
Math. Struct. in Comp. Science (1999), vol. 9, pp. 287–319. Printed in the United Kingdom

c© 1999 Cambridge University Press

Hidden coinduction:

behavioural correctness proofs for objects

J O S E P H A. G O G U E N† and G R A N T M A L C O L M‡

†Department of Computer Science and Engineering,

University of California at San Diego, USA.

‡Connect, Department of Computer Science,

University of Liverpool, UK.

Received 27 November 1997; revised 10 December 1998

This paper unveils and motivates an ambitious programme of hidden algebraic research in

software engineering. We begin with an outline of our general goals, continue with an

overview of results, and conclude with a discussion of some future plans. The main

contribution is powerful hidden coinduction techniques for proving behavioural correctness

of concurrent systems, and several mechanical proofs are given using OBJ3. We also show

how modularization, bisimulation, transition systems, concurrency and combinations of the

functional, constraint, logic and object paradigms fit into hidden algebra.

1. Introduction

The initial goal of our hidden research was both straightforward and ambitious:

(A1) To give a semantics for software engineering, and for the object paradigm in

particular, supporting correctness proofs that are as simple and mechanical as

possible.

This emphasis on the effectiveness of proofs seemed to rule out approaches based on

models expressed in set theory, denotational semantics, higher order logic, type theory,

etc., because of the difficulties of proving things in these approaches. An equational

approach seemed worth exploring, because equational logic achieves maximal simplicity

and mechanization, while still allowing full expressiveness. So building on a long tradition

in computing science (often called algebraic specification), we use algebra for our semantics.

However, the hidden algebra approach is distinct in that it uses sorts in two different

ways:

1 some sorts are used for data values (for example, of attributes), as in the algebraic

approach to data types; and

2 some sorts are used for states, as in the algebraic approach to abstract machines.

The latter gives us objects, classes, etc..

These two uses of sorts are dual. Induction is used to establish properties of data

types, whereas coinduction is used to establish properties of objects. Similarly, initiality is

https://doi.org/10.1017/S0960129599002777 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002777

J. A. Goguen and G. Malcolm 288

important for data types, whereas finality is important for states. However, we do not insist

that implementations of data types must be initial, or that implementations of abstract

machines (i.e., objects) must be final; on the contrary, we accept any implementation that

satisfies the given axioms. This is important because, in general, the best implementations

are neither initial nor final, but somewhere between.

The hidden paradigm takes as basic the notion of behavioural abstraction, or more

precisely, behavioural satisfaction: our specifications characterize how objects (and systems)

behave, not how they are implemented; they provide a notion of behavioural type, which

we prefer to call a hidden theory (or behavioural theory or hidden specification). Our

correctness proofs show that one hidden theory behaviourally satisfies another, in the

sense that any model of the second theory yields a model of the first. This principle allows

us to justify our proof techniques model theoretically, reflecting our view that

(S) semantics is fundamental at the meta level (for showing correctness for proof

rules), while syntax is fundamental at the object level (for building, describing and

verifying systems).

(See Goguen (1998) for further discussion and examples of this viewpoint.)

Since we use hidden sorts to specify classes of objects, order sorted algebra provides

a very natural way to handle multiple inheritance; it also allows us to specify par-

tial functions, non-terminating systems, subtypes of various kinds, error definition and

recovery, coercions, overwriting, multiple representations, and more (see Goguen and Di-

aconescu (1994a) for a discussion of polymorphism, dynamic binding and overwriting,

and Goguen and Meseguer (1987a) for a discussion of errors, coercions, etc.). However,

for expository simplicity, this paper only treats hidden many sorted algebra. The module

system of parameterized programming gives us other forms of inheritance, plus all the

power of higher order functional programming in a first order setting, which facilitates

both proving and programming (Goguen 1990a).

Modularization is weak in many contemporary languages, especially in object and logic

languages; moreover, it can be surprisingly hard to reuse code in practice, and development

methods to support reuse remain vague. Therefore, we broadened our research goals to

(A2) develop powerful modularization techniques and semantically sound methods

for refinement (dealing with hierarchies of abstract machine implementations).

We later realized that constraints were already inherent in our approach and that an

entirely new style of logic programming could develop out of hidden algebra by adding

existential quantifiers. This put a new item on our hidden agenda:

(A3) to combine the functional, object, logic, concurrent and constraint paradigms.

What is perhaps amazing is that it is actually artificial to exclude any of these paradigms:

concurrency, nondeterminism, local states, classes, inheritance, constraints, streams, exis-

tential queries, etc. are all very natural parts of the hidden world.

In summary, we are concerned with semi-mechanical proof techniques for hidden

(order sorted) algebra, as a way of proving behavioural properties of systems, including

refinement. We make the no doubt outrageous claim that our hidden approach leads to

simpler proofs than other formalisms; this is because we exploit algebraic structure that

https://doi.org/10.1017/S0960129599002777 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002777

Hidden coinduction: behavioural correctness proofs for objects 289

most other approaches discard. The following sections give an overview of what support

we now have for this claim.

The next two subsections provide further motivation for hidden algebra and compare

our research programme to some others. Section 2 gives an introduction to hidden

algebra, and Section 3 discusses hidden coinduction for proving behavioural properties.

Section 4 shows how our techniques can be used to prove correctness of refinements (i.e.,

implementations), and Section 5 discusses composite systems of concurrent interacting

objects. Many of the results we present are new. Section 6 gives some conclusions and

directions for future research, and Appendix A gives two further small mechanical proofs.

The examples in this paper use OBJ3 to express theories and do proofs. We give ‘proof

scores’, in which humans have done the interesting structuring work, while OBJ does the

boring computations. Of course, much of the ‘interesting’ work could also be automated,

including the examples in this paper, but this is certainly impossible in general. We

have chosen the balance between human and machine efforts to enhance the readablity

of the proof scores. We assume some familiarity with basic many sorted algebra and

with OBJ. The relevant background (and much more!) can be found in Goguen and

Malcolm (1996), Goguen (1998), Goguen et al. (1978), Meseguer and Goguen (1985) and

Goguen et al. (1998), among many other places. For ease of reference, formal textual

items (theorems, definitions, etc.) are numbered sequentially on the same counter.

2. Hidden algebra

Hidden algebra captures the fundamental distinction between data values and internal

states by modelling the former with ‘visible’ sorts and the latter with ‘hidden’ sorts. These

are treated in the next two subsections, respectively.

2.1. Visible data values

The components of a system must use the same representations for the data that they

share, otherwise they cannot communicate; thus it makes sense to declare a fixed collection

of shared data values, bundled together in a single algebra.

Definition 1. Let D be a fixed data algebra, with Ψ its signature and V its sort set, such

that each Dv with v ∈ V is non-empty and for each d ∈ Dv there is some ψ ∈ Ψ[],v such

that ψ is interpreted as d in D. For convenience, we assume that Dv ⊆ Ψ[],v for each v ∈ V .

We may also call (V ,Ψ, D) the visible data universe, and we call V the visible sorts.

In practice, there may be multiple representations for data with translations among

them, and representations may change during development; but our simplifying assump-

tion can easily be relaxed.

The above definition deals with semantics; but the prudent verifier needs an effective

specification for data values to support proofs, and it is especially convenient to use

initial algebra semantics, which also supports proofs by induction. More precisely, the ‘no

junk’ half of initiality validates induction proofs over any reachable algebra, while the ‘no

confusion’ half supports disequality proofs. For example, the following OBJ3 specification

for the natural numbers is used in later examples:

https://doi.org/10.1017/S0960129599002777 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002777

J. A. Goguen and G. Malcolm 290

obj NAT is sort Nat .

op 0 : -> Nat .

op s_ : Nat -> Nat [prec 1].

op _<_ : Nat Nat -> Bool .

var N M : Nat .

eq 0 < s N = true .

eq N < N = false .

eq s N < 0 = false .

eq s N < s M = N < M .

endo

Here NAT is the name of the module and Nat is the name of the sort for natural numbers.

The keyword pair obj...endo indicates initial algebra semantics. The underbar characters

indicate where an argument goes, so that the successor operator s_ has prefix syntax,

and the inequality operator _<_ has infix syntax. The rest of the OBJ3 syntax used here

should be fairly self-evident; for more on OBJ3, see Goguen and Malcolm (1996) and

Goguen et al. (1998).

Our examples assume a fixed OBJ3 module DATA giving a signature and axioms for D

(D need not be a term model for DATA, or even an initial model). The following says that

DATA is just the natural numbers; this is adequate for (most of) this paper, noting that

NAT imports the Booleans.

obj DATA is

pr NAT .

endo

Of course, the (cumulative) signature of DATA must be Ψ, and we let F denote its set of

equations.

In writing a specification for the data involved in a problem, it is encouraging to recall

that any computable algebra can be finitely specified with initial algebra semantics, and

that data types used as values really should be computable. However, one could just as

well use a loose semantics, by explicitly giving any properties that are needed, and then

noting that any Ψ-algebra D satisfying these properties could be the data universe. Indeed,

some data universes are not computable, for example, the real and complex numbers,

which are important for constraint logic programming. However, even these data types can

be captured with initial algebra semantics by using an uncountable number of constants

and equations (though order sorted algebra should be used to prohibit division by zero).

2.2. Hidden signatures and hidden algebras

This subsection gives some basic definitions for hidden algebra. Hidden algebra uses

a loose behavioural semantics over a fixed data algebra. Unlike the case in Orejas et

al. (1996), there is no competition between this and initial algebra semantics, because they

are used for different purposes.

Definition 2. A hidden signature (over (V ,Ψ, D)) is a pair (H,Σ), where H is a set of hidden

sorts disjoint from V and Σ is an S = (H ∪ V)-sorted signature with Ψ ⊆ Σ, such that

https://doi.org/10.1017/S0960129599002777 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002777

Hidden coinduction: behavioural correctness proofs for objects 291

(S1) each σ ∈ Σw,s with w ∈ V ∗ and s ∈ V lies in Ψw,s, and

(S2) for each σ ∈ Σw,s at most one hidden sort occurs in w.

We may abbreviate (H,Σ) to just Σ. If w ∈ S∗ contains a hidden sort, then σ ∈ Σw,s is

called a method if s ∈ H , and an attribute if s ∈ V . If w ∈ V ∗ and s ∈ H , then σ ∈ Σw,s is

called a (generalized) hidden constant.

A hidden (or behavioural) theory (or specification) is a triple (H,Σ, E), where (H,Σ) is

a hidden signature and E is a set of Σ-equations that does not include any Ψ-equations;

we may write (Σ, E) or even E for short.

Condition (S1) expresses data encapsulation: that Σ cannot add any new operations on

data items. Condition (S2) says that methods and attributes act singly on (the states of)

objects. Note that every operation in a hidden signature is either a method, an attribute,

or a constant. Equations about data (Ψ-equations) are not allowed in specifications: any

such equation needed as a lemma should be proved and asserted separately, rather than

being included in a specification. Note that this definition allows multiple hidden sorts:

these are useful for (in the jargon of the object paradigm) complex attributes, which are

class valued attributes; however, it is always possible to reduce to a single hidden sort

without loss of expressiveness, at some cost in complexity.

The following example may help clarify this definition. This code uses OBJ3 syntax for

theories, where the keyword pair th...endth with ‘pr DATA’ indicates a loose semantics

‘protecting’ DATA – we will explain this soon.

Example 3. We specify flag objects, where intuitively a flag can be either up or down, with

methods to put it up, to put it down, and to reverse it:

th FLAG is sort Flag .

pr DATA .

ops (up_) (dn_) (rev_) : Flag -> Flag .

op up?_ : Flag -> Bool .

var F : Flag .

eq up? up F = true .

eq up? dn F = false .

eq up? rev F = not up? F .

endth

Here FLAG is the name of the module and Flag is the name of the class of flag objects.

The operations up, dn and rev are methods to change the state of flag objects, and up?

is an attribute that tells whether or not the flag is up. All these operations have prefix

syntax.

We could add a hidden constant newf as an initial state for FLAG objects, with an

equation

eq up? newf = false .

to set the initial value of the attribute. Of course, the initial value could equally well be

true, or it could be left undefined by simply not giving such an equation.

If Σ is the signature of FLAG, then Ψ is a subsignature of Σ, and so a model of FLAG

should be a Σ-algebra whose restriction to Ψ is D, providing functions for all the methods

https://doi.org/10.1017/S0960129599002777 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002777

J. A. Goguen and G. Malcolm 292

and attributes in Σ, and behaving as if it satisfies the given equations. Elements of such

models are possible states for Flag objects. This motivates the following definition.

Definition 4. Given a hidden signature (H,Σ), a hidden Σ-algebra A is a (many sorted)

Σ-algebra A such that A|̀Ψ = D. A hidden Σ-homomorphism is a (many sorted) Σ-

homomorphism that is the identity on visible sorts.

We next define behavioural satisfaction of an equation; intuitively, its two terms should

‘look the same’ under every ‘experiment’ consisting of some methods followed by an

‘observation’, i.e., an attribute. More formally, such an experiment is given by a context,

which is a term of visible sort having one free variable of hidden sort.

Definition 5. Given a hidden signature (H,Σ) and a sort s, a Σ-context of sort s is a visible

sorted Σ-term having a single occurrence of a new variable symbol z of sort s. A context

is appropriate for a term t iff the sort of t matches that of z. Write c[t] for the result of

substituting t for z in the context c, and let CΣ[z] denote the V -indexed set of contexts

with hidden variable z.

A hidden Σ-algebra A behaviourally satisfies a Σ-equation (∀X) t = t′ iff for each

appropriate Σ-context c, A satisfies the equation (∀X) c[t] = c[t′]. Then we write A |≡Σ

(∀X) t = t′, and we may drop the subscript Σ.

Similarly, A behaviourally satisfies a conditional equation e of the form

(∀X) t = t′ if t1 = t′1, ..., tm = t′m

iff for every assignment θ : X → A, we have

θ∗(c[t]) = θ∗(c[t′])

for all appropriate contexts c whenever

θ∗(cj[tj]) = θ∗(cj[t′j])

for j = 1, ..., m and all appropriate contexts cj (here θ∗ denotes the unique Σ-homomorphic

extension of θ). As with unconditional equations, we write A |≡Σ e.

A model of a hidden theory P = (H,Σ, E) is a hidden Σ-algebra A that behaviourally

satisfies each equation in E. Such a model is also called a (Σ, E)-algebra, or a P -algebra,

and then we write A |≡ P or A |≡Σ E. Also we write E ′ |≡Σ E iff A |≡Σ E
′ implies A |≡Σ E

for each hidden Σ-algebra A.

Finally, a hidden Σ-algebra A is reachable iff the unique Σ-homomorphism from the

initial (term) Σ-algebra TΣ is surjective.

Example 6. The following are some contexts for FLAG:

c1[z] = up? z

c2[z] = up? up rev z

c3[z] = up? dn dn z

There are an infinite number of contexts; all begin with up? since that is the only attribute.

We next give some models for the FLAG theory, that is, some objects of class Flag.

https://doi.org/10.1017/S0960129599002777 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002777

Hidden coinduction: behavioural correctness proofs for objects 293

Example 7. Let us first look at a simple Boolean cell C as a hidden algebra. Here,

CFlag = CBool = {true, false}, up F = true, dn F = false, up? F = F , and rev F = not F .

A more complex implementation H keeps complete histories of interactions so that the

action of a method is merely to concatenate its name to the front of a list of method

names. Then HFlag = {up, dn, rev}∗, the lists from {up, dn, rev}, while HBool = {true, false},
up F = up_F , dn F = dn_F , rev F = rev_F , while up? up_F = true, up? dn_F = false,

and up? rev_F = not up? F , where _ is the concatenation operation.

Note that C and H are not isomorphic.

For visible equations, there is no difference between ordinary satisfaction and be-

havioural satisfaction. But these concepts can be very different for hidden equations. For

example,

rev rev F = F

is strictly satisfied by the Boolean cell model C , but it is not satisfied by the history model

H . However, it is behaviourally satisfied by both models. This shows that behavioural

satisfaction is often more appropriate for computing science applications. (We will later

use coinduction to prove that every FLAG-model behaviourally satisfies this equation.)

Example 8. The following OBJ3 code specifies a cell that holds a single natural number:

th X is sort State .

pr DATA .

op putx : Nat State -> State .

op getx_ : State -> Nat .

var S : State . var N M : Nat .

eq getx putx(N,S) = N .

endth

Objects of class X are really just ‘program variables’ of integer type, that is, cells that hold

an integer, and the models are ways of implementing such cells.

The following proposition justifies the simplest ways to reason about behavioural

satisfaction.

Proposition 9. In proving E |≡ e, the ordinary rules of equational deduction are valid,

including substituting one behavioural equation into another, and, of course, symmetry

and transitivity; visible equations can also be used in such proofs.

This result is easy to prove, and can be very useful. For example, if we want to prove

getx putx(N, putx(M, S)) = N ,

for the above theory X, we can just do the following:

red getx putx(N, putx(M, S)) == N .

(OBJ3 complains about the variables, but does the reduction anyway, treating them as

constants, and giving the correct result, true.) However, something more powerful than

reduction is needed to prove the equation about double reverse given above, or to prove

putx(M, putx(N, S)) = putx(M, S) .

Unfortunately, it is easy to write theories that have no models. For example, if we add

a constant newf of sort Flag and the equation

https://doi.org/10.1017/S0960129599002777 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002777

J. A. Goguen and G. Malcolm 294

eq not up? F = up? F .

to FLAG, we can prove that true = false, which contradicts Definition 4. This motivates

the following definition.

Definition 10. A hidden theory is consistent iff it has at least one model.

Some techniques for guaranteeing consistent specifications from Goguen et al. (1998)

are summarized in Theorem 13 below, which uses the following concepts.

Definition 11. A Ψ(X)-term is local iff it is a constant or a variable (that is, is in D or

in X); a Σ(X)-term that is not a Ψ(X)-term is local iff all visible proper subterms are

constants or variables. Let LΣ,s denote the set of local ground Σ-terms of sort s. An

equation is local iff its left-hand and right-hand sides are local and its conditions (if any)

are Ψ(X)-terms; a set of equations is local iff each one is. A constraint is an equation such

that both its terms have their top operations in Ψ.

A local equation cannot be a constraint. Constraints constrain the values of undefined

terms over a theory, as discussed in some detail in Section 2.3, which shows how this

relates to nondeterminism.

Definition 12. A set E of Σ-equations is D-complete iff D |=Ψ (∀6) t = t′ implies E |=Σ

(∀6) t = t′ for all Ψ-terms t and t′.
Theorem 13. If the equations E in a hidden theory are D-complete and Church–Rosser

local rewrite rules, the theory is consistent.

Proof. We show consistency by constructing a model M with carriers Mh = LΣ,h for

h ∈ H and Mv = Dv for v ∈ V . Its methods are interpreted as term building operations,

noting that this preserves locality. For an attribute σ ∈ Σhw,v , given t ∈ Mh and d ∈ Dw ,

let Mσ(t, d) = d′ if E |= σ(t, d) = d′, and otherwise let Mσ(t, d) be some element dv of Dv ,

fixed for each visible sort v. Because E is Church–Rosser, there is at most one d′ with

E |= σ(t, d) = d′, so Mσ is well-defined.

To show M |≡ E, let (∀X) t = t′ if t1 = t′1, . . . , tm = t′m be in E, and let θ : X → M.

Because the unique Σ-homomorphism g : TΣ →M is surjective, there is φ : X → TΣ with

θ∗ = φ∗; g. Suppose θ∗ti = θ∗t′i for i = 1, . . . , m, then because ti, t
′
i are Ψ(X)-terms, we have

D |=Ψ (∀6)φ∗ti = φ∗t′i, and by D-completeness, this implies E |=Σ (∀6)φ∗ti = φ∗t′i, so

E |=Σ (∀6)φ∗t = φ∗t′ . (1)

By Proposition 20 below, we can show behavioural satisfaction by considering only

contexts that are local terms. Since t is a local term, so too is c[t] for any local context c,

and by the definition of M it follows that

θ∗c[t] = g(φ∗c[t]) =

{
d′ if E |=Σ (∀6)φ∗c[t] = d′
dv otherwise.

If there is some d′ with E |=Σ (∀6)φ∗c[t] = d′, then by (1) it follows that θ∗c[t] =

d′ = θ∗c[t′]. Similarly, if there is no such d′, then θ∗c[t] = dv = θ∗c[t′]. In both cases

θ∗c[t] = θ∗c[t′], so M |≡ E as desired.

Many examples in this paper can be shown consistent using this result. A sufficient

condition for the Church–Rosser property is that the equations are nonoverlapping; and

https://doi.org/10.1017/S0960129599002777 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002777

Hidden coinduction: behavioural correctness proofs for objects 295

for conditional equations, the left-hand sides may overlap provided the conditions are

disjoint. Once a specification has been shown consistent ignoring its nonlocal equations,

the consistency of constraints can be considered separately, though determining whether

a set of constraints has a solution can be arbitrarily difficult, even unsolvable.

Example 14. This hidden theory for arrays is used in a later example, and can be seen to

be consistent by using Theorem 13:

th ARR is sort Arr .

pr DATA .

op nil : -> Arr .

op put : Nat Nat Arr -> Arr .

op _[_] : Arr Nat -> Nat .

var I J N : Nat . var A : Arr .

eq nil[I] = 0 .

cq put(N,I,A)[J] = N if I == J .

cq put(N,I,A)[J] = A[J] if not I == J .

endth

Here nil is the empty array, A[I] is the value of A at index I, and put(N,I,A) puts N at

I in A. There are no hidden equations.

Hidden algebra is related to the constraint logic as described in Diaconescu (1994) and

Diaconescu (1996): (V ,Ψ) is the signature of built-ins, D the model of built-ins, and Σ

is an extension of the ‘logical’ signature. However, hidden algebras differ from constraint

logic models because the built-ins are protected.

2.3. Nondeterminism

Modern distributed programming paradigms cannot do without nondeterminism, because

the nodes of a network cannot be expected to know what the other nodes are going to be

doing. Therefore it is essential that a formalism intended to be useful for modern software

engineering should treat nondeterminism in a simple and natural way. However, most

concurrency calculi treat nondeterminism in complex and unnatural ways, and, moreover,

there are sharp ongoing debates among the advocates of the various approaches, with no

obvious resolution in sight.

Nondeterminism is inherent to the hidden paradigm; it arises whenever some attribute

values are not determined by a specification. To understand this, it may help to view

models as ‘possible worlds,’ where each possible combination of nondeterministic choices

appears in a different world. However, this does not mean more than one value can occur

in a given world; on the contrary, each model is deterministic, in that attributes only take

one value at a time. However, a given hidden specification may have multiple models, in

which the attributes have completely different values.

Definition 15. Given a hidden theory P = (H,Σ, E), a ground Σ-term t is defined iff

for every context c (of appropriate sort), there is some d ∈ D such that E |≡ c[t] = d,

otherwise, t is undefined. P is lexic iff all ground terms are defined.

Fact 16. Given a hidden theory P = (H,Σ, E),

https://doi.org/10.1017/S0960129599002777 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002777

J. A. Goguen and G. Malcolm 296

1 A visible term t is defined iff E |≡ t = d for some d ∈ D.

2 P is lexic iff all visible ground terms are defined.

3 If we call a ground term invisible iff it is of hidden sort and has no contexts; then all

invisible terms are defined.

4 P is lexic if it has no hidden (generalized) constants.

The property of having no undefined ground terms corresponds to Guttag’s notion

of sufficient completeness (Guttag 1977). However, not only do we not require this

condition, but we claim that undefined terms are very useful in system development,

and even at run time. Instead of having explicitly to say something is ‘undefined’, one

simply does not define it; then it can have any value consistent with the given theory,

and indeed, all possible combinations of values occur among the models of the theory.

Hidden nondeterminism avoids theological disputes, for example, between angelic and

demonic nondeterminism; we simply get a certain range of implementation freedom, i.e.,

of possible worlds.

Example 17. Consider the following simple theory with one hidden sort, one natural

number valued attribute, one hidden constant, no equations, and the usual data (naturals

and Booleans):

th EX1 is sort H .

pr DATA .

op c : -> H .

op a : H -> Nat .

endth

There is exactly one undefined visible ground term here, namely a(c). Hence this theory

calls for a nondeterministic choice of a natural number, and indeed (up to behavioural

equivalence, as defined in Section 3) there is exactly one reachable Σ-algebra for each

choice of a natural number for the attribute. There are also infinitely many non-reachable

models; these worlds may have arbitrarily many other ‘unnamed’ (i.e., unreachable or

‘junk’) objects, each with a natural number attribute. If we add the constraint

eq a(H) < s s s s 0 = true .

the nondeterminism is restricted so that (again up to behavioural equivalence) there are

just four reachable models, each a world where the attribute of the object c has value 0,

1, 2 or 3. The unreachable models contain other objects, each of which has an attribute

with value 0, 1, 2 or 3.

Things get more interesting when there are methods as well as attributes. Then the

elements reachable from a given element of a hidden algebra are the states that can arise

by applying methods to that element; a connected component of elements consists of all

states for a single object. It is almost obligatory to test drive a new specification technology

over a range of stacks, because most approaches have already done so; hence stacks are

a convenient (but minimal) benchmark for comparing approaches. We first specify a

non-deterministic stack. (Since this paper is limited to many sorted algebra, the handling

of errors is weak; Goguen and Diaconescu (1994a) and Goguen and Meseguer (1992)

show how to do it better with order sorted algebra.)

Example 18. Here the operation push nondeterministically puts a new natural number on

https://doi.org/10.1017/S0960129599002777 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002777

Hidden coinduction: behavioural correctness proofs for objects 297

top of a stack. This single operation thus corresponds to countably many nondeterministic

transitions in a traditional state transition system.

th NDSTACK is sort Stack .

pr DATA .

op empty : -> Stack .

op push_ : Stack -> Stack .

op top_ : Stack -> Nat .

op pop_ : Stack -> Stack .

var S : Stack .

eq pop push S = S .

eq pop empty = empty .

endth

Terms like top push empty are undefined, i.e., nondeterministic, and can take any value.

Each model of this specification is deterministic, and represents one possible way of

resolving the nondeterminism.

Behavioural satisfaction of the first equation implies that whatever number is pushed

on a stack stays there until it is popped. For example, it follows that

top pop push S = top S

and that

top pop pop push push S = top S .

However, it is not true that

top push pop S = top S ,

because the new number pushed on S may be different from the old one.

The term top empty is also undefined, and hence can take any value. Of course, we

could fix its value with an equation like

top empty = 0 .

Moreover, we could constrain push to just one of the four values 0, 1, 2, 3 by adding an

equation like that in Example 17:

top push S < s s s s 0 = true .

It is also possible to have several different nondeterministic push methods, each subject

to different constraints.

Models are deterministic in that operations are interpreted as functions on the carrier

sets, but also in this example in that the equation

top push pop push empty = top push empty

is satisfied by all models. This says that if a value is nondeterministically pushed on to

the empty stack, the stack is then popped and a value is pushed on again, then the second

value is always the same as the first value pushed on to the stack. A less restrictive form

of nondeterminism, in which the above equation need not be satisfied by all models, can

be admitted by limiting the number of contexts that determine behavioural equivalence,

as in Roşu and Goguen (1998).

https://doi.org/10.1017/S0960129599002777 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002777

J. A. Goguen and G. Malcolm 298

This example shows that hidden semantics differs sharply from initial semantics, where

terms like top empty would appear as new elements of sort Nat; it also differs from pure

loose semantics, where such terms could be either new elements or old data values.

Hidden algebraic nondeterminism can be used much as in the concurrent constraint

paradigm: a specification describes the possible states of an object in isolation, but

what states actually occur is co-determined with other objects through their interactions,

expressed as constraints. For example, the specifications for an array and a pointer into it

describe all their possible states separately, but when they are put together to implement

a stack, many states are no longer reachable: details of this implementation are given in

Example 35 – in that context, it is impossible for the array containing all 1’s to occur.

Thus, hidden algebra is naturally nondeterministic; we will see that it is also well suited

to concurrent, reactive systems.

Example 19. Here is a hidden version of the traditional stack theory with a non-unary

deterministic push:

th STACK is sort Stack .

pr DATA .

op empty : -> Stack .

op push : Nat Stack -> Stack .

op top_ : Stack -> Nat .

op pop_ : Stack -> Stack .

var S : Stack . var I : Nat .

eq top push(I,S) = I .

eq pop empty = empty .

eq pop push(I,S) = S .

endth

Here top empty is the only undefined ground term (up to equality).

A similar situation arises if we delete the equation nil[I] = 0 from the ARR theory in

Example 14; then a user of an implementation of this specification may find ‘garbage’ in

the array, and so must be careful not to rely on its having any particular initial value.

Undefined values obstruct initial hidden algebras, as shown in Theorem 22 below.

Recalling that LΣ,s denotes the set of local ground Σ-terms of sort s, note that any

Σ-algebra M induces a hidden Σ-algebra structure on LΣ, which we denote LM , by

interpreting methods as term building operations, and interpreting an attribute σ ∈ Σw,v

by (LM)σ(`) = Mσ(hM(`)) = hM(σ(`)) for suitable ` ∈ (LΣ)w , where hM is the unique

Σ-homomorphism TΣ → M. Restricting hM to local terms gives a unique hidden Σ-

homomorphism LM →M, which we denote ϕM .

Proposition 20. Let LΣ[z]s ⊆ CΣ[z]s denote the set of local Σ-contexts of sort s involving

the variable z of hidden sort. Then a hidden Σ-algebra M behaviourally satisfies a hidden

equation (∀X) t = t′ iff it satisfies (∀X) c[t] = c[t′] for every visible local context c ∈ LΣ[z].

Proof. The ‘only if’ direction follows from the fact that every local context is a

context. For the converse, note that the unique Σ-homomorphism TΣ → LM extends to

a Σ-homomorphism ̂: TΣ(z) → LM(z) that translates a context c to a local context ĉ.

https://doi.org/10.1017/S0960129599002777 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002777

Hidden coinduction: behavioural correctness proofs for objects 299

(This extension is most easily explained using a little categorical magic. To the signature

inclusion Σ ⊆ Σ(z) corresponds a forgetful functor from Σ(z)-algebras to Σ-algebras. This

functor has a left adjoint that forms the free Σ(z)-algebra M(z) over any Σ-algebra M,

and that extends Σ-homomorphisms to homomorphisms of Σ(z)-algebras.) We now show

that for any context c and substitution θ : X → M, we have θ∗ (̂c[t]) = θ∗(c[t]). Any

Σ-algebra M becomes a Σ(X)-algebra by picking values m ∈M of the right sort for each

x ∈ X via some assignment θ : X → M. In particular, any t ∈ TΣ(X) of the same sort

as z will make TΣ(X) into a Σ(X ∪ {z})-algebra, and we let [t] : TΣ(X ∪ {z}) → TΣ(X)

denote the unique Σ-homomorphism. Now θ : X → M and t give θt : X ∪ {z} → M,

sending x ∈ X to θ(x) and z to θ∗(t), which induces a Σ(X ∪ {z}) structure on M and

hence a unique Σ-homomorphism θ∗t : TΣ(X∪{z}) → M extending θt. But each side of the

equation is the value of c along one such homomorphism, and hence they are equal. This

means M interprets a context c the same way it interprets ĉ. Therefore if the left-hand

and right-hand sides of an equation are equal in all local contexts, then for any context

c, they are equal in the local context ĉ, and therefore in c.

Proposition 21. For a given hidden signature Σ, we have the following:

1 For any hidden Σ-homomorphism f : M → N and equation e, if N |≡ e, then M |≡ e.
2 For any Σ-algebra M and equation e, if M |≡ e, then LM |≡ e.
3 If a hidden theory has an initial model, that initial model behaviourally satisfies any

equation behaviourally satisfied by any other hidden model of the theory.

4 If either e is a ground equation or M is reachable, then M |≡ e iff LM |≡ e.
5 If there is a hidden Σ-homomorphism f : M → N, then LM = LN .

Proof. For the first assertion, let e be of the form (∀X) t = t′, and let θ : X → L. Then

θ; f : X → N, and N |≡ e implies (θ; f)∗(c[t]) = (θ; f)∗(c[t′]) for any context c, which

implies that f(θ∗(c[t])) = f(θ∗(c[t′])), which because f is the identity on visible elements,

then implies θ∗(c[t]) = θ∗(c[t′]), as desired. A similar proof can be given for conditional

equations.

The proofs of the second and third assertions use the homomorphism ϕM : LM →M.

The fourth assertion follows by factoring assignments X → TΣ through LM .

For the fifth assertion, note first that hN = hM; f. Then (LM)σ(`) = hM(σ(`)) and

(LN)σ(`) = hN(σ(`)). But hN(σ(`)) = f(hM(σ(`))), and therefore hN(σ(`)) = hM(σ(`)),

because f is the identity on visible sorts.

Theorem 22. A hidden theory P = (H,Σ, E) has an initial model, denoted LP , iff it is

consistent and lexic.

Proof. We first show that if P is consistent and lexic, then LM = LN for any two

P -models M,N. Lexicality implies that for any visible ground term t there is a unique

dt ∈ D with E |≡ (∀6) t = dt. Then LM = LN because (LM)σ(`) = hM(σ(`)) = dt, and

similarly for (LN)σ(`). Because E is consistent, there is at least one model, say M. So we

have LM and a unique homomorphism ϕM : LM →M. Moreover, for any model N, there

is a unique homomorphism ϕN : LM = LN → N. Therefore LM is an initial model.

Conversely, if there is an initial model M, then E is consistent. For every visible term

t, there is a data value f(t) given by the homomorphism f : TΣ →M. Moreover, for any

other model N with homomorphism g : TΣ → N, we have g(t) = ϕ(g(t)) = f(t), where ϕ

https://doi.org/10.1017/S0960129599002777 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002777

J. A. Goguen and G. Malcolm 300

is the unique hidden homomorphism M → N. Therefore N |≡ (∀6) t = f(t). Because N is

arbitrary, for every ground term t there is a data value f(t) such that E |≡ (∀6) t = f(t).

System development consists in part of progressively reducing implementation freedom†,
which may involve reducing nondeterminism, among other things. Reducing nondeter-

minism is consistent with software engineering practice, where all the operations in a

program are deterministic, but at a given development stage many programs may still

satisfy the specification. Thus, hidden nondeterminism is more appropriate for refinement

(see Section 4) than the forms usually found, for example, in process algebra. Nondeter-

minism can also remain right down to the implementation level, where any consistent

value may be returned. For example, a set of constraints may be resolved only at run

time, and in different ways at different times. Thus, the same notion of nondeterminism

is useful for implementation freedom and for runtime choice.

3. Behaviour and hidden coinduction

Induction is a standard technique for proving properties of initial (or more generally,

reachable) algebras of a theory. Principles of induction can be justified from the fact that

an initial algebra has no proper subalgebras (for example, Goguen (1998) and Meseguer

and Goguen (1985)). We will see that final (terminal) algebras play an analogous role in

justifying reasoning about behavioural properties with hidden coinduction. We first need

the following definition.

Definition 23. Given a hidden signature Σ, a hidden subsignature Φ ⊆ Σ, and a hidden

Σ-algebra A, then behavioural Φ-equivalence on A, denoted ≡Φ, is defined as follows for

a, a′ ∈ As:
a ≡Φ,s a

′ iff a = a′ (2)

when s ∈ V , and

a ≡Φ,s a
′ iff Ac(a) = Ac(a

′) for all v ∈ V and all c ∈ CΦ[z]v (3)

when s ∈ H , where z is of sort s and Ac denotes the function interpreting the context c as

an operation on A, that is, Ac(a) = θ∗a(c), where θa is defined by θa(z) = a and θ∗a denotes

the free extension of θa.

When Φ = Σ, we may call ≡Φ just behavioural equivalence and denote it ≡.

For Φ ⊆ Σ, a hidden Φ-congruence on a hidden Σ-algebra A is a Φ-congruence ' that

is the identity on visible sorts, that is, such that a 'v a′ iff a = a′ for all v ∈ V and

a, a′ ∈ Av = Dv . We call a hidden Σ-congruence just a hidden congruence.

It is not hard to demonstrate the following fact.

Fact 24. Given a hidden signature Σ and a hidden subsignature Φ:

† However, real software development processes involve much more, including constantly evolving requirements

and the resulting need to constantly evolve the software (Goguen 1994).

https://doi.org/10.1017/S0960129599002777 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002777

Hidden coinduction: behavioural correctness proofs for objects 301

1 any hidden Φ-congruence is a hidden (Φ ∪Ψ)-congruence;

2 Φ′ ⊆ Φ implies ≡Φ⊆≡Φ′; and

3 behavioural Φ-equivalence is a hidden Φ-congruence.

However, the key property† can be stated as follows.

Theorem 25. If Σ is a hidden signature, Φ is a hidden subsignature of Σ, and A is a hidden

Σ-algebra, then behavioural Φ-equivalence is the largest behavioural Φ-congruence on A.

Probably the most common case is Φ = Σ, but the generalization to smaller Φ is useful,

for example in verifying refinements, as we will see in Section 4.

Theorem 25 is not hard to prove: the proof generalizes the well-known construction

of an abstract machine as a quotient of the term algebra by the behavioural equivalence

relation, which is usually called the Nerode equivalence in that context (Meseguer and

Goguen 1985; Malcolm 1996).

Theorem 25 implies that if a ' a′ under some hidden congruence ', then a and a′ are

behaviourally equivalent. This justifies a variety of techniques for proving behavioural

equivalence; see also Goguen and Malcolm (1994) and Malcolm and Goguen (1994). In

this context, a relation may be called a candidate relation before it is proved to be a

hidden congruence.

Example 26. Let A be any model of the FLAG theory in Example 3, and for f, f′ ∈ AFlag,

define f ' f′ iff up? f = up? f′ (and d ' d′ iff d = d′ for data values d, d′). Then we can

use the equations of FLAG to show that f ' f′ implies up f ' up f′ and dn f ' dn f′ and

rev f ' rev f′, and, of course, up? f ' up? f′. Hence ' is a hidden congruence on A.

Therefore we can show

A |≡ (∀F : Flag) rev rev F = F

just by showing A |= (∀F : Flag) up? rev rev F = up? F. This follows by ordinary

equational reasoning, since up? rev rev F = not(not(up? F)). Therefore the equation

is behaviourally satisfied by any FLAG-algebra A.

It is easy to do this proof mechanically using OBJ3, since all the computations are

just ordinary equational reasoning. We set up the proof by opening FLAG and adding the

necessary assumptions; here R represents the relation ':

openr FLAG .

op _R_ : Flag Flag -> Bool .

var F1 F2 : Flag .

eq F1 R F2 = (up? F1 == up? F2) .

ops f1 f2 : -> Flag .

close

The new constants f1, f2 are introduced to stand for universally quantified variables

(using the ordinary theorem of constants (Goguen and Malcolm 1996; Goguen 1998)).

The following shows R is a hidden congruence:

† This elegant formulation appeared in a conversation between Grant Malcolm and Rolf Hennicker for the

special case where Φ = Σ.

https://doi.org/10.1017/S0960129599002777 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002777

J. A. Goguen and G. Malcolm 302

open .

eq up? f1 = up? f2 .

red (up f1) R (up f2) . ***> should be: true

red (dn f1) R (dn f2) . ***> should be: true

red (rev f1) R (rev f2) . ***> should be: true

close

Finally, we show that all FLAG-algebras behaviourally satisfy the equation with:

red (rev rev f1) R f1 .

All the above code runs in OBJ3, and gives true for each reduction, provided the following

lemma about the Booleans is added somewhere,

eq not not B = B .

where B is a Boolean variable; alternatively, a decision procedure for the Booleans could

be used instead of OBJ3’s built-in Booleans, which only knows how to reduce ground

terms. We believe the proof above is about as simple as could be hoped for. Actually, the

third reduction above is unnecessary, but it is more trouble to justify its elimination than

it is to ask OBJ to do the reduction. Section 3.2 discusses this example and the techniques

that are needed.

The above is an example of what we call hidden coinduction – this will be explained

further below. We now give some results to simplify hidden coinduction proofs. Suppose

Σ = Γ ∪ ∆: the letters Γ and ∆ are intended to suggest generators (also called construc-

tors) and destructors (also called selectors), respectively (Malcolm and Goguen 1994). In

Example 26, ∆ contains up? and Γ contains all the other flag operations.

Corollary 27. If Σ = ∆∪Γ and if ≡∆ on Σ-algebra A is preserved by Γ, then ≡∆ = ≡Σ on

A. More generally, if Ψ ⊆ Φ = ∆ ∪ Γ ⊆ Σ and ≡∆ is preserved by Γ, then ≡∆ = ≡Φ.

Proof. We show the more general result. By Fact 24, ≡∆ is a hidden (∆∪Ψ)-congruence

that contains behavioural Φ-equivalence, since ∆ ⊆ Φ. If ≡∆ is preserved by Γ, then it is

a hidden ∆∪Γ = Φ-congruence, and the desired result follows from Theorem 25.

Verifiers naturally want to do as little work as possible. Hence they do not want to

bother with Ψ at all, and they do not want any overlap between ∆ and Γ, that is, they

want to use ∆ and Γ such that Φ = ∆ + Γ + Ψ, where ‘+’ denotes disjoint union for

operations and ordinary union for sorts. In the object paradigm, it is often natural to let

∆ contain attributes and Γ methods. Then we can give a simple syntactic definition for

≡∆, as follows.

Proposition 28. If Φ = ∆+Γ+Ψ, where ∆ consists of visible operations, if A is a Σ-algebra,

and if we define aR∆a
′ iff δ(a, d) = δ(a′, d) for all δ ∈ ∆ and all d ∈ Aw where w is the arity

of δ, then R∆ = ≡∆. Thus, if R∆ is preserved by Γ, then R∆ is behavioural Φ-equivalence.

Proof. Part (3) of Definition 23 is equivalent to the definition of R∆ because all

operations in ∆ are visible.

The above shows that R as defined in Example 26 really is ≡∆. Furthermore, if Γ

consists of methods and ∆ of attributes, and if the equations satisfy a certain common

property, then R∆ is automatically preserved by Γ.

https://doi.org/10.1017/S0960129599002777 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002777

Hidden coinduction: behavioural correctness proofs for objects 303

Definition 29. If Φ = ∆ + Γ + Ψ, where operations in ∆ are visible and in Γ are hidden,

then a set E of Σ-equations is ∆/Γ-complete iff for all δ ∈ ∆, m ∈ Γ, there is some

t ∈ T∆∪Ψ({x}) such that using E we can prove

δ(d, m(d′, x)) = t ,

with x of hidden sort h′, δ ∈ ∆wh,v , m ∈ Γw′h′ ,h, d ∈ Dw , and d′ ∈ Dw′ .
The following is a straightforward corollary to Proposition 28.

Proposition 30. If Φ = ∆ + Γ + Ψ with operations in ∆ visible and in Γ hidden, if A is a

hidden Σ-algebra, and if E is ∆/Γ-complete, then R∆ is preserved by Γ, and therefore R∆

is behavioural Φ-equivalence.

In the special case where all equations involving Γ have the form

δ(m(x)) = t ,

with x of hidden sort h, δ ∈ ∆, m ∈ Γ, t ∈ T∆∪Ψ({x}), it is easy to see that E is

∆/Γ-complete (this result was suggested to us by Răzvan Diaconescu).

To summarize, hidden coinduction is the proof technique where we define a relation,

show it is a hidden congruence, and then show behavioural equivalence of two terms by

showing they are congruent.

Exercise 31. Prove that the equation

eq putx(M,putx(N,S)) = putx(M,S) .

is a behavioural consequence of the theory X in Example 8, and that it is not strictly

satisfied. (A proof for the satisfaction part of this exercise appears in Appendix A.)

The way we define the congruence relation in a coinductive proof can have a significant

effect on how the proof applies to models. If the relation is defined inductively over some

constructors, then given a model A, the congruence is only defined on the subalgebra

A0 ⊆ A generated by those constructors in A: this is the subalgebra that is reachable

using those constructors. More specifically, the proof that such a candidate relation is a

congruence might proceed by induction on the given constructors; in this case, what is

proved is that the relation is a congruence on the subalgebra A0. Usually we do not care

whether or not a behavioural equation is satisfied by unreachable states, because these

states cannot occur when the machine is run. An example of a correctness proof that

applies only to reachable states is given in Example 35 in Section 4.

3.1. A vending machine

Since none of the examples of nondeterminism in Section 2.3 involve state, which is

the most characteristic feature of hidden algebra, we really should give an example of

nondeterminism with a hidden sort. For some reason, vending machines are very popular

for illustrating nondeterminism and concurrency. The specification below describes per-

haps the simplest vending machine that is not entirely trivial: when you put a coin in, it

nondeterministically gives you either coffee or tea, represented (let us say) by true and

false, respectively; and then it goes to a state where it is prepared to do the same again.

https://doi.org/10.1017/S0960129599002777 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002777

J. A. Goguen and G. Malcolm 304

In this spec, init is the initial state, in(init) is the state after one coin, in(in(init))

is the state after two coins, etc., while out(init) is what you get after the first coin,

out(in(init)) after the second, etc.

th VCT is sort St .

pr DATA .

op in : St -> St .

op out : St -> Bool .

endth

As before, it is easy to restrict behaviour by adding equations like

cq out(in(in(S)) = not out(S) if out(S) == out(in(S)).

which says you cannot get the same substance three times in a row. It is interesting

to look at the final algebra, which we will denote using F , for the signature without

the constant init: according to our ‘magic formula’, it consists (up to isomorphism) of

all infinite Boolean sequences – that is, it is the algebra of (what are called) traces in

traditional concurrency theory. Since there is a unique hidden homomorphism M → F

for any model M of VCT, the image of init under this map characterizes the behaviour

of M. This simple and elegant situation holds in general for hidden algebraic models of

nondeterministic concurrent systems.

3.2. Derived operations

A derived operation is one that can be defined in terms of other operations – intuitively,

it can be eliminated; it is convenient but not necessary. However, derived operations can

sometimes get in the way. For example, in showing ' is a hidden ∆-congruence, we want

to ignore the derived operations in ∆. This is justified by a result saying that given ∆ ⊆ Σ,

if ∆′ ⊆ ∆ consists of the non-derived operations in ∆, then ' is a hidden ∆-congruence iff

it is a hidden ∆′-congruence. This simplifies hidden congruence proofs.

The most difficult part of making this precise is to define what derived operations are.

The easiest way to do this involves a little category theory.

Definition 32. Let (∆, E) be a hidden theory and let (∆′, E ′) ⊆ (∆, E) be a subtheory.

Let A and A′ be the categories of models of (∆, E) and (∆′, E ′), respectively, and let

U : A → A′ be the forgetful functor. Then the operations in ∆ − ∆′ are all derived iff

there exists an inverse F to U (so that both are isomorphisms). In this case, we say that

(∆′, E ′) ⊆ (∆, E) is a deriving extension.

This long sought for general definition of derived operation applies beyond equational

logics to any institution whose signatures are an inclusive category. We can now state the

following generalization of the result informally sketched in the first paragraph of this

subsection.

Proposition 33. Given a deriving extension (∆′, E ′) ⊆ (∆, E), a relation is a hidden ∆′-
congruence iff it is a hidden ∆-congruence.

Proof. Note that the functors U and F do not change the underlying sets of models.

Therefore, a relation R is a hidden ∆′-congruence iff the equivalence classes of R give a

https://doi.org/10.1017/S0960129599002777 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002777

Hidden coinduction: behavioural correctness proofs for objects 305

(∆′, E ′)-model, iff (by applying F to this model) these equivalence classes give a (∆, E)-

model, that is, iff R is a hidden ∆-congruence.

We will now illustrate this on the method rev of Example 26. If rev is derived, the

third reduction in that example is unnecessary. Recall that the equation defining rev is

eq up? rev F = not up? F .

It is not obvious from this that rev is derived, so instead we use the following two

conditional equations to define rev:

cq rev F = dn F if up? F .

cq rev F = up F if not up? F .

These two equations are behaviourally equivalent to the single equation, in the sense

that the two theories define exactly the same model categories: it is not hard to see

that a hidden algebra A satisfies the single equation iff it behaviourally satisfies the two

conditional equations. Now define the functor F : A′ → A to add to an A′-model the

unique operation rev defined by the above two equations. Now it is easy to see that this

F is inverse to U, and hence is an isomorphism (and thus also a left adjoint). Thus, rev

is derived. Eliminating one reduction from Example 3 is not worth the effort involved

in this proof, but there certainly are other cases where such a proof would be worth the

trouble, and the proof technique is of some interest in itself.

Note that in general there is no maximal deriving extension. It is quite possible for a

signature to have many different subsignatures of derived operations. For example, we

have just shown that rev can be defined in terms of up and dn, but we can also derive

both up and dn from rev alone, using the following conditional equations:

cq up F = F if up? F .

cq up F = rev F if not up? F .

cq dn F = rev F if up? F .

cq dn F = F if not up? F .

4. Refinement

The simplest view of refinement assumes a specification (Σ, E) and an implementation A,

and asks if A |≡Σ E. The generalization to behavioural satisfaction is significant here, as

it allows us to treat many subtle implementation tricks that only ‘act as if ’ correct, for

example, data structure overwriting, abstract machine interpretation, and much more.

Unfortunately, trying to prove A |≡Σ E directly dumps us into the semantic swamp

described in the introduction. To rise above this, we work with a specification E ′ for A,

rather than an actual model†. This not only makes the proof far easier, but also has the

† Some may object that this manoeuver isolates us from the actual code used to define operations in A,

preventing us from verifying that code. However, we contend that this isolation is actually an advantage.

Empirical studies show that little of the difficulty of software development lies in the code itself (only about

5% (Boehm 1981)); much more of the difficulty lies in specification and design, and our approach addresses

these directly, without assuming the heavy burden of a messy programming language semantics. But, of

course, we can use algebraic semantics to verify code if we wish, as extensively illustrated in Goguen and

Malcolm (1996). Thus we have achieved a significant separation of concerns.

https://doi.org/10.1017/S0960129599002777 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002777

J. A. Goguen and G. Malcolm 306

advantage that the proof will apply to any other model A′ that satisfies E ′. Hence, what

we prove is E ′ |≡ E. In semantic terms, this means that any A satisfying E′ also satisfies E,

but very significantly, it also means that we can use hidden coinduction to do the proof.

The remarks immediately preceding Section 3.1 about how an inductive definition of the

congruence relation of a coinductive proof affects the models that it applies to are also

relevant to coinductive refinement proofs.

Refinement is consistent with a view of software development as a series of design

decisions giving a series of specifications that are progressively more refined and closer

to actual code‡. In this view, the more abstract specifications allow more ‘implementation

freedom’, while the more concrete specifications tend to have larger signatures and/or

more defined terms. This is illustrated in the following.

Exercise 34. Show that each of C1, C2, C3 below refines A1, and discuss how these

refinements can be seen as reducing nondeterminism (c.f. the discussion in Section 2.3).

The abstract specification A1 says that objects have two natural-number-valued attributes,

the first of which is less than the second:

th A1 is sort State .

pr DATA .

ops a b : State -> Nat .

var S : State .

eq a(S) < b(S) = true .

endth

The proofs that the following refine A1 need a richer theory of NAT than that in Section

2.1, including a definition for addition and some simple lemmas about how it relates to

inequality. We have concealed† these lemmas, so that our readers may have the pleasure

of discovering them from the results of the reductions without the lemmas, as this is such

an important and productive part of the verification process.

th C1 is sort State .

pr DATA .

ops a b : State -> Nat .

var S : State .

eq b(S) = s a(S) .

endth

The above satisfies the constraint in A1 by letting the value of b be one more than that

of a. In the next module, b can be any value greater than a:

th C2 is sort State .

pr DATA .

ops a b c : State -> Nat .

‡ Empirical studies show that this view of software development is naive, since real development projects involve

many false starts, redesigns, prototypes, patches, etc. (Button and Sharrock 1993). Nevertheless, the idealized

view is still useful as a way to organize and document verification efforts, often retrospectively.
† They are in the source file for this paper, so that OBJ3 can read them to do the proofs, but they are invisible

comments to LATEX.

https://doi.org/10.1017/S0960129599002777 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002777

Hidden coinduction: behavioural correctness proofs for objects 307

var S : State .

eq b(S) = a(S) + s c(S) .

endth

In the following module, b must be at least three more than a:

th C3 is sort State .

pr DATA .

ops a b c : State -> Nat .

var S : State .

eq b(S) = a(S) + c(S) .

eq s s 0 < c(S) = true .

endth

(Hint: Our proof uses a Skolem function.) Readers who want to try more proofs could

determine which of the three concrete theories above are refinements of others.

4.1. Stack as pointer plus array

We now give a more substantive illustration of refinement, showing correctness of the

familiar array-with-pointer implementation of a stack.

Example 35. We have to prove that the equations in the STACK specification of Example 19

are behavioural consequences of a specification for pairs of an array state and a pointer,

enriched with the stack operations. Let Φ be the signature of STACK with E its equations,

and let Σ be the signature of the implementation with E′ its equations. Φ ⊆ Σ, because

the stack operations are defined in the implementation. We will show E ′ |≡Φ E, which

means that every appropriate model of the implementation gives rise to a model of STACK

after forgetting the operations in Σ but not in Φ (the subscript Φ on E ′ |≡Φ E means

that behavioural satisfaction of E will be in terms of Φ-contexts). Our proof uses hidden

coinduction, without considering models at all, although our inductive definition of the

candidate relation does affect the set of models to which it applies.

We represent the pointer by the state of a cell containing a natural number. A stack of

depth n has n in this cell, and has its n elements in places 0, ..., n− 1 of the array. Instead

of using the ‘helper’ results in Section 2.2, we apply Theorem 25 directly. The line ‘pr

ARR’ means that the models of PTR||ARR should include all and only the models of ARR,

and, in particular, that they have the same data algebra as ARR, namely DATA.

th PTR||ARR is sort Stack .

pr ARR .

op _||_ : Nat Arr -> Stack [prec 10].

op empty : -> Stack .

op push : Nat Stack -> Stack .

op top_ : Stack -> Nat .

op pop_ : Stack -> Stack .

var I N : Nat . var A : Arr .

eq empty = 0 || nil .

eq push(N, I || A) = s I || put(N,I,A) .

https://doi.org/10.1017/S0960129599002777 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002777

J. A. Goguen and G. Malcolm 308

eq top s I || A = A[I] .

eq top 0 || A = 0 .

eq pop s I || A = I || A .

eq pop 0 || A = 0 || A .

endth

th LEMMA is pr PTR||ARR .

vars I I1 I2 : Nat . vars A A1 A2 : Arr .

cq I1 || put(I,I2,A) = I1 || A if not I2 < I1 .

endth

***> relation + new constants used for quantifier elimination

th R is pr PTR||ARR .

op _R_ : Stack Stack -> Bool .

op _R_ : Nat Nat -> Bool .

vars I I1 I2 : Nat . vars A A1 A2 : Arr .

eq I1 R I2 = I1 == I2 .

eq (0 || A1) R (I || A2) = I == 0 .

eq (I || A) R (I || A) = true .

eq (s I1 || A1) R (s I2 || A2) = I1 == I2 and A1[I1] == A2[I1] and

(I1 || A1) R (I2 || A2) .

ops n i j i1 i2 : -> Nat .

ops a a1 a2 : -> Arr .

endth

***> first show R a congruence using case analysis: i1=0 or i1=s(j):

open R + LEMMA .

eq i1 = 0 .

***> then expanding i1 || a1 R i2 || a2 gives

eq i2 = 0 .

***> now check the congruence equations:

red top(i1 || a1) R top(i2 || a2) .

red pop(i1 || a1) R pop(i2 || a2) .

red push(n, i1 || a1) R push(n, i2 || a2) .

close

open R + LEMMA .

eq i1 = s j .

***> then expanding i1 || a1 R i2 || a2 gives the 3 equations below:

eq i2 = s j .

eq a2[j] = a1[j] .

eq j || a1 R j || a2 = true .

***> now check the congruence equations:

red top(i1 || a1) R top(i2 || a2) .

https://doi.org/10.1017/S0960129599002777 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002777

Hidden coinduction: behavioural correctness proofs for objects 309

red pop(i1 || a1) R pop(i2 || a2) .

red push(n, i1 || a1) R push(n, i2 || a2) .

close

***> finally check the stack equations:

red pop empty R empty .

red top push(n, i || a) R n .

red pop push(n, i || a) R i || a .

All reductions give true. We believe this proof is about as simple as possible. Indeed, most

of the text is specifications; the proof itself is just 27 lines (not counting open/close com-

mands, variable declarations or comments, but including the proof of the lemma). OBJ3

does all the boring work in executing the 11 red commands, for a total of 120 rewrites.

Formally, the congruence proofs use quantifier elimination, case analysis on i1, implica-

tion elimination, relation expansion, conjunction elimination, and finally reduction, where

relation expansion makes explicit some consequences of R being true on a pair of terms.

Now we prove the lemma used above, which just says that values in the array that lie

above the pointer do not matter:

cq I || put(N,J,A) = I || A if not J < I ,

by proving

cq I || put(N,J,A) R I || A = true if not J < I

with the following:

open R .

***> base case:

red 0 || put(n,j,a) R 0 || a .

***> induction step:

eq not j < s i = true .

eq i || put(n,j,a) R i || a = true .

red s i || put(n,j,a) R s i || a .

close

The reader can visit this proof on the world wide web, execute the OBJ proof score on a

remote OBJ3 server, and follow links to explanation pages attached to proof pages, and

to background information. The url for the proofsite homepage is

http://www.cse.ucsd.edu/groups/tatami/

Two points about this proof need further consideration. The first is that the lemma is

used in proving that R is a congruence, and the proof of that lemma appears to rely upon

R being a congruence – we treat this point in an exercise below, because the technique

involved is useful for other problems. The second point is that the inductive definition of

the congruence R implies that this proof only applies to states in models of the concrete

specification that are reachable using that induction scheme (see the discussion just before

Section 3.1). In particular, the proof that R is a congruence assumes that all stacks are

of the form I || A. Therefore our proof only applies to states that are reachable by the

|| operation. Of course, we could add operations

op getPointer : Stack -> Nat .

https://doi.org/10.1017/S0960129599002777 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002777

J. A. Goguen and G. Malcolm 310

op getArray : Stack -> Array .

together with appropriate equations in order that all models of the concrete theory be

reachable. Another possibility would be to use a different candidate relation, say

S1 R S2 = top S1 == top S2 and (pop S1) R (pop S2) .

This relation would of course require a different correctness proof (Goguen and Malcolm

1994).

It is also worth noting that although this specification has two hidden sorts, we are

mainly interested in one of them, namely Stack. Both sorts have visible-valued operations,

but only the Stack sort’s (single) visible-valued operation (namely top) is an attribute.

Some subtle points regarding our use of OBJ3’s built-in equality relation == are discussed

in Section 1.1 of Goguen and Malcolm (1996).

Exercise 36. Show that the use of the lemma in the congruence proof is not circular,

because its use there depends only on R being transitive and symmetric, not on its being

a congruence. Hint: show that the proof of the lemma, together with transitivity and

symmetry, justify the following:

var I1 I2 I : Nat . var A : Arr . var S : Stack .

cq I1 || put(I,I2,A) R S = S R I1 || A if not I2 < I1 .

This proof was fairly straightforward to construct, except for the lemma. However, our

style of using OBJ greatly facilitated even this, by producing an expression that suggested

the lemma. This is typical of our experience with OBJ proof scores (Goguen 1990c;

Goguen and Malcolm 1996; Goguen 1998).

Notice that in this implementation the term top empty is given the concrete value 0,

but it could have been given any other value, for example, by adding one of the equations

eq top 0 || A = s 0 .

eq top 0 || A = A[0] .

In fact, the above proof does not require any particular value to be specified; all that is

necessary in order to prove that R is a congruence is that all empty stacks (i.e., all stacks

whose pointer is 0) should give the same value for top. Thus, we might have added one

of the equations

eq top 0 || A = top 0 || nil .

eq top 0 || A1 = top 0 || A2 .

although the latter is not a rewrite rule because of the free variable in the right-hand

side. A fully satisfactory treatment of stacks requires order sorted algebra, and would

also allow a more satisfactory proof of refinement, because it would allow us to disregard

values of top and pop on empty stacks, so that the value of top empty could be left

unspecified.

Exercise 37. Specify sets and lists and, by verifying an appropriate refinement, show that

sets can be implemented with lists.

A more sophisticated view of refinement (Goguen and Meseguer 1982; Sannella and

Tarlecki 1988; Hennicker 1990; Orejas et al. 1996) allows the concrete implementation to

rename or even identify some of the abstract sorts and operations, thus giving rise to a

hidden signature map from the abstract to the concrete signature.

https://doi.org/10.1017/S0960129599002777 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002777

Hidden coinduction: behavioural correctness proofs for objects 311

Definition 38. A hidden signature map ϕ : (H,Σ) → (H ′,Σ′) is a signature morphism

ϕ : Σ → Σ′ that preserves hidden sorts and is the identity on (V ,Ψ). A hidden signature

map ϕ : Σ→ Σ′ is a refinement ϕ : (Σ, E)→ (Σ′, E ′) iff ϕA′ |≡Σ E for every (Σ′, E ′)-algebra

A′.
(In the above, ϕA′ denotes A′ viewed as a Σ-algebra.) It can be shown that ϕ is a

refinement if all visible consequences of the abstract specification hold in the concrete

specification (Malcolm and Goguen 1994).

Proposition 39. A hidden signature map ϕ : (Σ, E)→ (Σ′, E ′) is a refinement if E ′ |= ϕ(c[e])

for each e ∈ E and each visible Σ-context c, where if e is the equation (∀X) t = t′, then

c[e] denotes the equation (∀X) c[t] = c[t′].
The following consequence of Corollary 27 justifies the use of hidden coinduction for

proving correctness of refinements; some examples appear in Malcolm and Goguen (1994).

Proposition 40. A hidden signature map ϕ : (Σ, E) → (Σ′, E ′) is a refinement if Σ =

Γ + ∆ + Ψ, all operations in φ(Γ) preserve ≡φ(∆) for all (Σ′, E ′)-algebras, and E ′ |= ϕ(c[e])

for each e ∈ E and all visible ∆-contexts c.

We write φ(Γ) for the subsignature of Σ′ whose operations are of the form φ(γ) for γ in

Γ. Correctness proofs for refinements involve showing that the concrete specification has

the desired behaviour, and generally make use of the concrete equations. The proposition

above says that a refinement can be proved correct using the concrete equations to verify

both the congruence property of ≡φ(∆) and the satisfaction of the equations ϕ(c[e]).

4.2. Model-based refinement

Early studies of refinement were model oriented (Hoare 1972), considering refinement a

relationship between two models, one ‘abstract’ and the other ‘concrete’. Then it makes

sense to map from concrete variables to the abstract objects they represent. However,

the (often) complex representations of the concrete program, and the (usually) complex

semantics of the programming language in which it is expressed introduce gratuitous

difficulties into such proofs. Our approach to refinement simplifies the first difficulty by

considering theories for both the concrete and the abstract levels, while the complexity of

the programming language semantics becomes a completely separate issue. In particular,

our more abstract definition of refinement for specifications allows stepwise refinement to

begin before choosing concrete representations for variables; such a choice corresponds

to fixing a model, and it is good engineering practice to delay such a commitment as long

as possible.

For us, a representation is correct if it is a model of the concrete theory, and showing this

should be much easier than showing that it satisfies the abstract specification, because the

representations will be much closer. The perhaps initially mysterious fact that mappings

go in opposite directions for specifications and for models is explained at a higher level

of abstraction by the theory of institutions (Goguen and Burstall 1992), which shows that

in logics satisfying certain mild assumptions, it is natural that the maps induced by a

signature morphism on models and on theories should go in opposite directions. Hence,

the duality between model-based and theory-based refinement is very natural.

https://doi.org/10.1017/S0960129599002777 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002777

J. A. Goguen and G. Malcolm 312

Finally, note that hidden algebra allows subtle changes of representation to be proved

correct much more easily; indeed, our primary motivation is always to make correctness

proofs just as easy as possible.

5. Concurrent connection

Concurrency is an essential part of the object paradigm, and is natural to hidden algebra,

in that no order of execution is specified by hidden theories – in particular, concurrent

execution is legal whenever it is possible. This section describes an elegant construction

of composite systems from components using the concurrent connection (a weaker version

of this construction was called the independent sum when first introduced in Goguen and

Diaconescu (1994b)). As motivation, consider the following example.

Example 41. Recall the specification X of an integer cell X in Example 8, and define

another integer cell, Y , by everywhere replacing X and x with Y and y, respectively. Then

the concurrent connection of X and Y should have a specification X ‖ Y with a single

hidden sort, where the operations of X and Y have the same semantics as before, such

that operations in X and Y do not interfere with each other. Thus X ‖ Y should be

the union of the specifications X and Y , with their sorts identified, and with some new

equations to express the noninterference of X and Y , as follows:

th XY is sort State .

pr DATA .

ops putx puty : Nat State -> State .

ops (getx_) (gety_) : State -> Nat .

var S : State .

vars M N : Nat .

eq getx putx(N,S) = N .

eq gety puty(N,S) = N .

eq getx puty(N,S) = getx S .

eq gety putx(N,S) = gety S .

endth

The last two equations express the noninterference of X and Y .

Exercise 42. Prove that the equation

eq putx(M,puty(N,S)) = puty(N,putx(M,S)) .

is a behavioural consequence of theory XY in Example 41. (A solution appears in Appendix

A.)

We now give a generalization and universal characterization of the above construction

to any pair of specifications (it extends to any set of specifications).

Definition 43. A synchronization of specifications P1, P2 with just one hidden sort is a

specification P with refinements ϕ1 : P → P1, ϕ2 : P → P2, where P is called the shared

part, and a connection of a synchronization ϕ1, ϕ2 is a specification Q with refinements

ψi : Pi → Q such that

• Q |≡ (∀X)(∀Y)(∀S) ψi(ai)(X,ψj(mj)(Y , S)) = ψi(ai)(X, S) ,

https://doi.org/10.1017/S0960129599002777 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002777

Hidden coinduction: behavioural correctness proofs for objects 313

• Q |≡ (∀X)(∀Y)(∀S) ψi(mi)(X,ψj(mj)(Y , S)) = ψj(mj)(Y , ψi(mi)(X, S)) , and

• ϕ1;ψ1 = ϕ2;ψ2 ,

for i = 1, 2, where S is an h-sorted variable, mk is a method and ak is an attribute of Pk ,

such that none of these symbols lie in the image of ϕk . We call an initial connection the

concurrent connection, if there is one.

In practice, we can avoid these commutativity equations by representing states as ordered

tuples, as in Example 35. This is possible because we do not mix messages into the same

‘soup’ as objects. Intuitively, the concurrent connection is ‘the best’ among all specifications

with noninterfering insertions for the Pi. Although the components Pi must have just one

hidden sort, the candidate connections Q need not have this property. However, the proof

of the result below (slightly generalizing the proof in Goguen and Diaconescu (1994b)

shows that it does have just one hidden sort.

Theorem 44. Every synchronization ϕ1 : P → P1, ϕ2 : P → P2 has a concurrent connec-

tion.

Proof. The concurrent connection Q has the signature obtained by combining the

signatures of P1 and P2, identifying those parts that come from the shared part P . This

gives signature morphisms ψi : ΣPi → ΣQ with ϕ1;ψ1 = ϕ2;ψ2. The equations of Q are

ψi(E1)∪ψ2(E2)∪ Iϕ, where Iϕ represents the noninterference axioms of Definition 43, and

where we recall that

Ei = {c[e] | e ∈ Ei, c ∈ CΣi
[z]v} .

It is straightforward to check that this is an initial connection (Cı̂rstea 1996).

Thus the specification XY of Example 41 is the concurrent connection of X and Y

synchronized over the sort State, where the shared part P might (for example) be

th STATE is sort State .

pr DATA .

endth

where DATA contains at least NAT and the Booleans.

The proof of the theorem above shows that in general, concurrent connections have

an infinite number of equations. However, in many cases a finite number suffices – for

example, if Σ = ∆ + Γ + Ψ, where ∆ consists of visible operations, and ≡∆ is preserved by

Γ, as in Proposition 30.

We can prove that a concurrent system is free from deadlock by proving that it is

consistent. This is because deadlock means that the equations expressing synchronization

do not have a solution.

Hidden coinduction can be used to verify properties of systems built by concurrent

connection, as in the concurrent connection of an array and a pointer implementing a

stack in Example 35. Communication protocols provide many further examples where

correctness proofs are desirable. For example, we might have an abstract specification of

a persistent buffer that ignores incoming values when it is full. Its specification would

include an equation like

cq in(S,V) = S if full(S) .

https://doi.org/10.1017/S0960129599002777 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002777

J. A. Goguen and G. Malcolm 314

where in is the method that sends an input to the buffer. This kind of buffer can be

implemented by the concurrent connection of a buffer that always accepts incoming values

(possibly overwriting values if it is full) and a ‘gatekeeper’ object that only allows incoming

values when the buffer is not full – hidden coinduction gives an elegant correctness proof.

Some examples of hidden correctness proofs for asynchronous communication protocols

are given in Veglioni (1997).

The concurrent connection of two objects without synchronization is their coproduct

in the category having appropriate specifications as objects and certain refinements as

morphisms. More generally, Corina Cı̂rstea has shown that concurrent connection with

synchronization is colimit in this category (Cı̂rstea 1996).

Finally, we emphasize that the definition of concurrent connection in this section

is not really suitable for proofs, but instead provides an abstract characterization of

the intended semantics. For proving behavioural properties, the ordered tuple approach

used in Example 35 is much better, because it avoids the extra complication of the

commutativity equations.

6. Conclusions and related work

The hidden approach described in this paper uses behavioural satisfaction to get an

algebraic treatment of state that abstracts away from implementation details. The idea of

behavioural satisfaction was introduced by Reichel (Reichel 1981) in the context of partial

algebras (see also Reichel (1985)). Behavioural equivalence of states, a generalization of

bisimulation, appeared in Goguen and Meseguer (1982). Reichel’s notion of behavioural

theory has been developed further in several different directions within the algebraic

specification community, mainly using partial algebras, for example, see Ehrig et al. (1983),

Ehrig et al. (1993) and Bidoit (1996), and the survey Orejas et al. (1996). The first effective

algebraic proof technique for behavioural properties was context induction, introduced

by Hennicker (Hennicker 1990) and further developed with Bidoit (Bidoit 1996). This

research programme is similar to ours in many ways, though their approach is more

concerned with semantics than with proofs, and their context induction can be very

awkward to apply in practice (see Gaudel and Privara (1991) for a discussion of some of

the difficulties). We propose hidden coinduction as a way to eliminate the awkwardness

of context induction.

Reichel’s seminal work on behavioural satisfaction was in part motivated by an insight

into how to unify initial and final semantics (Reichel 1981). Behavioural and final semantics

were perhaps first advocated by Montanari et al. (Giarrantana et al. 1976), though Wand

(Wand 1979) also made an early contribution. Finality is also used for treating states

in Reichel (1981), Goguen and Meseguer (1982), Meseguer and Goguen (1985), and

Malcolm (1996), among many other places, including the present paper – there is some

elegant more recent by work by Reichel on co-algebraic semantics for the object paradigm

(Reichel 1995). This flood of work on finality and behavioural abstraction validates some

intuitions expressed long ago by Guttag (Guttag 1975; Guttag 1977).

There is also a distinguished tradition of research in coalgebra . One thread in this

tradition seeks to show existence of final transition systems, which give rise to an abstract

https://doi.org/10.1017/S0960129599002777 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002777

Hidden coinduction: behavioural correctness proofs for objects 315

notion of bisimulation and can be used to give a semantics for process algebras (Aczel and

Mendler 1989; Barr 1993). Another thread views coalgebra as a variation on universal

algebra (Rutten 1996), and applies it to functional programming (Hagino 1988; Malcolm

1990; Gordon 1995), to automata theory (Rutten and Turi 1994; Rutten 1996), and to the

object paradigm (Reichel 1995; Jacobs 1995; Jacobs 1996; Jacobs 1997; Cı̂rstea 1996). An

interesting recent development combines algebra and coalgebra to describe denotational

and operational semantics (Turi and Plotkin 1997).

Reichel (Reichel 1995) was the first to apply coalgebra explicitly to the object para-

digm, and his basic construction can be used to show that hidden algebra extends

coalgebra with generalised constants (Malcolm 1996; Cı̂rstea 1997). It is precisely this

extension that allows the treatment of nondeterminism we advocate in this paper. In

fact, it seems difficult to treat nondeterminism at all in a purely coalgebraic approach,

since the obvious move of using power objects in the defining functor compromises the

effectiveness of equational reasoning. Our hidden coinduction is a consequence of the fact

that behavioural equivalence is the largest hidden congruence, and our use of the term

‘coinduction’ agrees with its use in Milner and Tofte (1991), which seems to be the earliest

use of the term for a proof principle. However, coinduction does arise very naturally in a

coalgebraic setting (Jacobs 1995; Malcolm 1996). We have not set out here in great detail

how standard constructions from the object paradigm are modelled in hidden algebra,

but Goguen and Diaconescu (1994b) and Cı̂rstea (1997) describe a hidden approach to

inheritance. These are also treated in a coalgebraic setting in, for example, Jacobs (1996).

We are experimenting with ways to organize hidden proofs as active websites, using

html, Java, JavaScript, etc., and a website editor called Kumo (Goguen et al. 1997a;

Goguen et al. 1997b), which provides direct support for hidden coinduction and auto-

matically generates an entire website for a proof, including executable OBJ3 proof scores,

links to background material, and to explanation pages. We intend to link this tool to

decision methods for special domains beyond canonical term rewriting theories, such

as Presburger arithmetic. Traceability is very important when constructing complex new

proofs, and we intend to explore use of the toor hypermedia tool (Pinheiro and Goguen

1996) for this purpose. We have already done one rather substantial hidden proof, namely

the correctness of an optimizing compiler for OBJ3, based on an abstract term rewriting

machine (Hamel and Goguen 1994; Hamel 1996), and several smaller examples are on

the web, including the stack example of Section 4.

This paper has restricted attention to hidden many sorted algebra. The extension to

hidden order sorted algebra is not really difficult, but it cannot be trivial, since it covers

nonterminating systems, partial recursive functions, multiple inheritance, error definition

and handling, coercion, overwriting, multiple representation, and more – many details

appear in Malcolm and Goguen (1994), but there is still more work to be done. We

also wish to further explore connections with other approaches, including coalgebra and

concurrent logic programming. For example, it would be interesting to find morphisms

between the relevant institutions, generalizing the adjunctions of Winskel (Winskell 1984).

We feel that hidden algebra is a natural next step in the evolution of algebraic

specification, carrying forward the intentions of its founders in a simple and elegant way

to the realities of modern software. Initial algebra semantics still works for data values, but

https://doi.org/10.1017/S0960129599002777 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002777

J. A. Goguen and G. Malcolm 316

now we can also handle systems of objects (abstract machines), concurrency, constraints,

streams, existential queries, and more. We wish to explore this potent combination of

paradigms further, and apply it to further problems of real practical value.

Appendix A. Two small coinductive proofs

Below are OBJ3 proofs using hidden coinduction to solve two of the exercises in this

paper.

Exercise 31: We let ∆ contain getx and Γ contain putx. Then we use Proposition 28 and

apply Corollary 27.

***> to prove putx(M,putx(N,S)) = putx(M,S):

openr X .

op _R_ : State State -> Bool .

var S1 S2 : State .

eq S1 R S2 = getx S1 == getx S2 .

ops s1 s2 : -> State .

ops n m : -> Nat .

close

***> first show R is a congruence:

open .

eq getx s1 = getx s2 .

red putx(n,s1) R putx(n,s2) . ***> should be: true

close

***> now prove the equation:

red putx(m,putx(n,s1)) R putx(m,s1) . ***> should be: true

Exercise 42: Let ∆ contain getx and gety, and Γ contain putx and puty. Then use

Proposition 28 and apply Corollary 27.

***> to prove putx(M,puty(N,S)) = puty(N,putx(M,S)):

openr XY .

op _R_ : State State -> Bool .

var S1 S2 : State .

eq S1 R S2 = getx S1 == getx S2 and gety S1 == gety S2 .

ops s1 s2 : -> State .

ops n m : -> Nat .

close

***> first prove R is a congruence:

open .

eq getx s1 = getx s2 .

eq gety s1 = gety s2 .

red putx(n,s1) R putx(n,s2) . ***> should be: true

red puty(n,s1) R puty(n,s2) . ***> should be: true

https://doi.org/10.1017/S0960129599002777 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002777

Hidden coinduction: behavioural correctness proofs for objects 317

close

***> now prove the equation:

red putx(m,puty(n,s1)) R puty(n,putx(m,s1)) . ***> should be: true

References

Aczel, P. and Mendler, N. (1989) A final coalgebra theorem. In: Pitt, D. H. et al. (ed.) Category

Theory and Computer Science. Springer-Verlag Lecture Notes in Computer Science 389.

Barr, M. (1993) Terminal coalgebras in well-founded set theory. Theoretical Computer Science 114

299–315.

Bidoit, M., Hennicker, R. and Wirsing, M. (1996) Behavioural and abstractor specifications. Science

of Computer Programming 25 (2–3).

Boehm, B. (1981) Software Engineering Economics, Prentice-Hall.

Button, G. and Sharrock, W. (1993) Occasioned practises in the work of implementing development

methodologies. In: Jirotka, M. and Goguen, J. (eds.) Requirements Engineering: Social and

Technical Issues, Academic Press 217–240.

Cı̂rstea, C. (1996) A Semantic Study of the Object Paradigm, Transfer thesis, Programming Research

Group, Oxford University.

Cı̂rstea, C. (1997) Coalgebra semantics for hidden algebra: parameterized objects and inheritance.

Paper presented at the 12th Workshop on Algebraic Development Techniques, June 1997.

Diaconescu, R. (1994) Category-based Semantics for Equational and Constraint Logic Programming.

Ph. D. thesis, Programming Research Group, Oxford University.

Diaconescu, R. (1996) A category-based equational logic semantics to constraint programming.

In: Haveraaen, M., Owe, O. and Dahl, O.-J. (eds.) Recent Trends in Data Type Specification.

Springer-Verlag Lecture Notes in Computer Science 200–222.

Ehrig, H., Kreowski, H.-J., Mahr, B. and Padawitz, P. (1983) Algebraic implementation of abstract

data types. Theoretical Computer Science 20 209–263.

Ehrig, H., Orejas, F., Cornelius, F. and Baldamus, M. (1993) Abstract and behaviour module

specifications. Technical Report 93–25, Technische Universität Berlin.

Gaudel, M.-C. and Privara, I. (1991) Context induction: an exercise. Technical Report 687, LRI,

Université de Paris-Sud.

Giarrantana, V., Gimona, F. and Montanari, U. (1976) Observability concepts in abstract data

specifications. Proceedings, Conference on Mathematical Foundations of Computer Science.

Springer-Verlag Lecture Notes in Computer Science 45.

Goguen, J. (1990a) Higher-order functions considered unnecessary for higher-order programming.

In: Turner, D. (ed.) Research Topics in Functional Programming. University of Texas at Austin

Year of Programming Series, Addison Wesley 309–352.

Goguen, J. (1990c) Proving and rewriting. In: Kirchner, H. and Wechler, W. (eds.) Proceedings,

Second International Conference on Algebraic and Logic Programming. Springer-Verlag Lecture

Notes in Computer Science 463 1–24.

Goguen, J. (1994) Requirements engineering as the reconciliation of social and technical issues. In:

Jirotka, M. and Goguen, J. (eds.) Requirements Engineering: Social and Technical Issues, Academic

Press 165–200.

Goguen, J. (1998) Theorem Proving and Algebra, MIT Press (to appear).

Goguen, J. and Burstall, R. (1992) Institutions: Abstract model theory for specification and

programming. Journal of the Association for Computing Machinery 39 (1) 95–146.

https://doi.org/10.1017/S0960129599002777 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002777

J. A. Goguen and G. Malcolm 318

Goguen, J. and Diaconescu, R. (1994a) An Oxford survey of order sorted algebra. Mathematical

Structures in Computer Science 4 363–392.

Goguen, J. and Diaconescu, R. (1994b) Towards an algebraic semantics for the object paradigm.

In: Ehrig, H. and Orejas, F. (eds.) Proceedings, Tenth Workshop on Abstract Data Types.

Springer-Verlag Lecture Notes in Computer Science 785 1–29.

Goguen, and Malcolm, G. (1994) Proof of correctness of object representation. In: Roscoe, A. W.

(ed.) A Classical Mind: Essays in Honour of C. A. R. Hoare, Prentice Hall 119–142.

Goguen, J. and Malcolm, G. (1996) Algebraic Semantics of Imperative Programs, MIT Press.

Goguen, J., Malcolm, G. and Kemp, T. (1998) A hidden Herbrand theorem. In: Palamidessi, C.,

Glaser, H. and Meinke, K. (eds.) Principles of Declarative Programming. Springer-Verlag Lecture

Notes in Computer Science 1490 445–462.

Goguen, J. and Meseguer, J. (1982) Universal realization, persistent interconnection and imple-

mentation of abstract modules. In: Nielsen, M. and Schmidt, E. M. (eds.) Proceedings, 9th

International Conference on Automata, Languages and Programming. Springer-Verlag Lecture

Notes in Computer Science 140 265–281.

Goguen, J. and Meseguer, J. (1987a) Order-sorted algebra solves the constructor selector, multiple

representation and coercion problems. In: Proceedings, Second Symposium on Logic in Computer

Science, IEEE Computer Society 18–29.

Goguen, J. and Meseguer, J. (1992) Order-sorted algebra I: Equational deduction for multiple

inheritance, overloading, exceptions and partial operations. Theoretical Computer Science 105 (2)

217–273. (Drafts exists from as early as 1985).

Goguen, J., Mori, A. and Lin, K. (1997a) Algebraic semiotics, proof Webs, and distributed

cooperative proving. In: Proceedings, User Interfaces for Theorem Provers (Sophia Antipolis,

France, 1–2 Sept. 1997) 25–34.

Goguen, J., Mori, A., Lin, K., Roşu, G. and Sato, A. (1997b) Distributed cooperative formal methods

tools. In: Proceedings, Automated Software Engineering (Lake Tahoe NV, 3–5 Nov 1997), IEEE

55–62.

Goguen, J., Thatcher, J. and Wagner, E. (1978) An initial algebra approach to the specification,

correctness and implementation of abstract data types. In: Yeh, R. (ed.) Current Trends in

Programming Methodology, IV, Prentice Hall 80–149.

Gordon, A. D. (1995) Bisimilarity as a theory of functional programming. Electronic Notes in

Theoretical Computer Science 1.

Guttag, J. (1975) The Specification and Application to Programming of Abstract Data Types, Ph. D.

thesis, University of Toronto. (Computer Science Department, Report CSRG–59.)

Guttag, J. (1977) Abstract data types and the development of data structures. Communications of

the Association for Computing Machinery 20 297–404.

Hagino, T. (1988) A typed lambda calculus with categorical type constructors. In: Pitt, D. H.,

Poigné, A. and Rydeheard, D. E. (eds.) Category Theory and Computer Science. Springer-Verlag

Lecture Notes in Computer Science 283 140–157.

Hamel, L. (1996) Behavioural Verification and Implementation of an Optimizing Compiler for OBJ3,

Ph. D. thesis, Oxford University Computing Lab, 1996.

Hamel, L. and Goguen, J. (1994) Towards a provably correct compiler for OBJ3. In: Hermenegildo,

M. and Penjam, J. (eds.) Proceedings, Conference on Programming Language Implementation

and Logic Programming. Springer-Verlag Lecture Notes in Computer Science 844 132–146.

Hennicker, R. (1990) Context induction: a proof principle for behavioural abstractions. In: Miola,

A. (ed.) Proceedings, International Symposium on the Design and Implementation of Symbolic

Computation Systems. Springer-Verlag Lecture Notes in Computer Science 429 101–110.

Hoare, C. A. R. (1972) Proof of correctness of data representation. Acta Informatica 1 271–281.

https://doi.org/10.1017/S0960129599002777 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002777

Hidden coinduction: behavioural correctness proofs for objects 319

Jacobs, B. (1995) Mongruences and cofree coalgebras. In: Nivat, M. (ed.) Algebraic Methodology

and Software Technology (AMAST95). Springer-Verlag Lecture Notes in Computer Science 936

245–260.

Jacobs, B. (1996) Objects and classes, coalgebraically. In: Freitag, B., Jones, C., Lengauer, C. and

Schek, H.-J. (eds.) Object-Orientation with Parallelism and Persistence, Kluwer 83–103.

Jacobs, B. (1997) Invariants, bisimulations and the correctness of coalgebraic refinements. Technical

Report CSI–R9704, Computer Science Institute, University of Nijmegen.

Malcolm, G. (1990) Data structures and program transformation. Science of Computer Programming

14.

Malcolm, G. (1996) Behavioural equivalence, bisimilarity, and minimal realisation. In Haveraaen,

M., Owe, O. and Dahl, O.-J. (eds.) Recent Trends in Data Type Specifications. Springer-Verlag

Lecture Notes in Computer Science 389.

Malcolm, G. and Goguen, J. (1994) Proving correctness of refinement and implementation. Technical

Monograph PRG-114, Programming Research Group, University of Oxford.

Meseguer, J. and Goguen, J. (1985) Initiality, induction and computability. In: Nivat, M. and

Reynolds, J. (eds.) Algebraic Methods in Semantics, Cambridge University Press 459–541.

Milner, R. and Tofte, M. (1991) Co-induction in relational semantics. Theoretical Computer Science

87 (1) 209–220.

Orejas, F., Navarro, M. and Sánchez, A. (1996) Algebraic implementation of abstract data types:

a survey of concepts and new compositionality results. Mathematical Structures in Computer

Science 6 (1).

Pinheiro, F. and Goguen, J. (1996) An object-oriented tool for tracing requirements. IEEE Software

(Special issue of papers from ICRE ’96) 52–64.

Reichel, H. (1981) Behavioural equivalence – a unifying concept for initial and final specifications.

In: Proceedings, Third Hungarian Computer Science Conference, Akademiai Kiado, Budapest.

Reichel, H. (1985) Behavioural validity of conditional equations in abstract data types. In:

Contributions to General Algebra 3, Teubner (Proceedings of the Vienna Conference, June 21–24).

Reichel, H. (1995) An approach to object semantics based on terminal co-algebras. Mathematical

Structures in Computer Science 5 129–152.

Roşu, G. and Goguen, J. (1998) Hidden congruent deduction. To appear in Proceedings, International

Workshop on First Order Theorem Proving.

Rutten, J. J. M. J. (1996) Universal coalgebra: a theory of systems. Technical Report CS–R9652,

CWI.

Rutten, J. and Turi, D. (1994) Initial algebra and final coalgebra semantics for concurrency. In:

de Bakker, J., de Roever, J. W. and Rozenberg, G. (eds.) Proc. REX Symposium ‘A Decade of

Concurrency’. Springer-Verlag Lecture Notes in Computer Science 803 530–582.

Sannella, D. and Tarlecki, A. (1988) Toward formal development of programs from algebraic

specifications. Acta Informatica 25 233–281.

Turi, D. and Plotkin, G. (1997) Towards a mathematical operational semantics. In: Proceedings

Logic in Computer Science 1997.

Veglioni, S. (1997) Integrating Static and Dynamic Aspects in the Specification of Open, Object-based

and Distributed Systems, Ph. D. thesis, Oxford University Computing Laboratory.

Wand, M. (1979) Final algebra semantics and data type extension. Journal of Computer and System

Sciences 19 27–44.

Winskel, G. (1984) Categories of models for concurrency. In: Brooks, S., Roscoe, A. W. and Winskel,

G. (eds.) Proceedings, Workshop on the Semantics of Concurrency. Springer-Verlag Lecture Notes

in Computer Science 197 246–267.

https://doi.org/10.1017/S0960129599002777 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002777

