteresis, it was shown that the
Faraday instability can also exhibit nonlinearly saturated waves. Upon further increase
of the driving amplitude, the instability continues to grow slowly, until the interface spikes
abruptly, locally contacting the electrode.

Studying the full nonlinear problem for our system is beyond the scope of this
work, however, these previous results based on the long-wave approximation have two

939 A6-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

16
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.163


S. Dehe, M. Hartmann, A. Bandopadhyay and S. Hardt

implications for the interpretation of our experiments. First, it is possible that Faraday
waves are present below the threshold predicted by linear stability analysis, if significant
initial perturbations are present, e.g. introduced by edge waves. Then, nonlinearities can
promote the oscillations. Thus, the onset voltage resulting from linear stability theory
represents an upper limit for the onset of instability. Second, the interface deformation
amplitudes can be limited to finite values by nonlinearities, in contrast to the indefinite
growth expected from the linear theory. Also, upon increase of the driving amplitude, the
interface is expected to show abrupt spiking, transitioning from an oscillating state with a
slowly changing amplitude to a mode with rapidly growing local deformations.

2.5. Data evaluation
For the processing of the experimental data, a refraction-based evaluation routine was
used to determine the dominant wavelength of the instability pattern. In figure 3(a),
a schematic of the measurement principle is shown. The reference grid at the upper
electrode (depicted in black) is imaged through the liquid–liquid interface. Due to the
difference of the refractive indices, the image of the grid (depicted in red) is distorted.
Light rays passing through horizontal sections of the interface are not altered, whereas
rays crossing the interface at positions with a non-zero gradient ∇h are refracted according
to Snell’s law (sin θ1n1 = sin θ2n2). The difference between the original grid and the
recorded grid is referred to as the displacement field 	x. In the following, we utilize
the measurement principle outlined by Moisy et al. (2009), who derived the relation
between the displacement field 	x and the surface gradient ∇h introducing the following
assumptions: first, paraxial optics is assumed, which requires a small observation field
compared with the distance between the objective and the observed grid (here: 3.5 cm vs
35 cm). Also, they assumed a small slope of the interface, such that the angle between
the surface normal n and the unit vector in z-direction is small, and that the deformation
amplitude is small ((h1 − h)/h1 ≈ 0), where h1 is the layer thickness corresponding to
the undistorted interface. Then, the relation between the surface gradient ∇h and the
displacement field 	x is linear, given as

∇h = −acal

h∗ 	x, (2.3)

where acal is a calibration factor in units of mm px−1 obtained from a reference image of
a flat interface, and h∗ is an effective height obtained from the optical configuration as

h∗ =
(

1
αh1

− 1
Hcam + h1

)−1

. (2.4)

Here, α = 1 − n2/n1 denotes the difference of the refractive indices and Hcam the distance
between the objective and the interface. In our situation, the second term of (2.4) is
negligible due to the large ratio Hcam/h1 � 1.

Equation (2.3) demonstrates that the displacement field for a constant surface gradient
∇h will increase with increasing layer thickness h1 and a larger difference between
the refractive indices n1, n2. While the surface gradients are used to reconstruct the
interface h(x, y), it is important to note that we will not rely on the absolute values of
the reconstructed interface deformation, but rather on the pattern wavelengths. While
the absolute values of h are sensitive to variations in ∇h as well as h∗, the obtained
pattern wavelengths are not. The evaluation scheme includes three distinctive steps: first,
the surface gradients ∇h(x, y) are generated from the displacement field recorded during
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Figure 3. Post-processing steps of the image data. (a) Schematic of the refraction-based image evaluation.
A reference grid at the top electrode (black) is imaged through the liquid–liquid interface. Due to different
refractive indices of the liquids, the recorded image is distorted (red). (b) Example of a displacement pattern.
The displacement field 	x can be used to determine the surface gradient ∇h, which in turn can be used to
reconstruct the interface deflection 	h = h − h1. (c) Fourier power spectrum corresponding to (b). The power
density is plotted as a function of the wavenumber magnitude k and exhibits several peaks: Peaks (I) and
(III) result from the numerical reconstruction algorithm (see text for details). The peak corresponding to the
dominant pattern wavelength λ (II) is found in an intermediate wavenumber range. Here, λ = 3Macal/k =
6.85 mm.

the experiments. Second, the interface shape h(x, y) is reconstructed, with one exemplary
resulting data set shown in figure 3(b). In a third step, the dominant pattern wavelength is
extracted using a Fourier transform and the corresponding power spectrum, as shown in
figure 3(c). The details of the evaluation are described in Appendix C.

3. Results and discussions

In this section, we present the experimental results for the electrically induced Faraday
instability. We focus on the critical voltage and report the dominant pattern wavelengths.
Typically, for one fixed set of experimental parameters, the system shows different
characteristic responses with increasing voltage amplitudes. The electric actuation leads
to two competing effects: at the sidewall (i.e. the boundary of the container), the meniscus
of the dielectric–electrolyte interface oscillates due to the applied Maxwell stress. As the
applied Maxwell stress depends quadratically on the electric field strength at the interface,
a harmonic driving with a frequency ω leads to an actuation of the meniscus with a
frequency of 2ω. Further, the Faraday instability occurs above a critical voltage, which
leads to oscillations with a frequency of ω when forced with a single frequency. At low
excitation amplitudes, the actuation of the meniscus leads to small interface deformation
with twice the excitation frequency, which is barely noticeable initially. With increasing
amplitude, the actuation of the meniscus becomes more prominent and waves penetrate
from the boundary of the container into the domain. A circular pattern is created, with
the waves moving into the centre of the domain. This effect is similar to the edge-wave
actuation in the case of mechanically excited Faraday waves. With further increasing
excitation amplitude, Faraday waves start to appear, initially only with a small amplitude.
Both edge waves as well as Faraday waves are present simultaneously. A further increase of
the amplitude leads to the formation of stronger Faraday waves, which begin to dominate
the system. Then, a distinct range of driving amplitudes exists, where the pattern becomes
stable for long times after an initial growth phase. A similar phenomenon was observed
by Pillai & Narayanan (2018) and attributed to nonlinear effects. When some specific
excitation amplitude is exceeded, however, the Faraday waves continue to grow until they
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Figure 4. Influence of the lower-phase salt concentration on the instability for a forcing frequency of 10 Hz. (a)
Experimentally obtained stability map together with the theoretical prediction for the critical voltage obtained
from the perfect-dielectric/perfect-conductor model (critical voltage Vcrit = 2393 V). (b) Experimentally
determined pattern wavelength together with the theoretical prediction for the dominant wavelength obtained
from the perfect-dielectric/perfect-conductor model (λ = 11.35 mm). Each data point corresponds to one
critical voltage in (a). The error bars represent the standard deviation of the obtained wavelength determined
within one experiment.

make abrupt, local contact with the upper electrode and lead to an electric connection
between both electrodes. Then, the power supply shuts off automatically. In the following,
all parameter combinations that lead to Faraday waves are denoted as critical, since the
voltage exceeded the critical voltage. All other parameter combinations with edge waves
only are denoted as subcritical, since no Faraday patterns emerge during the experiment.
We want to emphasize that here the terms ‘critical’/‘subcritical’ refer to the existence of
instabilities, not to the nature of bifurcation as discussed in § 2.4.

3.1. Effect of the salt concentration
As we have discussed in § 2.4, the theoretical model used to predict the instability
threshold is based on the perfect-dielectric/perfect-conductor assumption. As was shown
by Ward et al. (2019), the description using the leaky-dielectric model reduces to the
perfect-dielectric/perfect-conductor model if the conductivity ratio between the liquids
is sufficiently high. In order to assess the validity of the perfect-conductor assumption,
we have varied the KCl concentration in the lower liquid (DI water) from 1 × 10−4 to
1 × 10−1 mol l−1 at otherwise fixed parameters (silicone oil viscosity 0.65 cSt, driving
frequency 10 Hz).

In figure 4(a), the experimentally obtained stability map is shown. As is visible, the
critical voltage is not strongly affected by the salt concentration. It is slightly increased at
cKCl = 1 × 10−4 mol l−1 and slightly reduced at cKCl = 1 × 10−3 mol l−1. Since no clearly
distinguishable trend is present, we attribute the differences to experimental uncertainties.
One potential source of uncertainty are the edge waves penetrating into the central region
of the system, superposing and obscuring the Faraday waves. Also, since the detection
relies on surface gradients, the accuracy at small surface gradients is limited. Nevertheless,
the experimentally obtained critical voltages show fair agreement with the theoretically
predicted value of Vcrit = 2393 V (indicated as a dashed line).

In figure 4(b), the experimentally determined pattern wavelengths corresponding
to the critical voltages of figure 4(a) are shown. As is visible, the change of
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wavelengths between different driving amplitudes is of the same order of magnitude
as the differences over the salt concentration. The experimentally obtained values show
good agreement with the theoretically predicted value of λ = 11.35 mm. Since the
experimental results scatter around the theoretically predicted value, the experiments
indicate that the salt concentration does not significantly influence the resulting
wavelength in the range of concentrations studied. Therefore, the conductivity difference
between both liquids is sufficiently large to allow us to describe the instability using
the perfect-dielectric/perfect-conductor model. For the experiments described in the
following, we proceed with a constant salt concentration of cKCl = 1 × 10−3 mol l−1.

3.2. Effect of the viscosity of the dielectric fluid
In this section, we study the influence of the viscosity of the dielectric fluid by analysing
data from experiments with different silicone oils. While we wish to specifically vary the
viscosity, changing the dielectric fluid leads to variations in other parameters as well. A
summary of the liquid properties can be found in § 2.3. For each driving frequency and
voltage amplitude, one experiment was performed. The pattern wavelengths are obtained
following the procedure outlined in § 2.5 and Appendix C. For some experiments, no
dominant pattern wavelength could be reported, while the corresponding condition is
noted as critical in the stability map, i.e. when the interface touched the upper electrode.

In figure 5, the experimentally obtained stability maps and the resulting pattern
wavelengths are displayed, with the theoretical predictions of the linear stability theory
shown as black lines. For the kinematic viscosity of 0.65 cSt, the critical voltage shows
partial agreement with the theory. For low excitation frequencies, the onset of the Faraday
instability occurs at a significantly higher driving amplitude than predicted. Subsequently,
with increasing excitation frequency, the difference between theory and experiments
becomes smaller, and at high frequencies, the critical voltage is over-predicted by theory.
The pattern wavelength shows good agreement with theory, and for the multiple critical
driving amplitudes at a fixed frequency, similar wavelengths are obtained.

In figure 5(b,e), results for the silicone oil with a viscosity of 1 cSt are shown. Here,
the theory over-predicts the onset of instability compared with the experiments, while a
qualitative agreement is apparent. The difference could be explained by an uncertainty
of the upper layer thickness. The Maxwell stress at the interface strongly depends on the
layer thickness, and a decrease of the thickness of 0.25 mm already increases the Maxwell
stress by 10.8 %. This means that to fix the Maxwell stress with decent accuracy, the layer
thickness needs to be determined with very high accuracy. The pattern wavelength, on
the other hand, shows good agreement between theory and experiments, especially for
large excitation frequencies. Below 5 Hz, the experimentally obtained wavelengths are
smaller than predicted. However, since in that case the wavelengths are of the same scale
as the region of interest, the measurement becomes less accurate. Overall, we conclude
that there is a quantitative agreement between the experimental and the theoretical data
for the pattern wavelength.

For the oil viscosity of 5 cSt, we report experimental results only up to 6 Hz, as can be
seen in figure 5(c, f ). At higher excitation frequencies, the lower liquid contacted the upper
electrode without the occurrence of Faraday waves. Instead, local Taylor cones formed and
protruded to the electrode. For the experimental data we were able to obtain, the agreement
of the critical voltage and pattern wavelength is apparent between theory and experiments,
with some discrepancies at low frequencies. Again, in that case the pattern wavelength is of
the same scale as the observation region, and thus the wavelength might be underpredicted.
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Figure 5. Influence of the viscosity of the dielectric fluid on the instability and the pattern wavelength. DI
water with added KCl of c = 1 × 10−3 mol l−1 forms the lower phase. (a–c) Experimentally obtained stability
maps for different viscosities. (d–f ) Dominant wavelengths of the wave patterns for different viscosities. Each
data point corresponds to one critical voltage in (a–c). The error bars represent the standard deviation of the
obtained wavelength determined within one experiment. In all cases, the theoretical predictions are displayed
as black lines.

Overall, the experimentally obtained pattern wavelengths and the theoretical predictions
agree well. The oil viscosity only has a small influence on the wavelength and the critical
voltage. This trend conforms with the theoretical predictions made by Bandopadhyay &
Hardt (2017). Also, for a given frequency, a change of driving amplitude above the onset
of the Faraday instability has only little effect on the resulting pattern wavelength, since
the resulting wavelengths are reproduced for different driving voltages.

3.3. Effect of the viscosity of the electrolyte
In this section, we discuss the influence of the lower layer’s viscosity on the stability of
the system and the wave patterns. For this purpose, glycerol–water mixtures with different
glycerol mass fractions, expressed as weight per cent (wt%), were used. For the electrolyte
with 60 wt% glycerol, the dynamic viscosity is 9.38 mPa s and for 70 wt% glycerol it is
19.69 mPa s. The upper layer was silicone oil with a kinematic viscosity of 0.65 cSt. Again,
for each excitation frequency and voltage amplitude, one experiment was performed.

In figure 6, the experimentally obtained stability maps and pattern wavelengths are
shown, where the data for 0 wt% glycerol correspond to figure 5(a,d). The data for
60 wt% glycerol show a good agreement between the experimentally measured and the
theoretically predicted critical voltage. Compared with the experiments with 0 wt%, the
range of Faraday patterns that do not grow indefinitely is smaller. Also, compared with
the previous experiments, the critical voltage is higher, and its slope increases with the
viscosity of the lower phase. The pattern wavelength is represented well by the theoretical
model over the whole range of excitation frequencies, as can be seen from figure 6(e).
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Figure 6. Influence of the viscosity of the dielectric fluid on the instability and the pattern wavelength. Silicone
oil with 0.65 cSt forms the upper phase, and the KCl concentration in the lower phase is c = 1 × 10−3 mol l−1.
(a–c) Experimentally obtained stability maps for different electrolytes. (d–f ) Dominant wavelengths of the
wave patterns for different electrolytes. Each data point corresponds to one critical voltage in (a–c). The error
bars represent the standard deviation of the obtained wavelength determined within one experiment. In all
cases, the theoretical predictions are displayed as black lines.

Increasing the glycerol mass ratio to 70 wt% leads to even higher critical voltages, as
can be seen from figure 6(c). Here, the agreement between the stability map and the
theoretically predicted critical voltage is good as well, with increasing deviations at higher
excitation frequencies. As is visible, the range of Faraday patterns that do not exhibit
indefinitely growing amplitudes is even smaller than for 60 wt%. Often, only one driving
voltage exhibited a Faraday pattern that was stable for longer times, and an increase of the
driving amplitude lead to a continuously growing interface deflection and ultimately an
electric connection between both electrodes. Again, the experimental and the theoretical
data for the pattern wavelengths show good agreement.

3.4. Spatial structure of the wave patterns
So far, we have focused on the wavelength of the emerging patterns, without further
detailing their spatial structure. The theoretical considerations presented in § 2.4 assume
an infinite domain without lateral boundaries. While the dominant wavelength and critical
voltage are predicted, no spatial structure of the waves can be derived from the presented
linear stability theory. Here, nonlinear theory would be required (Chen & Viñals 1999),
which is beyond the scope of this work. Nevertheless, we can use experiments to
characterize the resulting spatial structure. In the previous work by Ward et al. (2019), the
experimental results were obtained using a fluid domain of similar size and with similar
fluid pairs, but due to imaging in side view, the authors could not distinguish specific
modes or determine the wavelengths. They concluded that the domain size was sufficient
such that the instability patterns were not influenced by the lateral boundaries, and reported
that a multitude of wavelengths are observed during all unstable configurations. In the
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Figure 7. Theoretically predicted Bessel modes of the form 	h = Jl(kl,nr) cos(lθ), where l is the azimuthal
mode number and kl,n are the roots of J′

l(kl,nR). (a–c) Exemplary modes with different mode numbers l, n are
shown. The circular region corresponds to the circular interface of the experiments. Red values corresponds
to the peaks of the interface deflection 	h, and blue to the valleys. Due to the limited field of view, only the
central region is observed in our experiments, indicated as black squares. (d) A superposition of two modes
creates patterns with odd parity.

following, we report the spatial structure of the observed wave patterns and compare them
with the observations made for mechanically excited Faraday waves.

Before continuing with our experimental results, it is instructive to draw from the
analogy to mechanically induced Faraday waves. As was shown by Benjamin & Ursell
(1954), the surface deflection of Faraday waves can be expressed as a series of a complete
orthogonal set of eigenfunctions, assuming ideal fluids, taking the form

	h =
∑

al,n(t)Jl
(
kl,nr

)
cos (lθ) , (3.1)

where al,n(t) denotes a time-dependent amplitude, Jl the Bessel function with the
azimuthal node number l and kl,n the nth root of J′

l(kl,nR). In a recent work by Shao et al.
(2021), the modes of the mechanical Faraday instability in a circular container of finite
size were characterized, demonstrating similar mode forms. By changing the frequency
and the amplitude of the excitation, they were able to observe a large range of pure
modes. In figure 7, some exemplary theoretical modes following the form of (3.1) are
depicted. Apparently, l leads to an increase of the number of nodes in the circumferential
direction, and n leads to more nodes in the radial direction. As prominently visible in
figure 7(b,c), a nearly unperturbed region is found at the centre of the domain, enclosed by
a circular region of larger deflections. Also, as was discussed for example by Ciliberto &
Gollub (1984), mode mixing can occur between modes with similar kl,n, which can lead to
excitation of modes of odd parity with respect to a specific axis, as shown in figure 7(d).
Owning to the substantial differences between the corresponding systems studied in
the literature and our system (air vs liquid as the upper layer; mechanical vs electrical
actuation), it is not clear a priori if the system studied by us will exhibit a dominant
boundary influence or if it will behave as an unbounded domain. In addition, Shao et al.
(2021) illuminated the role of the boundary meniscus, leading to waves travelling into the
domain, which in the case of mechanical actuation stem from a contact angle different
from 90◦ at the container side wall. The superposition of Faraday waves and edge waves
leads to complex instability patterns deviating from the modes of (3.1).

In the following, the instability patterns at the moment of largest deflection during an
oscillation period are shown. Thus, they depict an instantaneous surface profile and contain
no information about the time evolution or the pattern dynamics. As was revealed by
Gluckman et al. (1993) in the context of mechanically actuated Faraday patterns, systems
that appear disordered instantaneously can exhibit an ordered time average over long times.
The interface deflection 	h is shown normalized, with the highest and lowest values
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Figure 8. Reconstructed spatial structure of the liquid–liquid interface using silicone oil with a viscosity of
0.65 cSt and DI water with a salt concentration of 1 × 10−3 mol l−1. The normalized interface deflection 	h
is displayed, with blue denoting negative deflections and red positive deflections. At the top of each row, the
excitation frequency and the theoretically predicted pattern wavelength are shown. Below each image, the
corresponding voltage amplitude and the experimentally obtained pattern wavelength are indicated.

shown in colour (red and blue), such that the spatial structure is visible. Each image is
normalized by assigning red to the maximum and blue to the minimum value present
within the image, in order to emphasize the spatial structure. As we have outlined in § 2.2,
the instability is recorded 150 s after the voltage is switched on, such that the patterns
are able to reach a quasi-steady state. For the sake of brevity, not every experimentally
obtained interface deformation is shown, but rather representative modes for specific
frequencies and amplitudes. Only three combinations of oils and electrolytes are shown,
since the other experimental configurations show similar behaviour without qualitatively
new information.

In figure 8, Faraday patterns for the silicone oil with 0.65 cSt in combination with water
are shown, where the excitation frequency and the theoretically predicted wavelength are
displayed at the top of each column. Below each panel, the applied voltage amplitude and
the experimentally obtained wavelength are noted and sorted by voltage. The patterns
obtained for 8 and 10 Hz strongly resemble the modes described by (3.1), with l = 8
and l = 7, respectively. Both the circular structure and the inner region without distinct
patterns are visible. While it is straightforward to identify the azimuthal mode number
l, the radial mode number n is not easily obtained due to the limited field of view at
the centre of the container. Also, these results exemplify why the measurements of the
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Figure 9. Reconstructed spatial structure of the liquid–liquid interface using silicone oil with a viscosity of
1 cSt and DI water with a salt concentration of 1 × 10−3 mol l−1. The normalized interface deflection 	h is
displayed, with blue denoting negative interface deflections and red positive deflections. At the top of each row,
the excitation frequency and the theoretically predicted pattern wavelength are shown. Below each image, the
corresponding voltage amplitude and the experimentally obtained pattern wavelength are indicated.

wavelength at low driving frequencies show larger deviations from theory. In the central
region, the patterns do not display distinct deflections, which complicates the wavelength
identification. Nevertheless, while the observed modes are strongly influenced by the
domain boundary, as is shown by the existence of eigenmodes of an interface in a circular
container, the experimentally obtained wavelengths correspond to theoretical predictions
from the unbound theory reasonably well. With increasing driving voltage, the instability
patterns can change drastically, while maintaining the overall dominant wavelength. This
is for example visible at 10 Hz for the amplitudes of 2600 and 2700 V, where the spatial
structure changes and is not well represented by modes of the form of (3.1). As visible
from the patterns at 18 Hz and 3000 V, also modes without clear boundary influence can
be observed. However, as can be seen both for higher and lower voltage amplitudes, at
the same frequency also highly ordered spatial structures emerge. Overall, the Faraday
patterns for 0.65 cSt silicone oil in combination with water are mostly dominated by the
domain boundary.

In figure 9, Faraday patterns for the silicone oil with 1 cSt in combination with water
are shown, with a similar layout as in figure 8. Here, the wall influence is also prominently
visible, yielding modes similar to those predicted by (3.1), for example with l = 5 at 6 Hz
and 2000 V, l = 5 at 8 Hz and 2150 V and l = 10 at 14 Hz and 2500 V. In addition to these
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pure modes, other highly ordered patterns can be observed. For example, at 8 Hz and
2100 V, the pattern is anti-symmetric with respect to an axis that is tilted approximately
by 30◦ relative to the y-axis. A similar pattern is obtained by superposition of the modes
(l1 = 7, n1 = 8) and (l2 = 5, n2 = 9), which can be seen by comparison with figure 7(d).
The actuation by an amplitude above the critical voltage can trigger different modes
with similar wavelengths, which superposed lead to (anti-)symmetric patterns. Further
examples of superpositions of patterns include the patterns at 6 Hz and 2100 V, 8 Hz and
2250 V as well as 18 Hz and 2600 V. While a systematic classification and decomposition
into the eigenmodes of (3.1) is possible, it is beyond the scope of this work. In spite of
the prominent influence of the boundary, the dominant wavelength extracted from the
experiments show good agreement with the theoretically predicted values. Overall, for
this combination of liquids the Faraday patterns are dominated by the domain boundary as
well, with the additional occurrence superposed modes.

The observed Faraday patterns change with increasing viscosity of the lower phase.
In figure 10, the patterns for the silicone oil with 0.65 cSt in combination with a
water–glycerol mixture (60 wt%) are shown. Owing to the smaller voltage amplitude range
of quasi-stable patterns, only two patterns per excitation frequency are shown. While at
excitation frequencies up to 10 Hz the patterns still resemble the Bessel modes and are
thus dominated by the boundary, at higher frequencies the situation changes drastically,
and the patterns no longer show a boundary influence. They resemble those observed
for mechanically induced Faraday instabilities (Edwards & Fauve 1994). For example, at
12 Hz excitation frequency, the pattern exhibits a typical hexagonal structure, and at 16 Hz,
a pattern that is ordered at low voltage amplitudes becomes increasingly chaotic. At 18 and
20 Hz, the patterns again display hexagonal structures. Overall, at higher frequencies and
increased viscosity, the boundary effects become negligible. A similar trend was observed
by Edwards & Fauve (1994) for mechanically actuated Faraday waves. The suppression
of boundary effects is due to the increased viscosity that leads to strong damping and
the comparatively high excitation frequencies. A large range of wavenumbers becomes
unstable, and the resulting wave structure results from nonlinear interactions instead of
the boundary influence.

At this point, it is instructive to compare the results of this work with the results of
Ward et al. (2019). In both experimental set-ups, the domain size is comparable, and
the thickness of the upper liquid layer is comparable as well. Ward et al. use oil with a
kinematic viscosity of 1.5 cSt, which is most closely matched by the viscosity of 1 cSt
in our work. As we have shown, the Faraday patterns are strongly influenced by the
domain boundary, and both single eigenmodes as well as superpositions of eigenmodes
were observed. At low viscosities, in most cases the patterns are highly ordered, exhibiting
characteristic wavelengths corresponding to theory. Only at higher viscosities, the patterns
become rather independent of the boundary, especially at higher frequencies. However,
for both boundary-dominated and boundary-independent patterns, the spatial structures
exhibited characteristic wavelengths and were highly organized. While Ward et al. did
not report specific wavelengths, they noted that in their experiments the domain could
be regarded as effectively unbounded, and that multiple wavelengths were obtained
in all experiments. We hypothesize that these different observations are related to the
imaging technique. Ward et al. (2019) observed the interface from the side, whereas
in our experiments, the interface is observed from the bottom. As was noted by Ward
et al. (2019), the optical distortion due to refraction of the cylinder, as well as the edge
waves obscured the Faraday patterns. It is likely that the wave pattern was significantly
influenced by the domain boundary, leading to discrete modes of the surface harmonics.
When imaged from the side, the patterns might have appeared to consist of a multitude
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Figure 10. Reconstructed spatial structure of the liquid–liquid interface using silicone oil with a viscosity of
0.65 cSt and a water–glycerol mixture (60 wt%) with a salt concentration of 1 × 10−3 mol l−1. The normalized
interface deflection 	h is displayed, with blue denoting negative interface deflections and red positive
deflections. At the top of each row, the excitation frequency and the theoretically predicted pattern wavelength
are shown. Below each image, the corresponding voltage amplitude and the experimentally obtained pattern
wavelength are indicated.

of wavelengths. Nevertheless, as we have shown in this section, the pattern wavelength
in the boundary-dominated case matches the wavelength predicted by the theory for the
unbounded case, and similarly, the critical voltage matches the predictions by this theory
as well. Thus, the experimental results with respect to the critical voltage by Ward et al.
remain valid.

Last but not least, the results of this section highlight the analogy between mechanical
and electrostatic actuation. At high frequencies and viscosities, the Faraday pattern
becomes independent of the domain boundary. In addition to the already observed
patterns, other patterns should be observable using electrostatic actuation upon proper
parameter tuning. For example, different spatial structures, such as rectangular patterns,
quasi-patterns (Edwards & Fauve 1994) and superlattices (Douady 1990; Kahouadji et al.
2015) should be expected for the case that the boundary influence is negligible. They might
be interesting to study in the context of applications for the Faraday instability, such as the
patterning of thin films (Zhao, Dietzel & Hardt 2019) and patterning of objects suspended
in the lower phase, e.g. biological cells (Serpooshan et al. 2017).

4. Conclusions

We have studied the electrostatically forced Faraday instability, placing a focus on the
spatial structure of the patterns and their wavelengths. For that purpose, the instability
was induced at a circular interface between a liquid dielectric and a conducting fluid
by applying an oscillatory voltage between two parallel-plate electrodes. The interface
deformation was reconstructed by imaging a grid through the perturbed interface. From
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the Fourier power spectrum the dominant wavelength of the instability was extracted and
compared with theoretical predictions.

The Faraday patterns were investigated for silicone oils of different viscosities
(0.65–5 cSt). The viscosity of the aqueous electrolyte was adjusted by adding glycerol
(0 wt%–70 wt%). In order to compare the theoretical predictions of Bandopadhyay &
Hardt (2017) with the experiments, both the critical voltage and the dominant pattern
wavelength were extracted for varying excitation frequencies. The dominant pattern
wavelength shows good agreement with the theoretical prediction and was reproducible for
a range of voltages above the critical voltage. The agreement of the critical voltage between
experiments and theory was not satisfactory at low voltage amplitudes but improved at
higher amplitudes. For the whole range of instabilities observed, the response frequencies
of the interface corresponded to the excitation frequency, as expected from theoretical
considerations (Bandopadhyay & Hardt 2017; Ward et al. 2019).

For the majority of the experiments, the circular domain boundary had a pronounced
influence on the wave patterns. A variety of discrete modes were observed, resembling the
classical Bessel function surface harmonics, defined by the pair of azimuthal node number
l and radial node number n. The existence of such modes emphasizes the pronounced role
of the domain boundary. In analogy to mechanically actuated Faraday waves, the mixing of
modes with similar wavelengths was observed, leading to more complex patterns than the
pure modes of the surface harmonics. At high excitation frequencies and larger viscosities
of the electrolyte, the instability exhibits boundary-independent patterns, especially the
classical hexagonal pattern reported for mechanical actuation (Edwards & Fauve 1994).

With respect to the relevance of these results, at least two aspects deserve to be
mentioned. First, we were able to clarify some of the observations made by Ward et al.
(2019). Specifically, it was reported that always a multitude of wavelengths emerged for all
unstable configurations, and that no discrete modes were observed. These results contrast
observations made for mechanically induced Faraday instabilities, as well as the results
presented in our work. It is likely that in the aforementioned work, the discrete modes
were obscured by edge waves emerging from the meniscus at the domain boundary.
Second, our results indicate that other phenomena, which were so far only observed
for the mechanically induced instability, should as well emerge for electrostatic forcing.
For example, in large domains the formation of superlattices and quasi-patterns upon
multi-frequency actuation is expected (Edwards & Fauve 1994). Also, our work may
pave the way to novel explorations of other effects so far only explored in the context of
mechanical actuation, such as the walking-droplet phenomenon (Couder et al. 2005; Bush
2015; Fernández-Mateo & Pérez 2021). Overall, this work draws far-reaching analogies to
mechanically actuated Faraday waves, but may enable different schemes of studying such
phenomena, due to the fundamentally different actuation mechanism.
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Appendix A. Fluid property measurement techniques

In order to make theoretical predictions and to reconstruct the interface from the
experimental data, information about the fluid properties is required. The relevant
properties are interfacial tensions, densities, viscosities, relative permittivity, and
refractive indices. The measurement techniques used to determine the values presented
in tables 1 and 2 are briefly described in the following. The experiments were performed
at a constant laboratory temperature of 20 ◦C.

Interfacial tension: the interfacial tensions between all combinations of bottom and
top phase were determined with a ring tensiometer (DCAT 25, DataPhysics Instruments,
Germany) with the specific ring RG 11. For each liquid combination, the interfacial
tension was measured five times in total using the software delivered with the tensiometer.
Following the recommendations of the manual, the first measurement was performed
using the pull 2 step method as implemented in the manufacturer’s software, while the
subsequent four measurements were performed using the push/pull lamella method.

Dynamic viscosity: in the case of the glycerol–water mixtures, the viscosity was
determined using a digital rotation rheometer (DV-III-Ultra, Brookfield, USA) with the
spindle CPE-40 having a coefficient of γ = 307. By setting the angular velocity ω and
measuring the torque M (in per cent of the maximum torque), the dynamic viscosity η can
be calculated via

η = ωγ

M
, (A1)

according to the manual. For each liquid, the measurement was repeated at least five times.
Density: the density was measured by dosing at least five individual droplets of known

volume of the relevant liquid on a precision scale (NewClassic MF/MS 105DU, Mettler
Toledo, Switzerland) using a 5 ml syringe (Injekt Luer Solo, Braun, Germany). The
experiment was repeated at least five times per fluid mixture.

Refractive indices: refractive indices were measured with an Abbe refractometer (Carl
Zeiss, Germany).

Appendix B. Theoretical description

The theoretical description of the instability follows the procedure described in
Bandopadhyay & Hardt (2017), with the additional assumption of a thin upper layer
(h1/h2 � 1). In the following, an outline of the derivation of the model is given. We
refer to the schematic shown in figure 1, where the thickness of the aqueous layer is
denoted by h2, while the thickness to the silicone oil layer on top of the aqueous solution is
denoted by h1. We choose the coordinate system to be attached to the undeformed surface.
Let x′

s represent the surface coordinates, i.e. coordinates in the plane of the undeformed
surface, while z′ represent the normal coordinate. Primed variables represent dimensional
quantities. With the convention above, gravity acts in the −z′ direction. In order to arrive
at the theoretical description for the interface deformation driven by the time-periodic
electric field, we first assume the presence of a deformed interface, whose shape is given
by z′ = ζ ′(x′

s, t′). For this interface, in the limit of small deformation the normal direction,
n, and curvature, κ , are given by

n = ∇(z′ − ζ ′(x′
s, t′))

|∇(z′ − ζ ′(x′
s, t′))| ≈ ez − ∇′

sζ(x′
s, t′), κ = ∇ · n = −∇2

s ζ(x′
s, t′). (B1a,b)

Since the lower fluid is conducting it will be an isopotential volume. Therefore, only
the potential in the insulating top phase, φ′

1(x
′
s, z′, t′) needs to be evaluated and is
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obtained from

∇2φ′
1 = 0 subject to φ′

1(x
′
s, h1, t′) = −V ′(t), φ′

1(x
′
s, ζ

′(x′
s, t′), t′) = V ′(t), (B2)

where V ′(t) represents the applied time-periodic potential. The hydrodynamics is governed
by conservation of mass and momentum, with the latter expressed as

ρj

(
∂

∂t
+ u′

j · ∇′
)

u′
j = −∇′P′

j + ηj∇′2u′
j − ρjgez, j = 1, 2; (B3)

subject to the boundary conditions

at z′ = h′
1 : w′

1 = 0, us
′
1 = 0 (B4)

at z′ = −h′
2 : w′

2 = 0, us
′
2 = 0 (B5)

at z′ = ζ ′(x′
s, t′) : w′

1 = w′
2 = ∂ζ ′

∂t′
+ u′

1 · ezζ
′(x′

s, t′), us
′
1 = us

′
2 (B6)

at z′ = ζ ′(x′
s, t′) : η1

(
∂u′

1
∂z′ + ∇′

sw
′
1

)
= η2

(
∂u′

2
∂z′ + ∇′

sw
′
1

)
(B7)

at z′ = ζ ′(x′
s, t′) :

(
−P′

1 + 2η1
∂w′

1
∂z′

)
−

(
−P′

2 + 2η2
∂w′

2
∂z′

)
+ n · τ ′

E · n = σκ. (B8)

Here, τ ′
E denotes the Maxwell stress tensor, which is given as τ ′

E,ij = −1
2ε|E|2δij + εEiEj,

where δij denotes the Kronecker delta. We can render the equations dimensionless with the
help of the following scheme:

(xs, z, ζ ) = (x′
s, z′, ζ ′)

h1
, t = t′ω, usj =

u′
sj

h1ω
, P = P′

η1ω
, h = h2

h1
,

ηr = η2

η1
, ρr = ρ2

ρ1
, V(t) = V ′

Vref
, lvis =

√
ν1

ω
,

Reω = h2
1

l2vis
, Ma =

ε1V2
ref/h2

1

η1ω
, Ca = η1h1ω

σ
, Ga = ρ1g

η1ω/h1
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B9)

where ω is the applied frequency, lvis represents the viscous length scale, and Reω

represents the Reynolds number, which may also be interpreted as the ratio of the
characteristic length to the viscous length scale squared. Here, Ma represents the Mason
number, essentially quantifying the ratio of the normal Maxwell stress to the viscous stress.
Ca represents the capillary number and Ga represents the Galileo number. The scale of
pressure is chosen to be the viscous scale.

With the aforementioned non-dimensional numbers, the governing equation for the
potential may be written as

∇2φ1 = 0, subjected to, φ1(xs, 1, t) = −V(t), and φ1(xs, ζ, t) = V(t). (B10)

The hydrodynamic equations for the two fluids are rewritten as(
∂

∂t
+ u1 · ∇

)
u1 = − 1

Reω

∇P1 + 1
Reω

∇2u1 − Ga
Reω

ez,

ρr

(
∂

∂t
+ u2 · ∇

)
u2 = − 1

Reω

∇P2 + ηr
1

Reω

∇2u2 − Ga
Reω

ρrez,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(B11)
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with appropriate boundary conditions at the top and bottom walls and interface given by

at z = 1 : w1 = 0,
∂w1

∂z
= 0 (B12)

at z = −h : w2 = 0,
∂w2

∂z
= 0 (B13)

at z = ζ(xs, t) : w1 = w2 = ∂ζ

∂t
+ us1 · ezζ(xs, t),

∂w1

∂z
= ∂w2

∂z
(B14)

at z = ζ(xs, t) :
(

∂us1

∂z
+ ∇sw1

)
= ηr

(
∂us2

∂z
+ ∇sw1

)
(B15)

at z = ζ(xs, t) :
(

−P1 + 2
∂w1

∂z

)
−

(
−P2 + 2ηr

∂w2

∂z

)
+ Ma (n · τE · n) = − 1

Ca
∇2

s ζ.

(B16)

The equations above may be solved analytically by a domain perturbation method
described in Bandopadhyay & Hardt (2017). Finally, the governing equation relating the z
velocity and the interfacial deformation is obtained from the normal stress balance at the
interface z = ζ , resulting in

∇2
s

(
2(1 − ηr)

∂w1

∂z
+ 1

Ca
∇2

s ζ + Gaζ(1 − ρr) + 4Maζk coth kV(t)2
)

= Reω

(
∂2w1

∂z∂t
− ρr

∂2w2

∂z∂t

)
+ ∇2

(
−∂w1

∂z
+ ηr

∂w2

∂z

)
. (B17)

In order to make analytical progress, the aforementioned quantities may be written as

(wi, ζ ) = (ŵi(z, t), ζ̂ ) sin k · xs, (B18)

where the terms are essentially split into time-dependent out-of-plane components and
in-plane components.

In order to assess the stability of the interface under the applied electric field, we may
represent the out-of-plane components as being composed of a time-dependent amplitude
term and a time-periodic term; the former quantifying whether the amplitude grows
exponentially in time

ŵj(z, t) = exp(st + iαt)Wj(z, t mod(2π)) = exp(st + iαt)
n=∞∑

n=−∞
Wj,n(z) exp(int), (B19)

ζ̂ = exp(st + iαt)
n=∞∑

n=−∞
Zn(z) exp(int). (B20)

In case it does not grow exponentially in time, the system can be classified as being stable.
Therefore, the behaviour of the parameter s determines the stability of the system, while
α governs the time-periodic nature of the system. If the real part of s is positive, then the
system is unstable, while negative real parts indicate a stable system. If s is imaginary, then
the solution remains periodic. Accordingly, the system’s stability limit may be probed by
setting s = 0 and finding the corresponding points in the wavenumber – Mason number
space (Bandopadhyay & Hardt 2017). The Floquet multiplier exp(st + iαt) is non-unique
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since s + 2πj (j being an integer) is also a solution. The constraint 0 ≤ α ≤ 1/2 makes
it unique, where α = 0 represents the harmonic response of the system and α = 1/2 the
sub-harmonic response. Any integer increments to α may be absorbed in the sum and
therefore do not yield any additional information.

Substituting this form of wi and ζ in the governing equation, we obtain(
s + i(α + n) − 1

Reω

(
d2

dz2 − k2
))(

d2

dz2 − k2
)

W1,n = 0, (B21)

(
s + i(α + n) − ηr

ρrReω

(
d2

dz2 − k2
)) (

d2

dz2 − k2
)

W2,n = 0. (B22)

The expressions may be simplified using the abbreviations

q2
n = k2 + Reω(s + i(α + n)), r2

n = k2 + Reω

ρr

ηr
(s + i(α + n)). (B23a,b)

Utilizing this, we obtain the solution for the vertical velocity components as

W1,n = P1,n exp(kz) + Q1,n exp(−kz) + R1,n exp(qnz) + S1,n exp(−qnz) (B24)

W2,n = P2,n exp(kz) + Q2,n exp(−kz) + R2,n exp(rnz) + S2,n exp(−rnz). (B25)

The constants may be evaluated using the boundary conditions listed above as

at z = 1 : W1,n = 0,
dW1,n

dz
(1) = 0, (B26)

at z = −h : W2,n(−h) = 0,
dW2,n

dz
(−h) = 0, (B27)

at z = ζ(xs, t) : W1,n(0) = W2,n(0),
dW1,n

dz
(0) = dW2,n

dz
(0), (B28)

(q2
n − k2)

1
Reω

Zn = W1,n, (B29)

(
k2 + d2

dz2

)
W1,n = ηr

(
k2 + d2

dz2

)
W2,n. (B30)

Note that, in the experiments of this work, the thickness of the lower liquid layer
is significantly larger than the viscous length scale, implying that the dimensionless
parameter h2 � 1. For the present set-up, h2 � 1 implies that we may effectively model
the bottom layer as being infinitely deep, thereby obviating the need for boundary
conditions at the lower wall, eliminating terms involving exp(−kz) in the above equations.
In such a case, the solution to ((B27) to (B30)) may be written as

W1,n = P1,n exp(kz) + Q1,n exp(−kz) + R1,n exp(qnz) + S1,n exp(−qnz) (B31)

W2,n = P2,n exp(kz) + R2,n exp(rnz). (B32)

We can now evaluate the normal stress balance, (B17), by utilizing the Floquet form of
the coefficients, (B20). In (B17), the nonlinearity in the normal stress balance stems from
the V(t)2 term in 4Maζk coth kV(t)2. We can write it as

ζV(t)2 = V(t)2
n=∞∑

n=−∞
exp (s + i(α + n)t) Zn, (B33)

where we have disregarded the prefactor for readability. In the following substitution, it
is included. In the expression above, we can make use of the following simplification:
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The rescaled voltage, V(t) is represented in general as V(t) = ∑n=∞
n=−∞ βn cos(nt) +∑n=∞

n=−∞ γn sin(nt). The various harmonic modes appearing when evaluating V(t)2 then
couple with the exp(nt) mode of the Zn term above. Substituting this, we find

(q2
n − k2)

dW1,n

dz
− ηr(r2

n − k2)
dW2,n

dz
−

(
d2

dz2 − k2
)

dW1,n

dz

+ ηr

(
d2

dz2 − k2
)

dW2,n

dz
+ 2k2 (1 − ηr)

dW1,n

dz

= 1
Ca

k4Zn − Gak2 (1 − ρr) Zn − 4Mak3 coth kV(t)2ζ. (B34)

These equations are finally cast in the form of a generalized eigenvalue problem

AZ = MaBZ . (B35)

Examples of how the matrices on the left-hand and right-hand sides look like are given in
Bandopadhyay & Hardt (2017).

Appendix C. Data evaluation

C.1. Measurement of the surface gradient ∇h(x, y)
As a first step, the corner points of the grid are extracted from the video. For this purpose,
the grey scale of the images is inverted, such that the grid appears as bright lines on a dark
background. Next, the effect of non-uniform illumination is accounted for by subtracting
the local mean value computed in a 60 px × 60 px region around each image point. In
the following, the image is further processed using the morphological closing and erosion
operations of the Python toolbox skimage.morphology (Van der Walt et al. 2014), in order
to reduce the thickness of each line in the image. On this pre-processed image, a Harris
corner-detection algorithm implemented in the Python toolbox scikit-image is used to
generate an initial guess for each corner point. Then, based on these initial positions, the
subpixel position of each corner is obtained using a statistics-based algorithm (Förstner
& Gülch 1987). As a result, we obtain the positions of the grid lines intersections. For an
unperturbed interface, they appear 0.5 mm apart.

As a next step, the grid points are tracked in time. In order to balance accuracy and
computational cost, the points are tracked over one period of oscillation. Since the videos
are recorded at a constant frame rate of 1000 f.p.s., the number of frames corresponding
to one period varies, depending on the driving frequency. Also, for lower frequencies, we
reduce the number of frames (using every second frame for 4–7 Hz driving frequency,
every third for 3 Hz and every fifth for 2 Hz). Nevertheless, each oscillation period is
resolved using at least 50 frames. The grid points are tracked between frames based on
a nearest neighbour method, with a maximum displacement between frames of 5 px. As a
result, the time evolution of the grid is obtained, where xi(t) denotes the position of the ith
grid point at time t.

We then calculate the displacement field 	xi(t) of each point i using

	xi (t) = xi (t) − 1
N

N∑
t=1

xi, (C1)

where N denotes the number of images within one period of oscillation. Due to refraction,
the image of the evenly spaced grid exhibits an uneven spacing between grid points,
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leading to an uneven spacing of the displacement field data. In preparation for the next step,
the deviation field is interpolated onto a regular grid (M × M = 51 × 51 grid points, 20 px
spacing between points) using a spline interpolation. Finally, utilizing (2.3) and (2.4), we
obtain the surface gradient field ∇h(x, y) as a function of time (Moisy et al. 2009).

C.2. Reconstruction of the interface shape h(x, y)
From the surface gradient ∇h(x, y), the interface shape h(x, y) can be reconstructed
using the numerical approach outlined by Moisy et al. (2009), which is described in
the following. A discrete representation of h at the grid points (M × M = 51 × 51) is
of interest. Since the grid points are evenly spaced, we can express the x- and the
y-components of the gradient ∇h in terms of h by using a central difference approximation.
For example, if the index j denotes the jth grid point in x-direction, and the index l denotes
the lth grid point in y-direction, the gradient at position j, l can be approximated as

∂h(j, l)
∂x

= h(j + 1, l) − h(j − 1, l)
2L

(C2)

∂h(j, l)
∂y

= h(j, l + 1) − h(j, l − 1)

2L
, (C3)

where L denotes the spacing between two adjacent grid points in physical coordinates.
The gradients at the image boundary can be treated appropriately by using the forward
and backward difference scheme. As a result, two linear systems of equations emerge,
describing the gradients in x- and y-direction as Gxh = px and Gyh = py. Here, h contains
the layer thickness h at the grid points, sorted into a vector of dimension (M2, 1). The
vectors px, py are of dimension (M2, 1) and contain the components of ∇h in x- and
y-direction at the grid points, and the matrices Gx, Gy of dimension (M2, M2) contain the
coefficients of the finite difference approximation schemes. Both systems can be combined
into one linear system as (

Gx
Gy

)
· h =

(
px
py

)
. (C4)

As a result, we arrive at 2M2 equations for M2 points. Such an over-determined system
can be solved as a minimization problem of the functional |(Gx, Gy)

Th − (px, py)
T|2

using an optimization algorithm (e.g. lsq_linear of the Python toolbox scipy). Since an
optimization algorithm is used for the problem (C4) instead of direct numerical integration
of the obtained surface gradients ∇h, the interface reconstruction is less prone to local
errors. While in a direct integration approach the local errors accumulate, the optimization
approach minimizes a global error. Lastly, the resulting field h(x, y) is interpolated onto
the original image of dimension N × N = 1024 px × 1024 px, and the deviation from the
unperturbed interface is denoted as 	h(x, y) = h(x, y) − h1. A reconstructed interface
displacement 	h(x, y) is shown in figure 3(b) as an example.

C.3. Dominant pattern wavelength λ
In order to determine the dominant pattern wavelength λ, a discrete Fourier transform
of the reconstructed interface shape h(x, y) is used. First, we place the computed
displacement 	h on N × N grid points at the centre of a larger 3N × 3N image, with
the other values set to zero. The indices of the corresponding matrix are denoted j and l.
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Figure 11. Pattern wavelength extraction for a driving frequency of 7 Hz and a driving voltage of 2100 V. (a)
Reconstructed interface at t = 100 ms. (b) Resulting discrete Fourier transform (FFT) power spectrum. The
detected value of keff is used for further processing and can be transformed into a respective wavelength (C6).
(c) Measured dominant wavelengths for one period of oscillation (143 ms period length). The dominant pattern
wavelength persists over the majority of the oscillation period, resulting in an average value of 14.23 mm
(shown as a dashed line). Occasionally, the Faraday waves have small amplitudes. Then, a different wavelength
is obtained, which can be attributed to the edge waves of the system.

Then, we compute the two-dimensional discrete Fourier transform H as

H(kx, ky) =
3N−1∑
j=0

3N−1∑
l=0

	h(j, l) exp
(

−i2π

(
jkx

3N
+ lky

3N

))
, (C5)

where kx, ky denote the wavenumbers in x- and y-direction, respectively. Since we are
interested in the dominant wavelengths, independent of the spatial orientation of the waves,
we compute the power spectrum of H(kx, ky). The amplitude for wavenumbers kx, ky is
obtained as A(kx, ky) = |H(kx, ky)|2 and the wavenumber magnitude as k = (k2

x + k2
y)

0.5.
Now, we bin the amplitudes A(kx, ky) into k-values using bins ranging from 0 to 3N/2,
with a bin-size of dkbin = 1 px. Then, we normalize the resulting values inside each bin,
using the corresponding bin area of the Fourier transform π(kbin + dkbin)

2 − πk2
bin, where

kbin denotes the lower boundary of the bin. As a result, the power spectrum of the interface
deformation is obtained in terms of k.

The resulting power spectrum yields information about the dominant wavelengths of
the system, and shares some distinct properties between all cases considered. Exemplary
power spectra are shown in figures 3(c) and 11(b). First, at small wavenumbers
(corresponding to large wavelengths), a distinct peak is present, denoted by (I). This is a
result of embedding the original image matrix in a domain of dimension 3N × 3N. Also, at
large wavenumbers (corresponding to small wavelengths), another distinct peak is present,
denoted by (III). This results from the reconstruction of the interface using a reduced grid
with a spacing of 20 px between grid points. Both of these peaks are artefacts without
physical interpretation. A third peak can be observed in between these two if the interface
shows a distinct pattern. The wavenumber kmax of this peak corresponds to the dominant
wavelength λ of the system, which is obtained as

λ = (3N)acal/kmax. (C6)

For each image of the series of experiments, the peaks in the power spectrum are detected
using the Python toolbox scipy (function signal.find_peaks). In order to enhance the
accuracy of the wavelength detection from the power spectrum with discrete wavenumbers
k, we fit a Gaussian distribution to the portion of the power spectrum closest to the
detected peak as initial guess, shown as a dashed line in figure 11(b). Then, we identify
the determined mean value as the dominant wavenumber that serves as an input for
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further calculations. Depending on the nature of the oscillations, at some of the time
steps, no peaks are detected in the power spectrum. Ideally, the spectrum exhibits only
one dominant wavelength. However, due to waves originating from the boundary of
the container, different wavelengths can be present in one image, with each wavelength
corresponding to either the Faraday waves or the edge waves. In figure 11(c), the dominant
wavelength is shown over one period of oscillation for a driving frequency of 7 Hz, where
for most of the oscillation period the same wavelength is obtained. However, if the Faraday
instability exhibits small amplitudes, a second wavelength is detected, which can be
attributed to edge waves. In order to accurately determine the wavelengths, the histogram
of wavelengths over all images is obtained, exhibiting a superposition of multiple peaks.
Following, the average value of each distinct peak of the histogram is computed, and the
multiple wavelengths occurring in one experiment can be retrieved. In the case of multiple
wavelengths detected in one experiment, the wavelength observed in the highest number
of images is denoted as dominant, and other wavelengths are denoted as secondary. The
attributed error bars denote the standard deviation of the pattern wavelengths obtained
during one experiment and characterizes the error attributed to the pattern detection.
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