
TPLP 19 (5–6): 1090–1106, 2019. c© Cambridge University Press 2019

doi:10.1017/S1471068419000371

1090

Bridging Commonsense Reasoning and Probabilistic
Planning via a Probabilistic Action Language

YI WANG
Arizona State University, USA

SHIQI ZHANG
SUNY Binghamton, USA

JOOHYUNG LEE
Arizona State University, USA

(e-mail: joolee@asu.edu)

submitted 31 July 2019; accepted 2 Aug 2019

Abstract

To be responsive to dynamically changing real-world environments, an intelligent agent needs
to perform complex sequential decision-making tasks that are often guided by commonsense
knowledge. The previous work on this line of research led to the framework called interleaved
commonsense reasoning and probabilistic planning (icorpp), which used P-log for represent-
ing commmonsense knowledge and Markov Decision Processes (MDPs) or Partially Observable
MDPs (POMDPs) for planning under uncertainty. A main limitation of icorpp is that its im-
plementation requires non-trivial engineering efforts to bridge the commonsense reasoning and
probabilistic planning formalisms. In this paper, we present a unified framework to integrate
icorpp’s reasoning and planning components. In particular, we extend probabilistic action lan-
guage pBC+ to express utility, belief states, and observation as in POMDP models. Inheriting the
advantages of action languages, the new action language provides an elaboration tolerant rep-
resentation of POMDP that reflects commonsense knowledge. The idea led to the design of the
system pbcplus2pomdp, which compiles a pBC+ action description into a POMDP model that
can be directly processed by off-the-shelf POMDP solvers to compute an optimal policy of the
pBC+ action description. Our experiments show that it retains the advantages of icorpp while
avoiding the manual efforts in bridging the commonsense reasoner and the probabilistic planner.

KEYWORDS: Action Language, POMDP, Probabilistic Logic Programming, Commonsense
Reasoning, Probabilistic Planning

1 Introduction

Intelligent agents frequently need to perform complex sequential decision making toward

achieving goals that require more than one action, in which the agent’s utility depends on

a sequence of decisions. A common task is to find the policy that maximizes the agent’s

utility when the environment is partially observable, i.e., the agent knows only partial

information about the current state. Partially Observable Markov Decision Processes

(POMDPs) (Kaelbling et al. 1998) have been widely used for that purpose. It assumes

partial observability of underlying states and can model nondeterministic state transi-

tions and local, unreliable observations using probabilities, and plan toward maximizing

long-term rewards under such uncertainties. However, as a very general mathematical

https://doi.org/10.1017/S1471068419000371 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000371
https://orcid.org/0000-0002-9569-5575
mailto:joolee@asu.edu
https://doi.org/10.1017/S1471068419000371

Bridging Commonsense Reasoning and Probabilistic Planning 1091

framework, POMDPs are not equipped with built-in constructs for representing com-

monsense knowledge.

Recent works (Zhang and Stone 2015; Zhang et al. 2015) aim at embracing common-

sense knowledge into probabilistic planning. In that line of research, a reasoner was used

for state estimation with contextual knowledge, and a planner focuses on selecting ac-

tions to maximize the long-term reward. More recently, probabilistic logical knowledge

has been used for reasoning about both the current state and the dynamics of the world,

resulting in the framework called icorpp (Zhang et al. 2017). icorpp builds on two

formalisms: P-log (Baral et al. 2009) for commonsense reasoning and POMDP Kaelbling

et al. 1998 for probabilistic planning. Reflecting the commonsense knowledge, icorpp

significantly reduces the complexity of POMDP planning while enabling robot behaviors

to adapt to exogenous changes. One example domain in (Zhang et al. 2017) demonstrates

that the MDP constructed by icorpp includes only 60 states whereas the naive way of

enumerating all combinations of attribute values produces more than 269 states.

Despite the advantages, icorpp has the limitation that practitioners must spend non-

trivial engineering efforts to bridge the gap between P-log and POMDP in its imple-

mentations. One reason is that P-log does not have the built-in notions of utility and

partially observable states as in POMDP models. Thus, the work on icorpp acquired

the transitions and their probabilities by running a P-log solver, but then the user has to

manually add the information about the rewards and the belief states (Zhang et al. 2017).

In this paper, we present a more principled way to integrate the commonsense rea-

soning and probabilistic planning components in the icorpp framework, which serves as

the main contribution of this paper. We achieve this by extending probabilistic action

language pBC+ (Lee and Wang 2018; Wang and Lee 2019) to support the representation

of and reasoning with utility, belief states, and observation as in POMDP models. Inher-

iting the advantages of action languages, the new action language provides an elaboration

tolerant representation of POMDP that is convenient to encode commonsense knowledge

and completely shield users from the syntax or algorithms of POMDPs.

The second contribution is on the design of the system pbcplus2pomdp, which can

dynamically construct POMDP models given an action description in pBC+, and com-

pute action policies using off-the-shelf POMDP solvers. Unlike icorpp, the semantics

of pBC+ and its reasoning system together support the direct generation of planning

models, which can be further used for computing action policies using POMDP solvers.

Experimental results show that the extended pBC+ (and its supporting system) retains

the advantages of icorpp while successfully avoiding the manual efforts in bridging the

gap between icorpp’s commonsense reasoning and probabilistic planning components.

The paper is organized as follows. After reviewing pBC+ and POMDP in Section 2, we

extend pBC+ and show how it can be used to represent POMDP models in Section 3. In

Section 4, we show how we can dynamically generate POMDP models by exploiting the

elaboration tolerant representation of pBC+. We present the system pbcplus2pomdp

in Section 5 and experimental results with the system in Section 6. After discussing the

related work in Section 7, we conclude in Section 8.

2 Preliminaries

Due to the space limit, the review is brief. For more detailed reviews, we refer the reader to

(Lee and Wang 2018; Wang and Lee 2019), or the supplementary material corresponding

to this paper at the TPLP archives.

https://doi.org/10.1017/S1471068419000371 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000371

1092 Y. Wang et al.

2.1 Review: pBC+ with Utility

We review pBC+ as presented in (Wang and Lee 2019), which extends the language

in (Lee and Wang 2018) by incorporating the concept of utility.

Like its predecessors BC (Lee et al. 2013) and BC+ (Babb and Lee 2015), language

pBC+ assumes that a propositional signature σ is constructed from “constants” and their

“values.” A constant c is a symbol that is associated with a finite set Dom(c), called

the domain. The signature σ is constructed from a finite set of constants, consisting of

atoms c= v for every constant c and every element v in Dom(c). If the domain of c is

{false,true}, then we say that c is Boolean, and abbreviate c=true as c and c=false

as ∼c.
There are four types of constants in pBC+: fluent constants, action constants, pf (prob-

ability fact) constants and initpf (initial probability fact) constants. Fluent constants are

further divided into regular and statically determined. The domain of every action con-

stant is restricted to Boolean. An action description is a finite set of causal laws, which

describes how fluents depend on each other statically and how their values change from

one time step to another. Fig. 1 lists causal laws in pBC+ and their translations into

LPMLN (Lee and Wang 2016). A fluent formula is a formula such that all constants

occurring in it are fluent constants.

We use σfl (σact, σpf , and σinitpf , respectively) to denote the set of all atoms c= v

where c is a fluent constant (action constant, pf constant, initpf constant, respectively)

of σ and v is in Dom(c). For any maximum time step m, any subset σ′ of σ and any

i ∈ {0, . . . ,m}, we use i : σ′ to denote the set {i : A | A ∈ σ′}. For any formula F of

signature σ, by i :F we denote the result of inserting i : in front of every occurrence of

every constant in F .

The semantics of a pBC+ action description D is defined by a translation into an

LPMLN program Tr(D,m) = Dinit ∪ Dm. Below we describe the essential part of the

translation that turns a pBC+ description into an LPMLN program.

The signature σm of Dm consists of atoms of the form i :c = v such that

• for each fluent constant c of D, i ∈ {0, . . . ,m} and v ∈ Dom(c),

• for each action constant or pf constant c of D, i ∈ {0, . . . ,m− 1} and v ∈ Dom(c).

and atoms of the form utility(v, i, id) introduced by each utility law as described in

Fig. 1.

Dm contains LPMLN rules obtained from static laws, fluent dynamic laws, utility laws,

and pf constant declarations as described in the third column of Fig. 1, as well as {0:c =
v}ch for every regular fluent constant c and every v ∈ Dom(c), and {i : c = true}ch, {i :
c = false}ch (i ∈ {0, . . . ,m−1) for every action constant c to state that the fluents at

time 0 and the actions at each time are exogenous.1 Dinit contains LP
MLN rules obtained

from initial static laws and initpf constant declarations as described in the third column

of Fig. 1. Both Dm and Dinit also contain constraints asserting that each constant is

mapped to exactly one value in its domain. We identify an interpretation of σm (or σ)

that satisfies these constraints with the value assignment function mapping each constant

to its value.

1 {A}ch denotes the choice rule A← not not A.

https://doi.org/10.1017/S1471068419000371 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000371

Bridging Commonsense Reasoning and Probabilistic Planning 1093

Fig. 1. Causal laws in pBC+ and their translations into LPMLN.

For any LPMLN program Π of signature σ1 and any interpretation I of a subset σ2 of σ1,

we say I is a residual (probabilistic) stable model of Π if there exists an interpretation J

of σ1 \ σ2 such that I ∪ J is a (probabilistic) stable model of Π.

For any interpretation I of σ, by i : I we denote the interpretation of i : σ such that

i : I |= (i : c) = v iff I |= c = v. For x ∈ {act, f l, pf}, we use σx
m to denote the subset of

σm, which is {i :c = v ∈ σm | c = v ∈ σx}.
A state of D is an interpretation Ifl of σfl such that 0:Ifl is a residual (probabilistic)

stable model of D0. A transition of D is a triple 〈s, e, s′〉 where s and s′ are interpretations
of σfl and e is an interpretation of σact such that 0 : s ∪ 0 : e ∪ 1 : s′ is a residual stable

model of D1. A pf-transition of D is a pair (〈s, e, s′〉, pf), where pf is a value assignment

to σpf such that 0:s ∪ 0:e ∪ 1 : s′ ∪ 0:pf is a stable model of D1.

The following simplifying assumptions are made on action descriptions in pBC+.

1. No concurrent execution of actions: For all transitions 〈s, e, s′〉, we have e |=
a=true for at most one action constant a;

2. Nondeterministic transitions are determined by pf constants: For any state

s, any value assignment e of σact, and any value assignment pf of σpf , there exists

exactly one state s′ such that (〈s, e, s′〉, pf) is a pf-transition;

3. Nondeterminism on initial states are determined by initpf constants: For

any value assignment pfinit of σ
initpf , there exists exactly one value assignment fl

of σfl such that 0:pfinit ∪ 0:fl is a stable model of Dinit ∪D0.

With the above three assumptions, the probability of a history, i.e., a sequence of states

and actions, can be computed as the product of the probabilities of all the transitions

that the history is composed of, multiplied by the probability of the initial state.

A pBC+ action description defines a probabilistic transition system as follows: A prob-

abilistic transition system T (D) represented by a probabilistic action description D is a

labeled directed graph such that the vertices are the states of D, and the edges are ob-

tained from the transitions of D: for every transition 〈s, e, s′〉 of D, an edge labeled e : p, u

https://doi.org/10.1017/S1471068419000371 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000371

1094 Y. Wang et al.

goes from s to s′, where p = PD1
(1 : s′ | 0 : s ∧ 0 : e) and u = E[UD1

(0 : s ∧ 0 : e ∧ 1 : s′)].2

The number p is called the transition probability of 〈s, e, s′〉, denoted by p(s, e, s′), and
the number u is called the transition reward of 〈s, e, s′〉, denoted by u(s, e, s′). The notion
of a probabilistic transition system is essentially the same as that of a Markov Decision

Process.

2.2 Review: POMDP

A Partially Observable Markov Decision Processes (POMDP) is defined as a tuple

〈S,A, T,R,Ω, O, γ〉
where (i) S is a set of states; (ii) A is a set of actions; (iii) T : S × A × S → [0, 1] are

transition probabilities; (vi) R : S×A×S → R are rewards; (v) Ω is a set of observations;

(vi) O : S × A × Ω → [0, 1] are observation probabilities; (vii) γ ∈ [0, 1] is a discount

factor.

A belief state is a probability distribution over S. Given the current belief state b, after

taking action a ∈ A and observing o ∈ Ω, the updated belief state b′ can be computed as

b′(s′) = η ·O(o | s′, a)
∑
s∈S

T (s′ | s, a)b(s)

where s, s′ ∈ S are the current and next states respectively; b(s) is the belief probability

in b corresponding to s; b′(s′) is the belief probability in b′ corresponding to s′; and η is

a normalizer.

A policy π is a function from the set of belief states to the set of actions. The expected

total reward of a stationary policy π starting from the initial belief state b0 is

V π(b0) =
∑∞

t=0 γ
tE

[
R(st, π(bt), st+1) | b0

]

where bt and st are the belief state and the state at time t, respectively. The optimal

policy π∗ is obtained by optimizing the long-term reward: π∗ = argmax
π

V π(b0).

3 Representing POMDP by Extended pBC+
To be able to express partially observable states, we extend pBC+ by introducing a new

type of constants, called observation constants, and a new kind of causal laws called

observation dynamic laws. An observation dynamic law is of the form

observed F if G after H (1)

where F is a formula containing no constants other than observation constants, G is a

formula containing no constants other than fluent constants, and H is a formula contain-

ing no constants other than action constants and pf constants. Observation constants

2 The utility of an interpretation I under DT-LPMLN program Π (Wang and Lee 2019) is defined
as UΠ(I) = Σutility(u,t)∈I u and the expected utility of a proposition A is defined as E[UΠ(A)] =
∑

I|=A

UΠ(I)× PΠ(I | A).

https://doi.org/10.1017/S1471068419000371 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000371

Bridging Commonsense Reasoning and Probabilistic Planning 1095

can occur only in observation dynamic laws. An observation dynamic law r of the form

(1) is translated into the following LPMLN rule:

α : (i+ 1:F)← (i+ 1:G) ∧ (i :H).

For each observation constant obs, Dom(obs) contains a special value NA (“Not Ap-

plicable”). For each observation constant obs in σobs and v ∈ Dom(obs), we include the

following LPMLN rule in Dm to indicate that the initial value of each observation constant

is exogenous:

α : {0 : obs=v}ch
and include the following LPMLN rule in Dm to indicate that the default value of obs is

NA:

α : {i : obs=NA}ch (i ∈ {1, . . . ,m}).
For a more flexible representation, we introduce the if clause in the pf constant decla-

rations as

caused c = {v1 : p1, . . . , vn : pn} if F (2)

where c is a pf constant with the domain {v1, . . . , vn}, 0 < pi < 1 for each i ∈ {1, . . . , n},∑
i∈{1,...,n}

pi = 1 and F contains rigid constants only.3 A pf constant declaration (2) is

translated into LPMLN rules

ln(pi) : (i : c) = vj ← F (3)

for j ∈ {0, . . . ,m}. In addition to Assumptions 1–3 above, we add the following assump-

tion:

4. Rigid constants take the same value over all stable models: for any rigid

constant c, there exists v ∈ Dom(c) such that I � c = v for all stable model I of

Dm.

Under this assumption, the body F in (3) evaluates to either true or false for all stable

models of Dm, meaning that either (3) can be removed from Dm, or F can be removed

from the body of (3). Thus, this is not an essential extension but helps us use different

probability distributions by changing the condition F .

Given a pBC+ action description D, we use S to denote the set of states, i.e, the set of

interpretations Ifl of σfl such that 0:Ifl is a residual (probabilistic) stable model of D0.

We use A to denote the set of interpretations Iact of σact such that 0 : Iact is a residual

(probabilistic) stable model of D1. Since we assume that at most one action is executed

each time step, each element in A makes either only one action or none to be true.

Definition 1

A pBC+ action descriptionD, together with a discount factor γ, defines a POMDPM(D)

〈S,A, P,R,Ω, O, γ〉 where
• the state set S is the same as S and the action set A is the same as A;

• the transition probability P is defined as P (s, a, s′) = PD1
(1 :s′ | 0:s, 0:a);

3 A rigid constant is a statically determined fluent constant for which the value is assumed not to change
over time (Giunchiglia et al. 2004).

https://doi.org/10.1017/S1471068419000371 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000371

1096 Y. Wang et al.

• the reward function R is defined as R(s, a, s′) = E[UD1
(0 :s, 0:a, 1:s′)];

• the observation set Ω is the set of interpretations o on σobs such that 0 : o is a

residual stable model of D0;

• the observation probability O is defined as O(s, a, o) = PD1
(1 :o | 1:s, 0:a).

4 Elaboration Tolerant Representation of POMDP

We illustrate the features of the extended pBC+ using the “dialog management” example

from (Zhang et al. 2017), where a robot is responsible for delivering an item i to person p

in room r. The robot needs to ask questions to figure out what i, p, r are. The challenge

comes from the robot’s imperfect speech recognition capability. As a result, repeating

questions is sometimes necessary. We use POMDP to model the unreliability from speech

recognition, and the robot uses observations to maintain a belief state in the form of a

probability distribution. There are two types of questions that the robot can ask:

• Which-Questions: questions about which item/person/room it is, for example,

“which item is it?”

• Confirmation-Questions: questions to confirm whether a(n) item/person/room is

the requested one, for example, “is the requested item coffee?”

Each of the question-asking actions has a small cost. The robot can execute a Deliver

action, which consists of an item i′, person p′ and room r′ as arguments. A Deliver action

deterministically leads to the terminal state. A reward is obtained with Deliver action,

determined by to what extent i′, p′ and r′ matches i, p and r. For instance, when all three

entries are correctly identified in the Deliver action, the agent receives a large reward;

when none is correctly identified, the agent receives a large penalty (in the form of a

negative reward). Therefore, the agent has the motivation of computing action policies

to minimize the cost of its question-asking actions, while maximizing the expected reward

by tasking the “correct” delivery action.

This example can be represented in pBC+ as follows. We assume a small domain

where Item = {Coffee,Coke,Cookies ,Burger}, Person = {Alice,Bob,Carol}, Room =

{R1, R2, R3}.

Notation: i, i′ range over Item, p, p′ ranges over Person, r, r′ ranges over Room,

c ranges over {Yes, No}
Observation constant: Domains:

ItemObs Item ∪ {NA}
PersonObs Person ∪ {NA}
RoomObs Room ∪ {NA}
Confirmed {Yes, No, NA}

Regular fluent constants: Domains:

ItemReq Item

PersonReq Person

RoomReq Room

Terminated Boolean

Action constants: Domains:

WhichItem, WhichPerson, WhichRoom,

https://doi.org/10.1017/S1471068419000371 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000371

Bridging Commonsense Reasoning and Probabilistic Planning 1097

ConfirmItem(i), ConfirmPerson(p), ConfirmRoom(r),

Deliver(i, p, r) Boolean

Pf constants: Domains:

Pf WhichItem(i) Item

Pf WhichPerson(p) Person

Pf WhichRoom(r) Room

Pf ConfirmWhenCorrect , Pf ConfirmWhenIncorrect {Yes, No}

The action Deliver causes the entering of the terminal state:

caused Terminated if
after Deliver(i, p, r).

The execution of Deliver action with the room, the person and the item all correct yields

a reward of r. The execution of Deliver action with a wrong item, a wrong person, or a

wrong room yield a penalty of p1, p2, p3 each.

reward r if ItemReq= i ∧ PersonReq=p ∧ RoomReq=r ∧Deliver(i, p, r)

∧ ∼Terminated ,

reward −p1 if ItemReq= i ∧Deliver(i′, p′, r′)∧ ∼Terminated (i �= i′),
reward −p2 if PersonReq=p ∧Deliver(i′, p′, r′)∧ ∼Terminated (p �= p′),
reward −p3 if RoomReq=r ∧Deliver(i′, p′, r′)∧ ∼Terminated (r �= r′).

Asking “which item” question when the actual item being requested is i returns an item

i′ as observation in accordance with the probability distribution defined by pf constant

Pf WhichItem(i), shown below. “Which person” and “Which room” questions are rep-

resented in a similar way.

observed ItemObs= i′ if ItemReq= i∧ ∼Terminated after WhichItem ∧ Pf WhichItem(i)= i′,
caused Pf WhichItem(Coffee)={Coffee :0.7,Coke :0.1,Cookies :0.1,Burger :0.1},
caused Pf WhichItem(Coke)={Coffee :0.1,Coke :0.7,Cookies :0.1,Burger :0.1},
caused Pf WhichItem(Cookies)={Coffee :0.1,Coke :0.1,Cookies :0.7,Burger :0.1},
caused Pf WhichItem(Burger)={Coffee :0.1,Coke :0.1,Cookies :0.1,Burger :0.7},

(4)
When the robot asks the confirmation question “is the item i?”, the human’s answer

could be sometimes mistakenly recognized, and the probability distribution of the answer
depends on whether the item i is indeed what the human asked for. We use two pf
constants,
Pf ConfirmWhenCorrect and Pf ConfirmWhenIncorrect to specify each of the probability
distributions depending on whether the robot’s guess is correct or not. When the robot
asks to confirm if the item requested is i, which is indeed what the human requested:

observed Confirmation=v if ItemReq= i∧ ∼Terminated

after ConfirmItem(i) ∧ Pf ConfirmWhenCorrect=v. (v ∈ {Yes, No})
caused Pf ConfirmWhenCorrect={Yes :0.8, No :0.2}.
When the robot asks to confirm if the requested item is i′ whereas the actual item the

human requested is i:

https://doi.org/10.1017/S1471068419000371 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000371

1098 Y. Wang et al.

observed Confirmation=v if ItemReq= i∧ ∼Terminated

after ConfirmItem(i′) ∧ Pf ConfirmWhenIncorrect=v (i �= i′),

caused Pf ConfirmWhenIncorrect={Yes :0.2, No :0.8}.
(The probability distributions of these pf constants do not have to be complementary.)

The formulations of person- and room-related questions are described similarly, and

omitted from the paper.

Asking which-questions has a cost of c1; asking confirmation-questions has a cost of

c2.

reward −c1 if
 after WhichItem, reward −c2 if
 after ConfirmItem(i),

reward −c1 if
 after WhichPerson, reward −c2 if
 after ConfirmPerson(p),

reward −c1 if
 after WhichRoom, reward −c2 if
 after ConfirmRoom(r).

Finally, all regular fluents in this domain are inertial:

inertial rf (rf ∈ {ItemReq ,PersonReq ,RoomReq ,Terminated}).
In the following subsections, we illustrate the elaboration tolerance of the above pBC+

action description. It should be noted that using a vanilla POMDP method, manipulating

states, actions, or observation functions requires significant engineering efforts, and a

developer frequently has to tune prohibitively a large number of parameters. icorpp and

this research aim to avoid that through probabilistic reasoning about actions. In this

work, we move forward from icorpp to shield a developer from the syntax or algorithms

of POMDPs.

4.1 Elaboration 1: Unavailable items

When an item becomes unavailable for delivery, we can simply remove that item from the

domains of relevant constants. For example, when Coke becomes unavailable, we simply

replace the pf constant declarations in (4) with

caused Pf WhichItem(Coffee)={Coffee :0.78,Cookies :0.11,Burger :0.11},
caused Pf WhichItem(Cookies)={Coffee :0.11,Cookies :0.78,Burger :0.11},
caused Pf WhichItem(Burger)={Coffee :0.11,Cookies :0.11,Burger :0.78}.

4.2 Elaboration 2: Reflecting personal preference in reward function

We use a rigid fluent Interchangeable(p, i1, i2) with the integer domain to represent to

what degree the two items i1, i2 are interchangeable for person p. For example, Alice does

not mind when the robot delivers coke while she actually ordered coffee but she does

mind when the robot delivers burger instead of coffee. We add the following elaboration

to represent object interchangeability.

caused Interchangeable(Alice,Coffee,Coke)=5,

caused Interchangeable(Alice,Coffee,Cookies)=1,

caused Interchangeable(Alice,Coffee,Burger)=−3.

https://doi.org/10.1017/S1471068419000371 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000371

Bridging Commonsense Reasoning and Probabilistic Planning 1099

We add the following causal law to reflect the interchangeability of the items.

reward x if ItemReq= i ∧ Interchangeable(p, i, i′)=x ∧ PersonReq(p) after Deliver(i′, p′, r′).

Such knowledge can be used to enable the robot to be more conservative in delivering

items, such as burger, due to their low interchangeability with other items.

4.3 Elaboration 3: Changing Perception Model

The speech recognition system may have different accuracies depending on the environ-

ment. For example, when there is background noise, its accuracy could drop. In this case,

we can update the probability distribution for the relevant pf constant, controlled by aux-

iliary constants indicating the situation. We introduce a rigid constant called Noise, and

then replace (4) with

caused Pf WhichItem(Coffee)={Coffee :0.7,Coke :0.1,Cookies :0.1,Burger :0.1} unless ab

caused Pf WhichItem(Coke)={Coffee :0.1,Coke :0.7,Cookies :0.1,Burger :0.1} unless ab

caused Pf WhichItem(Cookies)={Coffee :0.1,Coke :0.1,Cookies :0.7,Burger :0.1} unless ab

caused Pf WhichItem(Burger)={Coffee :0.1,Coke :0.1,Cookies :0.1,Burger :0.7} unless ab

(5)

to make them defeasible. We then define the probability distribution to override the
original ones when there is loud background noise.

caused Pf WhichItem(Coffee)={Coffee : 6

10
,Coke :

4

30
,Cookies :

4

30
,Burger :

4

30
} if Noise,

caused Pf WhichItem(Coke)={Coffee : 4

30
,Coke :

6

10
,Cookies :

4

30
,Burger :

4

30
} if Noise,

caused Pf WhichItem(Cookies)={Coffee : 4

30
,Coke :

4

30
,Cookies :

6

10
,Burger :

4

30
} if Noise,

caused Pf WhichItem(Burger)={Coffee : 4

30
,Coke :

4

30
,Cookies :

4

30
,Burger :

6

10
} if Noise.

We add

caused ab if Noise

to indicate that by default there is no background noise. When the robot agent detects

that there is background noise, we add

caused Noise

to the action description to update the generated POMDP to incorporate the new speech

recognition probabilities. It should be noted that the speech recognition component is

generally unreliable, though background noise further reduces its reliability.

5 System pbcplus2pomdp

We implemented the prototype system pbcplus2pomdp, which takes a pBC+ action

description D as input and outputs the POMDP M(D) in the input language of the

POMDP solver APPL.4 The system uses lpmln2asp (Lee et al. 2017) with exact in-

4 http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/

https://doi.org/10.1017/S1471068419000371 Published online by Cambridge University Press

http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/
https://doi.org/10.1017/S1471068419000371

1100 Y. Wang et al.

Table 1. Running Statistics of POMDP Model Generation and Solving in Dialog

Example

POMDP Generation Time POMDP Solving Time (APPL)

Domain Size pbcplus2pomdp pbcplus2pomdp γ = 0.9 γ = 0.8 γ = 0.7
(naive) (compo)

2i2p2r
#states = 16
#actions = 18

#observations = 9

49m10.495s 0m13.611s 0m6.123s 0m0.680s 0m0.249s

2i3p2r
#states = 24
#actions = 23

#observations = 10

> 1hr 0m22.723s 4m43.572s 0m21.939s 0m2.294s

3i3p2r
#states = 36
#actions = 30

#observations = 11

> 1hr 0m41.944s > 1hr 8m14.415s 0m37.944s

4i3p2r
#states = 48
#actions = 37

#observations = 12

> 1hr 2m56.652s > 1hr > 1hr 10m50.248s

ference on D1 and D0 to generate the components of POMDP: all states, all actions, all

transitions and their probabilities, all observations and their probabilities and transition

rewards as defined in Definition 1. The system is publicly available at https://github.

com/ywang485/pbcplus2pomdp, along with several examples.

Even though we limit the computation to D0 and D1, i.e., at most one step action

execution is considered, the number of stable models may become too large to enumerate

all. Since the transition probabilities, rewards, observation probabilities are per each

action, the system implements a compositional way to generate the POMDP model by

partitioning the actions in different groups and generating the POMDP model per each

group by omitting the causal laws involving other actions and their pf constants. This

“compositional” mode often saves the POMDP generation time drastically.5

6 Evaluation

All experiments reported in this section were performed on a machine powered by 4

Intel(R) Core(TM) i5-2400 CPU with OS Ubuntu 14.04.5 LTS and 8G memory.

6.1 Evaluation of Planning Efficiency

We report the running statistics of POMDP generation with our pbcplus2pomdp sys-

tem and POMDP planning with APPL on the dialog example (as described in Section

5 The more detailed description of the algorithm is given in the supplementary material corresponding
to this paper at the TPLP archives.

https://doi.org/10.1017/S1471068419000371 Published online by Cambridge University Press

https://github.com/ywang485/pbcplus2pomdp
https://github.com/ywang485/pbcplus2pomdp
https://doi.org/10.1017/S1471068419000371

Bridging Commonsense Reasoning and Probabilistic Planning 1101

4) in Table 1. We test domains with different numbers of items, people, and rooms.

pbcplus2pomdp(naive) generates POMDP in a non-compositional way while pbc-

plus2pomdp(compo) generates

POMDP in a compositional way (as described in Section 5) by partitioning actions into

• {ConfirmItem(i) | i ∈ Item},
• {ConfirmPerson(p) | p ∈ Person},
• {ConfirmRoom(r) | r ∈ Room},
• {WhichItem},
• {WhichPerson},
• {WhichRoom},
• {Deliver(i, p, r) | i ∈ Item, p ∈ Person, r ∈ Room}.

γ is a discount factor. “POMDP solving time (APPL)” refers to the running time of

APPL until the convergence to a target precision of 0.1. The pbcplus2pomdp(compo)

mode is much more efficient than the pbcplus2pomdp(naive) mode for the dialog

domain.

6.2 Evaluation of Solution Quality

pBC+ provides a high-level description of POMDP models such that various elabora-

tions on the underlying action domain can be easily achieved by changing a small part of

the pBC+ action description, whereas such elaboration would require a complete recon-

struction of transition/reward/observation matrices at POMDP level. In Sections 4.1,

4.2 and 4.3, we have illustrated this point with the three example elaborations. In this

subsection, we evaluate the impact of the three elaborations on dynamic planning, in

the sense that the low-level POMDP (planning module) can be updated automatically

once the high-level pBC+ action description (reasoning module) detects changes in the

environment to generate better plans. For each of the thee elaborations, we compare the

plan generated from a static POMDP that does not reflect environmental changes, and

the one generated from the adaptive POMDP that is updated by pBC+ reasoning to

reflect environmental changes.

Fig. 2 compares the policies generated from the static POMDPs (baseline) and from

the POMDP dynamically generated using pBC+, where the two items of burger and

cookies might be unavailable (Elaboration 1). We have run 1000 simulation trials. The

diagram on the left compares them in terms of average total reward from the simulation

runs, and the right is in terms of average QA cost (accumulated penalty by asking

questions). In this experiment, the discount factor is 0.95 (which offers the dialog agent

a relatively long horizon), c1 is 4.0, c2 is 2.0, r is 20.0, p2 is 20.0, and p3 is 30.0. Action

policies are generated using APPL in at most 120 seconds. We observe that the adaptive

POMDP (ours) achieves a higher average total reward when the penalty for the wrong

item is positive, and the adaptive POMDPs are able to complete deliveries with less QA

costs. It is worth noting that by reflecting unavailable items, pBC+ reduces the size of

the generated POMDP models, resulting in shorter POMDP-solving times. As can be

seen from Table 1, for a domain that contains 2 items, 3 people and 2 rooms, POMDP

generation plus POMDP solving takes way less time than POMDP solving on a domain

with 4 items, 3 people and 2 rooms.

https://doi.org/10.1017/S1471068419000371 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000371

1102 Y. Wang et al.

Fig. 2. Impact of Elaboration 1 on Policy Generated.

Fig. 3. Impact of Elaboration 2 on Policy Generated.

Fig. 3 compares the policies generated from the static POMDP and from pBC+ based

adaptive POMDP when item interchangeability is introduced (Elaboration 2). We re-

placed cookies with pepsi in the domain, added causal laws to indicate that when coke is

being requested, delivering pepsi instead yields a reward of 15, delivering coffee instead

yields a reward of 5 and delivering burger instead yields an additional penalty of 20 (in

the presence of penalty p1). We have run 10000 simulations, and for all of the simulations,

the actual item being requested is fixed to be coke.6 For the static POMDP, 9628 deliv-

eries were correct, and for the adaptive POMDP, 9270 deliveries were correct. Note that

although the static POMDP achieves more correct deliveries, the dynamically generated

POMDPs (our approach) achieved higher average total reward by asking fewer questions.

The policy generated from the static POMDP gives similar numbers of deliveries for each

item that is not coke, while the policy generated from the adaptive POMDP delivered

pepsi the most and burger the least, which is aligned with our setting of interchangeabil-

ity. The discount factor for this experiment is set to be 0.99. c1 is 6, c2 is 4, r is 5, p1 is

5, p2 is 20 and p3 is 30. Policies from both POMDPs are generated by APPL with 120

seconds.

Fig. 4 compares the policies generated from the static POMDP and from pBC+ based

adaptive POMDP when there is a background noise (Elaboration 3). To reflect environ-

mental noise, we lowered the observation probability of correct answers by 0.1 (and the

6 The item is fixed to be coke only during simulation, not during policy generation.

https://doi.org/10.1017/S1471068419000371 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000371

Bridging Commonsense Reasoning and Probabilistic Planning 1103

Fig. 4. Impact of Elaboration 3 on Policy Generated.

remaining answers are uniformly distributed). We have run 1000 simulations. The dia-

gram on the left compares them in term of average total reward from the simulation runs,

and the diagram on the right compares them in terms of average QA cost (accumulated

cost from questions asked) from the simulation runs. In this experiment, c1 is 4, c2 is 2,

r is 20, p2 is 20 and p3 is 30. Policies from both POMDPs are generated by APPL with

120 seconds. It can be seen from the diagrams that while the average total reward of

both POMDPs decreases as the discount factor increases, the adaptive POMDP achieves

higher average total reward by asking fewer questions.

7 Related Work

Intelligent agents need the capabilities of both reasoning about declarative knowledge,

and probabilistic planning toward achieving long-term goals. A variety of algorithms have

been developed to integrate commonsense reasoning and probabilistic planning (Hanheide

et al. 2017; Zhang et al. 2015; Zhang and Stone 2015; Sridharan et al. 2019; Chitnis et al.

2018; Zhang et al. 2017; Amiri et al. 2018; Veiga et al. 2019), and some of them, such

as (Sridharan et al. 2019) and (Amiri et al. 2018), also include non-deterministic dy-

namic laws for observations. Although the algorithms use very different computational

paradigms for representing and reasoning with human knowledge (e.g., logics, probabili-

ties, graphs, etc), they all share the goal of leveraging declarative knowledge to improve

the performance in probabilistic planning. In these works, the hypothesis is that human

knowledge potentially can be useful in guiding robot behaviors in the real world, while

the challenge is that human knowledge is sparse, incomplete, and sometimes unreliable.

In this research, we share the same goal of utilizing contextual knowledge from people

to help intelligent agents in sequential decision-making tasks while accounting for the

uncertainty in perception and action outcomes.

Among the algorithms that integrate commonsense reasoning and probabilistic plan-

ning paradigms, icorpp enabled an agent to reason with contextual knowledge to dynam-

ically construct complete probabilistic planning models (Zhang et al. 2017) for adaptive

robot control, where P-log was used for logical-probabilistic reasoning (Baral et al. 2009).

Depending on the observability of world states, icorpp uses either Markov Decision Pro-

cesses (MDPs) (Puterman 2014) or Partially Observable MDPs (POMDPs) (Kaelbling

et al. 1998) for probabilistic planning. As a result, icorpp has been applied to robot

navigation, dialog system, and manipulation tasks (Zhang et al. 2017; Amiri et al. 2018).

In this work, we develop a unified representation and a corresponding implementation for

https://doi.org/10.1017/S1471068419000371 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000371

1104 Y. Wang et al.

icorpp, where the entire reasoning and planning system can be encoded using a single

program, and practitioners are completely shielded from the technical details of formu-

lating and solving (PO)MDPs. In comparison, icorpp requires significant engineering

efforts (e.g., using Python or C++) for “gluing” the computational paradigms used by

the commonsense reasoning and probabilistic planning components.

Recently, researchers have developed algorithms to incorporate knowledge represen-

tation and reasoning into reinforcement learning (RL) (Sutton and Barto 2018), where

the goal is to provide the learning agents with guidance in action selections through

reasoning with declarative knowledge. Notable examples include (Leonetti et al. 2016;

Yang et al. 2018; Jiang et al. 2018; Lu et al. 2018; Lyu et al. 2019; Kim et al. 2019).

In this research, we assume the availability of world models, including both states and

dynamics, in a declarative form. In case of world models being unavailable, incomplete, or

dynamically changing, there is the potential of combining the above “knowledge-driven

RL” algorithms, particularly the ones using model-based RL such as (Lu et al. 2018),

with our new representation to enable agents to simultaneously learn and reason about

world models to compute action policies.

In an earlier work (Tran and Baral 2004), the authors show how Pearl’s probabilistic

causal model can be encoded in a probabilistic action language PAL (Baral et al. 2002).

8 Conclusion and Future Work

In this paper, we present a principled way of integrating probabilistic logical reasoning

and probabilistic planning. This is done by extending probabilistic action language pBC+
(Lee and Wang 2018; Wang and Lee 2019) to be able to express utility, belief states, and

observation as in POMDP models. Inheriting the advantages of action languages, the

new action language provides an elaboration tolerant representation of POMDP that is

convenient to encode commonsense knowledge.

One of the well known problems limiting applications of POMDPs is sensitivity of the

optimal behavior to the small changes in the reward function and the probability distri-

bution. Because of this sensitivity care must be taken in choosing the reward function

as well as the probability distribution. The choice of these, and especially of the latter

is a non-trivial problem, which is outside of the scope of the paper. POMDP algorithms

perform poorly in scalability in many applications. Although the language and system

developed in this paper can potentially alleviate this issue, we believe this is a challenging

problem that deserves more effort, and we leave it to future work.

The current prototype implementation is not highly scalable when the number of

transitions becomes large. For a more scalable generation of the POMDP input using the

LPMLN system, we could use the sampling method in LPMLN inference, which we leave

for future work.

Acknowledgements

We are grateful to the anonymous referees for their useful comments. The first and the

third author’s work was partially supported by the National Science Foundation under

Grant IIS-1815337.

https://doi.org/10.1017/S1471068419000371 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000371

Bridging Commonsense Reasoning and Probabilistic Planning 1105

Supplementary material

To view supplementary material for this article, please visit https://doi.org/10.1017/

S1471068419000371.

References

Amiri, S., Wei, S., Zhang, S., Sinapov, J., Thomason, J., and Stone, P. 2018. Multi-modal
predicate identification using dynamically learned robot controllers. In Proceedings of the 27th
International Joint Conference on Artificial Intelligence.

Babb, J. and Lee, J. 2015. Action language BC+. Journal of Logic and Computation, exv062.

Baral, C., Gelfond, M., and Rushton, J. N. 2009. Probabilistic reasoning with answer sets.
Theory and Practice of Logic Programming 9, 1, 57–144.

Baral, C.,Tran, N., and Tuan, L.-C. 2002. Reasoning about actions in a probabilistic setting.
In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 507–512.

Chitnis, R., Kaelbling, L. P., and Lozano-Pérez, T. 2018. Integrating human-provided
information into belief state representation using dynamic factorization. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 3551–3558. IEEE.

Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., and Turner, H. 2004. Nonmonotonic
causal theories. Artificial Intelligence 153(1–2), 49–104.

Hanheide, M., Göbelbecker, M., Horn, G. S., Pronobis, A., Sjöö, K., Aydemir, A.,
Jensfelt, P., Gretton, C., Dearden, R., Janicek, M., et al. 2017. Robot task planning
and explanation in open and uncertain worlds. Artificial Intelligence 247, 119–150.

Jiang, Y., Yang, F., Zhang, S., and Stone, P. 2018. Integrating task-motion planning with
reinforcement learning for robust decision making in mobile robots. CoRR abs/1811.08955.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. 1998. Planning and acting in
partially observable stochastic domains. Artificial intelligence 101, 1-2, 99–134.

Kim, B., Kaelbling, L. P., and Lozano-Perez, T. 2019. Adversarial actor-critic method
for task and motion planning problems using planning experience. In AAAI Conference on
Artificial Intelligence (AAAI).

Lee, J., Lifschitz, V., and Yang, F. 2013. Action language BC: Preliminary report. In Pro-
ceedings of International Joint Conference on Artificial Intelligence (IJCAI).

Lee, J., Talsania, S., and Wang, Y. 2017. Computing LPMLN using ASP and MLN solvers.
Theory and Practice of Logic Programming .

Lee, J. and Wang, Y. 2016. Weighted rules under the stable model semantics. In Proceedings
of International Conference on Principles of Knowledge Representation and Reasoning (KR),
pp. 145–154.

Lee, J. and Wang, Y. 2018. A probabilistic extension of action language BC+. Theory and
Practice of Logic Programming 18(3–4), 607–622.

Leonetti, M., Iocchi, L., and Stone, P. 2016. A synthesis of automated planning and rein-
forcement learning for efficient, robust decision-making. Artificial Intelligence 241, 103–130.

Lu, K., Zhang, S., Stone, P., and Chen, X. 2018. Robot representing and reasoning with
knowledge from reinforcement learning. CoRR abs/1809.11074.

Lyu, D., Yang, F., Liu, B., and Gustafson, S. 2019. Sdrl: Interpretable and data-efficient
deep reinforcement learning leveraging symbolic planning. In AAAI.

Puterman, M. L. 2014. Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons.

Sridharan, M., Gelfond, M., Zhang, S., and Wyatt, J. 2019. REBA: A refinement-based
architecture for knowledge representation and reasoning in robotics. Journal of Artificial In-
telligence Research 65, 87–180.

https://doi.org/10.1017/S1471068419000371 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000371
https://doi.org/10.1017/S1471068419000371
https://doi.org/10.1017/S1471068419000371

1106 Y. Wang et al.

Sutton, R. S. and Barto, A. G. 2018. Reinforcement learning: An introduction. MIT press.

Tran, N. and Baral, C. 2004. Encoding probabilistic causal model in probabilistic action
language. In Proceedings of the National Conference on Artificial Intelligence.

Veiga, T. S., Silva, M.,Ventura, R., and Lima, P. U. 2019. A hierarchical approach to active
semantic mapping using probabilistic logic and information reward pomdps. In Proceedings
of the International Conference on Automated Planning and Scheduling.

Wang, Y. and Lee, J. 2019. Elaboration tolerant representation of markov decision process
via decision theoretic extension of action language pbc+. In LPNMR. To appear.

Yang, F., Lyu, D., Liu, B., and Gustafson, S. 2018. Peorl: integrating symbolic planning
and hierarchical reinforcement learning for robust decision-making. In Proceedings of the 27th
International Joint Conference on Artificial Intelligence, pp. 4860–4866.

Zhang, S., Khandelwal, P., and Stone, P. 2017. Dynamically constructed (PO)MDPs for
adaptive robot planning. In Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence.

Zhang, S., Sridharan, M., and Wyatt, J. L. 2015. Mixed logical inference and probabilistic
planning for robots in unreliable worlds. IEEE Transactions on Robotics 31, 3, 699–713.

Zhang, S. and Stone, P. 2015. CORPP: Commonsense reasoning and probabilistic planning,
as applied to dialog with a mobile robot. In Twenty-Ninth AAAI Conference on Artificial
Intelligence.

https://doi.org/10.1017/S1471068419000371 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000371

	Introduction
	Preliminaries
	Review: pBC+ with Utility
	Review: POMDP

	Representing POMDP by Extended pBC+
	Elaboration Tolerant Representation of POMDP
	Elaboration 1: Unavailable items
	Elaboration 2: Reflecting personal preference in reward function
	Elaboration 3: Changing Perception Model

	System pbcplus2pomdp
	Evaluation
	Evaluation of Planning Efficiency
	Evaluation of Solution Quality

	Related Work
	Conclusion and Future Work
	References

