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Hydraulic control of continental shelf waves
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This paper studies the hydraulic control of continental shelf waves using an inviscid
barotropic quasi-geostrophic model with piecewise-constant potential vorticity, in which
the shelf is represented by a flat step of variable width. A coastal-intensified geostrophic
current generates topographic Rossby waves, which can become critical at a local decrease
in shelf width when the background current opposes Rossby wave propagation. That is, the
shelfbreak perturbation permanently modifies the flow field over arbitrarily large distances
and the flow transitions from subcritical to supercritical as it crosses the perturbation.
Critically controlled flows also lead to the exchange of significant volumes of water
between the shelf and the deep ocean. We derive the boundaries for which critical control
occurs in terms of a Froude number and the dimensionless magnitude of the perturbation,
and analyse the possible transitions between controlled and far-field flow. When first-order
dispersive terms are included in the model, transitions are resolved by dispersive shock
waves, which remain attached to the forcing region when the Froude number is close
to the boundary for critical flow. Contour dynamic simulations show that the dispersive
long-wave model captures the quantitative behaviour of the full quasi-geostrophic system
for slowly varying shelves, and replicates the qualitative behaviour even when the
long-wave parameter is order one.

Key words: hydraulic control, quasi-geostrophic flows, topographic effects

1. Introduction

Coastal trapped waves (CTWs) are vorticity waves that arise when columns of fluid are
forced across isobaths, either by upper-layer Ekman transport or by the interaction of an
along-shore current with a change in bathymetry. Coastal trapped waves are a ubiquitous
feature in the worlds oceans and form a major component of the subinertial variability
of geostrophic currents. They are extremely long lived, and can communicate the ocean’s
response to localised events over hundreds to thousands of kilometres. Linear CTWs are
governed by a form of the vorticity equation in which the non-dimensional parameter is
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the slope Burger number (Zhang & Lentz 2017, equation 16),

S =
(

N0H
fL

)2

, (1.1)

where N0 is a scaling for the buoyancy frequency, f is the Coriolis frequency, and H and
L are representative depth and cross-shelf length scales, respectively. The slope Burger
number illustrates the relative importance of stratification and the continental shelf. For
large S, the shelf-width scale L is small compared with the Rossby radius of deformation
N0H/f and CTWs behave much like Kelvin waves (i.e. they ignore the shelf and propagate
as if along a vertical wall). Alternatively when S � 1, stratification is not important and
CTWs are barotropic topographic Rossby waves, often called continental shelf waves
(CSWs). Coastal trapped waves can therefore be thought of as a hybrid between internal
Kelvin waves and topographic Rossby waves (Brink 1991). This paper is concerned with
CSWs, which are known to occur off the coast of Scotland, along the Iceland–Faroe
ridge, and on the Amundsen Sea shelf (Gordon & Huthnance 1987; Miller, Lermusiaux
& Poulain 1996; Wåhlin et al. 2016). In particular, we use an idealised quasi-geostrophic
(QG) model to study the interaction between CSWs and localised changes in bathymetry.
We show that when CSWs are generated by a background current flowing counter to
Rossby wave propagation the flow can become critically controlled. Zhang & Lentz (2017)
(ZL17 hereafter) have previously shown that this mechanism drives the strong onshore
flow that is observed in the Hudson Shelf Valley, and, thus, critically controlled flows can
lead to an enhanced exchange of shelf and open-ocean water. In this work we employ an
inviscid model in which the boundary between shelf and open-ocean water is a material
contour that evolves according to a single equation. The model admits a single Rossby
mode and is therefore simple enough that we are able to show analytically which regions
of parameter space permit hydraulic control, as well as analysing in detail the transition
between the controlled state and the far-field flow. An interesting feature of the model is
that it admits unsteady solutions where the shelf water penetrates deep into the open ocean,
which we call ‘offshore plumes’. These occur when the turning flow generated by vortex
stretching is weaker than the background coastal current, so that fluid columns which cross
the shelfbreak head directly offshore rather than turning rightwards under the image effect.

1.1. Hydraulic control of continental shelf waves
Coastal trapped waves propagate to the right in the Northern hemisphere (facing seawards),
and, thus, can become arrested by a current flowing with the coastline on its left. Zhang
& Lentz (2017) use numerical simulations representative of the Hudson shelf valley to
illustrate the asymmetric response of topographically generated CTWs to the direction of
the background wind-driven flow. This is summarised in figure 1, which is adapted from
figure 11 of ZL17. Figure 1 is a Hovmöller diagram showing the evolution of sea-surface
height (SSH) anomaly, taken in an along-shore slice with fixed offshore co-ordinate
located over the valley. The inset to (a) shows a plan view of the shelf bathymetry, with
offshore distance increasing with the ordinate, and the red dashed line shows the location
of the Hovmöller slice. The direction of the wind is shown as a thick black arrow in either
plot, and is the same as the direction of CTW propagation in (a) and counter to CTW
propagation in (b). In either case, a mode-1 CTW propagates away from the valley at early
times towards positive x. The slope of the grey dashed line gives the speed of the mode-1
CTW, which matches the early time signal. When the background flow opposes CTW
propagation as in (b), a train of standing lee waves develops on the left of the valley and
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Figure 1. Hovmöller diagram showing SSH anomaly in an along-shore slice taken at the centre of the valley.
The wind direction is shown as a thick black arrow and drives flow (a) in the direction of CTW propagation and
(b) counter to CTW propagation. The inset to (a) shows a plan view of the bathymetry, with depth increasing
offshore. The red dashed line gives the location of the Hovmöller slice. In (a,b) the SSH anomaly is defined
relative to the flow far away from the valley on the windward side. Thick green contours show curves of zero
anomaly. The slope of the grey dashed line is the phase speed of a mode-1 CTW, and the black dashed line in
(b) is the mean speed of the background flow. Triangles mark the edge of the valley. Adapted from Zhang &
Lentz (2017), © Copyright 2017 AMS.

spreads at approximately the mean speed of the background current (the slope of the black
dashed line in (b)). Zhang & Lentz (2017) show that the characteristics of the lee waves are
consistent with CTWs that have phase speed equal and opposite to the background flow,
and, thus, they are arrested CTWs. Unlike the higher-mode lee waves, the mode-1 wave
(grey dashed line) can escape from the valley because its phase speed is much greater
than the mean speed of the background flow. (Note that the mode-1 wave signal leaves
the domain after four days, whereas the lee wave signal persists near x = −100 over
the whole simulation.) Martell & Allen (1979) identify the same response in a simpler
barotropic model, and additionally demonstrate that the standing lee waves do not occur
in the long-wave limit where the along-shore topographic scale is large compared with the
shelf width. The majority of this work is concerned with the case shown in (b), where the
background flow opposes CTW propagation.

As noted by Zhang and Lentz, the combination of a wave that propagates away from an
obstacle against the background flow and standing waves on the other side is suggestive
of hydraulic control, whereby geometric constrictions force a transition from subcritical
to supercritical flow (Gill 1977; Johnson & Clarke 2001; Pratt & Whitehead 2008). Gill
& Schumann (1979) and Dale & Barth (2001) study the hydraulic control of coastal flows
using a model where each layer has uniform potential vorticity (PV). This model therefore
does not have Rossby waves, and the controlling mode is the internal Kelvin wave (S � 1).
In contrast, Haynes, Johnson & Hurst (1993) study controlled barotropic flow (S = 0)
in a stepped channel with piecewise-uniform PV and, thus, a single Rossby mode. They
show that two different types of control are possible: one where the flow is controlled at
the maximum perturbation in step width, as for Kelvin waves, and one where the flow
transitions from one supercritical branch of the solution to another via a control point
at the edge of the perturbation. Johnson & Clarke (1999) extend this model to include
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first-order dispersive effects, which enables them to specify the location of the jump
between branches. The analytical study of critical control in systems with more than one
mode is significantly more complicated; and has been considered by Hughes (1985) and,
in the weakly nonlinear limit, by Grimshaw (1987) and Mitsudera & Grimshaw (1990).

The present work complements previous studies by using an inviscid QG model with
piecewise-uniform PV to study the control of CSWs generated by a coastal-intensified
geostrophic current. By using an idealised model with a single Rossby mode we are able
to clearly identify hydraulically controlled flow, and analytically determine the regions
of parameter space in which it occurs in terms of upper and lower bounds on the
Froude number, F. The idealised model also allows us to study the form of the transition
between controlled and far-field flow. In many cases, this transition is accomplished in
the long-wave model by a shock (a discontinuity in the offshore location of the material
interface separating shelf and ocean water). In the full QG system shocks are replaced by
slowly modulated wave trains, which are the manifestation of standing lee waves in the
present model. We analyse these wave trains using the method of ‘dispersive shock-fitting’
(El 2005; Jamshidi & Johnson 2020) and show that standing lee waves only occur when F
is close to the lower boundary for critical flow.

The rest of the paper is organised as follows. Section 2 develops the model and governing
equations, §§ 3 and 4 analyse the leading and first-order long-wave equations, respectively,
including conditions for critical control and the form of the transition between controlled
and far-field flow. Section 5 compares theoretical results with numerical simulations of
both the dispersive long-wave equation and the full QG system, and § 6 discusses the
relevance of the present, idealised, model to the real continental shelf.

2. Model and governing equations

Consider QG flow on an f -plane, with Cartesian axes Oxyz fixed in a rotating frame of
reference. The equation for PV conservation over variable topography b(x, y) is

D
Dt

(
∇2ψ − ψ

L2
R

+ fb
H

)
= 0, (2.1)

where LR = √
gH/f is the Rossby radius of deformation, ψ = gh/f is the QG

streamfunction which is related to the velocity by (∂ψ/∂x, ∂ψ/∂y) = (v,−u) and H
is the mean fluid depth far from the shelf. The conserved quantity in (2.1) is the
quasi-geostrophic PV, which we denote q. The model is barotropic, although the exact
same results apply when a lighter, infinitely deep, quiescent layer is included in z > H so
that we may also choose to interpret the present work as a model for the inviscid dynamics
of the bottom layer of the coastal ocean. Fluid occupies the half-plane y > 0, with a vertical
coast at y = 0 and a flat continental shelf of width Yh(x), which we write as

b =
{
Π0H/f , 0 < y < Yh(x),

0, y > Yh(x),
(2.2)

for some Π0 > 0. The extension to include a linear continental slope is conceptually
straightforward but will not be considered here. We will focus on the case where the
shelf width Yh is a slowly varying function of x, and is constant apart from a localised
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Figure 2. A flat continental shelf occupies the region 0 < y < Yh(x), with a vertical coast at y = 0. The model
ocean is barotropic, with two regions of uniform PV separated by an interface at y = Y(x, t). Motion is driven
by a coastal-intensified background current, in this case from right to left. (a) Side view. (b) Plan view; the
dashed curve is Yh and the solid curve is Y .

perturbation around x = 0. In all numerical simulations that follow we will use

Yh(x) = Y0 −Δsech(x/W)2, (2.3)

although the analytic results do not depend on our choice of sech(x/W)2 as the function
describing the shelfbreak deviation. Thus, the key geometric parameters describing the
shelf are Y0, the shelf width away from the perturbation, Δ, the magnitude of the
perturbation, and W, which measures the width of the topographic forcing region and
in the long-wave limit used for analysis is formally large compared with LR. We place no
restriction on the magnitude ofΔ, but the QG limit requires that depth variations are small
so that application of the present model is best suited to coastlines with a deep continental
shelf and b � H. The present model could also be used to study the dynamics of shelf
ridges such as the Charleston bump, in which case H represents the depth of the shelf and
b is the height of the ridge, and the inner shelf dynamics is assumed to be isolated from
flow at the shelfbreak which is now at y → ∞. Note also that the inner shelf interpretation
of the model gives a more realistic value for the deformation radius LR, which becomes
very large (thousands of kilometres) if the depth scale H is taken as the mean depth of
fluid far from the shelf. Figure 2 shows a schematic of the flow and identifies the various
parameters. The long-wave behaviour of the present model without a continental shelf
is analysed in detail in Jamshidi & Johnson (2020) (JJ20 hereafter), and much of what
follows here is guided by that analysis.

We will consider the initial-value problem where the PV front is initially aligned with
the shelfbreak, so that the initial distribution of PV is

q =
{
Π0, 0 < y < Yh(x),

0, Yh(x) < y.
(2.4)

The PV is therefore piecewise constant, with a gradient that is entirely due to the
topography rather than any internal variation of vorticity, and the model admits a single
Rossby wave mode. Models with piecewise-constant PV have been used previously in
theoretical studies of coastal outflows (Kubokawa 1991; Johnson, Southwick & McDonald
2017) and boundary currents (Pratt & Stern 1986; Jamshidi & Johnson 2020), and this
restriction is necessary for the analytic work below. The implications of requiring both
piecewise-constant PV and QG dynamics are discussed further in § 6. Due to the choice
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of PV profile, the topographic forcing term in (2.1) cancels with q in regions where the PV
front and shelfbreak are aligned so that the governing equation is homogeneous,

∇2ψ − ψ

L2
R

= 0. (2.5)

With no background flow to disturb the front the unique solution to (2.5) is ψ ≡ 0 and
the initial condition (2.4) persists for all time. In order to generate CSWs, consider a
background flow that starts impulsively at t = 0, and displaces the PV interface to some
y = Y(x, t). In regions of the domain with Y /= Yh, columns of fluid have crossed the
shelfbreak and either moved off-shelf and gained relative vorticity (Y > Yh, plus sign in
figure 2) or moved on-shelf and lost relative vorticity (Y < Yh, negative sign). Thus, for y
between Yh and Y , there is a forcing term on the right-hand side of (2.5), the sign of which
depends on whether the PV front is on- or off-shelf. Following the algebra through for the
various cases, one arrives at the following equation (which is similar to (2.4) in Haynes
et al. 1993):

∇2ψ − ψ

L2
R

+Π0 (H(Yh − y)− H(Y − y)) = 0. (2.6)

Here H is the Heaviside function. The PV interface Y(x, t) evolves according to the
kinematic boundary condition

∂Y
∂t

= d
dx
ψ(x, Y(x, t), t), (2.7)

so that given a closed expression for ψ(x, Y, t) the entire flow field can be tracked by
solving the scalar equation (2.7). In writing (2.7) we have assumed that the interface
is at all times a single-valued function of x. This assumption will later be checked by
contour dynamic simulations of the full QG system (2.1) which allow for more complicated
interface shapes.

For simplicity, we shall restrict discussion to a monotonic, coastal-intensified
background flow profile. The appropriate boundary conditions are

ψ = Q0 on y = 0, (2.8a)

ψ → 0 as y → ∞, (2.8b)

along with the requirement that ψ and u = −∂ψ/∂y are continuous everywhere. In some
oceanographic applications it may be more suitable to choose a background flow that is
intensified at the shelfbreak, and (2.8a) should be modified accordingly. Note that the
system (2.1) and boundary conditions (2.8) are symmetric under the transformation

ψ → −ψ, x → −x, b → −b, Q0 → −Q0, (2.9a–d)

so that the problem is equivalent to that of a trench of depth b against a vertical wall.
We non-dimensionalise ψ with |Q0|, horizontal lengths with LR, and introduce a =

LR(Π0/|Q0|)1/2. The non-dimensional parameter a is the ratio of the Rossby radius to
the vortex length LV = (|Q0|/Π0)

1/2, which is the appropriate scale for a vortical current
of flux |Q0| and vorticity Π0 (Johnson & McDonald 2006). Alternatively, a measures
the relative strengths of the background current and vortical flow driven by columns of
fluid crossing the shelfbreak, with large a corresponding to strong vortical flow. Further
interpretation of a is given in the context of coastal outflows in Johnson et al. (2017). With
these scaling choices, the boundary condition (2.8a) becomes ψ = Q = ±1 depending on

917 A4-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

25
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.250


Hydraulic control of continental shelf waves

whether the background coastal current is to the right (Q = +1) or the left (Q = −1), and
the governing equation is

∇2ψ − ψ + a2 (H(Yh − y)− H(Y − y)) = 0. (2.10)

The key parameters of the problem are thus a, Q, Y0, Δ and ε = 1/W.

2.1. The long-wave limit
In the limit ε = 1/W → 0, we write

ψ(X, y, T) = ψ0 + ε2ψ1 + O(ε3) . . . , (2.11)

where we have introduced the long-wave co-ordinate X = x/W and slow time T = t/W.
At leading order in ε, the field equation (2.10) becomes

∂2ψ0

∂y2 − ψ0 + a2 (H(Yh − y)− H(Y − y)) = 0. (2.12)

The solution to (2.12) depends on whether the PV front is on the shelf (Y < Yh) or off the
shelf (Y > Yh). For the case where the front is on the shelf,

ψ0(X, y, T) =

⎧⎪⎨
⎪⎩

Q e−y + a2 sinh ( y)(e−Y − e−Yh), 0 < y < Y,

Q e−y + a2[1 − sinh ( y) e−Yh − cosh (Y) e−y], Y < y < Yh,

Q e−y + a2 (cosh (Yh)− cosh (Y)) e−y, y > Yh,

(2.13)

while when the front is off the shelf,

ψ0(X, y, T) =

⎧⎪⎨
⎪⎩

Q e−y + a2 sinh ( y)(e−Y − e−Yh), 0 < y < Yh,

Q e−y + a2[−1 + sinh ( y)e−Y + cosh (Yh) e−y], Yh < y < Y,

Q e−y + a2(cosh (Yh)− cosh (Y))e−y, y > Y,

(2.14)

upon enforcing continuity of ψ and u at y = Y and Y = Yh as well as the boundary
conditions (2.8). We introduce the index j = sign (Yh − Y) to differentiate between the
two cases, and write

ψ0(X, Y, T) = Q e−Y + a2

2
[e−(Y+Yh) − e−2Y + j(1 − ej(Y−Yh))]

= Qe(Y, Yh). (2.15)

The function Qe(Y, Yh) depends on X only through location of the PV interface Y and the
shelf width Yh, and, thus, is the hydraulic functional for this problem (Gill 1977; Pratt &
Whitehead 2008). The net along-shore flux of shelf water is given by Q − Qe. Substituting
(2.15) into the kinematic boundary condition (2.7), we have

∂Y
∂T

+ C(Y, Yh)
∂Y
∂X

= a2

2
(ej(Y−Yh) − e−(Y+Yh))

∂Yh

∂X
, (2.16)

which is a forced nonlinear wave equation with long-wave speed

C(Y, Yh) = −∂ψ
0

∂y
|y=Y = Q e−Y + a2

2
[e−(Y+Yh) − 2 e−2Y + ej(Y−Yh)]. (2.17)

Equation (2.16) will be referred to as the hydraulic equation. From left to right, the terms
in (2.17) can be identified as the contributions from: background flow, image vorticity due

917 A4-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

25
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.250


S. Jamshidi and E.R. Johnson

the shelfbreak, image vorticity due to the PV front, and stretching/squashing generated by
off- or on-shelf movement of the front. Much of the qualitative behaviour of the hydraulic
equation can be understood through C. In particular, if Y > Yh then C is not a monotonic
function of Y , but rather has a unique maximum at

Y = Y2 = − log
(

Q + a2 cosh (Yh)

2a2

)
. (2.18)

Thus, in the language of conservation laws, the flux function Qe may be non-convex when
the front is off-shelf. Non-convex flux functions admit a rich variety of compound-wave
solutions, and are studied in detail for the canonical example of the Riemann problem (i.e.
the initial-value problem where the initial condition is a step change in Y) by El, Hoefer &
Shearer (2017) for the modified Korteweg–de Vries equation, and by JJ20 for the present
model without a shelf. Note that (2.18) is valid (i.e. Y2 > Yh) only when Q < a2 and

Yh < Y2,M = log

(√
(1 + 3a4)− Q

a2

)
. (2.19)

Thus, when Q = 1 and the background current is in the same direction as CTW phase
propagation, compound-wave structures exist when the flow is dominated by vorticity
(a > 1), as in JJ20. However, when Q = −1 and the background current opposes CTW
propagation, compound-wave structures exist for all a, provided the shelfbreak Yh is
sufficiently close to the coast (i.e. Yh < Y2,M). Note also that ∂C/∂Y is discontinuous
at the shelfbreak and, for the case where Q = −1, changes sign if Yh > Y2,M . Thus,
compound-wave solutions can also occur in the Riemann problem when the front crosses
the shelfbreak; although this situation does not arise in the initial-value problem (2.4).

2.2. Dispersive effects
At next order in ε = 1/W, the streamfunction correction ψ1(X, y, T) satisfies

∂2ψ1

∂y2 − ψ1 = −∂
2ψ0

∂X2 . (2.20)

Although formally the power series expansion in ε requires that W � LR, we show in
§ 5 that the first-order dispersive correction ψ1 captures the qualitative (and much of the
quantitative) behaviour of the full QG system even when ε = 1 and, thus, W = LR. This
is also true in JJ20 and in long-wave models of coastal outflows (Johnson et al. 2017).
Equation (2.20) is to be solved subject to continuity of ψ1 and u1 at Y and Yh, and the
coastal boundary condition ψ1(X, 0, T) = 0. After some algebra, we find that

ψ1(X, Y, T) = −a2

4
∂2Y
∂X2 + a2

4
e−2Y

(
∂2Y
∂X2 − 2Y

(
∂Y
∂X

2
− ∂2Y
∂X2

))

+ a2

4
e−(Y+Yh)

(
Y

(
dYh

dX

2
− d2Yh

dX2

)
+ Yh

dYh

dX

2
− d2Yh

dX2 (1 + Yh)

)

+ a2

4
ej(Y−Yh)

(
Y

(
dYh

dX

2
− j

d2Yh

dX2

)
− Yh

dYh

dX

2
+ d2Yh

dX2 (1 + jYh)

)
.

(2.21)
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Substituting (2.21) into the kinematic boundary condition (2.7) gives the dispersive
long-wave equation

∂Y
∂T

+ (C + ε2C1)
∂Y
∂X

= ∂

∂X
(ψ0(X, Y, T)+ ε2ψ1(X, Y, T)), (2.22)

where C1 = −∂ψ1/∂Y can be computed from (2.21) using

d
dY

(
∂2Y
∂X2

)
= ∂3Y
∂X3

/
∂Y
∂X
,

d
dY

(
∂Y
∂X

)2

= 2
∂2Y
∂X2 . (2.23a,b)

Note that outside the region of topographic forcing, Yh is constant and (2.21) and (2.22)
revert to equations (2.17) and (2.18) in JJ20. An additional conservation law, which is
needed for the dispersive shock-fitting applied below, may be formed by multiplying (2.22)
through by Y ,

∂

∂T
Y2 + ∂

∂x
[2Q(Y + 1) e−Y ]

+ a2 ∂

∂X

[
(Y + 1) e−(Y+Yh) −

(
Y + 1

2

)
e−2Y + (1 − jY) ej(Y−Yh)

]

+ a2ε2 ∂

∂X

[
Y2 ∂Y
∂X

2
e−2Y + 1

4

(
∂Y
∂X

2
− 2Y

∂2Y
∂X2

)
(−1 + (1 + 2Y) e−2Y)

]

= 0. (2.24)

3. The hydraulic equation

In this section we analyse the hydraulic equation (2.16) and show that the range of solutions
can be presented in terms of Δ, the shelfbreak perturbation magnitude, and F, a Froude
number which is defined below.

3.1. Steady solutions
By the kinematic boundary condition (2.7), ψ is constant in steady flow. In the hydraulic
equation this requires that

Qe(Y, Yh) = Φ (3.1)

for some constant Φ, with Qe the hydraulic functional defined in (2.15). Contours of Qe
for the particular choice of parameters Q = −1 (i.e. background flow opposing CTW
propagation) and a = 0.8795 are shown in figure 3(a). Given a shelfbreak profile Yh (in
fact, given just the far-field width Y0 and the perturbation magnitude Δ), each contour in
figure 3(a) that crosses Yh = Y0 and Yh = Y0 −Δ represents a possible steady solution Y
to the hydraulic equation (2.16). The steady solution chosen by the initial-value problem
can be determined as follows.

For small Δ < Δcr, the flow evolves to become steady in the forcing region, and the
steady state is entirely subcritical or supercritical. Transient disturbances thus propagate
away from the forcing region in one direction only and the initial condition Y = Y0 persists
on the other side. Thus, the constant Φ may be determined by evaluating (3.1) on the
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Figure 3. (a) Contours of the hydraulic function Qe(Y,Yh). Steady solutions must lie on a single contour. The
black dashed lines are Y = Yh and Yh = 1, and dotted lines show critical values of the perturbation size Δ
at which the solution changes type when Y0 = 1. The red dashed curves show examples of supercritical and
critically controlled solutions which are plotted as the solid lines in (b,c), respectively, and the shelfbreak Yh(x)
is shown dashed. The non-dimensional Rossby radius is a = 0.8795 and Q = −1 so that the background flow
opposes Rossby wave propagation, with Δ = 0.01 in (b) and Δ = 0.05 in (c).

undisturbed side,

Φ = Qe(Y0, Y0) = −e−Y0 . (3.2)

Figure 3(b) shows an example of steady supercritical flow when Y0 = 1 and Δ = 0.01.
The solid curve is the PV front Y and the dashed curve is the shelfbreak Yh, and in order
to see the scale of the topographic forcing region this and all other solutions have been
plotted in the original co-ordinate x. The long-wave co-ordinate X = x/W is found by
rescaling the horizontal axis so that the topographic perturbation lies in |X| < 1. The
contour corresponding to figure 3(b) is highlighted in (a) (upper red dashed curve).
The solution starts at (Y, Yh) = (1, 1) and follows the contour (3.2) to the maximum
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Hydraulic control of continental shelf waves

perturbation Yh = 0.99 as the shelf narrows, before retracing the path to (1, 1) as the
shelf widens again. The solution is therefore symmetric about the origin and the front
is off-shelf (Y > Yh) throughout.

If Δ > Δcr is sufficiently large then the contour through (Y0, Y0) does not extend to the
maximum displacement Yh = Y0 −Δ, and instead the steady solution selects the unique
contour that satisfies

C(Y, Y0 −Δ) = 0. (3.3)

The long-wave speed vanishes at the maximum topographic displacement, which is thus
a control point for the flow (Pratt & Whitehead 2008). The vanishing long-wave speed
corresponds to a turning point in the (Y, Yh)-plane, so that the contour selected by
the initial-value problem in a critically controlled flow is the one that is horizontal at
Yh = Y0 −Δ. Given a far-field shelf width Y0, the critical value Δcr beyond which the
flow becomes controlled is thus that at which the contour through (Y0, Y0) is horizontal
(Δcr is shown for Y0 = 1 as a dotted line in figure 3a). Figure 3(c) shows an example of a
critically controlled flow with Δ = 0.05, and the corresponding contour is highlighted in
(a) (lower red contour). The solution traces the highlighted section of the contour once, so
that Y is monotonic and asymmetric as a function of Yh. Note that Y /= Y0 when Yh = Y0
so that a critically controlled flow alters the far-field state on both sides of the shelfbreak
perturbation. Note also that the PV front upstream of the perturbation (relative to the
background current, x > 0) has been displaced far into the open ocean, so that the critically
controlled flow is associated with enhanced shelf–open-ocean exchange.

To determine the conditions that lead to critical flow, first consider an asymptotic
expansion of the long-wave speed C(Y, Yh) about the far-field state Y = Yh = Y0. To
leading order,

C ∼ Q e−Y0 − a2

2
e−2Y0 + a2

2
. (3.4)

The right-hand side of (3.4) vanishes when F = 1, where

F = −Q
a2 sinh (Y0)

(3.5)

is the Froude number for this problem. The condition F = 1 can only be satisfied if
Q = −1 and, thus, as in ZL17, hydraulic control is only possible when the background
current opposes CTW propagation. One can also show that control only occurs when
the perturbation is a localised narrowing in shelf width (Δ > 0) as follows. In order for
disturbances to propagate away from the forcing region, the critically controlled solution
must have C > 0 for large positive X and C < 0 for large negative X. Since C is dominated
by the term due to the front moving on or off the shelf, we can conclude that Y > Yh for
large positive X (vortex stretching generates C > 0) and Y < Yh for large negative X, so
that ∂Y/∂X > 0 in controlled flow. Writing the steady version of (2.16) as

C(Y, Yh)
∂Y
∂X

= dYh

dX
∂Qe

∂Yh
, (3.6)

where ∂Qe/∂Yh > 0, we see that in a critically controlled flow C and dYh/dX have the
same sign. That is, dYh/dX > 0 for X positive and the perturbation must be a local decrease
in shelf width. From now on we will restrict our attention toΔ > 0 and Q = −1 and, thus,
describe x > 0 as ‘upstream’ relative to the background flow. Critically controlled flows
are subcritical (C > 0, F < 1) upstream of the shelfbreak perturbation and supercritical
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(C < 0, F > 1) downstream. In completely supercritical flow C < 0 everywhere, dYh/dX
and ∂Y/∂X have opposite signs and the front is displaced off the shelf (figure 3b), while
in subcritical flow the front is on the shelf. Haynes et al. (1993) and Johnson & Clarke
(1999) study the related problem of a hydraulically controlled flow in a stepped channel,
and show that several other types of controlled solutions can occur. The fact that these do
not appear in the present geometry suggests that they rely on an opposing wall to support
their existence, as can be deduced by figure 2 of Johnson & Clarke (1999).

3.2. Offshore plumes
Assuming that the front is off-shelf at the control point, solving the criticality condition
(3.3) gives

Y = − log
(−1

a2 + cosh (Y0 −Δ)

)
. (3.7)

This is the locus of turning points in the hydraulic contours of figure 3(a). As Δ → Δ0 =
Y0 − acosh(1/a2), the control point Y → ∞ and the critical solution is no longer valid.
The lower dotted line in figure 3(a) gives Δ0 when Y0 = 1. For Δ > Δ0, neither the
supercritical nor critically controlled solution exists and the flow never becomes steady.
Instead, the flow develops into an ever-expanding ‘offshore plume’ similar to the growing
solutions for coastal outflow plumes discussed in Johnson et al. (2017) and Jamshidi &
Johnson (2019). As in Johnson et al. (2017), offshore plumes only exist when a < 1 and
the flow induced by vortex stretching as shelf water crosses the shelfbreak is not sufficient
to overcome the background current. Instead, the incoming flow is directed principally off
shore, and Y grows indefinitely in the forcing region. Offshore plumes have no equivalent
in free-surface hydraulic flow, which always becomes steady, but are somewhat related
to the ‘supercritical leap’ of Haynes et al. (1993) in that the flow attains two different
supercritical states on either side of the topographic forcing region.

Numerical simulations of (2.16) show that at large times the shape of the front in the
source region is approximately constant so that ∂Y/∂T is independent of X. Thus, we can
obtain an approximate description of the offshore plume through the ansatz

Y(X, T) = Yp(X)+ g(T). (3.8)

Ignoring terms proportional to exp (−2Y) in (2.16) and only considering regions where
Y > Yh, we have

∂Y
∂T

=
[
(1 − a2 cosh (Yh))

∂Y
∂X

+ a2 sinh (Yh)
dYh

dX

]
e−Y . (3.9)

Substituting (3.8) into (3.9) gives the separable equation

eg(T) dg
dT

=
[
(1 − a2 cosh (Yh))

dYp

dX
+ a2 sinh (Yh)

dYh

dX

]
e−Yp(X), (3.10)

where the left-hand side is a function of T alone and the right-hand side is a function of X
and so both are equal to β, a constant. Solving each side separately we find that

g(T) = log (T − T0)+ logβ, (3.11a)

and, via the substitution exp (Yp) = θ(X)(−1 + a2 cosh (Yh)) for θ(X) unknown,

Yp(X) = log [(−1 + a2 cosh (Yh))/(X − X0)] − logβ, (3.11b)
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Figure 4. Offshore plume solution to the hydraulic initial-value problem (2.16). Dash–dot curves show
contours of the streamfunction ψ0 at t = 15 000 (contour interval is 0.15), the thick black curve is the frontal
position Y , the red dashed curve is the asymptotic solution (3.12) and the black dashed curve is the topography
Yh(x). The black dotted line is x = −x0, the location of the singularity in the asymptotic solution. Parameters
are Y0 = 0.8, Δ = 0.7, a = 0.9895 and W = 5.

so that, at late times in the offshore plume,

Y(X, T) ≈ log [(−1 + a2 cosh (Yh))(T − T0)/(X − X0)] (3.12)

for some constants T0 and X0. Note that the numerator is an even function of X so that in
general (3.12) has two singularities. If X0 > 0 is chosen so that cosh [Yh(X0)] = 1/a2, the
singularity at X = X0 may be eliminated. Equation (3.12) is then valid in X > −X0, while
for X < −X0, the asymptotic solution approaches the unique contour that has its control
point at Yh = Δ0, Y → ∞. The combined asymptotic solution is singular at X = −X0.

Figure 4 shows instantaneous streamfunction contours in a numerical simulation of
the initial-value problem (2.16) in the offshore plume regime. The contours are shown
dash–dotted, and the thick black curve is the plume boundary Y . There is a slow, broad
recirculation of shelf water in the region of topographic forcing and upstream, and the
plume boundary at t = 15 000 agrees well with the asymptotic solution (red dashed
curve) away from the singularity at x = −x0 (the black dotted line). The flow upstream is
undisturbed and the along-shore flux of shelf water is 1 − exp (−Y0)while the downstream
flux is 1 − a2/2, which is the asymptotic value of Qe as Y → ∞.

3.3. Boundaries for critical control
An alternative approach to the hydraulic diagram of figure 3 is to consider the problem in
the (Δ,F)-plane. Given the far-field shelf width Y0, we seek the range of Froude numbers,

F−(Δ) < F < F+(Δ), (3.13)

for which critical flow occurs. The curves F± mark the transition from critical to
non-critical flow, and are derived analytically in Appendix A by simultaneously solving
the criticality condition (3.3) and the condition for steady, non-critical flow (3.2). These
boundaries can also be expressed in terms of the parameter a. Figure 5(a) shows how the
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Figure 5. Regions of the (Δ,F)-plane where the flow is critically controlled. (a) A narrow shelf, here with
Y0 = 0.5. The flow is critically controlled when F lies between the solid curves F±(Δ). (b) A wide shelf, here
with Y0 = 1. The dashed curve is FG(Δ), and offshore plumes occur when FG < F < Fmax.

(Δ,F)-plane is divided for a narrow shelf (Y0 = 0.5). The flow is supercritical for F > F+
and subcritical for F < F−. For wider shelves (figure 5(b), Y0 = 1), the curve F+(Δ) is
non-monotonic and offshore plumes occur in the region marked ‘growing’, where F lies
between FG(Δ) (shown dashed) and Fmax, the maximum value of F+ and also the point
of intersection between the two curves.

3.4. Transition to the far-field solution
Outside the region of topographic forcing, the hydraulically controlled flow displaces the
PV front Y from its initial position Y0 to a new, constant, location that we denote Yu/d for
x > 0 and x < 0, respectively. By the heuristic arguments of § 3.1 we expect that controlled
solutions are off-shelf upstream and on-shelf downstream, so that Yu > Y0 and Yd < Y0.
If the flow is off-shelf controlled then

e−Yu = − 1
a2 + cosh (Y0)

−
[
(cosh (Y0)− cosh (Y0 −Δ))

(
cosh (Y0)+ cosh (Y0 −Δ)− 2

a2

)]1/2

.

(3.14)

To obtain Yu in on-shelf controlled flow, or Yd in either case, requires the solution of at
least one cubic equation and yields an expression that is too complex to include here.
The dependence of Yu/d on F and Δ, for the case where Y0 = 0.8, is shown in figure 6.
Increasing F moves the front offshore both downstream and upstream of the topographic
perturbation, while increasingΔ leads to a more extreme displacement of the front relative
to the shelfbreak (further offshore upstream, further onshore downstream).

The transition between the topographically influenced state Yu/d and the undisturbed
far-field value Y0 may be accomplished in one of three ways, depending on the relative

917 A4-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

25
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.250


Hydraulic control of continental shelf waves

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
(a) (b)

F

Yd

0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

F

Yu

Figure 6. Adjusted frontal position in controlled flow (a) downstream and (b) upstream of the topographic
perturbation, for Y0 = 0.8 and various values of Froude number F and topographic perturbation magnitude
Δ. Shown are the analytic solutions (curves) and numerical solutions to the dispersive long-wave equation
(symbols). The solid curves and circles are for shelves withΔ = 0.05, dashed curves and squares withΔ = 0.1
and dash–dot curves and triangles with Δ = 0.25.

value of the long-wave speed C(Y, Y0) on either side of the transition. Outside of the
forcing region, characteristic curves in the (x, t)-plane are straight lines with slope dx/dt =
C(Y, Y0) and so the value of C determines whether curves collide (resulting in a shock)
or separate (a rarefaction). The third possibility, a shock-rarefaction, is a compound-wave
solution that can occur when C is non-monotonic (see JJ20, § 3). If the transition from Y0
to some value Y is resolved by a shock, this propagates at speed

V(Y) = Qe(Y, Y0)− Qe(Y0, Y0)

Y0 − Y
. (3.15)

First, consider the downstream transition. As noted above, Yd < Y0 and so C is
a monotonic increasing function of Y . Thus, characteristic curves collide and the
downstream transition is always resolved by a shock with speed V(Yd) < 0. Next, consider
the upstream transition. For Y > Y0, C has a maximum at Y = Y2 (given by (2.18) with
Yh = Y0). If Yu < Y2, C is monotonic increasing and the transition is again resolved
by a shock with speed V(Yu). Since Yu > Y0 and V > 0, rearranging (3.15) shows that
Qe(Yu) < Qe(Y0) and the transport of shelf water in the controlled solution is reduced
compared with the far-field background flow. Thus, critical flow ‘blocks’ the background
current by reducing the flow of shelf water towards the topographic perturbation (figure 4
shows that the same occurs in offshore plumes). If Y0 > Y2 then C is monotonic
decreasing, characteristics separate and the transition is resolved by a rarefaction. This
occurs when

F < FR = 1 − 3Z2
0

1 − Z2
0
, (3.16)
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Figure 7. Representative examples of the initial-value problem with Y0 = 0.8. (a) Classification of the solution
in (Δ,F)-space as in figure 5. The dotted curves show the boundaries where the upstream transition changes
type. (b–g) Examples of each type of solution. The black dashed curve is the shelfbreak Yh(x) and the solid
curve is the location of the front, Y(x, t). Symbols correspond to the location of the solution in (Δ,F)-space,
and full details are given in table 1. Here and elsewhere solutions are presented in the original variables x and
t so that the scale of the topographic forcing is clear.

so that, for sufficiently small F and Z0 < 1/
√

3, critically controlled flow is resolved
upstream by a rarefaction.

In the remaining case, where Y0 < Y2 < Yu, C has an interior maximum within the
transition and there are three possibilities.
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Subplot Type F Δ a t

(b) Supercritical 1.4 0.4 0.9 500
(c) Offshore plume 1.2 0.6 0.97 2000
(d) Shock 0.9 0.1 1.12 1200
(e) Shock-rarefaction 0.9 0.4 1.12 1200
( f ) Subcritical 0.2 0.1 2.37 40
(g) Rarefaction 0.2 0.5 2.37 200

Table 1. Details of the different initial-value problems displayed in figure 7. In all cases Y0 = 0.8.

(i) The first is C(Y0, Y0) > C(Yu, Y0). A simple-wave rarefaction cannot connect Yu
and Y0 because C has an interior extremum, so the transition is resolved by a
shock-rarefaction.

(ii) The second is C(Y0, Y0) < C(Yu, Y0) and V(Yu) satisfies the Lax entropy condition

C(Y0, Y0) < V(Yu) < C(Yu, Y0). (3.17)

This ensures that information can propagate into a shock of speed V(Yu), and is a
necessary condition for such a shock to be physically admissible.

(iii) The third is C(Y0, Y0) < C(Yu, Y0) and V(Yu) > C(Yu, Y0). In this case,
characteristic curves collide but a simple shock does not satisfy the Lax entropy
condition and so the transition is resolved by a shock-rarefaction. Following JJ20, the
intermediate value YM at which the shock joins the rarefaction satisfies the equation
C(YM, Y0) = V(YM).

The boundary that determines whether the transition is resolved by a shock or a
shock-rarefaction can be determined numerically by checking the conditions above.
Figure 7 shows representative examples of each type of solution, all with Y0 = 0.8. The
solutions are presented in (Δ,F)-space in (a), following figure 5. The horizontal dotted
line is FR, and the dotted curve is the boundary between critical flows that are resolved
upstream by a shock, and those resolved by a shock-rarefaction. An example of each type
of solution is shown in (b–g), again presented in terms of the original variable x so that
the scale of the topography is clear. Subplots (d), (e) and (g) are critically controlled, and
are all resolved downstream by a shock (not visible in (d) or (e)). Subplot (c) shows an
offshore plume, and subplots (b, f ) are supercritical and subcritical flows, respectively.
The parameters for each run are summarised in table 1.

4. The dispersive equation

The dispersive evolution equation (2.22) may be solved numerically using a
pseudo-spectral method, where the equation is Fourier-transformed in x and advanced in
time using an adaptive fourth-order Runge–Kutta scheme. We also employ an artificial
damping term at the edge of the domain to allow for longer integration times.

4.1. Steady solutions
As in the outflow problem of Johnson et al. (2017), the dispersive initial-value problem
selects a different steady solution to that predicted by hydraulic theory. Figure 6 compares
analytic solutions from the hydraulic theory (curves) with numerical solutions to the
dispersive equation (2.22) (symbols, all computed with ε = 0.2). At this value of ε, the
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difference between the hydraulic predictions for the adjusted far-field state Yu/d and the
numerically computed values is small (always less than 10 %, and in most cases much less)
so that the hydraulic predictions may be used in the analysis of the dispersive long-wave
equation below. However, the differences between the hydraulic and dispersive steady
solutions can be resolved by modifying the criticality condition (3.3) to account for the
effects of dispersion. Following (2.7) and (2.11), the steady dispersive equation is

ψ0(X, Y)+ ε2ψ1(X, Y) = Φ (4.1)

for some constant Φ. Differentiating (4.1) with respect to X gives

∂ψ0

∂X
+ ε2 ∂ψ

1

∂X
+ dY

dX

(
∂ψ0

∂Y
+ ε2 ∂ψ

1

∂Y

)
= 0, (4.2)

where ∂ψ/∂X vanishes at X = 0 for symmetric topography (as can be seen by direct
computation using (2.15) and (2.21)). Anticipating that ∂Y/∂X is non-zero at the
topographic perturbation in critical flow, the criticality condition for the dispersive
equation is

C + ε2C1|X=0 = 0, (4.3)

where C1 = −∂ψ1/∂Y is a function of Y ′′
h (X), so that the dispersive critical solution

depends on the curvature of the topographic perturbation at X = 0 as well as the
magnitude of the constriction. By definition, the group velocity is non-zero at the critical
section defined by (4.3). Thus, in the (time-dependent) dispersive equation, information
may propagate away from X = 0 even in a critically controlled flow. Nevertheless the
critical section marks the transition from subcritical to supercritical flow (in terms of
the phase speed) and the condition (4.3) determines the unique solution selected by the
time-dependent problem (2.22), and indeed by the full QG equations, as can be verified
by numerical simulation. (Note that following Grimshaw (1987), one may show that the
flows termed ‘critical’ here are the result of a resonant interaction between free waves
and the topographic perturbation. This description may have more physical relevance in
the dispersive case where phase and group velocity do not coincide.) Following Johnson
& Clarke (1999), it is simpler to solve the steady equation (4.1) without consideration
of (4.3), and verify criticality afterwards. Numerical solutions of (4.1) are computed by
truncating the domain at X = ±L for large L, and initially estimating Y(L) as the hydraulic
value Yu. This gives an initial guess for Φ = ψ0(Yu, Y0). Equation (4.1) is then integrated
from X = L to X = 0 with the boundary conditions Y(L) = Yu and Y ′(L) = 0, in order to
give the subcritical flow and determine Y(0). Since Φ is known, the supercritical flow in
X < 0 may be found by solving (4.1) as a boundary-value problem using the known value
of Y(0) and the boundary condition Y ′(−L) = 0. The combined solution is necessarily
continuous at the origin, but in general Y ′ is discontinuous. The value of Y(L) (and,
hence, Φ) is iterated on using Newton’s method until Y ′(0) is continuous. By (2.21),
this also enforces continuity of Y ′′(0). Figure 8 shows an example where the upstream
hydraulic and dispersive states differ by 2 %. The red dashed curve is the critical dispersive
solution, while the black curves show numerical integrations of the full QG problem
(solid curve) and the long-wave dispersive equation (dash–dotted curve) at t = 1000. The
hydraulic steady solution is shown dotted for comparison. Apart from the presence of
small-amplitude waves upstream in the time-dependent solutions all three curves with
finite ε are identical, confirming that first-order dispersive effects are sufficient to capture
the quantitative behaviour of the QG equation.
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Figure 8. Dispersive critically controlled solution with Y0 = 0.8,Δ = 0.1, F = 0.8 and ε = 0.2. The solid and
dash–dotted black curves show the solution at t = 1000 for the full QG and dispersive long-wave equations,
respectively, and the dashed red curve is the numerically computed steady dispersive solution. The critical
hydraulic solution is shown dotted for comparison.

4.2. Transition to the far field
In the full QG system dispersion prevents shocks from forming. Instead, wave steepening
leads to slowly modulated wave trains, which are a typical feature of dispersive wave
equations (El et al. 2017). For the present work, it is sufficient to note that one common
type of modulated wave train, the dispersive shock wave (DSW), can be analysed using
the method of dispersive shock-fitting (El 2005). Dispersive shock waves are expanding
waveforms with a linear wave train at one end and a solitary wave at the other, and are
also referred to as undular bores in the context of gravity waves. Dispersive shock-fitting
allows one to extract the key parameters of DSWs, namely the wavenumber at the linear
end, the conjugate wavenumber (equivalently amplitude) of the solitary wave and the
propagation speed of either end. The same technique also identifies the range of parameters
for which transitions are resolved by ‘attached DSWs’, expanding modulated wave trains
which remain attached to the topographic perturbation much like the standing lee waves of
Martell & Allen (1979) and ZL17. A full discussion of DSWs in the flat-bottomed version
of the present model is given in JJ20.

4.2.1. Travelling-wave solutions
We will first set out some basic properties of travelling-wave solutions to the dispersive
equation, applicable outside the forcing region where Yh ≡ Y0 is constant. The dispersion
relation for linear waves of wavenumber k propagating on a background Y∞ is

ω = C(Y∞, Y0)k − G(Y∞)k3, (4.4)

where

G(Y) = a2

4
[1 − e−2Y(1 + 2Y)] (4.5)

is always positive (cf. (4.2) of JJ20). The soliton dispersion relation is

ω̃ = −iω(Y∞, ik̃) = C(Y∞, Y0)k̃ + G(Y∞)k̃3, (4.6)

for k̃ the half-width of the solitary wave. The fact that the solitary wave phase velocity can
be described by linear wave dynamics can be seen by considering the exponential tail and

917 A4-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

25
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.250


S. Jamshidi and E.R. Johnson

making a substitution proportional to exp (k̃X − ω̃T), so that the solitary wave propagates
with speed s̃ = ω̃/k̃ (Kamchatnov 2019). Comparing soliton and linear phase speeds shows
that s̃ > s and so DSWs always have linear waves on the left-hand side.

Writing the dispersive long-wave equation (2.22) in potential form, we have

G(Y)
(
∂Y
∂ξ

)2

= a2 e−2Y + 2(2 − a2 e−Y0) e−Y − 2a2 ej(Y−Y0)

+ 4a2 min (Y, Y0)+ 2sY2 + αY + E

= V(Y, Y0; s, α,E). (4.7)

Here ξ = X − sT is a co-ordinate fixed in a reference frame moving with the wave, s is
the speed of the travelling wave, and α and E are constants of integration. Note that since
G � 0, travelling-wave solutions to (4.7) exist whenever V � 0 and we may ignore G in
our analysis. The behaviour of travelling-wave solutions is determined by the number and
type of roots of the function V , with solitary waves requiring that Y∞ is a local minimum
of V . Jamshidi & Johnson (2020) present a full discussion of the range of values of s for
which solitary waves exist, but for the present work it is sufficient to note that C(Y∞, Y0) <
s̃ < sK , where sK is the speed of the kink soliton discussed below.

4.2.2. Compound-wave solutions
When Yu > Y2, the upstream transition crosses the inflexion point and, as in the hydraulic
equation, is resolved by a compound-wave structure which combines a kink soliton with a
simple-wave transition (either a modulated wave train or a rarefaction). The kink soliton
is a monotonic travelling-wave solution that connects two far-field states Y∞ < Y2 and
YK > Y2. In terms of the potential function (4.7), kinks correspond to the case where V
has a double root at both Y∞ and YK and can thus be thought of as a limiting case of
the solitary wave with infinite width (for a finite-width solitary wave, V crosses the axis
at the peak of the wave). Thus, kinks can be found by seeking the pair (sK, YK) such
that V(YK) = V ′(YK) = 0, with α and E determined by the requirement that Y∞ is also
a double root of V . Since kink solitons are faster than any solitary or linear wave, we
expect that they will appear on the right-hand side of any transition that crosses Y2 and,
thus, Y∞ = Y0. The compound-wave structure is completed by a secondary transition from
YK to Yu. Since YK, Yu > Y2, C is monotonic decreasing over this range and transitions
with YK < Yu are resolved by a rarefaction-kink (denoted R|K). Similarly, transitions with
YK > Yu are resolved by a depression DSW-kink (DSW−|K – the solitary wave is a trough
on the background Y∞). In general, the kink and the simple-wave transition propagate at
different speeds, so that at large times the two are separated by a plateau at Y = YK .

A representative example of each type of compound-wave transition is shown in figure 9.
In (a) the transition is resolved by a rarefaction-kink. The kink is at x ≈ 300, and is
connected to the rarefaction by a plateau at Y = YK (horizontal dotted line). In (b) the
kink connects to Yu via a DSW−. For this set of parameters, the difference between YK
and Yu is small so a zoom of the transition is shown in (c), where the upper and lower
horizontal dotted lines show YK and Yu, respectively.

4.2.3. Dispersive shock-fitting
Dispersive shock-fitting is a technique for determining key observables of a DSW (wave
number and speed at either end), given the far-field states on either side. For a certain
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Figure 9. Compound-wave transitions in the dispersive equation. In both cases, Y0 = 1 and ε = 0.1. (a) The
upstream transition is resolved by a R|K. The horizontal dotted line shows YK . (b) The upstream transition is
resolved by a DSW−|K. Horizontal dotted lines in the inset (c) show the hydraulic upstream state Yu and kink
level YK . Symbols in (a,b) correspond to figure 10(a), which shows the location of the solutions in the (Δ,F)
plane. Full details are given in table 2.

Subplot Type F Δ a ε t

9(a) R|K 1 0.25 0.93 0.1 10 000
9(b) DSW−|K 0.96 0.15 0.91 0.1 16 000
10(b) Upstream attached 1 0.05 0.92 0.2 10 000
10(c) Both detached 0.9 0.05 0.97 0.1 4500
10(d) Downstream attached 0.75 0.03 1.07 0.2 2500

Table 2. Details of the initial-value problems displayed in figures 9 and 10. In all cases Y0 = 1.

class of equations (integrable equations), the full structure of the DSW arising from
the Riemann problem can be written down analytically. El (2005) shows that the key
observables may be determined for a much broader class of equations, provided they
meet a number of technical conditions. These technical conditions are reviewed for the
present problem in Appendix B, which also outlines the method for computing the key
observables. Assuming that the time taken for the controlled solution to be established
over the topography is much less than that required for the full development of a
DSW, dispersive shock-fitting may in principle be used to predict the key parameters
of DSWs that arise from transitions between critical and far-field flow in the present
initial-value problem (El, Grimshaw & Smyth 2009). However, we will show below that
the downstream solitary wave speed has a local minimum at F = Fcr, so that for F < Fcr,
the downstream wave train cannot be described using dispersive shock-fitting.
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Figure 10. As in figure 7, but for the dispersive equation and with Y0 = 1. The upper and lower dash–dotted
curves in (a) mark the boundaries where the upstream and downstream DSWs, respectively, detach from
the topography. Dotted curves mark where the upstream transition changes type, from DSW+ to DSW−|K
(left-most dotted curve) and then to R|K (right-most dotted curve – see figure 9). Examples of attached and
detached DSWs are shown in (b–d). Symbols correspond to the location of the solution in (Δ,F)-space, and
full details are given in table 2.

Dispersive shock waves develop upstream when the hydraulic equation predicts that
the transition will be resolved by a simple shock. Thus, for a given set of parameters
{Y0,Δ,F}, we expect a DSW with Y− = Yu and Y+ = Y0, where Yu > Y0 so that the
leading solitary wave is one of elevation (i.e. a peak rather than a trough). As discussed in
Appendix B, the trailing linear and leading solitary wavenumbers are

k2
u = 2

3G(Yu)2/3

∫ Yu

Y0

G(Y)−1/3 ∂C
∂Y

dY, (4.8a)

k̃
2
u = 2

3G(Y0)2/3

∫ Yu

Y0

G(Y)−1/3 ∂C
∂Y

dY, (4.8b)

and the propagation speeds of the upstream DSW edges are

su = ∂ω

∂k
|Yu,ku, s̃u = ω̃(Y0, k̃u)

k̃u
, (4.9a,b)

respectively. In some cases, su < 0 so that the linear end of the DSW is predicted to
enter the region of topographic forcing. Numerical simulations show that in this case the
upstream transition is resolved by a partial DSW, which remains attached to the topography
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Figure 11. Hovmöller diagram for ψ , using the same parameters as figure 10(d) and with y = Y0 − 1
2Δ. The

displacement over the forcing region is an order of magnitude larger, and coloured white for clarity.

and continuously generates waves at the upstream edge of the forcing region. Partial
DSWs also occur in free-surface flow over an obstacle, as was shown for the Su–Gardner
(dispersive shallow-water) equations by El et al. (2009). When the upstream transition is
resolved by a DSW−|K, we may apply dispersive shock-fitting to a secondary Riemann
problem with Y− = Yu and Y+ = YK (see § 5.2 of JJ20).

Assuming that the downstream transition is resolved by a DSW, we have

k2
d = 2

3G(Y0)2/3

∫ Y0

Yd

G(Y)−1/3 ∂C
∂Y

dY, (4.10a)

k̃
2
d = 2

3G(Yd)2/3

∫ Y0

Yd

G(Y)−1/3 ∂C
∂Y

dY, (4.10b)

and the corresponding speeds

sd = ∂ω

∂k
|Y0,kd , s̃d = ω̃(Yd, k̃d)

k̃d
. (4.11a,b)

The downstream DSW is again one of elevation, with the linear waves on the left. If s̃d > 0,
the downstream DSW remains attached to the topographic perturbation and waves are
continuously generated at the downstream edge of the forcing region.

Figure 10 shows a representative example of each type of simple-wave transition
(attached downstream DSW, attached upstream DSW, both DSWs detached). The
boundaries that divide (Δ,F)-space are plotted as dash–dotted curves in (a), which shows
that over most of the parameter space both DSWs are detached from the topographic
feature as in (c). If F is sufficiently large, the upstream DSW can remain attached to
the topography as the background current is too strong to allow it to propagate away.
An example of this is shown in (b). There is only a small region of parameter space
where the downstream DSW remains attached to the topographic feature and in all cases
the downstream wave train spreads much faster than the upstream one, reflecting the
fact that the background current and vortex squashing effects reinforce each other in
the downstream controlled state. Figure 10(d) shows an example where the downstream
DSW is attached, similarly to the standing lee waves of Martell & Allen (1979) and ZL17.
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Figure 12. Solitary wave parameters in the upstream DSW, with Y0 = 0.8 and ε = 0.2. Black curves show the
analytical predictions for (a) the speed of the leading solitary wave and (b) the value of Y at the peak of the
wave. Curves and symbols are as in figure 6, with red curves and inverted triangles (�) showing the speed and
amplitude of the kink soliton.

Note that this behaviour only occurs in a small region of parameter space, close to the
subcritical boundary F−(Δ). Figure 11 shows a Hovmöller plot of the streamfunction ψ
(equivalently the free-surface displacement), taken at the middle of the perturbation with
y = Y0 − 1

2Δ. For clarity, we show the free-surface anomaly relative to Q exp (−y) and
have coloured the forcing region, where ψ is an order of magnitude larger, white. The
standing lee waves develop quickly, while the upstream signal is slower and relatively
weaker.

5. Comparison with numerical results

5.1. The dispersive long-wave equation
Figures 12 and 13 compare theoretical predictions for kink and solitary wave speed and
amplitude with values extracted from numerical integrations of the dispersive long-wave
equation (2.22). Due to the difficulties in resolving the linear end of the DSW in numerical
simulations, and, thus, of systematically identifying that end of the wave train, no attempt
was made to validate predictions for the linear wavenumber and group velocity. In all of
the data presented here Y0 = 0.8 and ε = 0.2, while F was varied across the full critical
range for each Δ to validate the theory for all types of transition.

Figure 12 shows the key parameters of the leading solitary wave in the upstream
transition. The speed and amplitude are shown in (a) and (b), respectively, and agreement
between theory and numerics is in general very good. The upstream solitary wave speed
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Figure 13. As in figure 12, but for the downstream solitary wave.

depends only weakly on Δ, and for all Δ, larger values of F correspond to slower,
larger-amplitude solitons. The red curve in (a) shows the kink speed sK , which is an upper
bound on the solitary wave speed. For Δ = 0.1 (dashed curve) and F < 0.7, dispersive
shock-fitting gives an invalid solution with s̃u > sK and, thus, amplitude predictions are
only shown for F > 0.7. ForΔ = 0.25 (dash–dotted curve), all of the upstream transitions
considered here are resolved by compound-wave solutions. The inverted triangles (�)
in (a) show the kink speed, while those in (b) show the kink amplitude for transitions
which are resolved by a DSW−|K. No attempt was made to systematically identify YK in
transitions resolved by a R|K (those with F < 0.9).

Figure 13 shows (a) the speed and (b) the amplitude of the leading soliton in the
downstream transition. For Δ = 0.05 and 0.1 (solid curve and circles, dashed curve and
squares, respectively), agreement between theory and numerics is reasonable. Dispersive
shock-fitting describes the DSW in the limit t → ∞, and at the time when integration
was stopped the amplitude of the downstream solitary wave was increasing slowly. It is
expected that longer integrations would reduce the error in (b) in cases where the amplitude
is less than the predicted value. However, in some cases the amplitude is greater than
the predicted value, and indeed the numerical results for Δ = 0.25 (dash–dot curve and
triangles) are qualitatively different from the theory. This may be due to the apparent
minima in s̃d at F = Fcr(Δ) seen in both the theory and numerics in (a). El, Grimshaw
& Smyth (2006) analyse the modulation equations for the Su–Gardner system and show
that a minimum in s as a function of the initial jump amplitude in the Riemann problem
corresponds to linear degeneracy in the Whitham system. Numerical simulations show
that the DSW terminates at the point of degeneracy, and the linear end is replaced by a
finite-amplitude wavefront (their figure 6). As the initial jump amplitude increases beyond
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Figure 14. Contour dynamic simulations showing a critically controlled flow in the full QG problem. In (a)
the downstream DSW is attached to the topography, in (c) the upstream DSW is attached and in (b,d) both
DSWs are detached. Red dashed curves show the dispersive controlled solution, black dashed curves show the
topography and black dotted lines show the solitary wave amplitude predictions from dispersive shock-fitting.
Full details are given in table 3.
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Subplot Type F Y0 Δ a ε t

14(a) Downstream attached 0.75 1 0.03 1.07 0.2 900
14(b) Both detached 0.8 0.8 0.1 1.19 0.2 700
14(c) Upstream attached 0.92 0.8 0.15 1.11 0.33 1900
14(d) Both detached 0.8 0.7 0.1 1.2 1 700
15(b) Offshore plume 1.1 1 0.3 0.88 0.2 900

Table 3. Details of the initial-value problems displayed in figures 14 and 15.

the critical value (which corresponds to F < Fcr in figure 13a) the terminal point of the
DSW moves closer to the solitary wave end. The parameters (4.8)–(4.11a,b) are derived
assuming that the DSW is fully formed, and, thus, dispersive shock-fitting cannot formally
be used when F < Fcr.

5.2. Quasi-geostrophic equations
The fully nonlinear free-boundary QG system (2.1) can be solved numerically to a high
level of accuracy using the method of contour dynamics (CD) with surgery (Dritschel
1988). We performed several simulations based on an adaptation of Dritschel’s algorithm.
The appropriate Green’s function for (2.1) is the modified Bessel function K0(

√
x2 + y2),

and topography is accounted for by including a contour in 0 < y < Yh(x) with negative
vorticity. To account for the wall, we must also include image contours at y = −Y and
y = −Yh.

Figure 14 compares CD simulations of the full QG problem with predictions from
the dispersive long-wave model for a critically controlled flow. Red dashed curves
show the dispersive controlled solution computed as in § 4.1, which agrees excellently
with the solution to the full problem over the forcing region. The horizontal dotted
line in (a) is the amplitude prediction for the upstream leading solitary wave, and is
greater than the maximum amplitude obtained in the CD simulation. In fact in the CD
simulation the amplitude of the leading wave reaches a maximum value around t = 200
and then decreases slowly from there, suggesting that higher-order dispersion smoothes
the upstream transition and reduces the amplitude of the solitary wave. The maximum
peak observed in the CD simulation is 1.089, while dispersive shock-fitting predicts an
amplitude of 1.099. Thus, the discrepancies are small enough that dispersive shock-fitting
may be used to estimate the speed of the leading solitary wave – the analytical prediction
is s̃u = 0.128 while the average speed of the leading peak over 200 < t < 900 in the CD
simulation is 0.120. For the parameters used in (a), s̃d > 0 so that the downstream DSW
is attached to the topography, and indeed the CD simulation shows that a modulated wave
train develops on the downstream side of the forcing region but does not propagate away.
Long-wave theory may be used to predict the size of the largest wave: the stationary
solitary wave on the background Y∞ = Yd has its crest at Ys

d = 1.25, while at t = 900
in the CD integrations the crest of the largest wave is at Y = 1.26.

In (b) both DSWs are detached from the topography. However, for this set of parameters,
F < Fcr so that the downstream DSW is partially degenerate and its properties cannot be
predicted using dispersive shock-fitting. Indeed, the amplitude of the leading wave in the
downstream DSW is greater than the prediction obtained using dispersive shock-fitting
(bottom horizontal dotted line). The theory again appears to underpredict the amplitude
of the leading wave upstream (upper dotted line), although in this case the amplitude was
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Figure 15. Contour dynamic simulation in the offshore plume regime. (a) Snapshots of the solution in the
source region, every 200 time units starting from t = 100. (b) The solution at t = 900. Full details are given in
table 3.

still increasing when the integration was halted at t = 1000. The analytical prediction for
the speed is s̃u = 0.129 while in the CD simulation s = 0.127 when averaged over 750 <
t < 1000. In (c) the upstream DSW is attached to the topography. Here, F > Fcr and the
dispersive long-wave theory accurately predicts the amplitude of the solitary wave that
leads the downstream DSW.

Figure 14(d) shows a simulation with ε = 1 and, thus, is a check on the validity of the
long-wave theory. At this extreme value of ε the dispersive long-wave theory does not
accurately predict the adjusted values Yu/d, but the difference is still less than 5 %. In
fact, the contour dynamic simulation lies between the hydraulic and dispersive long-wave
predictions in the source region, which suggests that the departure from hydraulic theory
is not a monotonic function of ε. However, the qualitative behaviour is much the same,
with a monotonic steady solution across the source region and dispersive wave trains
upstream and downstream. The difference between the dispersive controlled solution
and that selected by the CD simulation is greater upstream, and, correspondingly, the
prediction for Ys

u is better than that for Ys
d. Further CD simulations (not shown) suggest

that the dispersive long-wave theory provides an accurate quantitative description of the
QG system up to ε ≈ 0.5.

Figure 15 shows a contour dynamic simulation in the offshore plume regime, where
neither the controlled nor the supercritical solution exist and the shelf water is directed
offshore. The growing behaviour is highlighted in (a), which shows snapshots of the
solution in the source region, taken every 200 time units starting from t = 100. Since the
flow is unsteady, the downstream state Yd is not well defined and the downstream waves
are irregular and not ordered by amplitude (as seen in (b), where the full solution is shown
at t = 900). The early time development of the plume ejects a filament of coastal water into
the open ocean (near x = −40 in (a)). Filamentation is a common feature of the contour
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dynamic simulations, but is not shown in the other (late time) solutions presented here
as the CD algorithm removes vortex patches below a certain size threshold for reasons
of computational efficiency. (Small patches of vorticity do not contribute much to the
dynamics but complex filament shapes require a lot of nodes and, therefore, take up a lot of
computational time (Dritschel 1988).) The filamentation instability is due to a convergence
in the velocity field (Stern 1986) and is one possible mechanism for the characteristic
‘squirts’ seen in the California Current system (Strub, Kosro & Huyer 1991).

6. Discussion

A fully nonlinear, dispersive long-wave model has been used to study hydraulic control of
barotropic topographic Rossby waves. This model therefore complements previous works
by Gill (1977) and Dale & Barth (2001) by exploring control by CTWs in the limit of
small S, and extends the rigid-lid channel-flow model of Haynes et al. (1993) to a coastal
set-up. Section 3 classifies the behaviour of the hydraulic (non-dispersive long-wave)
equation and derives conditions for critical control in terms of Y0, the far-field width of
the shelfbreak;Δ, the maximum magnitude of the shelfbreak perturbation; and the Froude
number F. The downstream transition between the controlled state and the far-field flow
is always resolved by a shock, while the upstream transition may be resolved by a shock,
a rarefaction or a compound-wave shock-rarefaction. Figure 7 gives an example of each
type of resolution, and shows how the (Δ,F)-plane is divided when Y0 = 0.8. In § 4.2 we
use dispersive shock-fitting to analyse the dispersive long-wave equation, and show that
shocks are replaced by modulated wave trains which remain attached to the topography
when F is near the boundary for critical flow. Figure 14 confirms that this behaviour also
occurs in the full QG system, and that the dispersive long-wave theory accurately predicts
the solution in the forcing region and upstream at large times.

The present model is too simple to make quantitative comparisons with real CSWs. A
sloping shelf and a more realistic background current can be incorporated following the
discussion of § 2, while other factors such as stratification, external forcing and dissipation
will of course also be important in the real ocean. Further, in the QG model we require that
variations in fluid depth are small (b � H) and that the inertial terms in the momentum
equations are negligible compared with the rotation terms, so that vortical effects dominate
the trajectory of a water column. However, we note that the problem of a coastal outflow
with uniform PV has been studied using a very similar model to that discussed here in
both the QG and long-wave shallow-water limits (Johnson et al. (2017) and Jamshidi
& Johnson (2019), respectively) with little change in the behaviour. Thus, some of the
qualitative features that are noted here merit further investigation. First and most important
is to understand the regimes in which CTWs exert hydraulic control in the real ocean.
Zhang & Lentz (2017) and Saldías & Allen (2020) both present numerical simulations of
CTWs in a configuration very similar to that used here, albeit with sloping topography
and a background flow driven by (constant) wind forcing. While ZL17 report steady flow
when the background current opposes CTW propagation, and a response consistent with
an arrested CTW (their figure 14), Saldías & Allen (2020) find that their simulations
never become steady in the forcing region and instead develop a meandering wave train
upstream. The reason for this difference is not clear, although Saldías & Allen (2020)
estimate that the Froude number for the first three CTW modes in their model is 2, 0.2 and
0.1, respectively, so that they may be outside the range in which hydraulic control occurs.
By exploring a wider range of flow speeds in a numerical model, one could potentially
identify the boundaries for critical flow, as well as boundaries at which control changes
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between different modes. An improved understanding of hydraulic control could lead to
a better parameterisation of boundary currents in global ocean models. Controlled flow
decreases the transport of the background flow by recirculating some of the shelf water.
This suggests that the parameterisation of such currents may need to account for large
variations in shelf width that could significantly alter their structure and transport. Further,
critically controlled coastal flows may be associated with enhanced exchange between
the shelf and the open ocean because they disturb the flow field far from the location
of the perturbation. In the present model the PV front also marks the boundary between
shelf and open-ocean water and so the large displacements in Y seen in, for example,
figure 7(e), correspond to large volumes of shelf water crossing the shelfbreak (upstream
of the perturbation) and deep water mounting the shelf (downstream). Indeed, ZL17 show
that a critically controlled flow leads to onshore velocities in their model of the Hudson
Shelf Valley that are significantly stronger than the equivalent offshore velocity when the
background flow is in the opposite direction, with a corresponding increase in transport
(Zhang & Lentz 2018, figure 3c).

Another interesting question concerns the formation of attached and detached DSWs.
Figure 1 shows that the downstream DSW in ZL17 remains attached to the topography,
while the present model suggests that this only occurs when the flow is very close to
the subcritical boundary. Attached DSWs continually generate waves at one edge of the
forcing region, and, thus, would be easier to identify and analyse in more complex models
than detached DSWs, which may quickly degrade due to diabatic effects.

The ‘offshore plume’ regime discussed in § 3.2 and figure 15 is also of potential
importance. Offshore plumes occur for sufficiently large shelfbreak perturbations when
the background current dominates over the along-shore flow generated by stretching of
fluid columns that cross the shelfbreak. Instead of turning to propagate upstream, shelf
water heads directly offshore and the flow never becomes steady in the forcing region.
Topographic features are known to cause the displacement of boundary currents that
flow counter to Rossby wave propagation (for example, in the separation of the Gulf
Stream at Cape Hatteras (Tansley & Marshall 2000) and the generation of upwelling
filaments at Cape Ghir (Troupin et al. 2012)) and this may be explained by PV-conserving
arguments similar to those proposed here. However, the situation in the real ocean is more
complicated than in the present flat-bottomed model, where columns of fluid that cross the
shelfbreak can continue to move offshore easily. In an ocean with a sloping bottom, the
proclivity of depth-integrated flow to follow isobaths limits exchange between the shelf
and open ocean. Columns of fluid must instead separate from the bottom as they cross the
shelfbreak, and, thus, the dynamics differ from the barotropic model employed here.

Perhaps the most restrictive assumption of the present model is that the assumption
of piecewise-constant PV eliminates all but a single Rossby mode. The extension of
control theory to flows with arbitrary PV distributions and, therefore, several modes is
an important area of study, although Hughes (1985) shows that analytically identifying
the controlling mode for a given geometry is likely to be difficult. Chapter 2.9 of Pratt
& Whitehead (2008) gives an overview of the barriers to analytic results in systems with
non-uniform PV (albeit in the context of gravity-wave control) and further discussion of
the consequences of this restriction. A different approach to studying hydraulic control
in flows with arbitrary PV distributions is to follow Mitsudera & Grimshaw (1990) and
ZL17 and identify the controlling mode as that with the phase speed which is nearest to
the (negative of the) background flow velocity. This suggests that control may in fact be
more common in models with several modes, as there is a wider range of phase speeds
that can become arrested. Grimshaw (1987) shows that the controlling mode is resonant,
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and, thus, if that mode has a non-zero coefficient, initially it will grow to dominate the
response at later times. However, in general mode-mode interactions may limit growth of
resonant terms at higher modes, and, thus, control is likely to be restricted to the first few
modes. Indeed, mode-1 resonant CSWs (defined as having small group velocity) have been
observed off the coasts of Scotland (Gordon & Huthnance 1987) and Antarctica (Wåhlin
et al. 2016).

Finally, it is interesting that the agreement between dispersive long-wave theory and the
QG system is not as strong as in the flat-bottom model of JJ20. In particular, the theoretical
prediction for the downstream solitary wave amplitude can have a qualitatively different
dependence on F as that observed in the numerical results (figure 13(a), dash–dotted
curves and triangles). We have suggested that this is due to a turning point in the observed
solitary wave speed, but a more detailed investigation of the equation is needed to confirm
this. The numerical results appear to show a DSW forming downstream, but it is not clear
what the equivalent for a finite-amplitude wavefront is for a DSW that is degenerate at the
solitary wave end, or indeed whether the minimum in s̃ does correspond to degeneracy
of the Whitham system. Finding an equation that displays this behaviour and has an
integrable structure could lead to further developments in the theory of dispersive shock
waves.
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Author ORCIDs.
S. Jamshidi https://orcid.org/0000-0002-7554-3128;
E.R. Johnson https://orcid.org/0000-0001-7129-8471.

Appendix A. Derivation of boundaries for critical control

Here we derive expressions for the boundaries of critical control, F±(Δ), by treating Qe
and C as polynomials in Z = exp (−Y). The case where the front is off the shelf (j = −1)
is a quadratic in Z. However, when the front is on the shelf, the corresponding polynomial
is cubic and the form of the solution is not informative, so in this case we just present the
equation to be solved.

First, suppose that the flow is critical. If the front lies off the shelf at the maximum
constriction, then solving the criticality condition gives (3.7). We call this kind of flow,
where the front is off-shelf at the control point, off-shelf controlled. In the alternative
situation, where the flow is on-shelf controlled, Y is found by solving the following cubic
equation in Z:

− a2Z3 +
(

a2

2
e−YT − 1

)
Z2 + a2

2
e−YT = 0. (A1)

Equation (A1) has at most one root in Z > 0. (The cubic polynomial f (Z) defined by (A1)
is positive when Z = 0, and either Z = 0 is a local minimum or f ′(Z) < 0 for all Z > 0.)
The transition between (3.7) and (A1) occurs when

Δ = Y1 = Y0 − log

(
1 + √

1 + a4

a2

)
, (A2)

with off-shelf control occurring for Δ > Y1.
To find F±(Δ), we solve the criticality condition (3.3) and the condition for non-critical

steady flow (3.2) simultaneously. For each pair (Y0,Δ), this gives two values of a
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(equivalently, the Froude number F) at which the flow transitions from being non-critical
to critical. For off-shelf control,

a2 = 2
Z3

T − 2Z0Z2
T + ZT − 2Z2

T [2Z0(cosh (Y0)− cosh (YT))]1/2

(Z2
T − 1)2

, (A3a)

where we have introduced ZT = exp (Δ− Y0) and Z0 = exp (−Y0). For fixed Y0, (A3a) is
used to give the supercritical boundary for controlled flow, F+(Δ). For on-shelf control,

a2 = 2 (Z0 − Z)
(1 − Z2)(ZT/Z − 1)

, (A3b)

where Y is given by the solution to (A1). This gives the subcritical boundary F−(Δ).
For wide shelves (Z0 < 1/2), the supercritical boundary F+(Δ) is non-monotonic with

a maximum at Δ0. Offshore plumes occur when Δ > Δ0 and FG(Δ) < F < Fmax, where

Fmax = 1
1 − Z2

0
, (A4a)

FG(Δ) = cosh (Y0 −Δ)

sinh (Y0)
. (A4b)

For narrow shelves, the maximum Froude number for critically controlled solutions is

Fmax = 4Z0

1 + Z0
, (A5)

which occurs at Δ = Y0.

Appendix B. Conditions for dispersive shock-fitting

El (2005) shows that one may extract the key observables of DSWs arising in the Riemann
problem for a given equation providing certain conditions are satisfied. Thus, assuming
that DSWs form outside of the topographic forcing region, we apply the following checks
to (2.22) with Yh ≡ Y0.

(i) The equation admits a hydraulic limit obtained by introducing the slow variables
X = εx and T = εt. This is (2.16).

(ii) The linear dispersion relation is real-valued (cf. (4.4)).
(iii) The system possesses at least two conservation laws. These are (2.22) and (2.24).
(iv) The equation supports periodic travelling-wave solutions, parameterised by three

independent variables. These can be taken to be the constants of integration s, α and
E in the potential (4.7). The potential function must exhibit quadratic behaviour in
the linear and solitary wave limits, which is true for the present model provided Y∞
is sufficiently far from the coast that G = O(1).

(v) The Whitham system composed of the two period-averaged conservation laws plus
the wavenumber conservation law kt + ωx = 0 is hyperbolic. This is required to
ensure modulational stability of the wave train, and is easiest to check via numerical
simulations. However, non-convexity of the flux function Qe implies that (2.22) is
not genuinely nonlinear in an interval containing Y2 and in many cases this leads to
non-strict hyperbolicity (El et al. 2017). The compound-wave structures discussed
in § 3 carry over to the Whitham equations, and lead to richer behaviour than in
the simple-wave case where the solution is a DSW. For transitions that cross the
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inflexion point Y2, dispersive shock-fitting may be applied to the secondary Riemann
problem with Y± > Y2.

With these caveats about non-convexity and distance from the coast in mind, the key
parameters may be extracted as follows. The wavenumber and conjugate wavenumber
at the linear and solitary wave edges of the DSW are found by solving the differential
equations (cf. El 2005)

dk
dY

= ∂ω/∂Y
C(Y)− ∂ω/∂k

,

dk̃
dY

= ∂ω̃/∂Y

C(Y)− ∂ω̃/∂ k̃
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(B1)

For the present model, the general solutions to (B1) are

k2(Y) = 2
3G(Y)2/3

∫ Y C′(ξ)
G(ξ)1/3 dξ,

k̃2(Y) = −2
3G(Y)2/3

∫ Y C′(ξ)
G(ξ)1/3 dξ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(B2)

which are connected to the far-field solution by applying the boundary conditions k = 0
at the soliton edge of the DSW where Y = Y+, and k̃ = 0 at the linear wave end where
Y = Y−. Then, we evaluate (B2) at Y∓ to obtain k and k̃ as in (4.8) and (4.10).
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