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This paper is concerned with some non-linear propagation phenomena for reaction–

advection–diffusion equations with Kolmogrov–Petrovsky–Piskunov (KPP)-type non-

linearities in general periodic domains or in infinite cylinders with oscillating boundaries.

Having a variational formula for the minimal speed of propagation involving eigenvalue

problems (proved in Berestycki, H., Hamel, F. & Nadirashvili, N. (2005) The speed of

propagation for KPP type problems (periodic framework). J. Eur. Math. Soc. 7, 173–213), we

consider the minimal speed of propagation as a function of diffusion factors, reaction factors

and periodicity parameters. There we study the limits, the asymptotic behaviours and the

variations of the considered functions with respect to these parameters. One of the sections

deals with homogenization problem as an application of the results in the previous sections

in order to find the limit of the minimal speed when the periodicity cell is very small.

1 Introduction

This paper is a continuation in the study of the propagation phenomena of pulsating

travelling fronts in a periodic framework corresponding to reaction–advection–diffusion

equations with heterogenous KPP (Kolmogrov–Petrovsky–Piskunov) non-linearities. We

will precisely describe the heterogeneous-periodic setting, recall the extended notion of

pulsating travelling fronts and then we move to announce the main results. Let us first

recall some of the basic features of the homogeneous KPP equations.

Consider the Fisher–KPP equation:

ut − Δu = f(u) in �N. (1.1)

It was introduced in the celebrated papers of Fisher (1937) and in [19] originally motivated

by models in biology. Here, the main assumption is that f is, say, a C1 function satisfying

{
f(0) = f(1) = 0, f′(1) < 0, f′(0) > 0,

f > 0 in (0, 1), f < 0 in (1,+∞),
(1.2)

f(s) � f′(0)s, ∀s ∈ [0, 1]. (1.3)

As examples of such non-linearities, we have f(s) = s(1 − s) and f(s) = s(1 − s2).
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The important feature in (1.1) is that this equation has a family of planar travelling

fronts. These are solutions of the form{
∀(t, x) ∈ � × �N, u(t, x) = φ(x · e+ ct),

φ(−∞) = 0 and φ(+∞) = 1,
(1.4)

where e ∈ �N is a fixed vector of unit norm which is the direction of propagation, and

c > 0 is the speed of the front. The function φ : � �→ � satisfies{
−φ′′

+ cφ = f(φ),

φ(−∞) = 0 and φ(+∞) = 1.
(1.5)

In the original paper of Kolmogorov, Petrovsky and Piskunov, it was proved that, under

the above assumptions, there is a threshold value c∗ = 2
√
f

′
(0) > 0 for the speed c.

Namely, no fronts exist for c < c∗, and, for each c � c∗, there is a unique front of the

type (1.4 and 1.5). Uniqueness is up to shift in space or time variables.

Later, the homogeneous setting was extended to a general heterogeneous periodic one.

The heterogeneous character appeared both in the reaction–advection–diffusion equation

and in the underlying domain. The general form of these equations is

{
ut = ∇ · (A(z)∇u) + q(z) · ∇u+ f(z, u), t ∈ �, z ∈ Ω,

ν · A ∇u(t, z) = 0, t ∈ �, z ∈ ∂Ω,
(1.6)

where ν(z) is the unit outward normal on ∂Ω at the point z.

The propagation phenomena attached with equation (1.6) has been widely studied in

many papers. Several properties of pulsating fronts in periodic media and their speed of

propagation were given in several papers [2, 3, 5, 6, 36]. In Section 2, we will recall the

periodic framework and some known results which motivate our study. The main results

of this paper are presented in Sections 3–6.

2 The periodic framework

2.1 Pulsating travelling fronts in periodic domains

In this section, we introduce the general setting with the precise assumptions. Concerning

the domain, let N� 1 be the space dimension, and let d be an integer so that 1 � d � N.

For an element z = (x1, x2, . . . , xd, xd+1, . . . , xN) ∈ �N, we call x = (x1, x2, . . . , xd) and

y = (xd+1, . . . , xN), so that z = (x, y). Let L1, . . . , Ld be d positive real numbers, and let Ω

be a C3 non–empty connected open subset of �N satisfying⎧⎪⎨
⎪⎩

∃R � 0 ; ∀ (x, y) ∈ Ω, |y| � R,

∀ (k1, . . . , kd) ∈ L1� × · · · × Ld�, Ω = Ω +

d∑
k=1

kiei,
(2.1)

where (ei)1�i�N is the canonical basis of �N. In particular, since d � 1, the set Ω is

unbounded.
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In this periodic situation, we give the following definitions:

Definition 2.1 (Periodicity cell) The set C = { (x, y) ∈ Ω; x1 ∈ (0, L1), . . . , xd ∈ (0, Ld)} is

called the periodicity cell of Ω.

Definition 2.2 (L-periodic flows) A field w : Ω→ �N is said to be L-periodic with respect

to x if w(x1 + k1, . . . , xd + kd, y) = w(x1, . . . , xd, y) almost everywhere in Ω, and for all

k = (k1, . . . , kd) ∈
∏d

i=1 Li�.

Before going further, we point out that this framework includes several types of simpler

geometrical configurations. The case of the whole space �N corresponds to d=N, where

L1, . . . , LN are any positive numbers. The case of the whole space �N with a periodic

array of holes can also be considered. The case d = 1 corresponds to domains which have

only one unbounded dimension, namely infinite cylinders which may be straight or have

oscillating periodic boundaries, and which may or may not have periodic holes. The case

2 � d�N − 1 corresponds to infinite slabs.

We are concerned with propagation phenomena for the reaction–advection–diffusion

equation (1.6) set in the periodic domain Ω. Such equations arise in combustion models

for flame propagation (see [27], [31] and [37]), as well as in models in biology and for

population dynamics of a species (see [14], [18], [20] and [28]). These equations are used

in modelling the propagation of a flame or of an epidemics in a periodic heterogeneous

medium. The passive quantity u typically stands for the temperature or a concentration

which diffuses in a periodic excitable medium. However, in some sections we will ignore

the advection and deal only with reaction–diffusion equations.

Let us now detail the assumptions concerning the coefficients in (1.6). First, the diffusion

matrix A(x, y) = (Aij(x, y))1�i,j�N is a symmetric C2,δ(Ω ) (with δ > 0) matrix field

satisfying

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A is L-periodic with respect to x,

∃ 0 < α1 � α2, ∀(x, y) ∈ Ω, ∀ ξ ∈ �N,

α1|ξ|2 �
∑

1�i,j�N

Aij(x, y)ξiξj � α2|ξ|2.
(2.2)

The boundary condition ν · A∇u(x, y) = 0 stands for
∑

1 � i,j�N νi(x, y)Aij(x, y)∂xj u(t, x, y),

and ν stands for the unit outward normal on ∂Ω. We note that when A is the identity

matrix, then this boundary condition reduces to the usual Neumann condition ∂νu= 0.

The underlying advection q(x, y) = (q1(x, y), . . . , qN(x, y)) is a C1,δ(Ω) (with δ > 0) vector

field satisfying ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q is L-periodic with respect to x,

∇ · q = 0 in Ω ,

q · ν = 0 on ∂Ω ,

∀ 1 � i � d,

∫
C

qi dx dy = 0.

(2.3)
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Concerning the non-linearity, let f = f(x, y, u) be a non-negative function defined in

Ω × [0, 1], such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f � 0, f is L-periodic with respect to x, and of class C1, δ(Ω × [0, 1]),

∀ (x, y) ∈ Ω, f(x, y, 0) = f(x, y, 1) = 0,

∃ ρ ∈ (0, 1), ∀(x, y) ∈ Ω, ∀ 1 − ρ � s � s′ � 1, f(x, y, s) � f(x, y, s′),

∀ s ∈ (0, 1), ∃ (x, y) ∈ Ω such that f(x, y, s) > 0,

∀ (x, y) ∈ Ω, f′
u(x, y, 0) = lim

u→ 0+

f(x, y, u)

u
> 0,

(2.4)

with the additional assumption

∀ (x, y, s) ∈ Ω × (0, 1), 0 < f(x, y, s) � f′
u(x, y, 0) × s. (2.5)

We denote by ζ(x, y) := f′
u(x, y, 0), for each (x, y) ∈ Ω.

The set of such non-linearities contains two particular types of functions:

• The homogeneous (KPP) type: f(x, y, u) = g(u), where g is a C1,δ function that satisfies

g(0) = g(1) = 0, g > 0 on (0, 1), g′(0) > 0, g′(1) < 0 and 0 < g(s) � g′(0)s in (0, 1).

• Another type of such non-linearities consists of functions f(x, y, u) = h(x, y).f̃(u), such

that f̃ is of the previous type, while h lies in C1,δ(Ω), L-periodic with respect to x, and

positive in Ω.

Having this periodic framework, the notions of travelling fronts and propagation were

extended in [2, 3, 18, 26, 28, 29] and [34] as follows:

Definition 2.3 Let e = (e1, . . . , ed) be an arbitrarily given vector in �d. A function u =

u(t, x, y) is called a pulsating travelling front propagating in the direction of e with an

effective speed c� 0, if u is a classical solution of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = ∇ · (A(x, y)∇u) + q(x, y) · ∇u+ f(x, y, u), t ∈ �, (x, y) ∈ Ω,

ν · A ∇u(t, x, y) = 0, t ∈ �, (x, y) ∈ ∂Ω,

∀ k ∈
d∏
i=1

Li�, ∀ (t, x, y) ∈ � × Ω, u

(
t− k · e

c
, x, y

)
= u(t, x+ k, y),

lim
x·e→ −∞

u(t, x, y) = 0, and lim
x·e→ +∞

u(t, x, y) = 1,

0 � u � 1,

(2.6)

where the above limits hold locally in t and uniformly in y and in the directions of �d

which are orthogonal to e.

2.2 Some important known results concerning the propagation phenomena

in a periodic framework

Under the assumptions (2.1), (2.2), (2.3), (2.4) and (2.5) set in the previous subsection,

Berestycki and Hamel [2] proved that having a pre-fixed unit vector e ∈ �d, there exists
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c∗(e) > 0 such that pulsating travelling fronts propagating in the direction e (i.e satisfying

(2.6)) with a speed of propagation c exist if and only if c � c∗(e); moreover, the pulsating

fronts (within a speed c � c∗(e)) are increasing in the time t. The value c∗(e) = c∗
Ω,A,q,f(e)

is called the minimal speed of propagation in the direction of e. Other non-linearities have

been considered in the cases of the whole space �N or in the general periodic framework

(see [2, 28, 29, 32, 33, 34] and [35]).

Having the threshold value c∗
Ω,A,q,f(e), our paper aims to study the limits, the asymptotic

behaviours and the variations of some parametric quantities. These parametric quantities

involve the parametric speeds of propagation of different reaction–advection–diffusion

problems within a diffusion factor ε> 0, a reaction factor B> 0 or a periodicity parameter

L. Thus, it is important to have a variational characterization which shows the dependance

of the minimal speed of propagation on the coefficients A, q and f and on the geometry

of the domain Ω. In this context, Berestycki, Hamel and Nadirashvili [3] gave such a

formulation for c∗
Ω,A,q,f(e) involving elliptic eigenvalue problems. We recall this variational

characterization in the following theorem:

Theorem 2.4 (Berestycki, Hamel and Nadirashvili [3]) Let e be a fixed unit vector in �d.

Let ẽ = (e, 0, . . . , 0) ∈ �N. Assume that Ω, A and f satisfy (2.1), (2.2), (2.4) and (2.5). The

minimal speed c∗(e) = c∗
Ω,A,q,f(e) of pulsating fronts solving (2.6) and propagating in the

direction of e is given by

c∗(e) = c∗
Ω,A,q,f(e) = min

λ>0

k(λ)

λ
, (2.7)

where k(λ) = kΩ,e,A,q,ζ(λ) is the principal eigenvalue of the operator LΩ,e,A,q,ζ,λ which is defined

by

LΩ,e,A,q,ζ,λψ := ∇ · (A∇ψ) − 2λẽ · A∇ψ + q · ∇ψ
(2.8)

+ [λ2ẽAẽ− λ∇ · (Aẽ) − λq · ẽ+ ζ]ψ

acting on the set

E = {ψ ∈ C2(Ω), ψ is L-periodic with respect to x and ν · A∇ψ = λ(νAẽψ) on ∂Ω}.

The proof of formula (2.7) is based on methods developed in [2, 7, 9]. These are

techniques of sub- and super-solutions, regularizing and approximations in bounded

domains.

We note that in formula (2.7), the value of the minimal speed c∗(e) is given in terms

of the direction e, the domain Ω and the coefficients A, q and f
′
u(., ., 0). Moreover, it is

important to notice that the dependence of c∗(e) on the non-linearity f is only through

the derivative of f with respect to u at u = 0.

Before going further, let us mention that formula (2.7) extends some earlier results

about front propagation. When Ω = �N, A = Id and f = f(u) (with f(u) � f
′
(0)u in

[0, 1]), formula (2.7) then reduces to the well-known KPP formula c∗(e) = 2
√
f

′
(0). That
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is the value of the minimal speed of propagation of planar fronts for the homogeneous

reaction–diffusion equation: ut − Δu = f(u) in �N.1

The above variational characterization of the minimal speed of propagation of pulsat-

ing fronts in general periodic excitable media will play the main role in studying the

dependence of the minimal speed c∗(e) = c∗
Ω,A,q,f(e) on the coefficients of reaction, diffu-

sion, advection and on the geometry of the domain. In this context, we have the following

theorem.

Theorem 2.5 (Berestycki, Hamel, Nadirashvili [3]) Under the assumptions (2.1), (2.2) and

(2.3) on Ω, A and q, let f= f(x, y, u) [respectively g = g(x, y, u)] be a non-negative non-

linearity satisfying (2.4) and (2.5). Let e be a fixed unit vector in �d, where 1 � d � N,

(a) If f
′
u(x, y, 0) � g

′
u(x, y, 0) for all (x, y) ∈ Ω, then

c∗
Ω,A,q,f(e) � c∗

Ω,A,q,g(e).

Moreover, if f
′
u(x, y, 0) � ,� g

′
u(x, y, 0) in Ω, then c∗

Ω,A,q,f(e) < c∗
Ω,A,q,g(e).

(b) The map B �→ c∗
Ω,A,q,Bf(e) is increasing in B > 0 and

lim sup
B→ +∞

c∗
Ω,A,q,Bf(e)√

B
< +∞.

Furthermore, if Ω = �N or if νAẽ ≡ 0 on ∂Ω, then lim infB→ +∞
c∗
Ω,A,q,Bf (e)√

B
> 0.

(c)

c∗
Ω,A,q,f(e) � ||(q.ẽ)−||∞ + 2

√
max

(x,y) ∈Ω
ζ(x, y)

√
max

(x,y) ∈Ω
ẽA(x, y)ẽ, (2.9)

where ||(q.ẽ)−||∞ = max(x,y)∈Ω(q(x, y).ẽ− and s− = max (−s, 0) for each s ∈ �. Further-

more, the equality holds in (2.9) if and only if ẽAẽ and ζ are constant, q.ẽ ≡ ∇ . (Aẽ) ≡ 0

in Ω and ν.Aẽ = 0 on ∂Ω (in the case when ∂Ω � ∅).

(d) Assume furthermore that f = f(u) and q ≡ 0 in Ω, then the map β �→ c∗
Ω,βA,0,f(e) is

increasing in β > 0.

As a corollary of (2.9), we see that lim supM→+∞
c∗
Ω,MA,q,f (e)√

M
� C where C is a positive

constant. Furthermore, part (d) implies that a larger diffusion speeds up the propagation

in the absence of the advection field.

We mention that the existence of pulsating travelling fronts in space-time periodic

media was proved in [23–25] and recently in [21, 22]. In [22], Nadin characterized the

minimal speed of propagation and he studied the influence of the diffusion, the amplitude

of the reaction term and the drift on the characterized speed.

1 In fact, the uniqueness, up to multiplication by a non-zero real number, of the first eigenvalue

function of L�N ,e,Id,f
′
(0),λψ = k(λ)ψ together with this particular situation, yield that the principal

eigenfunction ψ is constant and k(λ) = λ2 + f
′
(0) for all λ > 0. Therefore by (2.7), we have

c∗(e) = minλ>0 (λ+ f
′
(0)
λ

) = 2
√
f

′ (0).
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After reviewing some results in the study of the KPP propagation phenomena in

a periodic framework, we pass now to announce new results concerning the limiting

behaviour of the minimal speed of propagation within a small (resp. large) diffusion and

reaction coefficients (in some particular situations of the general periodic framework) and

we will study the minimal speed as a function of the period of the coefficients in the KPP

reaction–diffusion–advection (or reaction–diffusion) equation in the case where Ω= �N .

The proofs will be shown in details in Section 7. The announced results will be applied

to find the homogenization limit of the minimal speeds of propagation. We believe that

this limit might help to find the homogenized equation in the “KPP” periodic framework

(see Section 8 for more details).

3 The minimal speed within small diffusion factors or within large

period coefficients

In this section, our problem is a reaction–diffusion equation with absence of advection

terms

{
ut = β ∇ · (A(x, y)∇u) + f(x, y, u), t ∈ �, (x, y) ∈ Ω,

ν · A ∇u(t, x, y) = 0, t ∈ �, (x, y) ∈ ∂Ω,
(3.1)

where β > 0.

We mention that (3.1) is a reaction–diffusion problem within a diffusion matrix βA. Let

e be a unit direction in �d. Under the assumptions (2.1), (2.2), (2.4) and (2.5), for each

β > 0, there corresponds a minimal speed of propagation c∗
Ω,βA,0,f(e) so that a pulsating

front with a speed c and satisfying (3.1) exists if and only if c � c∗
Ω,βA,0,f(e).

Referring to part (c) of Theorem 2.5, one gets 0 < c∗
Ω,βA,0,f(e) � 2

√
β

√
M0M, for any

β > 0, where M0 = max(x,y) ∈Ω ζ(x, y) and M = max(x,y) ∈Ω ẽA(x, y)ẽ .

Consequently, there exists C > 0 and independent of β such that

∀ β > 0, 0 <
c∗
Ω,βA,0,f(e)√

β
� C. (3.2)

The inequality (3.2) leads us to investigate the limits of
c∗
Ω,βA,0,f (e)√

β
as β → 0 and as

β → +∞. The following theorem gives the precise limit when the diffusion factor tends

to zero. However, it will not be announced in the most general periodic setting. We will

describe the situation before the statement of the theorem.

The domain will be in the form Ω = � × ω ⊆ �N, where ω ⊆ �d × �N−d−1 (d � 0).

If d = 0, then ω is a C3 connected, open bounded subset of �N−1. While, in the case

where 1 � d � N − 1, ω is a (L1, . . . , Ld)-periodic open domain of �N−1 which satisfies

(2.1); and hence, Ω is a (l, L1, . . . , Ld)-periodic subset of �N that satisfies (2.1) with l > 0

and arbitrary. An element of Ω = � × ω will be represented as z = (x, y) where x ∈ �
and y ∈ ω ⊆ �d × �N−1−d.
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The non-linearity f = f(x, y, u), in this section, is a KPP non-linearity defined on

Ω × [0, 1] that satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f � 0, and of class C1, δ(� × ω × [0, 1]),

f is (l, L1, . . . , Ld)-periodic with respect to (x, y1, . . . , yd), when d � 1,

f is l-periodic in x, when d = 0,

∀ (x, y) ∈ Ω = � × ω, f(x, y, 0) = f(x, y, 1) = 0,

∃ ρ ∈ (0, 1), ∀(x, y) ∈ Ω, ∀ 1 − ρ � s � s′ � 1, f(x, y, s) � f(x, y, s′),

∀ s ∈ (0, 1), ∃ (x, y) ∈ Ω such that f(x, y, s) > 0,

(3.3)

together with the assumptions

⎧⎪⎪⎨
⎪⎪⎩
f′
u(x, y, 0) depends only on y; we denote by ζ(y) = f′

u(x, y, 0), ∀(x, y) ∈ Ω.

∀ (x, y) ∈ Ω = � × ω, f′
u(x, y, 0) = ζ(y) > 0,

∀ (x, y, s) ∈ Ω × (0, 1), 0 < f(x, y, s) � ζ(y) s.

(3.4)

Notice that f′
u(x, y, u) is assumed to depend only on y, but f(x, y, u) may depend on x.

Lastly, concerning the diffusion matrix, A(x, y) = A(y) = (Aij(y))1�i,j�N is a C2,δ(Ω )

(with δ > 0) symmetric matrix field whose entries are depending only on y, and satisfying

⎧⎪⎪⎨
⎪⎪⎩
A is (L1, . . . , Ld)-periodic with respect to (y1, . . . , yd),

∃ 0 < α1 � α2, ∀ y ∈ ω, ∀ ξ ∈ �N,

α1|ξ|2 �
∑

Aij(y)ξiξj � α2|ξ|2.
(3.5)

Theorem 3.1 Let e = (1, 0, . . . , 0) ∈ �N and ε > 0. Let Ω = � × ω ⊆ �N satisfy the

form described in the previous page. Under the assumptions (3.3), (3.4), and (3.5), consider

the reaction–diffusion equation

{
ut(t, x, y) = ε∇ · (A(y)∇u)(t, x, y) + f(x, y, u), for (t, x, y) ∈ � × Ω,

ν · A∇u = 0 on � × � × ∂ω.
(3.6)

Assume, furthermore, that A and f satisfy one of the following two alternatives:

{
∃ α > 0, ∀y ∈ ω, A(y)e = αe,

f
′
u(x, y, 0) = ζ(y), for all (x, y) ∈ Ω,

(3.7)

or ⎧⎪⎪⎨
⎪⎪⎩
f

′
u(x, y, 0) = ζ is constant,

∀ y ∈ ω, A(y)e = α(y)e, where

y �→ α(y) is a positive, (L1, . . . , Ld)-periodic function over ω.

(3.8)
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Then,

lim
ε→0+

c∗
Ω,εA,0,f(e)√

ε
= 2

√
max
ω

ζ
√

max
ω

eAe. (3.9)

Before going further, we mention that the family of domains for which Theorem 3.1

holds is wide. An infinite cylinder � × B�N−1 (y0, R) (where R > 0, and B�N−1 (y0, R) is

the Euclidian ball of center y0 and radius R) is an archetype of such domains. In these

cylinders, ω = B�N−1 (y0, R), l is any positive real number, and d = 0. The whole space

�N is another archetype of the domain Ω where d = N−1, ω = �N−1 and {l, L1, . . . , Ld}
is any family of positive real numbers.

Remark 3.2 In Theorem 3.1, the domain Ω = � × ω is invariant in the direction of

e = (1, 0, . . . , 0) which is parallel to Ae ( in both cases (3.7) and (3.8)). Also, the assumption

that the entries of A do not depend on x, yields that ∇.(Ae) ≡ 0 over Ω. On the other

hand, it is easy to find a diffusion matrix A and a non-linearity f which satisfy, together,

the assumptions of Theorem 3.1 while one of eAe(y) and ζ(y) is not constant. Referring

to part (c) of Theorem 2.5, one obtains

∀ε > 0, 0 <
c∗
Ω,εA,0,f(e)√

ε
� 2

√
max
y ∈ω

ζ(y)
√

max
y ∈ω

eAe(y).

However, Theorem 3.1 implies that

lim
ε→0+

c∗
Ω,εA,0,f(e)√

ε
= 2

√
max
y ∈ω

ζ(y)
√

max
y ∈ω

eAe(y).

On the other hand, if Ω = �×ω as in Theorem 3.1, A = Id and f = f(u), Theorem 2.5

yields that c∗
Ω,εId,0,f

(e) = 2
√
ε
√
f′(0), for all ε > 0. �

In the same context, one can also find the limit when the diffusion factor goes to zero,

but in the presence of an advection field in the form of shear flows.

Theorem 3.3 Assume that e = (1, 0, . . . , 0) ∈ �N, the domain Ω = �×ω has the same form

as in Theorem 3.1, and the coefficients f and A satisfy (3.3 and 3.4) and (3.5), respectively.

Assume, furthermore, that for all y ∈ ω, there exists α(y) positive so that A(y)e = α(y)e

in ω. Consider, in addition, an advective shear flow q = (q
1
(y), 0, . . . , 0) (y ∈ ω) which is

(L1, . . . , Ld)-periodic with respect to y. Assume that ε is a positive parameter and consider

the parametric reaction–advection–diffusion problem{
ut = ε∇ · (A(y)∇u) + q

1
(y) ∂xu(t, x, y) + f(x, y, u), t ∈ �, (x, y) ∈ Ω,

ν · A ∇u(t, x, y) = 0, t ∈ �, (x, y) ∈ ∂Ω,
(3.10)

where q� 0 over � × ω and q has a zero average. Then,

lim
ε→0+

c∗
Ω,εA,q,f(e) = max

y∈ω
(− q

1
(y)) = max

ω
(− q.e). (3.11)
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The situation in this result is more general than that considered in part (b) of Corol-

lary 4.5 in [4]. In details, the coefficients A and f can be both non-constant. Meanwhile,

in the result of [4], the coefficients considered were assumed to satisfy the alternative (3.7).

After having the exact value of limε→0+ c∗
Ω,εA,0,f(e)/

√
ε, we move now to investigate the

limit of the minimal speed of propagation, considered as a function of the period of

the coefficients of the reaction–diffusion equation set in the whole space �N, when the

periodicity parameter tends to +∞. By making some change in variables, we will find a

link between this problem and Theorem 3.1.

Theorem 3.4 Let e = (1, 0, . . . , 0) ∈ �N. An element z ∈ �N is represented as z = (x, y) ∈
� × �N−1. Assume that f = f(x, y, u) and A = A(y) satisfy (3.3), (3.4) and (3.5) with

ω = �N−1, d = N − 1 and l = L1 = · · · = LN−1 = 1. (That is, the domain and the

coefficients of the equation are (1, 1, . . . , 1) periodic with respect to y.) Assume furthermore,

that A and f satisfy either (3.7) or (3.8). For each L > 0, and (x, y) ∈ �N, let A
L
(y) = A

(
y
L

)
and f

L
(x, y, u) = f

(
x
L
, y
L
, u

)
. Consider the reaction–diffusion problem

ut(t, x, y) = ∇ · (A
L
∇u)(t, x, y) + f

L
(x, y, u), (t, x, y) ∈ � × �N

(3.12)

= ∇ ·
(
A

(
y

L

)
∇u

)
(t, x, y) + f

(
x

L
,
y

L
, u

)
, (t, x, yx) ∈ � × �N,

whose coefficients are (L, . . . , L)-periodic with respect to (x, y) ∈ �N. Then,

lim
L→ +∞

c∗
�N, A

L
, 0, f

L

(e) = 2
√

max
y ∈ �N−1

ζ(y)
√

max
y ∈ �N−1

e.Ae(y). (3.13)

The above theorem gives the limit of the minimal speed of propagation in the direction

of e = (1, 0, . . . , 0) as the periodicity parameter L → +∞. The domain is the whole space

�N which is (L, . . . , L)-periodic whatever the positive number L be. However, one can

find

lim
L→ +∞

c∗
�N, A

L
, Lq

L
, f

L

(e)

whenever q is a shear flow advection. Namely, in the same manner that Theorem 3.1

implies Theorem 3.4, one can prove that Theorem 3.3 implies Theorem 3.5.

Theorem 3.5 Let e = (1, 0, . . . , 0) ∈ �N. Assume that f = f(x, y, u) and A = A(y) satisfy

(3.3), (3.4) and (3.5) with ω = �N−1, d = N − 1 and l = L1 = · · · = LN−1 = 1. (That

is, the domain and the coefficients of the equation are (1, 1, . . . , 1)-periodic with respect to

y in �N−1.) Assume, furthermore, that for all y ∈ �N−1, there exists α(y) positive so that

A(y)e = α(y)e in �N−1. Let q = (q
1
(y), 0, . . . , 0) for all y ∈ �N−1 such that q1 � 0 over

�N−1, q is (1, . . . , 1)-periodic with respect to y and q1 has a zero average. Then,

lim
L→ +∞

c∗
�N, A

L
, Lq

L
, f

L

(e) = max
y∈�N−1

(− q
1
(y)) = max

�N−1
(− q.e). (3.14)

In the proof of Theorem 3.3 (which implies Theorem 3.5), the assumption that

the advection q is in the form of shear flows plays an important role in reducing

the elliptic equation involved by the variational formula (7.13) below. Namely, since
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q = (q1(y), 0, . . . , 0) and since e = (1, 0, . . . , 0), then the terms q(x, y) ·∇x,yψ and q(x, y) ·e (in

the general elliptic equation) become equal to q1(y)∂xψ and q1(y), respectively. As a con-

sequence, and due to the uniqueness of the principal eigenfunction ψ up to multiplication

by a constant, we are able to choose ψ independent of x, and hence, obtain a symmetric

elliptic operator (without drift) whose principal eigenvalue was given by the variational

formula (7.15) below (see Section 7 for more details).

Remark 3.6 After the above explanations, we find that the techniques used to prove

Theorem 3.3 which implies 3.5, will no longer work in the presence of a general periodic

advection field satisfying (2.3).

Concerning the influence of advection, we mention that the limit of c∗
Ω,A, Bq,f(e)/B as

B → +∞ (in the general periodic setting) is not yet given explicitly as a function of the

direction e and the coefficients A, q and f. For more details one can see Theorem 4.1 in

[4]. However, the problem of front propagation in an infinite cylinder with an underlying

shear flow was widely studied in [1, 8]. In the case of strong advection, assume that

Ω = � × ω, where ω is a bounded smooth subset of �N−1, q = (q
1
(y), 0, . . . , 0), y ∈ ω,

and f = f(u) is a (KPP) non-linearity. It was proved, in [16], that

lim
B→+∞

c∗
Ω,A, Bq,f(e)

B
= γ, (3.15)

where

γ = sup
ψ∈D

∫
ω

q
1
(y)ψ2 dy,

D =

{
ψ ∈ H1(w),

∫
ω

|∇ψ|2 dy � f
′
(0) and

∫
ω

ψ2 dy = 1

}
.

4 Minimal speed within large diffusion factors or within small period coefficients

After having the limit of c∗
Ω,εA,0,f(e)/

√
ε as ε → 0+, and after knowing that this limit depends

on maxy ∈w ζ(y) and maxy ∈w eAe(y), we investigate now the limit of c∗
Ω,MA, q,f(e)/

√
M

as the diffusion factor M tends to +∞, and we try to answer this question in a situation

which is more general than that we considered in the previous section (in the case where

the diffusion factor was going to 0+). That is in the presence of an advection field and

in a domain Ω which satisfies (2.1) and which may take more forms other than those

of Section 3. We will find that in the case of large diffusion, the limit will depend

on

−
∫
C

ζ(x, y) dx dy :=
1

|C|

∫
C

ζ(x, y) dx dy and −
∫
C

ẽAẽ(x, y) dx dy :=
1

|C|

∫
C

ẽAẽ(x, y) dx dy,

where C denotes the periodicity cell of the domain Ω.

Theorem 4.1 Under the assumptions (2.1) for Ω, (2.3) for the advection q, (2.4) and (2.5) for

the non-linearity f = f(x, y, u), let e be any unit direction of �d. Assume that the diffusion
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matrix A = A(x, y) satisfies (2.2) together with ∇ · Aẽ ≡ 0 over Ω, and ν · Aẽ = 0 over

∂Ω. For each M > 0 and 0 � γ � 1/2, consider the following reaction–advection–diffusion

equation{
ut = M ∇ · (A(x, y)∇u) + Mγ q(x, y) · ∇u + f(x, y, u), t ∈ �, (x, y) ∈ Ω,

ν · A ∇u(t, x, y) = 0, t ∈ �, (x, y) ∈ ∂Ω.

Then

lim
M→+∞

c∗
Ω,MA,Mγ q, f

(e)
√
M

= 2

√
−
∫
C

ẽAẽ(x, y)dx dy

√
−
∫
C

ζ(x, y) dx dy,

where C is the periodicity cell of Ω.

Remark 4.2

• The setting in Theorem 4.1 is more general than that in Theorem 3.1, where Ω =

� × ω, ẽ = (1, 0, . . . , 0) and Aẽ = α(y)ẽ. Under the assumptions of Theorem 3.1, the

domain Ω is invariant in the direction of Aẽ, which is that of ẽ. Consequently, if ν

denotes the outward normal on ∂Ω = � × ∂ω, one gets ν · Aẽ = α(y) ν · ẽ = 0 over ∂Ω,

while ∇ · (Aẽ) = ∂/∂xα(y) = 0 over Ω. Moreover, in Theorem 3.1, we have only reaction

and diffusion terms. That is q ≡ 0. Therefore, considering the setting of Theorem 3.1,

and taking βA as a parametric diffusion matrix, one consequently knows the limits of

c∗
Ω,βA,0,f

(e)/
√
β as β → 0+ (Theorem 3.1) and as β → +∞ (Theorem 4.1).

• The other observation in Theorem 4.1 is that the limit does not depend on the advection

field q. This may play an important role in drawing counter examples to answer many

different questions. For example, the variation of the minimal speed of propagation

with respect to the diffusion factor and with respect to diffusion matrices which are

symmetric positive definite.

• Another important feature, in Theorem 4.1, is that the order of M in the denominator

of the ratio c∗
Ω,MA,Mγ q,f(e)/

√
M is equal to 1/2. It is independent of γ. Consequently, the

case where the advection is null and there is only a reaction–diffusion equation follows,

in particular, from the previous theorem. That is

lim
M→+∞

c∗
Ω,MA,0,f

(e)
√
M

= 2

√
−
∫
C

ẽAẽ(x, y) dx dy

√
−
∫
C

ζ(x, y) dx dy.

• The previous point leads us to conclude that the presence of an advection with a factor

Mγ, where 0 � γ � 1/2, will have no more effect on the ratio c∗
Ω,MA,Mγ q,f(e)/

√
M as soon

as the diffusion factor M gets very large.

As far as the limit of the minimal speed of propagation within small periodic coefficients

in the reaction–diffusion equation is concerned, the following theorem, which mainly

depends on Theorem 4.1, treats this problem:

Theorem 4.3 Let Ω = �N. Assume that A = A(x, y), q = q(x, y) and f = f(x, y, u)

are (1, . . . , 1)-periodic with respect to (x, y) ∈ �N, and that they satisfy (2.2), (2.3), (2.4)
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and (2.5) with L1 = · · · = LN = 1. Let e be any unit direction of �N, such that ∇ ·
Aẽ ≡ 0 over �N. For each L > 0, let A

L
(x, y) = A(x/L, y/L), q

L
(x, y) = q(x/L, y/L) and

f
L
(x, y, u) = f(x/L, y/L, u), where (x, y) ∈ �N. Consider the problem

ut(t, x, y) = ∇ · (A
L
∇u)(t, x, y) + q

L
· ∇u(t, x, y) + f

L
(x, y, u), (t, x, y) ∈ � × �N,

= ∇ ·
(
A

(
x

L
,
y

L

)
∇u

)
(t, x, y) + q

(
x

L
,
y

L

)
· ∇u(t, x, y) + f

(
x

L
,
y

L
, u

)
,

(4.1)

whose coefficients are (L, . . . , L)-periodic with respect to (x, y) ∈ �N. Then,

lim
L→ 0+

c∗
�N, A

L
, q

L
, f

L

(e) = 2

√
−
∫
C

ẽAẽ(x, y) dx dy

√
−
∫
C

ζ(x, y) dx dy,

where, in this setting, C = [0, 1] × · · · × [0, 1] ⊂ �N.

The above result gives the limit in any space dimension. It depends on the assumption

∇ · (Aẽ) ≡ 0 in �N. However, if one takes N = 1, and denotes the diffusion coefficient

by a = a(x), x ∈ �, then the previous result holds under the assumptions that a satisfies

(2.2) and da/dx ≡ 0 in �. In other words, it holds when a is a positive constant. Thus,

it is interesting to mention that, in the one-dimensional case, the above limit was given

in [13] and [17] within a general diffusion coefficient (which may not be constant over

�). In details, assume that f = f(x, u) = (ζ(x) − u)u is a 1-periodic (KPP) non-linearity

satisfying (2.4) with (2.5), and � � x �→ a(x) is a 1-periodic function which satisfies

0 < α1 � a(x) � α2, for all x ∈ �, where α1 and α2 are two positive constants. For each

L > 0, consider the reaction–diffusion equation

∂t u(t, x) =
∂

∂ x

(
a
( x
L

) ∂ u

∂x

)
(t, x) +

[
ζ
( x
L

)
− u(t, x)

]
u(t, x) for (t, x) ∈ �×�. (4.2)

It was derived in [13] and, formally, in [17] that

lim
L→ 0+

c∗
�, a

L
, 0, f

L

(e) = 2

√
< a >

H
.

∫ 1

0

ζ(x), (4.3)

where < a >
H

denotes the harmonic mean of the map x �→ a(x) over [0, 1].

5 Minimal speed within small or large reaction coefficients

In this section, the parameter of the reaction–advection–diffusion problem is the coefficient

B multiplied by the non-linearity f. In fact, it follows from Theorem 2.6 in [3] (recalled

via Theorem 2.5 in the present paper) that the map B �→ c∗
Ω,A,q,Bf(e)/

√
B remains, with

the assumption ν.Aẽ = 0 on ∂Ω, bounded by two positive constants as B gets very

large. Therefore, it is interesting to find the limit of c∗
Ω,A,q,Bf(e)/

√
B as B → +∞ even

in some particular situations. Moreover, it is important to find the limit of the same

quantity as B → 0+. We start with the case where B → +∞ and then we move to that

where B → 0+.
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Theorem 5.1 Let e = (1, 0, . . . , 0) ∈ �N and B > 0. Assume that Ω = �×ω ⊆ �N, A and

f satisfy the same assumptions of Theorem 3.1. That is, f and A satisfy (3.3), (3.4) and (3.5),

and one of the two alternatives (3.7) and (3.8). Consider the reaction–diffusion equation

{
ut(t, x, y) = ∇ · (A(y)∇u)(t, x, y) + B f(x, y, u), for (t, x, y) ∈ � × Ω,

ν · A∇u = 0 on � × � × ∂ω.
(5.1)

Then,

lim
B→+∞

c∗
Ω,A,0,Bf(e)√

B
= 2

√
max
y ∈ω

ζ(y)
√

max
y ∈ω

eAe(y). (5.2)

We mention that one can find the coefficients A and f, and the domain Ω of the problem

(5.1) satisfying all the assumptions of Theorem 5.1, which are the same of Theorem 3.1,

including one of the alternatives (3.7) and (3.8) while one of ζ and eAe is not constant.

Owing to Theorem 1.10 in [3], it follows that

∀B > 0, c∗
Ω,A,0,Bf(e) � 2

√
B

√
max
y∈ω

ζ(y)
√

max
y∈ω

eAe(y),

which is equivalent to saying that

c∗
Ω,A,0,Bf(e)√

B
� 2

√
max
y ∈ω

ζ(y)
√

max
y ∈ω

eAe(y).

Therefore, there are heterogeneous settings in which the result found in Theorem 5.1

does not follow trivially.

We move now to study the limit when the reaction factor B tends to 0+. However, the

situation will be more general than that in Theorem 5.1 because it will consider reaction–

advection–diffusion equations rather than considering reaction–diffusion equations

only.

Theorem 5.2 Under the assumptions (2.1) for Ω, (2.3) for the advection q, (2.4) and (2.5)

for the non-linearity f = f(x, y, u), let e be any unit direction of �d. Assume that the

diffusion matrix A = A(x, y) satisfies (2.2) together with ∇ · Aẽ ≡ 0 over Ω, and ν · Aẽ = 0

over ∂Ω. For each B > 0 and γ � 1/2, consider the following reaction–advection–diffusion

equation⎧⎨
⎩
ut = ∇ · (A(x, y)∇u) + B γ q(x, y) · ∇u + B f(x, y, u), t ∈ �, (x, y) ∈ Ω,

ν · A ∇u(t, x, y) = 0, t ∈ �, (x, y) ∈ ∂Ω.

Then

lim
B→0+

c∗
Ω,A, Bγ q, Bf

(e)
√
B

= 2

√
−
∫
C

ẽAẽ(x, y) dx dy

√
−
∫
C

ζ(x, y) dx dy,

where C is the periodicity cell of Ω.
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Having the above result one can mark a sample of notes:

The order of B in the denominator of the ratio c∗
Ω,A,Bγ q,Bf(e)/

√
B is independent of γ

(it is equal to 1/2). Thus, whenever the advection is null, one gets

lim
B→0+

c∗
Ω,A,0,Bf(e)√

B
= 2

√
−
∫
C

ẽAẽ(x, y) dx dy

√
−
∫
C

ζ(x, y) dx dy.

Therefore, one concludes that the presence of an advection with a factor Bγ, where

γ� 1/2, will have no more effect on the limit of the ratio c∗
Ω,A,Bγq,Bf(e)/

√
B as the reaction

factor B gets very small.

On the other hand, it is easy to check that the assumptions in Theorem 5.2 are more

general than those in Theorem 5.1. Consequently, once we are in the more strict setting,

which is that of Theorem 5.1, we are able to know both limits of c∗
Ω,A,0,Bf(e)/

√
B as

B → +∞ and as B → 0+.

6 Variations of the minimal speed with respect to diffusion and reaction factors and with

respect to periodicity parameters

After having studied the limits and the asymptotic behaviours of the functions

ε �→ c∗
Ω,εA,0,f(e)/

√
ε, M �→ c∗

Ω,MA,Mγ q,f(e)/
√
M (for very large M and for 0 � γ � 1/2),

B �→ c∗
Ω,A,Bγ q,Bf(e)/

√
B (γ � 1/2) and L �→ c∗

�N,AL, qL ,fL
(e), where L is a periodicity para-

meter, we move now to investigate the variations of these functions with respect to the

diffusion and reaction factors and with respect the periodicity parameter L. The present

section will be devoted to discuss and answer these questions.

We sketch first the form of the domain. Ω ⊆ �N is assumed to be in the form � × ω

which was taken in Section 3. As a review, Ω = � × ω ⊆ �N, where ω ⊆ �d × �N−d−1

(d � 0). If d = 0, the subset ω is a bounded open subset of �N−1. While, in the case

where 1 � d � N − 1, ω is a (L1, . . . , Ld)-periodic open domain of �N−1 which satisfies

(2.1); and hence, Ω is a (l, L1, . . . , Ld)-periodic subset of �N that satisfies (2.1) with l > 0.

An element of Ω = � ×ω will be represented as z = (x, y) where y ∈ ω ⊆ �d × �N−1−d.

With a domain of such form, we have:

Theorem 6.1 Let e = (1, 0, . . . , 0) ∈ �N. Assume that Ω has the form � × ω which is

described above, and that the diffusion matrix A = A(y) satisfies (3.5) together with the

assumption

A(x, y)e = A(y)e = α(y)e, for all (x, y) ∈ � × ω, (6.1)

where y �→ α(y) is a positive (L1, . . . , Ld)-periodic function defined over ω. The non-linearity

f is assumed to satisfy (3.3) and (3.4). Moreover, one assumes that, at least, one of ẽ · Aẽ
and ζ is not constant. Besides, the advection field q (when it exists) is in the form q(x, y) =

(q
1
(y), 0, . . . , 0) where q

1
has a zero average over C, the periodicity cell of ω. For each β > 0

consider the reaction–advection–diffusion problem{
ut = β ∇ · (A(y)∇u) +

√
β q

1
(y) ∂xu+ f(x, y, u), t ∈ �, (x, y) ∈ � × ω,

ν · A ∇u(t, x, y) = 0, t ∈ �, (x, y) ∈ ∂Ω.
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Then the map β �→ c∗
Ω,βA,

√
β q,f

(e)/
√
β is decreasing in β > 0, and by Theorem 4.1, one

has

lim
β→+∞

c∗
Ω,βA,

√
β q,f

(e)
√
β

= 2

√
−
∫
C

ẽAẽ(y) dy

√
−
∫
C

ζ(y) dy,

where C is the periodicity cell of ω.

Remark 6.2 In the same setting of Theorem 6.1 but with no advection, that is q
1

≡ 0,

we still have β �→ c∗
Ω,βA,0,f(e)/

√
β as a decreasing map in β > 0. Moreover, if one of the

alternatives (3.7) and (3.8) holds and there is no advection, Theorem 3.1 yields that

lim
β→0+

c∗
Ω,βA,0,f(e)√

β
= 2

√
max
y∈ω

ẽAẽ(y)
√

max
y∈ω

ζ(y).

The preceding result yields another one concerned in the variation of the minimal speeds

with respect to the periodicity parameter L. In the following, the domain will be the whole

space �N. We choose the diffusion matrix A(x, y) = A(y), the shear flow q and reaction

term f to be (1, . . . , 1)-periodic and to satisfy some restrictions. For each L > 0, we assign

the diffusion matrix AL(x, y) = A(x/L, y/L), the advection field q
L
(x, y) = q(x/L, y/L) and

the non-linearity fL = f(x/L, y/L, u) and we are going to study the variation, with respect

to the periodicity parameter L, of the minimal speed c∗
�N,AL,qL ,fL

(e), which corresponds to

the reaction–advection–diffusion equation within the (L, . . . , L)-periodic coefficients A
L
, q

L

and f
L
:

Theorem 6.3 Let e = (1, 0, . . . , 0) ∈ �N. An element z ∈ �N is represented as z =

(x, y) ∈ � × �N−1. Assume that A(x, y) = A(y) (for all (x, y) ∈ �N) and f(x, y, u) satisfy

(3.3), (3.4) and (3.5) with ω = �N−1, d = N − 1 and l = L1 = · · · = LN−1 = 1.

Assume furthermore, that for all y ∈ �N−1, A(x, y)e = A(y)e = α(y)e, where y �→ α(y)

is a positive (1, . . . , 1)-periodic function defined over �N−1 and that, at least, one of ẽ · Aẽ
and ζ is not constant. Let q be an advection field satisfying (2.3) and having the form

q(x, y) = (q
1
(y), 0, . . . , 0) for each (x, y) ∈ �N. Consider the reaction–advection–diffusion

problem,

∀ (t, x, y) ∈ � × �N,

ut(t, x, y) = ∇ · (A
L
(y)∇u)(t, x, y) + (q

1
)
L
(y)∂xu(t, x, y) + f

L
(x, y, u),

(6.2)

whose coefficients are (L, . . . , L)-periodic with respect to (x, y) ∈ �N.

Then, the map L �→ c∗
�N,A

L
, q
L
,f
L

(e) is increasing in L > 0.

Remark 6.4 The assumptions of Theorem 6.3 cannot be fulfilled whenever N = 1. How-

ever, assuming that N = 1 and that the function

ζ

< ζ >A

+
< a >H

a

is not identically equal to 2 (where a(x) is the diffusion factor, < a >H and < ζ >A are,

respectively, the harmonic mean of x �→ a(x) and arithmetic mean of x �→ ζ(x) over [0, 1]),
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it was proved, in [13], that L �→ c∗
�N,a

L
, q
L
,f
L

(e) is increasing in L when L is close to 0. In

particular, if a is constant and ζ is not constant, or if μ is constant and a is not constant,

then L �→ c∗
�N,a

L
, q
L
,f
L

(e) is increasing when L is close to 0.

Concerning now the variation with respect to the reaction factor B, we have the

following:

Theorem 6.5 Assume that Ω = � × ω and the coefficients A, q and f satisfy the same

assumptions of Theorem 6.1. Let e = (1, 0, . . . , 0) and for each B > 0, consider the reaction–

advection–diffusion problem{
ut = ∇ · (A(y)∇u) +

√
B q

1
(y) ∂xu + Bf(x, y, u), t ∈ �, (x, y) ∈ � × ω,

ν · A ∇u(t, x, y) = 0, t ∈ �, (x, y) ∈ ∂Ω.

Then, the map B �→
c∗
Ω,A,

√
B q,Bf

(e)
√
B

is increasing in B > 0.

As a first note, we mention that Theorem 6.5 holds also in the case where there is no

advection. On the other hand, Berestycki, Hamel and Nadirashvili [3] proved that the map

B �→ c∗
Ω,A, q,Bf(e) is increasing in B > 0 under the assumptions (2.1), (2.2), (2.3), (2.4) and

(2.5) which are less strict than the assumptions considered in our present theorem. How-

ever, the present theorem is concerned in the variation of the map B �→ c∗
Ω,A,

√
B q,Bf

(e)/
√
B

rather than that of B �→ c∗
Ω,A, q,Bf(e).

Remark 6.6 Owing to the same justifications given after Theorem 3.5, one concludes the

importance of taking, in Section 6, an advection in the form of shear flows. To study the

variations of the minimal speeds as in Theorems 6.1, 6.3 and 6.5, but in a more general

framework (general advection fields, general diffusion, etc. . . . .), formula 2.7 remains an

important tool. However, we will no longer have variational formulations as (7.62) below.

These problems remain open in the general periodic framework.

7 Proofs of the announced results

In this section, we are going to demonstrate the theorems announced in Sections 3, 4, 5

and 6. We will proceed in four subsections, each devoted to proving the results announced

in a corresponding section.

7.1 Proofs of Theorems 3.1, 3.3 and 3.4

Proof of Theorem 3.1. Under the assumptions of Theorem 3.1, we can apply the varia-

tional formula (2.7) of the minimal speed. Consequently,

c∗
Ω,εA,0,f(e) = min

λ> 0

k
Ω,e, εA, 0, ζ (λ)

λ
, (7.1)

where kΩ,e,εA,0,ζ(λ) is the first eigenvalue (for each λ, ε > 0) of the eigenvalue problem⎧⎨
⎩
L
Ω,e, εA, 0, ζ, λ ψ = k

Ω,e, εA, 0, ζ (λ) ψ(x, y) over � × ω;

ν · A∇ψ = 0 on � × ∂ω,
(7.2)
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and

L
Ω,e, εA, 0, ζ, λψ(x, y) = ε∇ · (A(y)∇ψ(x, y)) − 2 ε λAe · ∇ψ(x, y)

+ [ε λ2eA(y)e − λ ε∇ · (A(y)e) + ζ(y)]ψ(x, y),

for all (x, y) ∈ � × ω.

Initially, the boundary condition in (7.2) is ν ·A∇ψ = λ ν ·Ae on ∂Ω = � × ∂ω; where

ν(x, y) is the unit outward normal at (x, y) ∈ ∂Ω. However, Ω = � × ω is invariant in

the direction of e which is that of Ae in both alternatives (3.7) and (3.8). Consequently,

ν · Ae ≡ 0 on ∂Ω.

We recall that for all λ > 0, and for all ε > 0, we have kΩ,e, εA, 0,ζ(λ) > 0. Also, the first

eigenfunction of (7.2) is positive over Ω = � × ω, and it is unique up to multiplication

by a non-zero constant.

In our present setting, whether in (3.7) or (3.8) and due to the assumption (3.4), one

concludes that the coefficients in LΩ,e, εA, 0,ζ,λ are independent of x. Moreover, in both

alternatives (3.7) and (3.8), the direction of Ae is the same of e = (1, 0, . . . , 0). On the other

hand, since Ω = � × ω, then for each (x, y) ∈ ∂Ω, we have ν(x, y) = (0; νω(y)), where

νω(y) is the outward unit normal on ∂ω at y. Consequently, the first eigenfunction of (7.2)

is independent of x and the eigenvalue problem (7.2) is reduced to

⎧⎪⎪⎨
⎪⎪⎩
L
Ω,e, εA, 0, ζ, λφ : = ε∇ · (A(y)∇φ(y)) + [ε λ2eA(y)e+ ζ(y)]φ(y)

= k
Ω,e, εA, 0, ζ (λ)φ over ω;

ν(x, y) · A(y)∇φ(y) = (0; νω(y)) · A(y)∇φ(y) = 0 on � × ∂ω,

(7.3)

where φ = φ(y) is positive over ω, L-periodic (since the domain ω and the coefficients

of LΩ,e, εA,0,ζ,λ are L-periodic), unique up to multiplication by a constant, and belongs to

C 2(ω).

In the case where d � 1, let C ⊆ �N−1 denote the periodicity cell of ω. Otherwise,

d = 0 and one takes C = ω. In both cases, C is bounded. Multiplying the first line of

(7.3) by φ, and integrating by parts over C, one gets

− k
Ω,e, εA, 0, ζ (λ) =

ε

∫
C

∇φ · A(y)∇φdy −
∫
C

[ελ2eA(y)e + ζ(y)]φ2(y) dy∫
C

φ2(y) dy

. (7.4)

One also notes that, in this present setting, the operator LΩ,e, εA,0,ζ,λ is self-adjoint and its

coefficients are (L1, . . . , Ld)-periodic with respect (y1, . . . , yd). Consequently, − kΩ,e, εA, 0,ζ(λ)

has the following variational characterisation:

− k
Ω,e, εA, 0, ζ (λ) = min

ϕ∈H1(C)\{0}

ε

∫
C

∇ϕ · A(y)∇ϕdy −
∫
C

[ελ2eA(y)e + ζ(y)]ϕ2(y) dy∫
C

ϕ2(y) dy

. (7.5)
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In what follows, we will assume that (3.7) is the alternative that holds. That is, eAe = α

is constant. The proof can be imitated easily whenever we assume that (3.8) holds.

The function y �→ ζ(y) is continuous and (L1, . . . , Ld)-periodic over ω, whose periodicity

cell C is a bounded subset of �N−1 (whether d = 0 or d � 1). Let y0 ∈ C ⊆ ω such that

maxy∈w ζ(y) = ζ(y0) (trivially, this also holds when ζ is constant). Consequently, we have

∀ ϕ ∈ H1(C) \ {0},
ε

∫
C

∇ϕ · A∇ϕ−
∫
C

(εαλ2 + ζ(y))ϕ2

∫
C

ϕ2(y) dy

� −[εαλ2 + ζ(y0)].

This yields that

∀ ε > 0, ∀ λ > 0, − k
Ω,e, εA, 0, ζ (λ) � −[εαλ2 + ζ(y0)]. (7.6)

Consequently,

∀ ε > 0, ∀ λ > 0,
k
Ω,e, εA, 0, ζ (λ)

λ
� λ αε +

ζ(y0)

λ
. (7.7)

However, the function λ �→ λαε + ζ(y0)/λ attains its minimum, over �+, at λ(ε) =√
ζ(y0)/αε. This minimum is equal to 2

√
ζ(y0) ×

√
α ε. From (7.7), we conclude that

k
Ω,e, εA, 0, ζ (λ(ε))

λ(ε)
� 2

√
αε

√
ζ(y0).

Finally, (2.7) implies that c∗
Ω,εA,0,f(e) = minλ> 0 kΩ,e, εA, 0,ζ(λ)/λ � 2

√
α ε

√
ζ(y0), or equi-

valently

∀ε > 0,
c∗
Ω,εA,0,f(e)√

ε
� 2

√
α
√
ζ(y0). (7.8)

We pass now to prove the other sense of the inequality for lim infε→0+ c∗
Ω,εA,0,f(e)/

√
ε.

We will consider formula (7.5), and then organize a suitable function ψ which leads us to

a lower bound of lim infε→0+ c∗
Ω,εA,0,f(e)/

√
ε.

We have ζ(y0) > 0. Let δ be such that 0 < δ < ζ(y0). Thus 0 < ζ(y0) − δ < maxω ζ(y).

The continuity of ζ, over C ⊆ ω, yields that there exists an open and bounded set U ⊂ C

such that

∀ y ∈ U, ζ(y0) − δ � ζ(y). (7.9)

Designate by ψ, a function in D(C) (a C∞(C) function whose support is compact), with

suppψ ⊆ U, and
∫
U
ψ2 = 1. One will have,

∀λ > 0, ∀ ε > 0,

− k
Ω,e, εA, 0, ζ (λ) � ε

∫
U

∇ψ · A(y)∇ψ dy −
∫
U

[ελ2eA(y)e + ζ(y)]ψ2(y) dy

� ε

∫
U

∇ψ · A(y)∇ψ dy − [ελ2α + ζ(y0) − δ]

∫
U

ψ2(y) dy

� ε

∫
U

α2|∇ψ|2 − [ελ2α + ζ(y0) − δ], by (3.5),
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or equivalently

k
Ω,e, εA, 0, ζ (λ)

λ
� λαε +

1

λ
β(ε), (7.10)

where β(ε) = ζ(y0) − δ − ε
∫
U
α2|∇ψ|2. Choosing 0 < ε < ζ(y0) − δ/α2

∫
U

|∇ψ|2 (this is

possible), we get β(ε) > 0.

The map λ �→ λαε + 1/λ β(ε) attains its minimum, over �+, at λ(ε) =
√
β(ε)/εα. This

minimum is equal to 2
√
ε α

√
β(ε).

Now, referring to formula (7.10), one gets

For ε small enough,
k
Ω,e, εA, 0, ζ (λ)

λ
� 2

√
εα

√
β(ε) for all λ > 0.

Together with (2.7), we conclude that

for ε small enough,
c∗
Ω,εA,0,f(e)√

ε
� 2

√
β(ε)

√
α. (7.11)

Consequently,

lim inf
ε→0+

c∗
Ω,εA,0,f(e)√

ε
� lim inf

ε→0+
2
√
β(ε)

√
α

= 2
√
ζ(y0) − δ

√
α (since ψ is independent of ε),

and this holds for all 0 < δ < ζ(y0). Therefore, one can conclude that

lim inf
ε→0+

c∗
Ω,εA,0,f(e)√

ε
� 2

√
α
√
ζ(y0). (7.12)

Finally, the inequalities (7.8) and (7.12) imply that limε→0+
c∗
Ω,εA,0,f (e)√

ε
exists, and it is equal

to

2
√
α
√
ζ(y0) = 2

√
max
ω

eA(y)e
√

max
ω

ζ(y).

We note that the same ideas of this proof can be easily applied in the case where the

assumption (3.8) holds. In (3.8), we have ζ is constant; however, eAe is not in general.

Meanwhile the converse is true in the case (3.7). The little difference is that, in the case of

(3.8), we choose the subset U (of the proof done above) around the point y0 where eAe

attains its maximum and then we continue by the same way used above. �

Proof of Theorem 3.3 We have

c∗
Ω,εA,0,f(e) = min

λ> 0

k
Ω,e, εA, q, ζ (λ)

λ
, (7.13)

where (due to the facts that q is a shear flow, e = (1, 0, . . . , 0) and e is an eigenvector of

the matrix A(y) for all y ∈ ω) kΩ,e, εA, q,ζ(λ) is the principal eigenvalue of the problem

{
LΩ,e, εA, q,ζ,λψ(x, y) = kΩ,e, εA, q,ζ(λ)ψ(x, y) over � × ω;

ν · A∇ψ = 0 on � × ∂ω,

https://doi.org/10.1017/S0956792508007511 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792508007511


Pulsating travelling fronts 413

with

LΩ,e,εA, q,ζ,λ ψ = ε∇ · (A(y)∇ψ) − 2ελ α(y) ∂xψ + q
1
(y)∂xψ

(7.14)
+ [ε λ2eA(y)e − λq

1
(y) + ζ(y)]ψ over � × ω.

The uniqueness of the principal eigenfunction ψ up to multiplication by a constant,

yields that one can choose ψ independent of x. Hence, the elliptic operator LΩ,e,εA, q,ζ,λ can

be reduced to the symmetric operator

LΩ,e,εA, q,ζ,λ ψ = ε∇ · (A(y)∇ψ) + [ε λ2eA(y)e − λq
1
(y) + ζ(y)]ψ.

Consequently,

∀λ > 0, ∀ε > 0, −kΩ,e, εA, q,ζ(λ)

= min
ϕ∈H1(C)\{0}

ε

∫
C

∇ϕ · A(y)∇ϕdy + λ

∫
C

q
1
(y)ϕ2 −

∫
C

[λ2εeA(y)e + ζ(y)]ϕ2(y) dy∫
C

ϕ2(y) dy

. (7.15)

Formula (7.15) yields that

∀λ > 0, ∀ε > 0, −kΩ,e, εA, q,ζ(λ) � −λmax
y∈ω

(−q1(y)) − λ2εmax
y∈ω

eA(y)e− max
y∈ω

ζ(y),

or equivalently

∀λ > 0, ∀ε > 0,
kΩ,e, εA, q,ζ(λ)

λ
� max

y∈ω
(−q1(y)) + λεmax

y∈ω
eA(y)e+

max
y∈ω

ζ(y)

λ
.

Putting λ = λ(ε) =
√

maxy∈ω ζ(y)
εmaxy∈ωe·A(y)e

> 0 into the last inequality yields that

min
λ> 0

k
Ω,e, εA, q, ζ (λ)

λ
� max

y∈ω
(−q1(y)) + 2

√
ε
√

max
y∈ω

e · A(y)e
√

max
y∈ω

ζ(y),

and hence,

lim sup
ε→0+

c∗
Ω,εA,q,f(e) � max

y∈ω
(−q1(y)) . (7.16)

Now, we take y0 ∈ C (C is the periodicity cell of ω) such that maxy∈ω (−q1(y)) =

−q1(y0) > 0 (since q is periodic with respect to y, q1 � 0 and q1 has a zero average) and

we take δ > 0 such −q1(y0) − δ > 0. It follows, from the continuity of q1, that there exists

an open subset U ⊂ C such that y0 ∈ U and

∀y ∈ U, −q1(y) � max
y∈ω

(−q1(y)) − δ.

Let ψ be a function in D(C) with suppψ ⊆ U, and
∫
U
ψ2 = 1. Referring to (7.15), it

follows that

∀λ > 0, ∀ε > 0,
k
Ω,e, εA, q, ζ (λ)

λ
� −q1(y0) − δ + λεmin

y∈ω
e · Ae +

1

λ
β(ε), (7.17)
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where β(ε) = miny∈ω ζ(y) − ε
∫
U
α2|∇ψ|2 > 0 for a small enough ε > 0 (α2 > 0 is the

constant appearing in (3.5)).

It follows from (7.17) that

∀λ > 0, ∀ε > 0,
k
Ω,e, εA, q, ζ (λ)

λ
� −q1(y0) − δ + 2

√
ε
√

min
y∈ω

e · Ae
√
β(ε).

Together with (7.13), and since δ > 0 is arbitrary, one gets

lim inf
ε→0+

c∗
Ω,εA,q,f(e) � −q1(y0) = max

y∈ω
(−q1(y)). (7.18)

Finally, (7.16) and (7.18) complete the proof of Theorem 3.3. �

Proof of Theorem 3.4 Consider the change of variables

v(t, x, y) = u(t, Lx, Ly), (t, x, y) ∈ � × � × �N−1.

The function u satisfies (3.12) if and only if v satisfies

vt(t, x, y) =
1

L
2 ∇ · (A(y)∇v)(t, x, y) + f(x, y, v) over � × � × �N−1. (7.19)

Consequently,

∀L > 0, c∗
�N, A

L
, 0, f

L

(e) = L c∗
�N, 1

L
2 A,0,f

(e) (7.20)

Taking ε = 1/L
2

, and applying Theorem 3.1 to problem (7.19), one then has

lim
L→+∞

c∗
�N, 1

L
2 A,0,f

(e)√
1

L
2

= lim
ε→0+

c∗
�N,εA,0,f(e)√

ε
= 2

√
max

y ∈ �N−1
ζ(y)

√
max

y ∈ �N−1
eA(y)e. (7.21)

Finally, (7.20) together with (7.21) complete the proof of Theorem 3.4. �

7.2 Proofs of Theorems 4.1 and 4.3

Proof of Theorem 4.1 The proof will be divided into three steps:

Step 1. According to Theorem 2.4, and since ν · Aẽ = 0 on ∂Ω, the minimal speeds

c∗
Ω,MA,Mγq,f(e) are given by:

∀M > 0, c∗
Ω,MA,Mγ q, f (e) = min

λ>0

k
Ω,e, MA, Mγ q, ζ (λ)

λ
,

where kΩ,e,MA,Mγ q,ζ(λ) and ψλ,M denote the unique eigenvalue and the positive L-periodic

eigenfunction of the problem

M∇ · (A∇ψλ,M) − 2Mλẽ · A∇ψλ,M +Mγq · ∇ψλ,M + [λ2M ẽAẽ− λMγq · ẽ+ ζ]ψλ,M

= k
Ω,e, MA, Mγ q, ζ (λ)ψ

λ,M in Ω,

with ν · A∇ψλ,M = 0 on ∂Ω.
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For each λ > 0 and M > 0, let λ
′

= λ
√
M, and let kΩ,e,MA,Mγ q,ζ(λ) = μ(λ

′
,M).

Consequently,

∀M > 0,
c∗
Ω,MA,Mγ q, f

(e)
√
M

= min
λ

′
>0

μ(λ
′
,M)

λ
′ , (7.22)

where μ(λ
′
,M) and ψλ

′
,M are the first eigenvalue and the unique, positive L-periodic (with

respect to x) eigenfunction of

M∇ · (A∇ψλ
′
,M) − 2λ′√Mẽ · A∇ψλ

′
,M +Mγq · ∇ψλ

′
,M

+

[
λ

′ 2
ẽAẽ− λ

′

M
1
2

−γ
q · ẽ+ ζ

]
ψλ

′
,M = μ(λ

′
,M)ψλ

′
,M in Ω,

(7.23)

with ν · A∇ψλ
′
,M = 0 on ∂Ω.

Owing to the uniqueness, up to multiplication by positive constants, of the first eigen-

function of (7.23), one may assume that

∀ λ′
> 0, ∀M > 0, ||ψλ

′
,M ||L2(C) = 1. (7.24)

Moreover, for each M > 0, minλ ′
>0

μ(λ
′
,M)

λ
′ is attained at λ

′

M > 0. Thus,

∀M > 0,
c∗
Ω,MA,Mγ q, f

(e)
√
M

= min
λ

′
>0

μ(λ
′
,M)

λ
′ =

μ(λ
′

M,M)

λ
′
M

. (7.25)

The above characterization of c∗
Ω,MA,Mγ q,f(e)/

√
M will be used in the next steps in order

to prove that lim infM→+∞ c
∗
Ω,MA,Mγ q,f(e)/

√
M (resp. lim supM→+∞ c

∗
Ω,MA,Mγ q,f(e)/

√
M) is

greater than (resp. less than) 2
√

−
∫
C
ẽAẽ(x, y) dx dy

√
−
∫
C
ζ(x, y) dx dy; and hence, complete

the proof.

Step 2. Fix λ
′
> 0 and M > 0. We divide (7.23) by ψλ

′
,M then, using the facts ∇.Aẽ ≡ 0

in Ω and ν · Aẽ = 0 on ∂Ω, we integrate by parts over the periodicity cell C. It follows

from (2.3) and the L-periodicity of A, ζ and ψλ
′
,M that

∫
C

∇ψλ
′
,M · A∇ψλ

′
,M(

ψλ
′
,M

)2
+ λ

′ 2
∫
C

ẽAẽ+

∫
C

ζ = μ(λ
′
,M)|C|, (7.26)

where |C| denotes the Lebesgue measure of C. Let

m0 = −
∫
C

ẽAẽ =
1

|C|

∫
C

ẽA(x, y)ẽ dx dy and m = −
∫
C

ζ(x, y) dx dy.

One concludes that

∀λ ′
> 0, ∀M > 0, μ(λ

′
,M) � λ

′ 2−
∫
C

ẽAẽ+ −
∫
C

ζ = λ
′ 2
m0 + m,
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whence

∀λ ′
> 0, ∀M > 0,

μ(λ
′
,M)

λ
′ � λ

′
m0 +

m

λ
′ . (7.27)

The right side of (7.27) attains its minimum over �+ at λ
′

0 =
√

m
m0
. This minimum is

equal to 2
√
m0m.

Consequently, for any M > 0,
c∗
Ω,MA,Mγ q,f (e)√

M
= minλ ′

>0
μ(λ

′
,M)

λ
′ � 2

√
m0m. This yields that

lim inf
M→+∞

c∗
Ω,MA,Mγ q, f

(e)
√
M

� 2

√
−
∫
C

ẽAẽ(x, y) dx dy

√
−
∫
C

ζ(x, y) dx dy. (7.28)

Step 3. Fix λ
′
> 0 and M > 0. Multiply (7.23) by ψλ

′
,M and integrate by parts

over C. Owing to the L-periodicity of Ω, A, ζ and ψλ
′
,M, and due to the facts that∫

C
(ψλ

′
,M)

2
= 1, ∇ · Aẽ ≡ 0 in Ω, and that ν · Aẽ = 0 on ∂Ω, together with (2.3), one gets

−M
∫
C

∇ψλ
′
,M · A∇ψλ

′
,M + λ

′ 2
∫
C

ẽAẽ (ψλ
′
,M)

2

+

∫
C

ζ (ψλ
′
,M)

2

− λ
′

M
1
2

−γ

∫
C

q · ẽ (ψλ
′
,M)

2

= μ(λ
′
,M), (7.29)

whence

∀λ ′
> 0, ∀M > 0, 0 < μ(λ

′
,M) � λ

′ 2
α+ β +

λ
′

M
1
2

−γ
|| (q · ẽ)− ||∞,

where α = max(x,y)∈Ω ẽAẽ(x, y) and β = max(x,y)∈Ω ζ(x, y). Together with (7.27), one gets

∀λ ′
> 0, ∀M > 0, 0 < λ

′ 2
m0 + m � μ(λ

′
,M) � λ

′ 2
α+ β +

λ
′

M
1
2

−γ
|| (q · ẽ)− ||∞. (7.30)

If γ = 1
2
, then λ

′

M
1
2

−γ || (q · ẽ)− ||∞ = λ
′ || (q · ẽ)− ||∞. On the other hand, if 0 � γ < 1

2
, then

λ
′

M
1
2

−γ
|| (q · ẽ)− ||∞ → 0 as M → +∞.

Consequently, the right side of (7.30) is bounded above by a positive constant B which

does not depend on M and γ. This yields that

∀λ′
> 0, 0 < lim sup

M→+∞
μ(λ

′
,M) < +∞.

On the other hand, it follows from (2.2) and (7.29) that ∀λ ′
> 0, ∀M > 0,

0 � α1

∫
C

|∇ψλ
′
,M |2 �

∫
C

∇ψλ
′
,M · A∇ψλ

′
,M

�
1

M

[
−μ(λ′

,M) + λ
′ 2
∫
C

ẽAẽ (ψλ
′
,M)

2

+

∫
C

ζ (ψλ
′
,M)

2

− λ
′

M
1
2

−γ

∫
C

q · ẽ (ψλ
′
,M)

2
]

<
B

M
.
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Meanwhile, limM→+∞
B
M

= 0, one then gets

⎧⎪⎨
⎪⎩

∀λ ′
> 0, lim

M→+∞

∫
C

|∇ψλ
′
,M |2 = 0,

∀λ ′
> 0, ∀M > 0,

∫
C

(ψλ
′
,M)2 = 1.

(7.31)

Fix λ
′
> 0, and let (Mn)n be a sequence converging to +∞ as n → +∞ and such

that μ(λ
′
,Mn) → l λ

′
,(Mn) as n → +∞. It follows, from (7.31), that ||ψλ

′
,Mn ||H1(C) → 1 as

n → +∞. Thus, the sequence (ψλ
′
,Mn)n is bounded in H1(C). Therefore, there exists a

function ψλ
′
,∞ ∈ H1(C) such that, up to extraction of some subsequence, the functions

(ψλ
′
,Mn)n converge in L2(C) strong, H1(C) weak and almost everywhere in C, to the

function ψλ
′
,∞. Consequently, and owing to (7.31), ψλ

′
,∞ satisfies∫

C

(ψλ
′
,∞)

2

= 1, and (7.32)

(∫
C

|∇ψλ
′
,∞|2

) 1
2

� lim inf
Mn→+∞

(∫
C

|∇ψλ
′
,Mn |2

) 1
2

= 0. (7.33)

From (7.33), it follows that for all λ
′
> 0, the function ψλ

′
,∞ is almost everywhere

constant over C. On the other hand, the elliptic regularity applied on equation (7.23) for

M = Mn, implies that ∀λ′
> 0, the function ψλ

′
,∞ is continuous over C. Consequently,

referring to (7.32), one gets

∀λ′
> 0, ψλ

′
,∞ =

1√
|C|

over C. (7.34)

Consider now equation (7.23). Fix λ
′
, take M = Mn, and integrate by parts over C. It

follows, from (2.2), (2.3) and the assumptions ∇.Aẽ ≡ 0 over Ω with ν.Aẽ = 0 on ∂Ω, that∫
C
Mn ∇ · (A∇ψλ

′
,Mn) = 0,

∫
C

−2λ′√Mnẽ · A∇ψλ
′
,Mn = 0, and

∫
C
q · ∇ψλ

′
,Mn = 0. Hence,

− λ
′

M
1
2

−γ
n

∫
C

q · ẽ ψλ
′
,Mn + λ

′ 2
∫
C

ẽ · Aẽψλ
′
,Mn +

∫
C

ζ ψλ
′
,Mn = μ(λ

′
,Mn)

∫
C

ψλ
′
,Mn . (7.35)

Meanwhile, the functions ψλ
′
,Mn converge to the constant function ψλ

′
,∞ in L2(C) strong;

and hence, in L1(C) strong (C is bounded, so L2(C) is embedded in L1(C)). Let Mn → +∞
in (7.35):

In case γ = 1/2, one has

λ
′

M
1
2

−γ
n

∫
C

q · ẽ ψλ
′
,Mn = λ

′
∫
C

q · ẽ ψλ
′
,Mn → λ

′
ψλ

′
,∞

∫
C

q · ẽ = 0,

as n → +∞ (from (2.3)). Also, in the case 0 � γ < 1/2, one trivially has

λ
′

M
1
2

−γ
n

∫
C

q · ẽ ψλ
′
,Mn → 0 as n → +∞.
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Moreover, ẽAẽ and ζ are in L∞(C). Thus, as Mn → +∞ in (7.35), we get

λ
′ 2
ψλ

′
,∞

∫
C

ẽAẽ + ψλ
′
,∞

∫
C

ζ = l λ
′
,(Mn) ψλ

′
,∞|C|.

One concludes that

∀λ′
> 0,

l λ
′
,(Mn)

λ
′ = λ

′ −
∫
C

ẽAẽ +

−
∫
C

ζ

λ
′ = λ

′
m0 +

m

λ
′ . (7.36)

Whence for λ
′
= λ

′

0 =
√

m
m0
, one gets l λ

′
0 ,(Mn )

λ
′
0

= 2
√
m0m.

On the other hand, for all Mn,

c∗
Ω,MnA,M

γ
n q, f

(e)
√
Mn

= inf
λ

′
>0

μ(λ
′
,Mn)

λ
′ �

μ(λ
′

0,Mn)

λ
′
0

. (7.37)

Passing Mn → +∞, one gets lim supMn→+∞
c∗
Ω,MnA,M

γ
n q,f

(e)
√
Mn

� l λ
′
0 ,(Mn )

λ
′
0

= 2
√
m0m, and this holds

for all sequences {Mn}n converging to +∞. Thus,

lim sup
M→+∞

c∗
Ω,MA,Mγ q, f

(e)
√
M

� 2

√
−
∫
C

ẽAẽ(x, y) dx dy

√
−
∫
C

ζ(x, y) dx dy. (7.38)

Having (7.28) together with (7.38), the proof of Theorem 4.1 is complete. �

Proof of Theorem 4.3 We will consider the change of variables similar to that made in

the proof of Theorem 3.4:

v(t, x, y) = u(t, Lx, Ly), (t, x, y) ∈ � × �N.

After the same calculations done there, one gets that u satisfies (4.1) if and only if v

satisfies

vt(t, x, y) =
1

L
2 ∇ · (A(x, y)∇v)(t, x, y) +

1

L
q · ∇v(t, x, y) + f(x, y, v) over � × �N. (7.39)

Consequently,

∀L > 0, c∗
�N, A

L
, q

L
, f

L

(e) = L c∗
�N, 1

L
2 A,

1
L
q,f

(e). (7.40)

On the other hand, the coefficients and the domain of problem (7.39) satisfy all the

assumptions of Theorem 4.1. Taking M = 1/L
2

and γ = 1/2, then (7.39) can be rewritten

as

vt(t, x, y) = M ∇ · (A(x, y)∇v)(t, x, y) +M
1
2 q · ∇v(t, x, y) + f(x, y, v) over � × �N.

In this situation, the periodicity cell of the whole space �N is C = [0, 1] × · · · × [0, 1].
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It follows, from Theorem 4.1, that

lim
L→0+

c∗
�N, 1

L
2 A,

1
L
q,f

(e)√
1

L
2

= lim
M→+∞

c∗
�N,M A,M

1
2 q,f

(e)
√
M

(7.41)

= 2

√
−
∫
C

ẽAẽ(x, y) dx dy

√
−
∫
C

ζ(x, y) dx dy.

Having (7.40) together with (7.41), the proof of Theorem 4.3 is complete. �

7.3 Proofs of Theorems 5.1 and 5.2

Proof of Theorem 5.1 The main ideas of this proof are similar to those in the demon-

stration of Theorem 3.1. Applying the variational formula (2.7) of the minimal speed, one

gets

c∗
Ω,A,0, Bf(e) = min

λ> 0

kΩ,e, A, 0, Bζ(λ)

λ
, (7.42)

where kΩ,e,A,0,Bζ(λ) is the first eigenvalue (for each λ, B > 0) of the eigenvalue problem:

{
LΩ,e, A, 0,Bζ,λ ψ(x, y) = k

Ω,e, A, 0,Bζ
(λ) ψ(x, y) over � × ω;

ν · A∇ψ = 0 on � × ∂ω,
(7.43)

and

LΩ,e, A, 0,B ζ,λψ(x, y) = ∇ · (A(y)∇ψ(x, y)) − 2 λAe · ∇ψ(x, y)

+ [λ2eA(y)e − λ∇ · (A(y)e) + Bζ(y)]ψ(x, y),

for each (x, y) ∈ � × ω.

We recall that for all λ > 0, and for all B > 0, we have kΩ,e, A, 0,Bζ(λ) > 0. Also, the first

eigenfunction of (7.43) is positive over Ω = � × ω, and it is unique up to multiplication

by a non-zero constant.

Moreover, whether in (3.7) or (3.8) and due to (3.4), one concludes that the coefficients

in LΩ,e, A, 0,Bζ,λ are independent of x. Hence, the first eigenfunction of (7.43) is independent

of x and the eigenvalue problem (7.43) is reduced to⎧⎪⎪⎨
⎪⎪⎩
L
Ω,e, A,0, Bζ, λφ := ∇ · (A(y)∇φ(y)) + [λ2eA(y)e+ Bζ(y)]φ(y)

= kΩ,e, A, 0,Bζ(λ)φ over ω;

ν(x, y) · A(y)∇φ(y) = (0; νω(y)) · A(y)∇φ(y) = 0 on � × ∂ω,

(7.44)

where φ = φ(y) is positive over ω, L-periodic (since the domain ω and the coefficients

of L
Ω,e, A,0, Bζ, λ are L-periodic), unique up to multiplication by a constant, and belongs

to C 2(ω).

In the case where d � 1, let C ⊆ �N−1 denote the periodicity cell of ω. Otherwise,

d = 0 and one takes C = ω. In both cases, C is bounded. Multiplying the first line of
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(7.44) by φ, and integrating by parts over C, one gets

− k
Ω,e, A, 0, Bζ (λ) =

∫
C

∇φ · A(y)∇φdy −
∫
C

[λ2eA(y)e + B ζ(y)]φ2(y) dy∫
C

φ2(y) dy

. (7.45)

One also notes that, in this present setting, the operator LΩ,e, A,0,Bζ,λ is self-adjoint and its

coefficients are (L1, . . . , Ld)-periodic with respect (y1, . . . , yd). Consequently, − kΩ,e, A, 0,Bζ(λ)

has the following variational characterisation:

− k
Ω,e, A, 0, Bζ (λ) = min

ϕ∈H1(C)\{0}

∫
C

∇ϕ · A(y)∇ϕdy −
∫
C

[λ2eA(y)e + B ζ(y)]ϕ2(y) dy∫
C

ϕ2(y) dy

.

(7.46)

In what follows, we will assume that (3.7) is the alternative that holds. That is,

eAe = α is constant. The proof can be imitated easily whenever we assume that (3.8)

holds.

The function y �→ ζ(y) is continuous and (L1, . . . , Ld)-periodic over ω, whose periodicity

cell C is a bounded subset of �N−1 (whether d = 0 or d � 1). Let y0 ∈ C ⊆ ω such

that max
y∈w

ζ(y) = ζ(y0) (trivially, this also holds when ζ is constant). Consequently, we

have

∀ ϕ ∈ H1(C)\{0},

∫
C

∇ϕ · A∇ϕ−
∫
C

(αλ2 + B ζ(y))ϕ2

∫
C

ϕ2(y) dy

� −[αλ2 + B ζ(y0)].

This yields that

∀B > 0, ∀ λ > 0,−k
Ω,e, A, 0, B ζ (λ) � −[αλ2 + B ζ(y0)]. (7.47)

Consequently,

∀B > 0, ∀ λ > 0,
k
Ω,e, A, 0, Bζ (λ)

λ
� λ α +

B ζ(y0)

λ
. (7.48)

However, the function λ �→ λα + (B ζ(y0)/λ) attains its minimum, over �+, at λ(B) =√
B ζ(y0)
α

. This minimum is equal to 2
√
Bζ(y0) ×

√
α.

From (7.48), we conclude that
kΩ,e, A, 0,Bζ (λ(B))

λ(B)
� 2

√
B α

√
ζ(y0).

Finally, (2.7) implies that

c∗
Ω,A,0, Bf(e) = min

λ> 0

k
Ω,e, A, 0, Bζ (λ)

λ
� 2

√
B α

√
ζ(y0),

or equivalently

∀B > 0,
c∗
Ω,A,0,Bf(e)√

B
� 2

√
α
√
ζ(y0). (7.49)
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We pass now to prove the other sense of the inequality for lim infB→+∞
c∗
Ω,A,0,Bf (e)√

B
. We

will consider formula (7.5), and then organize a suitable function ψ which leads us to a

lower bound of lim infB→+∞
c∗
Ω,A,0,Bf (e)√

B
.

We have ζ(y0) > 0. Let δ be such that 0 < δ < ζ(y0). Thus 0 < ζ(y0) − δ < maxω ζ(y).

The continuity of ζ, over C ⊆ ω, yields that there exists an open and bounded set U ⊂ C

such that

ζ(y0) − δ � ζ(y), ∀ y ∈ U. (7.50)

Designate by ψ, a function in D(C) (a C∞(C) function whose support is compact), with

suppψ ⊆ U, and
∫
U
ψ2 = 1. One will have,

∀λ > 0, ∀B > 0,

− k
Ω,e, A, 0, B ζ (λ) �

∫
U

∇ψ · A(y)∇ψ dy −
∫
U

[λ2eA(y)e + B ζ(y)]ψ2(y) dy

�

∫
U

∇ψ · A(y)∇ψ dy − [λ2α + B (ζ(y0) − δ)] (by (7.50))

�

∫
U

α2|∇ψ|2 − [λ2α + B (ζ(y0) − δ)] by (3.5),

or equivalently

kΩ,e, A, 0, B ζ(λ)

λ
� λα +

B

λ
ρ(B), (7.51)

where ρ(B) = ζ(y0) − δ− 1
B

∫
U
α2|∇ψ|2. Choosing B large enough, we get ρ(B) > 0 (this is

possible since ζ(y0) − δ > 0 and also
∫
U
α2|∇ψ|2 > 0). The map λ �→ λα + B

λ
ρ(B) attains

its minimum, over �+, at λ(ε) =
√

B ρ(B)
α
. This minimum is equal to 2

√
B α

√
ρ(B).

Now, referring to formula (7.51), one gets,

for B large enough,
k
Ω,e, A, 0, Bζ(λ)

λ
� 2

√
B α

√
ρ(B) for all λ > 0.

Together with (2.7), we conclude that

for B large enough,
c∗
Ω,A,0, Bf

(e)
√
B

� 2
√
ρ(B)

√
α. (7.52)

Consequently,

lim inf
B→+∞

c∗
Ω,A,0, Bf

(e)
√
B

� lim inf
B→+∞

2
√
ρ(B)

√
α

= 2
√
ζ(y0) − δ

√
α (since ψ is independent of B),

and this holds for all 0 < δ < ζ(y0). Therefore, one can conclude that

lim inf
B→+∞

c∗
Ω,A,0,Bf(e)√

B
� 2

√
α
√
ζ(y0). (7.53)
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Finally, the inequalities (7.49) and (7.53) imply that limB→+∞
c∗
Ω,A,0,Bf (e)√

B
exists, and it is

equal to 2
√
α
√
ζ(y0) = 2

√
maxω eA(y)e

√
maxω ζ(y).

The above proof was done while assuming that the alternative (3.7) holds. The same

ideas of this proof can be easily applied in the case where alternative (3.8) holds. In (3.8),

we have ζ as constant; however, eAe is not in general. Meanwhile the converse is true in

the case (3.7). The little difference is that, in the case of (3.8), we choose the subset U (of

the proof done above) around the point y0 where eAe attains its maximum and then we

continue by the same way used above. �

Proof of Theorem 5.2 According to Theorem 2.4, and since ν ·Aẽ = 0 on ∂Ω, the minimal

speeds c∗
Ω,A,Bγ q, Bf(e) are given by

∀B > 0, c∗
Ω,A, Bγ q, Bf

(e) = min
λ>0

k
Ω,e, A, Bγ q, Bζ (λ)

λ
,

where kΩ,e, A, Bγ q, Bζ(λ) and ψλ,B denote the unique eigenvalue and the positive L-periodic

eigenfunction of the problem

∇ · (A∇ψλ,B) − 2λẽ · A∇ψλ,B + Bγq · ∇ψλ,B +
[
λ2 ẽAẽ− λBγq · ẽ+ B ζ

]
ψλ,B

= k
Ω,e, A, Bγ q, Bζ (λ) ψ

λ,B in Ω, with ν · A∇ψ = ν · A∇ψλ,B = 0 on ∂Ω.

For each λ > 0 and B > 0, let λ
′

= λ/
√
B, and let kΩ,e, A, Bγ q, Bζ(λ) = μ(λ

′
, B).

Consequently,

∀B > 0,
c∗
Ω,A, Bγ q, Bf

(e)
√
B

= min
λ

′
>0

μ(λ
′
, B)

λ
′
B

, (7.54)

where μ(λ
′
, B) and ψλ

′
,B are the first eigenvalue and the unique, positive L-periodic (with

respect to x) eigenfunction of

∇ · (A∇ψλ
′
,B) − 2λ′√Bẽ · A∇ψλ

′
,B + Bγq · ∇ψλ

′
,B

+ [λ
′ 2
B ẽAẽ− λ

′
B

γ+ 1
2
q · ẽ+ Bζ]ψλ

′
,B = μ(λ

′
, B)ψλ

′
,B in Ω, (7.55)

with ν · A∇ψλ
′
,B = 0 on ∂Ω.

Owing to the uniqueness, up to multiplication by positive constants, of the first eigen-

function of (7.55), one may assume that

∀ λ′
> 0, ∀B > 0, ‖ψλ

′
,B‖L2(C) = 1. (7.56)

Moreover, for each B > 0, minλ ′
>0

μ(λ
′
,B)

λ
′
B

is attained at λ
′

B > 0. Thus,

∀B > 0,
c∗
Ω,A, Bγ q, Bf

(e)
√
B

= min
λ

′
>0

μ(λ
′
, B)

λ
′
B

=
μ(λ

′

B, B)

B λ
′
B

. (7.57)
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Having the above characterisation, one can now imitate the steps 2 and 3 in the proof

of Theorem 4.1 to prove that

lim inf
B→0+

c∗
Ω,A, Bγ q, Bf(e)/

√
B

(resp. lim supB→0+ c∗
Ω,A,Bγ q, Bf(e)/

√
B ) is greater than (resp. less than)

2

√
−
∫
C

ẽAẽ(x, y) dx dy

√
−
∫
C

ζ(x, y) dx dy;

and hence, complete the proof of Theorem 5.2. �

7.4 Proofs of Theorems 6.1, 6.3 and 6.5

Proof of Theorem 6.1 Referring to Theorem 2.4, it follows that for each β > 0, we have

c∗
Ω,βA,

√
β q,f

(e)
√
β

= min
λ>0

kΩ,e, βA,
√
β q,ζ(λ)

λ
√
β

,

where kΩ,e, βA,
√
β q,ζ(λ) is the first eigenvalue of the problem

⎧⎨
⎩
LΩ,e, βA,

√
β q,ζ,λψ(x, y) = kΩ,e, βA,

√
β q,ζ(λ)ψ(x, y) over � × ω;

ν.A∇ψ = 0 on � × ∂ω,
(7.58)

where

LΩ,e,βA,
√
β q,ζ,λ ψ = β∇ · (A(y)∇ψ) − 2βλ α(y) ∂xψ +

√
β q

1
(y)∂xψ

+ [β λ2eA(y)e − λ
√
β q

1
(y) + ζ(y)]ψ over � × ω.

The boundary condition follows so from the facts that Ω = � ×ω, e = (1, 0, . . . , 0) and

that A(y)e = α(y)e over ω. These yield that ν · Ae = 0 over ∂Ω and ∇ · Ae = 0. Moreover,

for each (x, y) ∈ ∂Ω, we have ν(x, y) = (0; νω(y)), where νω(y) is the outward unit normal

on ∂ω at y.

On the other hand, the function ψ is positive, (L1, . . . , Ld)-periodic with respect to y,

and unique up to multiplication by non-zero constants. Meanwhile, the coefficients A, q

and ζ are independent of x. Thus the eigenfunction ψ will be independent of x and our

eigenvalue problem is reduced to

⎧⎪⎪⎨
⎪⎪⎩
β∇ · (A(y)∇ψ(y)) +

[
β λ2eA(y)e − λ

√
βq

1
(y) + ζ(y)

]
ψ(y)

= kΩ,e, βA,
√
βq,ζ(λ)ψ(y) for all y ∈ ω,

ν(x, y) · A(y)∇ψ(y) = (0; νω(y)) · A(y)∇ψ(y) = 0 on � × ∂ω.

(7.59)
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For each λ > 0 and β > 0, let λ
′
= λ

√
β, and let kΩ,e, βA,

√
β q,ζ(λ) = μ(λ

′
, β). Since for

each β > 0, minλ>0
kΩ,e, βA,

√
β q,ζ (λ)

λ
is attained at λ(β), it follows that

∀ β > 0,
c∗
Ω,βA,

√
β q,f

(e)
√
β

= min
λ

′
>0

μ(λ
′
, β)

λ
′ , (7.60)

where μ(λ
′
, β) is the first eigenvalue of the problem

⎧⎨
⎩L

β

λ
′ψ = β∇ · (A(y)∇ψ) + [λ

′ 2
eA(y)e− λ

′
q

1
(y) + ζ(y)]ψ = μ(λ

′
, β)ψ in ω,

ν · A∇ψ = 0 on ∂ω.
(7.61)

The elliptic operator Lβ
λ

′ in (7.61) is self-adjoint. Consequently, the first eigenvalue

μ(λ
′
, β) has the following characterisation2:

∀λ′
> 0, ∀β > 0, −μ(λ′

, β)

= min
ϕ∈H1(C)\{0}

β

∫
C

∇ϕ · A(y)∇ϕdy + λ
′
∫
C

q
1
(y)ϕ2 −

∫
C

[λ
′ 2
eA(y)e+ ζ(y)]ϕ2(y) dy∫

C

ϕ2(y) dy

= min
ϕ∈H1(C)\{0}

R(λ
′
, β, ϕ). (7.62)

For each λ
′
and β > 0, ϕ �→ R(λ

′
, β, ϕ) attains its minimum over H1(C) \ {0} at ψλ

′
,β ,

the eigenfunction of the problem (7.61). On the other hand, β �→ R(λ
′
, β, ϕ) is increasing

as an affine function in β. Consequently, fixing λ
′
> 0 and taking β > β

′
> 0 we get

−μ(λ′
, β) = R(λ

′
, β, ψλ

′
,β) > R(λ

′
, β

′
, ψλ

′
,β)

� min
ϕ∈H1(C)\{0}

R(λ
′
, β

′
, ϕ) = −μ(λ′

, β
′
). (7.63)

In other words, for all λ
′
> 0, the function β �→ μ(λ

′
, β) is decreasing. Concerning now

the function β �→ c∗
Ω,βA,

√
β q,f

(e)/
√
β, one takes randomly β > β

′
> 0, hence

c∗
Ω,β

′
A,

√
β

′
q,f

(e)√
β

′
=
μ(λ

′
(β

′
), β

′
)

λ
′
(β

′
)

>
μ(λ

′
(β

′
), β)

λ
′
(β

′
)

� min
λ

′
>0

μ(λ
′
, β)

λ
′ =

c∗
Ω,βA,

√
β q,f

(e)
√
β

,

which means that the function β �→ c∗
Ω,βA,

√
β q,f

(e)/
√
β is decreasing.

2 To have an idea, multiply (7.61) by the positive, (L1, . . . , Ld)-periodic function ψ and integrate

by parts over the periodicity cell C of the the domain ω.
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Finally, when β → +∞, one can easily check that the hypothesis of Theorem 4.1

are satisfied; hence, one has the limit at +∞, and that completes the proof of

Theorem 6.1. �

Proof of Theorem 6.3 Consider the change of variables v(t, x, y) = u(t, Lx, Ly), for any

(t, x, y) ∈ � × �N. One consequently has,

∀L > 0, c∗
�N, A

L
, q

L
, f

L

(e) = L c∗
�N, 1

L
2 A,

1
L
q,f

(e). (7.64)

Taking β = 1/L
2

, then

vt(t, x, y) = β ∇ · (A(y)∇v)(t, x, y) +
√
β q

1
(y) ∂x v(t, x, y) + f(x, y, v) over � × �N.

Owing to Theorem 6.1, the function β �→ c∗
�N,βA,

√
β q,f

(e)/
√
β is decreasing in β > 0.

Besides, L �→ 1/L2 is decreasing in L > 0. Together with (7.64), one obtains that the

function L �→ c∗
�N,A

L
,q
L
,f
L

(e) is increasing in L > 0 which completes the proof of Theo-

rem 6.3. �

Proof of Theorem 6.5 Referring to Theorem 2.4, it follows that for each B > 0, we have:

c∗
Ω,A,

√
B q,Bf

(e)
√
B

= min
λ>0

kΩ,e, A,
√
B q,Bζ(λ)

λ
√
B

.

Owing to the same justifications explained in the proof of Theorem 6.1, kΩ,e,A,
√
Bq,Bζ(λ)

is the first eigenvalue of the problem{
∇ · (A(y)∇ψ(y)) + [λ2e · Ae− λ

√
Bq

1
(y) + Bζ(y)]ψ(y) = kΩ,e,A,

√
Bq,Bζ(λ)ψ in ω,

ν(x, y) · A(y)∇ψ(y) = (0; νω(y)) · A(y)∇ψ(y) = 0 on � × ∂ω.
(7.65)

For each λ > 0 and B > 0, let λ
′
= λ/

√
B and kΩ,e, A,

√
B q,Bζ(λ) = μ(λ

′
, B). The first

eigenvalue μ(λ
′
, B) has the following characterisation:

∀λ′
> 0, ∀B > 0, − μ(λ

′
, B)

λ
′
B

= min
||ϕ||

L
2

(C)
=1

ϕ∈H1(C)\{0};

∫
C

∇ϕ · A(y)∇ϕdy

λ
′
B

+

∫
C

q
1
ϕ2 − λ

′
∫
C

eAeϕ2 −

∫
C

ζ(y)ϕ2(y) dy

λ
′ (7.66)

= min
||ϕ||

L
2

(C)
=1

ϕ∈H1(C)\{0}

R(λ
′
, B, ϕ).

On the other hand, B �→ R(λ
′
, B, ϕ) is decreasing in B > 0. Consequently, fixing λ

′
> 0

and taking 0 < B < B
′
,

− μ(λ
′
, B)

λ
′
B

= R(λ
′
, B, ψλ

′
,B) > R(λ

′
, B

′
, ψλ

′
,B) � min

||ϕ||
L

2
(C)

=1

ϕ∈H1(C)\{0};

R(λ
′
, B

′
, ϕ) = − μ(λ

′
, B

′
)

λ
′
B

′ .
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In other words, for all λ
′
> 0, the function B �→ μ(λ

′
, B)/λ

′
B is increasing in B > 0.

Now, we take randomly 0 < B < B
′
. Thus,

c∗
Ω,A,

√
B

′
q,B

′
f
(e)

√
B

′
= min

λ
′
>0

μ(λ
′
, B

′
)

λ
′
B

′ =
μ(λ

′

B
′ , B

′
)

λ
′

B
′ × B

′

>
μ(λ

′

B
′ , B)

λ
′

B
′ × B

� min
λ

′
>0

μ(λ
′
, B)

λ
′
B

=
c∗
Ω,A,

√
B q,Bf

(e)
√
B

,

which means that B �→ c∗
Ω,A,

√
B q,Bf

(e)/
√
B is increasing in B > 0. �

8 Applications to homogenisation problems

The reaction–advection–diffusion problem set in a heterogeneous periodic domain Ω

satisfying (2.1) generates a homogenization problem:

Let e ∈ �d be a vector of unit norm. Assume that Ω, A, q and f are (L1, . . . , Ld)-periodic

and that they satisfy (2.1), (2.2), (2.3), (2.4) and (2.5).

For each ε > 0, let Ωε = ε Ω and consider the following re-scales:

∀(x, y) ∈ Ωε, Aε(x, y) = A
(x
ε
,
y

ε

)
, qε (x, y) = q

(x
ε
,
y

ε

)
and fε (x, y) = f

(x
ε
,
y

ε

)
.

The coefficients Aε, qε and f
ε
together with the domain Ωε are (ε L1, . . . , ε Ld)-periodic,

and they satisfy properties similar to those of A, q, f and Ω.

Consider the parametric reaction–advection–diffusion problem

(Pε)

{
uεt(t, x, y) = ∇ · (Aε∇uε)(t, x, y) + qε · ∇uε + fε(x, y, u

ε), t ∈ �, (x, y) ∈ Ωε,

νε · Aε ∇uε(t, x, y) = 0, t ∈ �, (x, y) ∈ ∂Ωε,

where νε(x, y) denotes the outward unit normal on ∂Ωε at the point (x, y).

Owing to the results found by Berestycki and Hamel in Section 6 of [2], and since

the coefficients Aε, fε and q
ε

together with the domain Ωε satisfy all the necessary

assumptions, it follows that the problem (Pε) admits a minimal speed of propagation

c∗
Ωε, Aε, qε,fε

(e) > 0 such that (Pε) has a solution uε in the form of a pulsating front within

a speed c if and only if c � c∗
Ωε, Aε, qε,fε

(e) > 0.

In this section, we investigate the limit of the parametric minimal speeds c∗
Ωε, Aε, qε,fε

(e)

(whose parameter is ε) of the problems (Pε)ε>0 as ε → 0+. In other words, we search the

limit of these minimal speeds as the periodicity cell Cε = ε C becomes a very small size.

On the other hand, we study although not the most general setting, the variation of the

map ε �→ c∗
Ωε, Aε, qε,fε

(e) in ε > 0.

Theorem 8.1 Let e ∈ �d be a unit vector, and let Ω ⊆ �N be a domain which is L-

periodic and satisfying (2.1). Assume that A = A(x, y), q = q(x, y) and f = f(x, y, u) are

L-periodic and that they satisfy (2.2), (2.3), (2.4) and (2.5) together with the assumptions

∇.Aẽ ≡ 0 on Ω and ν.Aẽ = 0 on ∂Ω. For each ε > 0, consider the problem{
uεt(t, x, y) = ∇ · (Aε∇uε)(t, x, y) + qε · ∇uε + fε(x, y, u

ε), t ∈ �, (x, y) ∈ Ωε,

νε · Aε ∇uε(t, x, y) = 0, t ∈ �, (x, y) ∈ ∂Ωε,
(8.1)
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where Aε, fε and qε are the coefficients defined in the beginning of this section. Then, the

minimal speed c ∗
Ωε, Aε, qε,fε

(e) of pulsating travelling fronts propagating in the direction of e

and solving (8.1) satisfies

lim
ε→0+

c ∗
Ωε, Aε, qε, fε

(e) = 2

√
−
∫
C

ẽAẽ(x, y) dx dy

√
−
∫
C

ζ(x, y) dx dy, (8.2)

where C is the periodicity cell of Ω and ẽ = (e, 0, . . . , 0) ∈ �N.

Proof As a first notice, we mention that the domain Ωε is the image of Ω by a dilation

whose center is the origin O(0, . . . , 0) and whose scale factor is equal to ε. Consequently,

for each ε > 0, (εx, εy) ∈ Ωε if and only if (x, y) ∈ Ω, and

(εx, εy) ∈ ∂Ωε if and only if (x, y) ∈ ∂Ω.

Moreover,

∀ε > 0, ∀(x, y) ∈ ∂Ω, νε(εx, εy) = ν(x, y).

Consider now, for each ε > 0, the following change of variables:

vε(t, x, y) = uε(t, εx, εy) ; (t, x, y) ∈ � × Ω.

One gets

∀(t, x, y) ∈ � × Ω, vεt (t, x, y) = uεt(t, εx, εy),

∇x,y · (A(x, y)∇vε)(t, x, y) = ∇x,y · (Aε∇uε)(t, εx, εy) = ε2 ∇ · (Aε∇uε)(t, εx, εy),

and

νε(εx, εy) · [Aε∇uε] (t, εx, εy) = ν(x, y) · A
( εx
ε
,
εy

ε

)
∇uε(t, εx, εy)

(8.3)

=
1

ε
ν(x, y) · A(x, y)∇vε(t, x, y) on � × ∂Ω.

The boundary condition in (8.1) yields that νε(εx, εy) · [Aε∇uε] (t, εx, εy) = 0, for all

(t, x, y) ∈ � × ∂Ω (which is equivalent to say, for all (t, εx, εy) ∈ � × ∂Ωε). It follows from

(8.3) that

∀(t, x, y) ∈ � × ∂Ω, ν · A∇vε(t, x, y) = 0.

One can now conclude that for each ε > 0, uε satisfies (8.1) if and only if vε satisfies⎧⎨
⎩v

ε
t (t, x, y) =

1

ε2
∇ · (A∇vε)(t, x, y) +

1

ε
q · ∇vε + f(x, y, vε), t ∈ �, (x, y) ∈ Ω,

ν · A ∇vε(t, x, y) = 0, t ∈ �, (x, y) ∈ ∂Ω.
(8.4)

Having the assumptions (2.1), (2.2), (2.3), (2.4) and (2.5) on Ω, A, q and f, one gets

that problem (8.4) admits, for each ε > 0, a minimal speed of propagation denoted by

c∗
Ω, ( 1

ε )
2
A, 1

ε
q, f

(e).
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Moreover, due to the change of variables between uε and vε, it follows that for each

ε > 0, uε is a pulsating travelling front propagating in the direction of e within a speed

c and solving (8.1) if and only if vε is a pulsating travelling front propagating in the

direction of e within a speed c
ε

and solving (8.4). This yields that

∀ε > 0, c ∗
Ωε, Aε, qε, fε

(e) = ε c∗
Ω, ( 1

ε )
2
A, 1

ε
q, f

(e) = c∗
Ω,MA,

√
M q, f

(e)/
√
M, (8.5)

where M = ( 1/ε )2.

As ε → 0+, the variable M → +∞. Applying Theorem 4.1, with γ = 1
2
, one gets that

lim
M→+∞

c∗
Ω,MA,

√
M q, f

(e)
√
M

= 2

√
−
∫
C

ẽAẽ(x, y) dx dy

√
−
∫
C

ζ(x, y) dx dy.

Therefore, limε→0+ c ∗
Ωε, Aε, qε,fε

(e) = 2
√

−
∫
C
ẽAẽ(x, y) dx dy

√
−
∫
C
ζ(x, y) dx dy, and the proof

of Theorem 8.1 is complete. �

Remark 8.2 It is worth noticing that, in formula 8.2, the homogenized speed depends on

the averages of the diffusion and reaction coefficients, but it does not depend on the

advection.

We move now to study the variation of the map ε �→ c ∗
Ωε, Aε, qε,fε

(e) with respect to ε > 0.

In other words, we want to check the monotonicity behaviour of the parametric minimal

speed of propagation, whose parameter ε > 0, as the periodicity cell of the domain of

propagation shrinks or enlarges within a ratio ε. In this study, we will consider the same

situation of Theorem 6.1 and also the same notations introduced in the beginning of

Section 8.

Theorem 8.3 Let e = (1, 0, . . . , 0). Assume that Ω has the form �×ω where ω may or may

not be bounded (precisely described in Section 3) and that the diffusion matrix A = A(y)

satisfies (3.5) together with the assumption that e is an eigenvector of A(y) for all y ∈ ω,

that is

A(x, y)e = A(y)e = α(y)e, for all (x, y) ∈ � × ω; (8.6)

where y �→ α(y) is a positive (L1, . . . , Ld)-periodic function defined over ω. The non-linearity

f is assumed to satisfy (3.3) and (3.4). Assume further more that the advection field q (when

it exists) is in the form q(x, y) = (q
1
(y), 0, . . . , 0) where q

1
has a zero average over C, the

periodicity cell of ω. For ε > 0 consider the reaction–advection–diffusion problem

⎧⎪⎨
⎪⎩

∀ t ∈ �, ∀ (x, y) ∈ Ωε = � × ε ω,

uεt(t, x, y) = ∇ · (Aε∇uε)(t, x, y) + qε · ∇uε + fε(x, y, u
ε);

νε · Aε ∇uε(t, x, y) = 0, t ∈ �, (x, y) ∈ ∂Ωε.

(8.7)

Then, the map ε �→ c ∗
Ωε, Aε, qε,fε

(e) is increasing in ε > 0.
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Proof of Theorem 8.3 For each ε > 0, we consider the change of variables

vε(t, x, y) = uε(t, εx, εy) ; (t, x, y) ∈ � × Ω.

Owing to the justifications shown in the proof of Theorem 8.1, one consequently obtains

∀ε > 0, c ∗
Ωε, Aε, qε, fε

(e) = ε c∗
Ω, ( 1

ε )
2
A, 1

ε
q, f

(e) = c∗
Ω, βA,

√
β q, f

(e)/
√
β, (8.8)

where β(ε) = (1/ε)2.

Applying Theorem 6.1, it follows that the map η
1
: β �→ c∗

Ω, βA,
√
β q, f

(e)/
√
β is decreasing

in β > 0. On the other hand, the map η
2
: ε �→ β(ε) is also decreasing in ε > 0. Therefore,

ε �→ c ∗
Ωε, Aε, qε,fε

(e), which is the composition η
1

◦ η
2
, is increasing in ε > 0 and this completes

our proof. �

Other homogenization results, concerning reaction–advection–diffusion problems, were

given in the case of a combustion-type non-linearity f = f(u) satisfying

{
∃ θ ∈ (0, 1), f(s) = 0 for all s ∈ [0, θ] , f(s) > 0 for all s ∈ (θ, 1), f(1) = 0,

∃ρ ∈ (0, 1 − θ), f is non-increasing on [1 − ρ, 1] .
(8.9)

Consider the equation

uεt(t, x) = ∇ · (A(ε−1 x)∇uε) + ε−1q(ε−1 x) · ∇uε + f(uε) in �N, (8.10)

where the non-linearity f satisfies (8.9), and the drift and diffusion coefficients q and A

satisfy the general assumptions (2.2) and (2.3), with periodicity 1 in all variables x1, . . . , xN.

Fix a unit vector e of �N. From Berestycki and Hamel [2], it follows that for each ε > 0,

problem (8.10) admits a unique pulsating front (cε, u
ε) such that

uε(t, x) = φε(x · e+ cεt, x)

where φε(s, x) is (ε, . . . , ε)-periodic in x that satisfies φε(−∞, .) = 0 and φε(+∞, .) = 1.

The functions uε are actually unique up to shifts in time, and one can assume that

max�N φε(0, .) = θ.

Concerning problem (8.10), Heinze [15] proved that

as ε → 0+, cε → c0 > 0 and uε(t, x) → u0(x · e+ c0t) weakly in H1
loc,

where (c0, u0) is the unique solution of the one-dimensional homogenised equation

{
a∗ u

′′

0 − c0u
′

0 + f(u0) = 0 in �,
u0(−∞) = 0 < u0 < u0(+∞) = 1 in �, u0(0) = θ

(8.11)

and a∗ is a positive constant determined in [15].

In Theorem 1 of [10], the homogenization limit was combined with the singular high

activation limit for the reaction (one can also see [11] in this context) while the diffusion

matrix was taken A = Id�N . More precisely, the non-linearity had the form fε(u) = 1
ε
β( u

ε
)
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with β(s) a Lipschitz function satisfying

β(s) > 0 in (0, 1) and β(s) = 0 otherwise.

These non-linearities approach a Dirac mass at u = 1.

9 Open problems

In all the results of this paper, we deal with non-linearities of the “KPP” type. In the

periodic framework of this paper, pulsating travelling fronts exist also with other types of

non-linearities (see Theorems 2.13 and 2.14 in [2]). Namely, they exist when f = f(x, y, u)

is of the “combustion”-type satisfying

⎧⎪⎪⎨
⎪⎪⎩
f is globally Lipschitz-continuous in Ω × �,

∀ (x, y) ∈ Ω, ∀ s ∈ (−∞, 0] ∪ [1,+∞), f(s, x, y) = 0,

∃ ρ ∈ (0, 1), ∀(x, y) ∈ Ω, ∀ 1 − ρ � s � s′ � 1, f(x, y, s) � f(x, y, s′),

(9.1)

and

⎧⎨
⎩
f is L-periodic with respect to x,

∃ θ ∈ (0, 1), ∀(x, y) ∈ Ω, ∀ s ∈ [0, θ], f(x, y, s) = 0,

∀ s ∈ (θ, 1), ∃ (x, y) ∈ Ω such that f(x, y, s) > 0,

(9.2)

or when f = f(x, y, u) is of the “ZFK” (for Zeldovich–Frank–Kamenetskii)-type satisfying

(9.1) and

⎧⎨
⎩
f is L-periodic with respect to x,

∃ δ > 0, the restriction of f to Ω × [0, 1] is of class C1, δ ,

∀ s ∈ (0, 1), ∃ (x, y) ∈ Ω such that f(x, y, s) > 0.

(9.3)

In particular, the “KPP” non-linearities are of the “ZFK” type.

Recently, El Smaily [12] gave min–max and max–min formulae for the speeds of

propagation of problem (2.6) taken with a “ZFK” or a “combustion” non-linearity. These

formulae, together with the results of this paper, can give important estimates for the

parametric minimal speeds of the problem (2.6) when f is a “ZFK” non-linearity which

is not of the “KPP” type. Indeed, if f is a “ZFK” non-linearity, one can find a “KPP”

function h = h(x, y, u) such that

∀(x, y, u) ∈ Ω × �, f(x, y, u) � h(x, y, u).

Referring to formula (1.17) in El Smaily [12], one can conclude that

∀M > 0, ∀B > 0, ∀γ ∈ �, c∗
Ω,MA,Mγ q, Bf

(e) � c∗
Ω,MA,Mγ q, Bh

(e).
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Moreover, if f is a “ZFK” non-linearity satisfying the additional assumption

∀(x, y) ∈ Ω, f′
u(x, y, 0) > 0, (9.4)

then one can find a “KPP” function g = g(x, y, u) such that g � f in Ω × �, and thus

∀M > 0, ∀B > 0, ∀γ ∈ �,

c∗
Ω,MA,Mγ q, Bg

(e) � c∗
Ω,MA,Mγ q, Bf

(e) � c∗
Ω,MA,Mγ q, Bh

(e).
(9.5)

As a consequence, under the assumptions that 0 � γ � 1/2, ν · Aẽ = 0 on ∂Ω, and

∇ · Aẽ ≡ 0 in Ω, Theorem 4.1 implies that

lim sup
M→+∞

c∗
Ω,MA,Mγq, f(e)√

M
� 2

√
−
∫
C

ẽAẽ(x, y)dx dy

√
−
∫
C

g′
u(x, y, 0) dx dy, (9.6)

and

lim inf
M→+∞

c∗
Ω,MA,Mγq, f(e)√

M
= 2

√
−
∫
C

ẽAẽ(x, y)dx dy

√
−
∫
C

h′
u(x, y, 0) dx dy > 0. (9.7)

If f is a “combustion” non-linearity, then problem (2.6) admits a solution (c, u) where

c = c
Ω,A,q,f

(e) > 0 is unique and u = u(t, x, y) is increasing in t and it is unique up to a

translation in t. Taking g as a “KPP” non-linearity such that g � f in Ω × � and using

Theorem 4.1, it follows that

lim sup
M→+∞

c
Ω,MA,Mγ q, f

(e)
√
M

� 2

√
−
∫
C

ẽAẽ(x, y)dx dy

√
−
∫
C

g′
u(x, y, 0) dx dy

together with lim inf
M→+∞

c
Ω,MA,Mγ q, f

(e)
√
M

� 0.

(9.8)

Similarly, one can get several estimates concerning the case of a small diffusion factors,

small (resp. large) reaction factors, or small (resp. large) periodicity parameters.

The above motivation gives several upper and lower estimates for the parametric speeds

of propagation. However, the exact limits are not known. This leads us to ask about the

asymptotics of the minimal speeds of propagation with respect to diffusion, reaction and

periodicity factors in the “ZFK” case and about the asymptotics of the unique parametric

speed of propagation in the “combustion” case. These studies should help, as it was done

in Section 8, in solving some homogenisation problems in the “ZFK” case.

Besides, Theorem 8.1 gives the limit of c ∗
Ωε, Aε, qε,fε

(e) as ε → 0+. However, finding the

homogenised equation of (8.1) in the “KPP” remains an open problem.

10 Conclusions

As we mentioned in the beginning of this paper, our first aim was to give a complete and

rigorous analysis of the minimal speed of propagation of pulsating travelling fronts solving

parametric heterogeneous reaction–advection–diffusion equations in a periodic framework.

In the paper of Berestycki, Hamel and Nadirashvili [3], several upper and lower estimates

for the parametric minimal speed of propagation were given (see Theorems 2.6 and 2.10
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in [3]). However, the exact asymptotic behaviours of the minimal speed with respect to

diffusion and reaction factors and with respect to the periodicity parameter L were not

given there. In this paper, we determined the exact asymptotes of the minimal speed

in the “KPP” periodic framework. In Sections 3, 4 and 5, we proved that (under some

assumptions on A, q, f and Ω) the asymptotes of the parametric minimal speed are either

2
√

max
ω

ζ
√

max
ω

eAe or 2

√
−
∫
C

ẽAẽ(x, y) dx dy

√
−
∫
C

ζ(x, y) dx dy.

(see Theorems 3.1, 3.4, 4.1, 4.3, 5.1 and 5.2 above). Moreover, we found in Section 3 that

the presence of an advection field, in the general form or in the form of shear flows,

changes the asymptotic behaviour of the minimal speed within a small diffusion (see

Theorem 3.3 and Remark 3.6). Conversely, we proved in Section 4 that the presence

of a general advection field Mγq (where q satisfies (2.3)) has no effect on

limM→+∞
c∗
Ω,MA,Mγ q,f (e)√

M
whenever 0 � γ � 1/2 (see Theorem 4.1). Furthermore, we stud-

ied, in a particular periodic framework, the variations of the maps β �→ c∗
Ω,βA,

√
β q,f

(e)
√
β

and

L �→ c∗
�N,A

L
, q
L
,f
L

(e) and B �→
c∗
Ω,A,

√
B q,Bf

(e)
√
B

with respect to the positive variables β, L and B,

respectively. Roughly speaking, we found that the first and the third maps have opposite

senses of variations (see Theorems 6.1 and 6.5). On the other hand, Theorems 6.3 and

8.3 yield that the minimal speed increases when the medium undergoes a dilation whose

scale factor is greater than 1.

The second aim was to find the homogenized “KPP” minimal speed. We achieved this

goal in Section 8 (Theorem 8.1) under the assumptions of free divergence on A(x, y)ẽ and

invariance of the domain in the direction A(x, y)ẽ. This was an application to the results

obtained in Section 4. The found homogenized speed should play an important role in

finding the homogenized reaction–advection–diffusion equation in the “KPP” case. In a

forthcoming paper [13], we find also the homogenised speed in the one-dimensional case

but in a more general setting (in fact, the assumption of divergence free is equivalent

to the assumption that the diffusion term x �→ a(x) is constant over � in the case

N = 1).

All the mathematical results obtained in this paper can be applied to study some

spreading phenomena. Referring to the results of Weinberger [30], one can conclude that

the spreading speed is equal to the “KPP” minimal speed of propagation in the periodic

framework under some assumptions on the initial data u0 := u0(x, y) = u(0, x, y) which

is defined on a periodic domain Ω of �N. In such a setting, all our results can be

applied to give rigorous answers on the asymptotic behaviour of the parametric spreading

speed with respect to diffusion and reaction factors and with respect to the periodicity

parameter.
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la diffusion avec croissance de la quantité de matiére et son application a un probléme
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