
Ergod. Th. & Dynam. Sys., (2021), 41, 2591–2658 © The Author(s), 2020. Published by
Cambridge University Press.
doi:10.1017/etds.2020.80

2591

SURVEY

Symbolic dynamics for non-uniformly

hyperbolic systems

YURI LIMA

Yuri Lima, Departamento de Matemática, Universidade Federal do Ceará (UFC),
Campus do Pici, Bloco 914, CEP 60440-900. Fortaleza – CE, Brazil

(e-mail: yurilima@gmail.com)

(Received 4 June 2020 and accepted in revised form 4 June 2020)

Abstract. This survey describes the recent advances in the construction of Markov
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ment comes from a finer theory of non-uniformly hyperbolic systems, which we also
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1. Introduction
Markov partitions are a powerful tool in the modern theories of dynamical systems and
ergodic theory. They were introduced to these fields at the end of the 1960s (see the
foundational works by Adler and Weiss and by Sinaı̆ [AW67, AW70, Sin68a, Sin68b]
and references therein) and have played a crucial role ever since. Roughly speaking, a
Markov partition is a partitioning of the phase space of a system into pieces, which allows
trajectories to be represented by paths on a graph. The dynamics of paths on a graph
is much simpler to understand, and many of its statistical properties can therefore be
pushed to the original dynamical system. This approach was extensively developed in
the late 1960s and early 1970s for uniformly hyperbolic systems, and its consequences
include many breakthroughs in smooth ergodic theory. The method developed by Bowen
[Bow08] will be of particular importance to us: locally representing the dynamics as a
small perturbation of a hyperbolic matrix, he employed the theory of pseudo-orbits used by
Anosov [Ano70] and by himself [Bow70b, Bow71, Bow72b] to obtain a Markov cover and
then refine it into a Markov partition. Due to uniform hyperbolicity, the Markov partitions
are finite.

Following Bowen’s philosophy, Katok showed that a hyperbolic ergodic measure that
is invariant under a C1+β diffeomorphism has horseshoes approximating its entropy. A
measure is hyperbolic if its Lyapunov exponents are non-zero, and this introduces the
concept of non-uniform hyperbolicity: the hyperbolicity is not necessarily observed at
every iteration but only on average. In the late 1970s, Pesin developed a global theory
to treat C1+β non-uniformly hyperbolic systems [Pes76, Pes77a, Pes77b], nowadays
known as Pesin theory; see the book [BP07]. Pesin’s idea was to construct local charts,
nowadays called Pesin charts, to represent the dynamics of a non-uniformly hyperbolic
diffeomorphism again as a small perturbation of a hyperbolic matrix. The difference from
the uniformly hyperbolic situation is that the domain of the Pesin chart is no longer
uniform in size and depends on the quality of hyperbolicity at the point. In [Kat80],
Katok combined Pesin theory with a fine theory of pseudo-orbits and, to avoid the possible
degeneracy of Pesin charts, restricted the analysis to Pesin blocks, which are non-invariant
subsets of the phase space where non-uniform hyperbolicity is essentially uniform. For
details, see the supplementary chapter by Katok and Mendoza [KH95]. Since a horseshoe
naturally carries a Markov partition, Katok’s result can be seen as the construction of finite
Markov partitions that approximate the topological entropy. The applications using what
are now called Katok horseshoes are countless. Nevertheless, this approach is not genuinely
non-uniformly hyperbolic, since it does not treat at once regions where the degeneracy of
Pesin charts occurs. In other words, a single Pesin block does not encompass the whole
dynamics (for instance, it usually does not have full topological entropy).

This difficulty stood unresolved for many years, until Sarig recently bypassed it,
constructing countable Markov partitions with full topological entropy for C1+β sur-
face diffeomorphisms [Sar13]. His methods are more suitable for adaptations and
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generalizations, and are now being further refined in settings outside the scope of the
previous theory, such as billiard maps. Here are some of the developments:

• Lima and Sarig for three-dimensional flows without fixed points [LS19];
• Lima and Matheus for surface maps with discontinuities [LM18];
• Ben Ovadia for diffeomorphisms in any dimension [BO18].

Now the Markov partitions are countable. This is unavoidable to treat the regions where
the Pesin charts degenerate. Not only are these latter results stronger than the previous
ones in the literature, they also cover much broader classes of examples such as geodesic
flows on surfaces with non-positive curvature and Bunimovich stadia. Using them, many
dynamical and statistical properties have been established: counting on the number of
closed orbits [BD20, BO18, Buz20, LM18, LS19, Sar13], counting on the number of
measures of maximal entropy [BCS18, BO18, LS19, Sar13], ergodic properties of equi-
librium measures [LLS16, Sar11], the almost Borel structure of surface diffeomorphisms
[BB17], and the generic simplicity of the Lyapunov spectrum of non-uniformly hyperbolic
diffeomorphisms [BPVL20].

Generally speaking, countable Markov partitions are indeed necessary to code
non-uniformly hyperbolic systems: while the set of topological entropies associated to
finite Markov partitions is countable, the set of topological entropies of non-uniformly
hyperbolic systems is [0, ∞). This occurs, for example, among C∞ diffeomorphisms in
surfaces, where the topological entropy is continuous [New89, Theorem 6]. For instance,
consider the two-dimensional disc: the identity map has zero entropy, and Smale’s
horseshoe has topological entropy equal to log 2 (see §2.1.1 for details on this latter
example). Since these maps are homotopic, the set of values for the topological entropy
contains [0, log 2] and thus, taking powers, it is equal to [0, ∞). The same occurs for C∞

diffeomorphisms in the two-dimensional torus: in the one-parameter family of standard
maps fk(x, y) = (−y + 2x + k sin(2πx), x), the topological entropy reaches arbitrarily
large values [Dua94].

As already mentioned, Markov partitions provide many dynamical and statistical
consequences because the dynamics of paths on a graph is simple to understand. In general,
any partition generates a symbolic representation of the system, given by the shift map
acting on a subset of the symbolic space of paths on a graph. For Markov partitions, such
symbolic representation is defined not only on a subset but on the whole space of paths
on the graph. This is already a big advantage, but for effectiveness of applications it is
important to understand the coding map, which relates real trajectories to paths on the
graph. If, for instance, the coding map is finite-to-one (that is, every point has finitely many
pre-images) then measures on the original system are related to measures on the symbolic
space, and the relation preserves entropy (by the Abramov–Rokhlin formula). This happens
for uniformly hyperbolic systems almost automatically, but constitutes a major difficulty
for non-uniformly hyperbolic ones. Indeed, all previous attempts before Sarig failed exactly
at this point. Sarig did not prove that the coding map is finite-to-one, but that it is morally
finite-to-one: after passing to recurrent subsets (defined by some recurrence assumptions),
the coding map is finite-to-one. This was the motivation to use Pesin theory in a much
finer way, which has a central importance in the recent constructions of Markov partitions.
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Having this in mind, this survey has two main goals:

• to discuss the theory of non-uniformly hyperbolic systems;
• to use this theory to construct countable Markov partitions that generate finite-to-one

coding maps.

Since the main reason to construct Markov partitions and finite-to-one codings is to
understand dynamical and statistical properties of smooth dynamical systems, we also
provide applications in this context.

Two words of caution. Firstly, we do not provide a historical account of the development
of Markov partitions. Secondly, we do not discuss symbolic dynamics to any great extent,
but only finite-to-one codings for systems with uniform and non-uniform hyperbolicity.
Away from these contexts, there are various tools in symbolic dynamics that are important
on their own and provide far-reaching conclusions, such as Milnor and Thurston’s theory of
kneading sequences [MT88], Hofbauer towers [Hof78, Hof79, Hof81, Tak73], symbolic
extensions [BD04, Bur11, Dow11], Yoccoz puzzles [Yoc15], and Young towers [You98].

We divide this survey into three parts. In Part one, §2, we discuss the theory of invariant
manifolds for uniformly and non-uniformly hyperbolic systems, including the construction
of local charts and graph transforms. For simplicity of exposition, most of the arguments
will be discussed in dimension two, both for diffeomorphisms and maps with discontinu-
ities, but we also sketch how to make the constructions in higher dimension. In Part two, §3,
we extend this theory to pseudo-orbits, and explain how to use them to construct Markov
partitions and finite-to-one coding maps. In Part three, §4, we provide applications.

2. Part one: Charts, graph transforms, and invariant manifolds
We introduce tools that allow us to pass from the infinitesimal information given by the
assumption on the derivative of the system to a representation of its local dynamics. The
main goal is to introduce three tools:

• local charts, which locally represent the dynamics as a small perturbation of a
hyperbolic matrix;

• graph transforms, which explore the hyperbolic feature of the local representation to
identify points that remain close to trajectories;

• invariant manifolds, which provide dynamical coordinates and allow the future and
past behavior of the system to be separated.

For methodological reasons, the discussion of this part of the paper is divided into
sections, each of them treating a different class of systems. In §2.1 we deal with
uniformly hyperbolic diffeomorphisms. In §2.2 we consider non-uniformly hyperbolic
diffeomorphisms. In the last two sections, we discuss non-uniformly hyperbolic surface
maps with discontinuities: in §2.3 we assume bounded derivative (for example, Poincaré
return maps of flows without fixed points), and in §2.4 we allow the derivative to grow
polynomially fast to infinity (for example, billiard maps). The discussion in each new
section emphasizes the new input that is necessary to make the construction work, so we
recommend the reader to follow the text as presented here.

2.1. Uniformly hyperbolic systems. Uniformly hyperbolic systems are at the heart of
the great developments that tailored the beginning of the modern theories of dynamical
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systems and ergodic theory, and constitute one of the nicest situations in which a system
shows chaos in almost any sense of the word: exponential divergence of the trajectories,
denseness of periodic orbits, among others. The study of uniformly hyperbolic systems
has a long history, stretching back to the 19th century with the study of geodesic flows on
surfaces of constant negative curvature by Hadamard [Had98]. This topic was extensively
developed between 1920 and 1940; here we mention the work of Morse [Mor34], Hedlund
[Hed39], and Hopf [Hop39, Hop40]. About 1940, it became clear that geodesic flows were
a particular case of the real setup of interest, and Anosov realized that the theory goes
through under a more general condition, which he called the (U)-condition. In his own
words, a system satisfies the (U)-condition if it has ‘exponential dichotomy of solutions’
[Ano69, p. 22]. Anosov made fundamental contributions to the study of (U)-systems,
including their ergodicity [Ano69, Theorem 4]. Nowadays, (U)-systems are called Anosov
systems, and the assumption on exponential dichotomy of solutions is called hyperbolicity.

While the Russian school focused on the probabilistic aspects of dynamical systems,
the American school led by Smale focused on the topological aspects. Smale discovered
the horseshoe, which is the first example of a system shown to have infinitely many
periodic points while being structurally stable. The history of the discovery is explained
in [Sma98], where Smale claims that ‘the horseshoe is a natural consequence of a
geometrical way of looking at the equations of Cartwright–Littlewood and Levinson’. A
horseshoe has similar properties to Anosov systems, because the recurrent (but not all)
trajectories are hyperbolic. For the purpose of dynamics, this is satisfactory because a
non-recurrent trajectory is uninteresting for dynamical purposes. Having this in mind,
Smale introduced the notion of Axiom A systems, where hyperbolicity is required to hold
only on the non-wandering set. For transitive Anosov systems, the notions of Anosov
and Smale coincide, but there are Axiom A systems that are not Anosov. What we
call uniformly hyperbolic are Anosov and Axiom A systems. Nowadays there are great
textbooks describing such systems; see [BS02, KH95, Shu87].

The main result of this section is the existence of local invariant manifolds. It holds for
C1 uniformly hyperbolic systems; see [Shu87]. However, to maintain an analogy with the
non-uniformly hyperbolic context to be discussed in §2.2, we will assume most of the time
that the system is C1+β ; see definition in §2.1.2.

2.1.1. Definitions and examples. Let M be a closed (compact without boundary)
connected smooth Riemannian manifold, and let f : M → M be a C1 diffeomorphism.

Anosov diffeomorphism. We call f an Anosov diffeomorphism if there exist a continuous
splitting TM = Es ⊕ Eu and constants C > 0, κ < 1 such that:

(1) Invariance. df (Es/ux ) = E
s/u

f (x) for all x ∈ M .
(2) Contraction.

• Vectors in Es contract in the future: ‖df nv‖ ≤ Cκn‖v‖ for all v ∈ Es , n ≥ 0.
• Vectors in Eu contract in the past: ‖df−nv‖ ≤ Cκn‖v‖ for all v ∈ Eu, n ≥ 0.

A closed f -invariant set3 satisfying the above properties is called uniformly hyperbolic
or simply hyperbolic, hence a diffeomorphism is Anosov if the whole phase space M is
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hyperbolic. The continuity condition of the splitting in the definition indeed follows from
the other assumptions; see [BS02, Proposition 5.2.1]. As a matter of fact, the splitting
is Hölder continuous, as proved by Anosov [Ano67]; see also the appendix of [Bal95]
for a simpler proof. Condition (2) is the exponential dichotomy of solutions mentioned
by Anosov. Usually, the above assumptions are rather restrictive because they require the
properties on all of M, and sometimes parts of M are not dynamically relevant. The set
where interesting dynamics can occur is called the non-wandering set.

Non-wandering set �( f ). The non-wandering set of f, denoted by �(f ), is the set of
all x ∈ M such that for every neighborhood U ∋ x there exists n 6= 0 such that f n(U) ∩
U 6= ∅.

In other words, a point is non-wandering if, no matter how small we choose a
neighborhood, it does self-intersect in the future or in the past. In particular, every periodic
point is non-wandering. Let Per(f ) denote the set of periodic points of f.

Axiom A diffeomorphism. We call f an Axiom A diffeomorphism if:

(1) Denseness of periodic orbits. Per(f ) = �(f ).
(2) Hyperbolicity. �(f ) is hyperbolic, that is, there exist a continuous splitting

T�(f )M = Es ⊕ Eu and constants C > 0, κ < 1 such that:

• df (E
s/u
x ) = E

s/u

f (x) for all x ∈ �(f );
• ‖df nv‖ ≤ Cκn‖v‖ for all v ∈ Es , n ≥ 0;
• ‖df−nv‖ ≤ Cκn‖v‖ for all v ∈ Eu, n ≥ 0.

Every Anosov diffeomorphism is Axiom A, but the converse is false. Now let ϕ : M →
M be a flow generated by a vector field X of class C1. The definitions of uniformly
hyperbolic flows are similar to the ones above, bearing in mind that in the flow direction
there is no contraction or expansion. Below, 〈X〉 represents the subbundle generated by X,
whose vector space at x is the line generated by Xx .

Anosov flow. We call ϕ an Anosov flow if X 6= 0 everywhere and if there is a continuous
splitting TM = Es ⊕ 〈X〉 ⊕ Eu and constants C > 0, κ < 1 such that:

(1) Invariance. dϕt (Es/ux ) = E
s/u

ϕt (x)
for all x ∈ M , t ∈ R.

(2) Contraction.

• Vectors in Es contract in the future: ‖dϕtv‖ ≤ Cκ t‖v‖ for all v ∈ Es , t ≥ 0.
• Vectors in Eu contract in the past: ‖dϕ−tv‖ ≤ Cκ t‖v‖ for all v ∈ Eu, t ≥ 0.

Similarly, a closed f -invariant set 3 satisfying the above properties is called uniformly
hyperbolic or simply hyperbolic.

Non-wandering set �(ϕ). The non-wandering set of ϕ, denoted by �(ϕ), is the set of all
x ∈ M such that for every neighborhood U ∋ x and for every t > 0 there exists T ∈ R

with |T | > t such that ϕT (U) ∩ U 6= ∅.

The above definition is natural, since ϕt (U) ∩ U 6= ∅ for any t sufficiently small. Let
Per(ϕ) denote the set of periodic points of ϕ.
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FIGURE 1. Arnold’s cat map.

Axiom A flow. We call ϕ an Axiom A flow if X 6= 0 on �(ϕ) and:

(1) Denseness of periodic orbits. Per(ϕ) = �(ϕ).
(2) Hyperbolicity. �(ϕ) is hyperbolic, that is, there exist a continuous splitting

T�(f )M = Es ⊕ 〈X〉 ⊕ Eu and constants C > 0, κ < 1 such that:

• dϕt (E
s/u
x ) = E

s/u

ϕt (x)
for all x ∈ �(f ), t ∈ R;

• ‖dϕtv‖ ≤ Cκ t‖v‖ for all v ∈ Es , t ≥ 0;
• ‖dϕ−tv‖ ≤ Cκ t‖v‖ for all v ∈ Eu, t ≥ 0.

We call a system uniformly hyperbolic if it is either Anosov or Axiom A. Here are three
classical examples.

(1) Every hyperbolic matrix (a matrix is hyperbolic if none of its eigenvalues lie on
the unit circle) A ∈ SL(n, R) induces an Anosov diffeomorphism f = fA : Tn → Tn on
the n-dimensional torus Tn = Rn/Zn. For A =

[
2 1
1 1

]
, the Anosov diffeomorphism f is

known as Arnold’s cat map or simply the cat map. Although the dynamics of A is simple,
the dynamics of f as seen on the canonical fundamental domain [0, 1]2 of T2 is rather
complicated; see Figure 1. See also [BS02, §1.7].

(2) Smale’s horseshoe, generated by the geometrical configuration in Figure 2. See
[BS02, Shu87].

(3) The geodesic flow on a closed manifold with negative sectional curvature is Anosov;
see Figure 3. Its hyperbolicity is more complicated to describe, since it is defined on
the (unit) tangent bundle of the manifold and its derivative in the tangent bundle of
this (unit) tangent bundle. We refer the reader to [BP13, Ch. 1] for a discussion on the
two-dimensional case with constant curvature, to [Ebe01] for a more general discussion,
and to [Kni02, §1.3] for a proof of hyperbolicity.

2.1.2. Preliminaries on the geometry of M. It is easy to define Hölder continuity for
maps on Euclidean spaces. For instance, f : U ⊂ Rn → Rm is β-Hölder if there is K > 0
such that ‖f (x)− f (x)‖ ≤ K‖x − y‖β for all x, y ∈ U . Similarly, f is C1+β if it is C1
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FIGURE 2. The geometrical mechanism in the creation of a horseshoe.

v

FIGURE 3. A surface with negative curvature, whose geodesic flow is Anosov. Note that the figure is somewhat
misleading because it induces one to think that the curvature on the extreme left- and right-hand sides is positive.

and there is K > 0 such that ‖df±1
x − df±1

y ‖ ≤ K‖x − y‖β for all x, y ∈ U . For general
manifolds, this is slightly more complicated because the derivatives are defined in different
tangent spaces and so we need to compare the geometry of nearby tangent spaces. For that
we use the local charts provided by exponential maps, which are intrinsic to the geometry
of M. For the inexperienced reader, we suggest doing the calculations in the Euclidean
situation, where all exponential maps are identity.

We are assuming M is a closed connected smooth Riemannian manifold. We denote
open balls in M by B(x, r). Given r > 0, let Bx[r] ⊂ TxM be the open ball with center
0 and radius r. For each x ∈ M , let expx : TxM → M be the exponential map at x, that
is, expx(v) = γ (1) where γ is the unique geodesic such that γ ′(0) = v. Given x ∈ M ,
let inj(x) be the radius of injectivity at x, that is, inj(x) is the largest r > 0 such that the
restriction of expx to Bx[r] is a diffeomorphism onto its image. Choose r0 > 0 such that
for Dx := B(x, 2r0) the following statements hold.

• expx : Bx[2r0] → M is a 2-bi-Lipschitz diffeomorphism onto its image.
• If y ∈ Dx then inj(y) ≥ 2r0 and exp−1

y : Dx → TyM is a 2-bi-Lipschitz diffeomor-
phism onto its image.

Such r0 > 0 exists because d(expx)0 = Id and M is compact.
For x, x′ ∈ M , let Lx,x′ := {A : TxM → Tx′M : A is linear} and Lx := Lx,x . If

d(x, y) < inj(x), then there is a unique radial geodesic γ joining x to y, and the parallel
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transport Px,y along this geodesic is in Lx,y . Let x, x′ ∈ M and y, z ∈ M such that
d(x, y) < inj(x) and d(x′, z) < inj(x′). Given A ∈ Ly,z, let Ã ∈ Lx,x′ , Ã := Pz,x′ ◦ A ◦
Px,y . By definition, Ã depends on x, x′ but different base points define a map that differs
from Ã by pre- and postcomposition with isometries. In particular, ‖Ã‖ does not depend
on the choice of x, x′. Similarly, if Ai ∈ Lyi ,zi then ‖Ã1 − Ã2‖ does not depend on the
choice of x, x′. With this notation, we say that f is a C1+β diffeomorphism if f ∈ C1 and
there exists K > 0 such that the following statements hold:

• If y1, y2 ∈ Dx and f (y1), f (y2) ∈ Dx′ then ‖d̃fy1 − d̃fy2‖ ≤ Kd(y1, y2)
β .

• If y1, y2 ∈ Dx and f−1(y1), f−1(y2) ∈ Dx′′ then ‖˜df−1
y1 − ˜

df−1
y2 ‖ ≤ Kd(y1, y2)

β .

2.1.3. Lyapunov inner product. By the definitions in §2.1.1, hyperbolicity implies that
the restriction of df to Es is eventually a contraction, exactly when n is large enough so
that Cκn < 1, and the same occurs to the restriction of df−1 to Eu. It turns out that we
can define a new inner product, equivalent to the original, for which df ↾Es and df−1 ↾Eu

are contractions already since the first iterate. This inner product is known as an adapted
metric or Lyapunov inner product. For consistency with the non-uniformly hyperbolic
situation, we will use the later notation. The idea of changing an eventual contraction into a
contraction is a popular trick in dynamics, and it appears in various contexts, from Picard’s
theorem on existence and uniqueness of solutions of ordinary differential equations to the
construction of invariant manifolds, as we will see here. There are many different ways
of defining such an inner product; see, for example, [Shu87, Proposition 4.2]. Here, we
follow an approach similar to [BS02, Proposition 5.2.2].

We assume that f : M → M is a uniformly hyperbolic diffeomorphism, and we let 〈·, ·〉
be the Riemannian metric on M. For simplicity of notation, we assume that f is Anosov,
with invariant splitting TM = Es ⊕ Eu (for Axiom A, the definitions are made inside
�(f )). Fix κ < λ < 1.

Lyapunov inner product. We define an inner product 〈〈·, ·〉〉 on M, called the Lyapunov inner
product, by the following identities:

• for vs1, vs2 ∈ Es ,

〈〈vs1, vs2〉〉 = 2
∑

n≥0

λ−2n〈df nvs1, df nvs2〉;

• for vu1 , vu2 ∈ Eu,

〈〈vu1 , vu2 〉〉 = 2
∑

n≥0

λ−2n〈df−nvu1 , df−nvu2 〉;

• for vs ∈ Es and vu ∈ Eu,

〈〈vs , vu〉〉 = 0.

We can show, using the uniform hyperbolicity, that 〈〈·, ·〉〉 is equivalent to and as smooth as
〈·, ·〉. That is why it is also called an adapted metric. Letting ||| · ||| denote the norm induced

https://doi.org/10.1017/etds.2020.80 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.80


2600 Y. Lima

by 〈〈·, ·〉〉, if vs ∈ Es\{0} then

|||df vs |||2 = 2
∑

n≥0

λ−2n‖df n(df vs)‖2 = λ2[|||vs |||2 − 2] < λ2|||vs |||2,

hence |||df vs ||| < λ|||vs |||. Similarly, if vu ∈ Eu\{0} then |||df−1vu||| < λ|||vu|||.
When M is a surface, the information of the Lyapunov inner product at each x ∈ M

can be recorded by three parameters s(x), u(x), α(x), which we now introduce. The
bundles Es , Eu are one-dimensional, so there are vectors esx ∈ Esx and eux ∈ Eux , unitary
in the metric 〈·, ·〉. In the Lyapunov inner product 〈〈·, ·〉〉, we have that |||esx |||, |||eux ||| ∈
[
√

2, Cλ
√

2/(λ2 − κ2)] are uniformly bounded away from zero and infinity. (Indeed,
2 < |||esx |||2 = 2

∑
n≥0 λ

−2n‖df nesx‖2 ≤ 2C2 ∑
n≥0(κ/λ)

2n = 2C2λ2/(λ2 − κ2).)

Parameters s(x), u(x), α(x).

s(x) = |||esx ||| =
√

2

( ∑

n≥0

λ−2n‖df nesx‖2
)1/2

,

u(x) = |||eux ||| =
√

2

( ∑

n≥0

λ−2n‖df−neux‖2
)1/2

,

α(x) = 6 (Esx , Eux ).

As observed, s(x), u(x) are uniformly bounded away from zero and infinity. Since the
splitting Es ⊕ Eu is continuous, α(x) is also uniformly bounded away from zero and π .

2.1.4. Diagonalization of derivative. For ease of exposition, we continue to assume
that M is a surface. We now use the Lyapunov inner product (or, more specifically, the
parameters s(x), u(x), α(x)) to represent dfx as a hyperbolic matrix. Let e1 =

[
1
0

]
and

e2 =
[

0
1

]
be the canonical basis of R2.

Linear map C(x). For x ∈ M , let C(x) : R2 → TxM be the linear map such that

C(x) : e1 7→ esx

s(x)
, C(x) : e2 7→ eux

u(x)
·

The linear transformationC(x) sends the canonical inner product on R2 to the Lyapunov
inner product 〈〈·, ·〉〉 on TxM . For a geometer, this may be a simple description of 〈〈·, ·〉〉, but
for practical reasons we do not explore such description. Instead, we study the relation of
C(x) with the parameters s(x), u(x), α(x). Given a linear transformation, let ‖ · ‖ denote
its sup norm and ‖ · ‖Frob its Frobenius norm (the Frobenius norm of a 2 × 2 matrix
A =

[
a b
c d

]
is ‖A‖Frob =

√
a2 + b2 + c2 + d2). These two norms are equivalent, with

‖ · ‖ ≤ ‖ · ‖Frob ≤
√

2‖ · ‖. The next lemma proves that C diagonalizes df .

LEMMA 2.1. There is L > 1 such that the following statements hold for all x ∈ M .

(1) ‖C(x)‖Frob ≤ 1 and ‖C(x)−1‖Frob =
√
s(x)2 + u(x)2/|sin α(x)|, with ‖C(x)‖,

‖C(x)−1‖ ≤ L .
(2) C(f (x))−1 ◦ dfx ◦ C(x) is a diagonal matrix with diagonal entries A, B ∈ R such

that |A|, |B−1| < λ.
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Proof. (1) In the basis {e1, e2} of R2 and the basis {esx , (esx)
⊥} of TxM , C(x) takes the

form



1

s(x)

cos α(x)

u(x)

0
sin α(x)

u(x)


,

hence

‖C(x)‖2
Frob = 1

s(x)2
+ 1

u(x)2
≤ 1.

The inverse of C(x) is


s(x) − s(x) cos α(x)

sin α(x)

0
u(x)

sin α(x)


 ,

therefore

‖C(x)−1‖Frob =
√
s(x)2 + u(x)2

|sin α(x)| .

Finally, since s(x), u(x), α(x) are uniformly bounded away from zero and infinity, there is
L > 1 such that ‖C(x)‖, ‖C(x)−1‖ ≤ L for all x ∈ M .

(2) It is clear that e1, e2 are eigenvectors of C(f (x))−1 ◦ dfx ◦ C(x). We start by
calculating the eigenvalue of e1 . Since df esx = ±‖df esx‖esf (x),

[dfx ◦ C(x)](e1) = dfx

[
esx

s(x)

]
= ±‖df esx‖

s(x)
esf (x),

hence

[C(f (x))−1 ◦ dfx ◦ C(x)](e1) = ±‖df esx‖ s(f (x))s(x)
e1.

Thus A := ±‖df esx‖s(f (x))/s(x) is the eigenvalue of e1. Since

s(f (x))2 = 2λ2

‖df esx‖2

∑

n≥1

λ−2n‖df nesx‖2 = λ2

‖df esx‖2
(s(x)2 − 2) <

λ2s(x)2

‖df esx‖2
,

we have |A| < λ. Similarly, B := ±‖df eux‖u(f (x))/u(x) is the eigenvalue of e2. Observ-
ing that ‖df−1euf (x)‖ · ‖df eux‖ = 1, we have

u(f (x))2 =2+
∑

n≥1

λ−2n‖df−neuf (x)‖2 =2+ u(x)2

λ2‖df eux‖2
=2+ u(f (x))2

B2λ2
>
u(f (x))2

B2λ2
,

and so |B| > λ−1. �

Although s, u, α, C depend on the choice of λ, we will not emphasize this dependence
because all calculations will be done for some a priori fixed λ.
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FIGURE 4. The Lyapunov chart 9x at x.

2.1.5. Lyapunov charts, change of coordinates. From now on, we assume that f is C1+β .
The next step is to compose the linear transformation C(x) with the exponential map to
obtain a local chart of M in which f itself becomes a small perturbation of a hyperbolic
matrix. Since this is a natural consequence of the use of the Lyapunov inner product, we
will call these charts Lyapunov charts, as in [BP13, §6.4.2]. Fix a small number ε ∈ (0, r0)

(how small depends on a finite number of inequalities that ε has to satisfy). Let Q = ε3/β .

Lyapunov chart. The Lyapunov chart at x is the map 9x : [−Q, Q]2 → M defined by
9x := expx ◦ C(x); see Figure 4.

Since Q < ε < r0 and C(x) is a contraction, we have C(x)([−Q, Q]2) ⊂ Bx[2r0] and
so 9x is a diffeomorphism onto its image. By Lemma 2.1(1), 9x is 2-Lipschitz and its
inverse is 2L -Lipschitz. In Lyapunov charts, f takes the form fx := 9−1

f (x) ◦ f ◦9x . The
next theorem shows that fx is a small perturbation of a hyperbolic matrix.

THEOREM 2.2. The following statements hold for all ε > 0 small enough.

(1) d(fx)0 = C(f (x))−1 ◦ dfx ◦ C(x) =
[
A 0
0 B

]
with |A|, |B−1| < λ; cf. Lemma 2.1.

(2) fx(v1, v2) = (Av1 + h1(v1, v2), Bv2 + h2(v1, v2)) for (v1, v2) ∈ [−Q, Q]2 where:

(a) h1(0, 0) = h2(0, 0) = 0 and ∇h1(0, 0) = ∇h2(0, 0) = 0;
(b) ‖h1‖1+β/2 < ε and ‖h2‖1+β/2 < ε, where the norms are taken in [−Q, Q]2.

Similar statements hold for f−1
x := 9−1

x ◦ f−1 ◦9f (x).

Proof. Property (1) is clear since d(9x)0 = C(x) and d(9f (x))0 = C(f (x)). By
Lemma 2.1, d(fx)0 =

[
A 0
0 B

]
with |A|, |B−1| < λ. Define h1, h2 : [−Q, Q]2 → R by

fx(v1, v2) = (Av1 + h1(v1, v2), Bv2 + h2(v1, v2)). Then (a) is automatically satisfied. It
remains to prove (b), which will follow from estimating ‖d(fx)w1 − d(fx)w2‖. For the
inexperienced reader, we suggest doing the calculation in the Euclidean situation (hence
all exponential maps are identity). Below we work through the general case. For i = 1, 2,
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define

Ai = ˜
d(exp−1

f (x))(f ◦expx )(wi ), Bi = ˜dfexpx (wi ), Ci = ˜d(expx)wi .

We first estimate ‖A1B1C1 − A2B2C2‖. Note that:

• A1, A2 are derivatives of the map exp−1
f (x) at nearby points, and so ‖A1 − A2‖ ≤

H ‖w1 − w2‖, where H > 0 is a constant that only depends on the regularity of
exponential maps and their inverses;

• B1, B2 are derivatives of f at nearby points, so ‖B1 − B2‖ ≤ 2K‖w1 − w2‖β ;
• C1, C2 are derivatives of exponential maps at nearby points, so ‖C1 − C2‖ ≤

H ‖w1 − w2‖.

Applying some triangle inequalities, we obtain that

‖A1B1C1 − A2B2C2‖ ≤ 24KH ‖w1 − w2‖β .

Now we estimate ‖d(fx)w1 − d(fx)w2‖:

‖d(fx)w1 − d(fx)w2‖ ≤ ‖C(f (x))−1‖‖A1B1C1 − A2B2C2‖‖C(x)‖
≤ 24KH L ‖w1 − w2‖β .

Since ‖w1 − w2‖ < 4Q, if ε > 0 is small enough then 24KH L ‖w1 − w2‖β/2 ≤
96KH L ε3/2 < ε, hence ‖d(fx)w1 − d(fx)w2‖ ≤ ε‖w1 − w2‖β/2. �

2.1.6. Graph transforms: construction of invariant manifolds. A consequence of the
hyperbolic behavior of fx is that it sends curves that are almost parallel to the vertical
axis to curves with the same property; similarly, the inverse map f−1

x sends curves that are
almost parallel to the horizontal axis to curves with the same property. This geometrical
feature allows to construct local stable and unstable manifolds. According to Anosov
[Ano69, p. 23], this construction was more or less known to Darboux, Poincaré and
Lyapunov, but their proofs required additional assumptions on the system. Hadamard and
Perron were the ones to observe that hyperbolicity is a sufficient condition. Below, we
explain the method of Hadamard. The idea is to find the local invariant manifolds among
graphs of functions, which we call admissible manifolds. The maps f±1

x define operators
on the spaces of admissible manifolds, called graph transforms, and the local invariant
manifolds are limit points of compositions of such operators. As already mentioned,
usually f is only assumed to be C1, but we take f ∈ C1+β to maintain the analogy with
the remainder of the text, and make use of the Lyapunov charts constructed in §2.1.5.

Admissible manifolds. An s-admissible manifold at 9x is a set of the form V s =
9x{(t , F(t)) : |t | ≤ Q}, where F : [−Q, Q] → R is a C1 function such that F(0) =
0, F ′(0) = 0 and ‖F ′‖C0 ≈ 0. Similarly, a u-admissible manifold at 9x is a set of the
form V u = 9x{(G(t), t) : |t | ≤ Q}, where G : [−Q, Q] → R is a C1 function such that
G(0) = 0, G′(0) = 0 and ‖G′‖C0 ≈ 0.

We call F , G the representing functions of V s , V u, respectively. We prefer not
to specify the quantifier for the condition ‖F ′‖C0 , ‖G′‖C0 ≈ 0. Instead, think of an
s/u-admissible manifold as an almost horizontal/vertical curve that is tangent to the
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FIGURE 5. Graph transforms: the stable graph transform F s
x sends an s-admissible manifold

at 9f (x) to an s-admissible manifold at 9x , while the unstable graph transform F u
x sends a

u-admissible manifold at 9x to a u-admissible manifold at 9f (x).

horizontal/vertical axis at the origin. Let M s
x , M u

x be the space of all s, u-admissible
manifolds at9x , respectively. Introduce a metric on M s

x as follows: for V1, V2 ∈ M s
x with

representing functions F1, F2, let

dist(F1, F2) := ‖F1 − F2‖C0 .

A similar definition holds for M u
x .

Graph transforms F s
x , F u

x . The stable graph transform F s
x : M s

f (x) → M s
x is the map

that sends V s ∈ M s
f (x) to the unique F s

x [V s] ∈ M s
x with representing function F such

that 9x{(t , F(t)) : |t | ≤ Q} ⊂ f−1(V s). Similarly, the unstable graph transform F u
x :

M u
x → M u

f (x) is the map that sends V u ∈ M u
x to the unique F u

x [V u] ∈ M u
f (x) with

representing function G such that 9f (x){(G(t), t) : |t | ≤ Q} ⊂ f (V u).

In other words, F s
x sends an s-admissible manifold at 9f (x) with representing function

F to an s-admissible manifold at 9x whose graph of the representing function is contained
in the graph of f−1

x ◦ F , and F u
x sends a u-admissible manifold at 9x with representing

function G to a u-admissible manifold at 9f (x) whose graph of the representing function
is contained in the graph of fx ◦G. See Figure 5.

THEOREM 2.3. F s
x and F u

x are well-defined contractions.
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The proof of the theorem follows from the hyperbolicity of fx . Using it, we can
construct local stable and unstable manifolds.

Stable/unstable manifolds. The stable manifold of x ∈ M is the s-admissible manifold
V s[x] ∈ M s

x defined by

V s[x] := lim
n→∞

(F s
x ◦ · · · ◦ F

s
f n−1(x)

)[Vn]

for some (any) sequence {Vn}n≥0 with Vn ∈ M s
f n(x). The unstable manifold of x ∈ M is

the u-admissible manifold V u[x] ∈ M u
x defined by

V u[x] := lim
n→−∞

(F u
f−1(x)

◦ · · · ◦ F
u
f n(x))[Vn]

for some (any) sequence {Vn}n≤0 with Vn ∈ M u
f n(x).

The sets V s[x] and V u[x] are well defined because the graph transforms are contrac-
tions (Theorem 2.3 above), and they are indeed admissible curves. Note that V s[x] only
depends on the future {f n(x)}n≥0, while V u[x] only depends on the past {f n(x)}n≤0.
Also, since 9x and its inverse have uniformly bounded norms (Lemma 2.1(a)), the stable
and unstable manifolds have uniform sizes.

2.1.7. Higher dimensions. We sketch how to make the construction in higher dimen-
sions. Our definition of Lyapunov inner product works in any dimension, but not the
definition of C(x). Since this matrix is used to send the canonical inner product of R2

to the Lyapunov inner product on TxM , in arbitrary dimension we can similarly define
C(x) : Rn → TxM to be a linear transformation such that 〈v, w〉Rn = 〈〈C(x)v, C(x)w〉〉 for
all v, w ∈ Rn, that is, C(x) is an isometry between (Rn, 〈·, ·〉Rn) and (TxM , 〈〈·, ·〉〉). Let
ds , du ∈ N be the dimensions of Es , Eu. The map C(x) is not uniquely defined, and
we can assume that it sends Rds × {0} to Esx and {0} × Rdu to Eux . Doing this for all
x ∈ M , we obtain a family {C(x)}x∈M of linear transformations. Although the splitting
TM = Es ⊕ Eu is continuous, we cannot always take x ∈ M 7→ C(x) continuously,
because Es and Eu may have non-real exponents, causing rotations inside them. But for
our purpose, what matters is the behavior of the sequence {C(f n(x))}n∈Z for each x ∈ M .
For what it is worth, x ∈ M 7→ C(x) can be chosen measurably; see, for example, [BO18

footnote, at pp. 48].
The composition C(f (x))−1 ◦ dfx ◦ C(x) takes the block form

C(f (x))−1 ◦ dfx ◦ C(x) =
[
Ds 0
0 Du

]
,

where Ds is a ds × ds matrix such that ‖Dsv‖ ≤ λ‖v‖ for all v ∈ Rds , and Du is a
du × du matrix such that ‖D−1

u w‖ ≤ λ‖w‖ for allw ∈ Rdu . This is the higher-dimensional
counterpart of Lemma 2.1(2). Define the Lyapunov chart 9x as in §2.1.5, which satisfies
a higher-dimensional version of Theorem 2.2 with respect to the above block form.
Defining an s-admissible manifold at 9x as a set of the form V s = 9x{(t , F(t)) : t ∈
[−Q, Q]ds }, where F : [−Q, Q]ds → Rdu is aC1 function such that F(0) = 0, F ′(0) = 0
and ‖F ′‖C0 ≈ 0, and similarly u-admissible manifolds at 9x , Theorem 2.3 holds. Hence,
every x ∈ M has local stable and unstable manifolds.
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2.2. Non-uniformly hyperbolic systems. As discussed in §2.1, uniformly hyperbolic
systems had a big impact on the development of dynamical systems and ergodic theory.
Unfortunately, uniform hyperbolicity is a condition that is not usually satisfied. For
instance, if a three-dimensional manifold admits an Anosov flow then its fundamental
group has exponential growth [PT72]. During the 1970s, new notions of hyperbolicity
were proposed. These notions substitute the uniform assumption with weaker ones. One of
them, called non-uniform hyperbolicity, was introduced by Pesin [Pes76, Pes77a, Pes77b].
In contrast to uniform hyperbolicity, which requires hyperbolicity to hold every time (for all
n ∈ Z or t ∈ R) and everywhere (for all x ∈ M), the notion of non-uniform hyperbolicity
assumes an asymptotic hyperbolicity (on average) not necessarily in the whole phase space
(almost everywhere), that is, hyperbolicity occurs but in a non-uniform way.

Here is a simplistic way of comparing uniform and non-uniform hyperbolicity. To
prepare the dough for bread, a baker needs repeatedly to contract and stretch the dough.
An ideal baker would perform such an operation with every movement, all over the dough.
This is uniform hyperbolicity. On the other hand, a real-life baker practices non-uniform
hyperbolicity: he does not perform the operation with every movement (he might get
tired from time to time) and he can forget some tiny parts of the dough. As it turns
out, it is the notion of non-uniform hyperbolicity that allows for applications outside of
mathematics.

Non-uniform hyperbolicity is simultaneously weak enough to include many new
examples and applications, and strong enough to recover many of the properties of
uniformly hyperbolic systems, such as stable manifolds and graph transforms. This is one
of the reasons for the success of the theory of non-uniformly hyperbolic systems, known
as Pesin theory. Since its beginnings, it has been an important tool for the understanding
of ergodic and statistical properties of smooth dynamical systems. Nowadays, Pesin theory
is classical and there are great textbooks on the topic; see [BP07, FHY83, KM95]. For
the applications to symbolic dynamics in Part two, §3, we follow the modern approach
recently developed by Sarig [Sar13], which has been slightly improved in the past two
years or so [BO18, LM18, LS19].

We now make essential use of the C1+β regularity. Indeed, the theory is just not true
under C1 regularity; see, for example, Pugh’s example in [BP13, Ch. 15].

2.2.1. Definitions and examples. Let M be a closed (compact without boundary)
connected smooth Riemannian manifold, and let f : M → M be a C1 diffeomorphism.
The objects that identify the asymptotic hyperbolicity are the Lyapunov exponents.

Lyapunov exponent. For a non-zero vector v ∈ TM , the Lyapunov exponent of f at v is
defined by

χ(v) := lim
n→+∞

1

n
log ‖df nv‖

when the limit exists.

The mere existence of the limit should not be taken for granted, even for uniformly
hyperbolic systems. It comes from the Oseledets theorem, which is a measure-theoretic
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statement that we now explain. Assume that µ is a probability measure on M, invariant
under f. For simplicity, assume that µ is ergodic. The Oseledets theorem proves that, for
µ-almost every (a.e.) x ∈ M , the Lyapunov exponents of every non-zero v ∈ TxM exist
[Ose68]. Furthermore, they exist and are equal for future or past iterations. In our context,
we state this as follows.

THEOREM 2.4. (Oseledets) Let (f , µ) be as above. Then there exist an f-invariant subset
M̃ ⊂ M with µ[M̃] = 1, real numbers χ1 < χ2 < · · · < χk , and a splitting T M̃ = E1 ⊕
E2 ⊕ · · · ⊕ Ek satisfying the following properties.

(1) Invariance. df (Eix) = Eif (x) for all x ∈ M̃ and i = 1, . . . , k.

(2) Lyapunov exponents. For all x ∈ M̃ and all non-zero v ∈ Eix ,

χ(v) = lim
n→±∞

1

n
log ‖df nv‖ = χi .

When µ is not ergodic, we can apply a standard argument of ergodic decomposition
to conclude that χ(v) exists µ-a.e., but now its value depends on x. Theorem 2.4 above
follows from the general version of the Oseledets theorem on cocycles satisfying an
integrability condition; see, for example, the recent survey of Filip [Fil19]. In our setting,
the integrability condition is that log ‖df±1‖ ∈ L1(µ). Since f is a diffeomorphism on a
closed manifold, this condition is automatically satisfied.

The notion of non-uniform hyperbolicity also depends on a measure. Let (f , µ) be as
above, where µ is not necessarily ergodic.

Non-uniformly hyperbolic diffeomorphism. The pair (f , µ) is called non-uniformly hyper-
bolic if, for µ-a.e. x ∈ M , we have χ(v) 6= 0 for all non-zero v ∈ TxM . In this case, µ is
called a hyperbolic measure.

If f is uniformly hyperbolic (see the notation of §2.1.1), then χ(v) ≤ log κ < 0 for
non-zero v ∈ Es , and χ(v) ≥ − log κ > 0 for non-zero v ∈ Eu, wherever the Lyapunov
exponents exist. Thus a uniformly hyperbolic diffeomorphism is non-uniformly hyperbolic,
for any invariant probability measure. Here is another example: if f is a diffeomorphism
and p ∈ M is a hyperbolic periodic point with period n, then µ = 1/n

∑n−1
k=0 δf k(p) is a

hyperbolic measure. We will usually assume that the Lyapunov exponents are bounded
away from zero.

χ-hyperbolic measure. Given (f , µ) non-uniformly hyperbolic and χ > 0, µ is called
χ-hyperbolic if, for µ-a.e. x ∈ M , we have |χ(v)| > χ for all non-zero v ∈ TxM .

In the latter example,µ is χ-hyperbolic for all χ smaller than the multiplier of p. Now let
ϕ : M → M be a flow generated by a vector field X of class C1, and let µ be a ϕ-invariant
probability measure on M. Since dϕt ◦X = X ◦ ϕt , we have χ(Xx) = 0 for all x ∈ M ,
hence the assumption of non-zero exponents is required in the remaining directions.

Non-uniformly hyperbolic flow. The pair (ϕ, µ) is called non-uniformly hyperbolic if,
for µ-a.e. x ∈ M , we have χ(v) 6= 0 for all v ∈ TxM not proportional to Xx . When this
happens, the measure µ is called hyperbolic.
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FIGURE 6. Example of a surface with non-positive curvature.

Again, it is easy to see that a uniformly hyperbolic flow is non-uniformly hyperbolic for
any invariant probability measure, and that the Dirac measure of a hyperbolic closed orbit
is hyperbolic. The notion of χ-hyperbolic measure is defined accordingly.

χ-hyperbolic measure. Given (ϕ, µ) non-uniformly hyperbolic and χ > 0, µ is called
χ-hyperbolic if, for µ-a.e. x ∈ M , we have |χ(v)| > χ for all non-zero v ∈ TxM
transverse to Xx .

Let us mention some classical examples.
(1) The slowdown of fA : T2 → T2; see [Kat79] and [BP13, §1.3].
(2) Let f be aC1 surface diffeomorphism, and letµ be an ergodic f -invariant probability

measure. Let h = hµ(f ) be the Kolmogorov–Sinaı̆ entropy, and assume that h > 0. Then
(f , µ) is non-uniformly hyperbolic, as consequence of the Ruelle inequality applied to f
and to f−1:

• f has a positive Lyapunov exponent χ+ ≥ h > 0;
• we have hµ(f−1) = h, and the Lyapunov spectrum of (f−1, µ) is minus the Lyapunov

spectrum of (f , µ), hence f has a Lyapunov exponent χ− such that −χ− ≥ h, that is,
χ− ≤ −h < 0. If in addition h > χ , then µ is χ-hyperbolic.

(3) Let N be a closed manifold with non-positive sectional curvature, for example the
surface in Figure 6 containing a flat cylinder between two regions of negative curvature.
The geodesic flow on N, which is defined on M = T1N , has a natural invariant volume
measure µ. Pesin showed that if the trajectory of a vector x ∈ M spends a positive
fraction of time in regions of negative sectional curvature, then χ(v) 6= 0 for all v ∈ TxM
transverse to Xx ; see [Pes77a, Theorem 10.5]. The underlying philosophy (although not
entirely correct), is that in regions of negative sectional curvature the derivative behaves
as in a uniformly hyperbolic flow, and in regions of zero sectional curvature it only varies
linearly, so the overall exponential behavior beats the linear. Therefore, if µ is ergodic then
it is hyperbolic. Unfortunately, the ergodicity of µ is still an open problem (even when N
is a surface).

2.2.2. The non-uniformly hyperbolic locus NUHχ . As we have cast it above, the
notion of non-uniform hyperbolicity is an almost-everywhere statement that depends on
a measure. Due to the Oseledets theorem, we can still get almost-everywhere statements if
we only consider Lyapunov regular points, which are points that satisfy Theorem 2.4 and
a non-degeneracy assumption on the angles 6 (Ei , Ej ) between the invariant subbundles.
For some applications, this restriction is cumbersome. For example, if x, y are Lyapunov
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regular, then most likely points inW s(x) ∩Wu(y) are not Lyapunov regular (this happens,
for example, when x, y have different Lyapunov exponents).

In what follows, we employ a different approach. We fix some χ > 0 and consider
the set of points satisfying a weaker notion of non-uniform hyperbolicity that still allows
us to construct local invariant manifolds. This perspective appeared in an essential way
in the work carried out by the author with Buzzi and Crovisier [BCL]. Independently
and simultaneously, Ben Ovadia recently obtained a similar characterization in higher
dimensions [BO19].

Let f : M → M be a C1 diffeomorphism. As in §3, we start by assuming that M is a
closed surface. Let χ > 0.

The non-uniformly hyperbolic locus NUHχ . This is the set of points x ∈ M for which
there are transverse unitary vectors esx , eux ∈ TxM such that the following conditions hold.

(NUH1) esx contracts in the future at least −χ and expands in the past:

lim sup
n→+∞

1

n
log ‖df nesx‖ ≤ −χ and lim inf

n→+∞
1

n
log ‖df−nesx‖ > 0.

(NUH2) eux contracts in the past at least −χ and expands in the future:

lim sup
n→+∞

1

n
log ‖df−neux‖ ≤ −χ and lim inf

n→+∞
1

n
log ‖df neux‖ > 0.

(NUH3) The parameters s(x), u(x) below are finite:

s(x) =
√

2

( ∑

n≥0

e2nχ‖df nesx‖2
)1/2

∈ [
√

2, ∞),

u(x) =
√

2

( ∑

n≥0

e2nχ‖df−neux‖2
)1/2

∈ [
√

2, ∞).

Clearly, NUHχ is invariant by f. Observe that the definitions of s(x), u(x) are the same
as those given in §2.1.3, where we change λ to e−χ . Conditions (NUH1) and (NUH2)
guarantee that esx , eux are defined up to a sign, and condition (NUH3) guarantees asymptotic
contractions of rates at least −χ . These conditions are weaker than Lyapunov regularity,
hence NUHχ contains all Lyapunov regular points with exponents greater than χ in
absolute value. In particular, NUHχ carries all χ-hyperbolic measures. But NUHχ might
contain points with some Lyapunov exponents equal to ±χ , and even non-regular points,
where the contraction rates oscillate infinitely often. Usually, NUHχ is a non-compact
subset of M. Observe that if (NUH3) holds, then the first conditions of (NUH1)–(NUH2)
hold as well. In practice, this is how we will show that x ∈ NUHχ .

The quality of hyperbolicity can be measured from the parameters s(x), u(x) and from
the angle α(x) = 6 (esx , eux). More specifically, x ∈ NUHχ has bad hyperbolicity when at
least one of the following situations occurs.

• s(x) is large: it takes a long time to see forward contraction along esx .
• u(x) is large: it takes a long time to see backward contraction along eux .
• α(x) is small: it is hard to distinguish the stable and unstable directions.
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None of these situations happen for uniformly hyperbolic systems: as we have seen in
§2.1.3, for uniformly hyperbolic systems the parameters s, u, α are uniformly bounded
away from zero and infinity. For non-uniformly hyperbolic systems, the behavior is more
complicated. Another reason for complication is that, contrary to uniformly hyperbolic
systems, the maps x ∈ NUHχ 7→ esx , eux are usually no more than just measurable.

2.2.3. Diagonalization of derivative. As in §2.1.4, we define linear maps C(x) that
diagonalize df , the difference being that we only take x ∈ NUHχ .

Linear map C(x). For x ∈ NUHχ , let C(x) : R2 → TxM be the linear map such that

C(x) : e1 7→ esx

s(x)
, C(x) : e2 7→ eux

u(x)
·

Above, {e1, e2} is the canonical basis for R2. If, for each x ∈ NUHχ , we define a
Lyapunov inner product 〈〈·, ·〉〉 on TxM , then C(x) sends the canonical metric on R2 to
〈〈·, ·〉〉. Lemma 2.1 remains valid, except for the uniform bound on ‖C(x)−1‖. This result is
known as Oseledets–Pesin reduction; see, for example, [BP13, Theorem 6.10].

LEMMA 2.5. (Oseledets–Pesin reduction) The following statements hold for all x ∈
NUHχ .

(1) ‖C(x)‖Frob ≤ 1 and ‖C(x)−1‖Frob =
√
s(x)2 + u(x)2/|sin α(x)|.

(2) C(f (x))−1 ◦ dfx ◦ C(x) is a diagonal matrix with diagonal entries A, B ∈ R such
that |A|, |B−1| < e−χ .

The proof is the same as for Lemma 2.1.

2.2.4. Pesin charts, the parameter Q(x) and change of coordinates. From now on, we
assume that f is C1+β . Remember we are also assuming that M is a closed surface. Fix
ε ∈ (0, r0) small.

Pesin chart. The Pesin chart at x ∈ NUHχ is the map 9x : [−ε3/β , ε3/β ]2 → M defined
by 9x := expx ◦ C(x).

This is exactly the same as the definition of the Lyapunov chart given in §2.1.5, but
we call it the Pesin chart for historical reasons. The map 9x is well defined for each x ∈
NUHχ . In Pesin charts, f takes the form fx := 9−1

f (x) ◦ f ◦9x . Unfortunately, we might
not be able to see hyperbolicity for fx , but only for a restriction: while in the uniformly
hyperbolic situation C(x), C(x)−1 are uniformly bounded, now the parameters s, u, α
can degenerate and so ‖C(f (x))−1‖ can be arbitrarily large, causing a big distortion. To
decrease the domain of definition of fx , we multiply its current size by a large negative
power of ‖C(f (x))−1‖.

Parameter Q(x). For x ∈ NUHχ , define Q(x) = ε3/β‖C(f (x))−1‖−12/β
Frob .

The choice of the powers 3/β and 12/β is not canonical but just an artifact of the
proof, and any choice of powers bigger than these would also make the proof work. This
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more complicated definition ofQ(x) is the price we pay for detecting hyperbolicity among
non-uniformly hyperbolic systems, as stated in the following theorem.

THEOREM 2.6. (Pesin) The following statements hold for all ε > 0 small. If x ∈ NUHχ
then:

(1) d(fx)0 = C(f (x))−1 ◦ dfx ◦ C(x) =
[
A 0
0 B

]
with |A|, |B−1| < e−χ ; cf. Lemma 2.5.

(2) fx(v1, v2) = (Av1 + h1(v1, v2), Bv2 + h2(v1, v2)), (v1, v2) ∈ [−10Q(x), 10Q(x)]2,
where:

(a) h1(0, 0) = h2(0, 0) = 0 and ∇h1(0, 0) = ∇h2(0, 0) = 0;
(b) ‖h1‖1+β/2 < ε and ‖h2‖1+β/2 < ε, with norms taken in [−10Q(x), 10Q(x)]2.

Similar statements hold for f−1
x = 9−1

x ◦ f−1 ◦9f (x).

The above theorem and its proof below are similar to [Sar13, Theorem 2.7]; see also
[BP07, Theorem 5.6.1].

Proof. We proceed as in the proof of Theorem 2.2. The main difficulty resides in part
(2)(b). We still have the estimate

‖A1B1C1 − A2B2C2‖ ≤ 24KH ‖w1 − w2‖β ,

but now

‖d(fx)w1 − d(fx)w2‖ ≤ ‖C(f (x))−1‖‖A1B1C1 − A2B2C2‖‖C(x)‖
≤ 24KH ‖C(f (x))−1‖‖w1 − w2‖β .

If w1, w2 ∈ [−10Q(x), 10Q(x)]2 then ‖w1 − w2‖ < 40Q(x), hence for ε > 0 small,

24KH ‖C(f (x))−1‖‖w1 − w2‖β/2 ≤ 200KH ε3/2‖C(f (x))−1‖−5 ≤ 200KH ε3/2 < ε.

This completes the proof. �

Therefore, at a smaller scale that depends on the quality of hyperbolicity at x, the map
fx is again the perturbation of a hyperbolic matrix.

2.2.5. Temperedness and the parameter q(x). After successfully detecting hyperbolicity
for fx , the next step is to define graph transforms. As seen in §2.1, for uniformly hyperbolic
systems the domains of all Lyapunov charts have the same size. Since forward images of
u-admissible manifolds and backward images of s-admissible manifolds grow essentially
as λ−1, their images do cross the successive domains from one side to the other; see
Figure 5. By Theorem 2.6, for non-uniformly hyperbolic systems the forward images of
u-admissible manifolds and backward images of s-admissible manifolds grow essentially
as eχ . Therefore we face a problem when the ratio Q(f (x))/Q(x) is far from 1.

• IfQ(f (x)) ≫ Q(x), then the image of a u-admissible manifold at x does not cross the
domain of 9f (x) from top to bottom.

• If Q(f (x)) ≪ Q(x), then the image of an s-admissible manifold at f (x) does not
cross the domain of 9x from left to right.
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The parameters s(x), u(x), α(x) and s(f (x)), u(f (x)), α(f (x)) differ roughly by the
action of dfx , so there is a constant C = C (f ) > 1 such that C −1 ≤ Q(f (x))/Q(x) ≤ C

for all x ∈ NUHχ . Nevertheless, this control is yet not enough to rule out the above
problems, since we can still have C ≫ eχ . To solve this issue, we need to further reduce
the domains of Pesin charts, introducing a parameter that varies regularly.

Parameter q(x). For x ∈ NUHχ , define q(x) = inf{eε|n|Q(f n(x)) : n ∈ Z}.

WhileQ(x) (essentially) does not depend on ε, the parameter q(x) does and, if positive,
it does behave nicely along orbits:

e−ε ≤ q(f (x))

q(x)
≤ eε.

The above definition is motivated by the proof of [Pes76, Lemma 1.1.1], and provides the
optimal value for q(x) ≤ Q(x) satisfying the above inequalities. This is known as the
tempering kernel lemma; see, for example, [BP13, Lemma 6.11]. We remark that there are
other proofs of the tempering kernel lemma, but they do not provide optimal q(x); see, for
example, [BP07, Lemma 3.5.7].

Since q(x) ≤ Q(x), the restriction of fx to the smaller domain [−q(x), q(x)]2

is a small perturbation of a hyperbolic matrix. Now we are safe: restricting 9x to
[−q(x), q(x)]2, if ε > 0 is small enough then the growth of u/s-admissible manifolds
beats the possible increase/decrease of domains. Motivated by this, we consider the subset
of NUHχ where q is positive.

The non-uniformly hyperbolic locus NUH∗
χ .

NUH∗
χ = {x ∈ NUHχ : q(x) > 0}.

By the next lemma, NUH∗
χ carries the same finite invariant measures as NUHχ .

LEMMA 2.7. If µ is an f-invariant probability measure supported on NUHχ , then µ is
supported on NUH∗

χ .

Proof. By assumption,µ[NUHχ ] = 1. Clearly, if limn→±∞(1/n) log Q(f n(x)) = 0 then
q(x) > 0. We will prove that limn→±∞(1/n) log Q(f n(x)) = 0 for µ-a.e. x ∈ NUHχ .
Define the function ϕ : NUHχ → R by

ϕ(x) := log

[
Q(f (x))

Q(x)

]
= log Q(f (x))− log Q(x).

Since C −1 ≤ Q(f (x))/Q(x) ≤ C for x ∈ NUHχ , we have ϕ ∈ L1(µ). Let ϕn =
log(Q ◦ f n)− log Q be the nth Birkhoff sum of ϕ. By the Birkhoff ergodic theorem,
limn→+∞(ϕn(x)/n) exists µ-a.e. Since by the Poincaré recurrence theorem we have
lim infn→+∞ |ϕn(x)| = lim infn→+∞ |log Q(f n(x))− log Q(x)| < ∞ µ-a.e., it follows
that limn→+∞(ϕn(x)/n) = 0 for µ-a.e. x ∈ NUHχ . Proceeding in the same way for
n → −∞, we conclude that limn→±∞(1/n) log Q(f n(x)) = 0 for µ-a.e. x ∈ NUHχ . �
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2.2.6. Sizes of invariant manifolds: the parameters qs(x), qu(x). Using what we
have done so far, we can proceed as in §2.1 to construct invariant manifolds: define
s/u-admissible manifolds as graphs of functions F : [−q(x), q(x)] → R satisfying some
regularity assumptions (which we will explain later), and define graph transforms F s

x , F u
x .

Hence Theorem 2.3 holds, so we can construct (local) stable and unstable manifolds for
every x ∈ NUH∗

χ . This is essentially what is done in Pesin theory; see, for example,
[BP07, Ch. 7].

In general, q(x) is not the optimal size for the local invariant manifolds, and in some
applications we need bigger sizes for them. This is the case for the construction of
countable Markov partitions that we will discuss in Part two, §3. Observe that q(x) might
be small for two different reasons:

• there is n > 0 for which eεnQ(f n(x)) is small;
• there is n > 0 for which eεnQ(f−n(x)) is small.

In the first case, the forward behavior of Q(f n(x)) is bad, so we expect to construct a
small stable manifold; but we are also constructing a small unstable manifold, that is, the
bad forward behavior is influencing the size of the unstable manifold! Since the unstable
manifold only depends on the past, its size should not be affected by the future. To deal
with this, we introduce two new parameters qs(x) and qu(x), the first controlling the future
behavior and the second controlling the past behavior. Then we use them to construct
invariant manifolds with larger sizes.

Parameters qs(x) and qu(x). For x ∈ NUH∗
χ , define

qs(x) = inf{eεnQ(f n(x)) : n ≥ 0},
qu(x) = inf{eεnQ(f−n(x)) : n ≥ 0}.

In other words, qs(x), qu(x) are the one-sided versions of q(x). Just like q, the
parameters qs , qu depend on ε. We will use qs(x) as the scale for considering the stable
graph transform and qu(x) as the scale for considering the unstable graph transform.

LEMMA 2.8. For all x ∈ NUH∗
χ , the following statements hold.

(1) Good definition. qs(x), qu(x) > 0 and q(x) = min{qs(x), qu(x)}.
(2) Greedy algorithm.

qs(x) = min{eεqs(f (x)), Q(x)},
qu(x) = min{eεqu(f−1(x)), Q(x)}.

The proofs are direct; see also [LM18, Lemma 4.2].

2.2.7. Graph transforms: construction of invariant manifolds. There are dynamical
explanations for Lemma 2.8(2). Let us discuss the first equality. Assume that s-admissible
manifolds at x have representing functions defined in the interval [−qs(x), qs(x)]. If ε > 0
is small enough, then the stable graph transform F s

x takes the graph of a representing
function defined in [−qs(f (x)), qs(f (x))] and expands it at least by a factor of eε, so the
new representing function is well defined in [−eεqs(f (x)), eεqs(f (x))]. Since its domain
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of definition should not go beyond [−Q(x), Q(x)] (where we have a good control on fx),
the best we can do is to define it in [−qs(x), qs(x)]. In summary, qs provides maximal
scales for the definition of stable graph transforms. Similarly, qu provides maximal scales
for the definition of unstable graph transforms. With this in mind, we give a new definition
of s/u-admissible manifolds.

Admissible manifolds. An s-admissible manifold at 9x is a set of the form V s =
9x{(t , F(t)) : |t | ≤ qs(x)}, where F : [−qs(x), qs(x)] → R is a C1+β/3 function
such that F(0) = F ′(0) = 0 and ‖F ′‖0 + Holβ/3(F ′) ≤ 1

2 , where the norms are
taken in [−qs(x), qs(x)]. Similarly, a u-admissible manifold at 9x is a set of the
form V u = 9x{(G(t), t) : |t | ≤ qu(x)}, where G : [−qu(x), qu(x)] → R is a C1+β/3

function such that G(0) = G′(0) = 0 and ‖G′‖0 + Holβ/3(G′) ≤ 1
2 , with norms taken in

[−qu(x), qu(x)].

As before, F , G are called the representing functions of V s , V u, respectively. Let
M s

x , M u
x be the space of all s, u-admissible manifolds at9x respectively, which are metric

spaces with the C0 distance. Let x ∈ NUH∗
χ .

Graph transforms F s
x , F u

x . The stable graph transform F s
x : M s

f (x) → M s
x is the map

that sends V s ∈ M s
f (x) to the unique F s

x [V s] ∈ M s
x with representing function F such

that9x{(t , F(t)) : |t | ≤ qs(x)} ⊂ f−1(V s). Similarly, the unstable graph transform F u
x :

M u
x → M u

f (x) is the map that sends V u ∈ M u
x to the unique F u

x [V u] ∈ M u
f (x) with

representing function G such that 9f (x){(G(t), t) : |t | ≤ qu(f (x))} ⊂ f (V u).

The difference from the previous definition is that the stable and unstable graph
transforms are defined at different scales; see Figure 7.

THEOREM 2.9. F s
x and F u

x are well-defined contractions.

For non-uniformly hyperbolic systems, this theorem was first proved by Pesin; see
[Pes76, Theorem 2.3]. The proof is similar to the proof of Theorem 2.3. In its present
form, with scales qs and qu, the above result is a special case of [Sar13, Proposition 4.12].
For x ∈ NUH∗

χ , let V s[x] and V u[x] be the stable and unstable manifolds of x, defined
as in §2.1.6. Then V s[x] is the image under 9x of the graph of a function defined in
[−qs(x), qs(x)], while V u[x] is the image under 9x of the graph of a function defined in
[−qu(x), qu(x)].

2.2.8. Higher dimensions. Now consider diffeomorphisms in any dimension. The
discussion follows [BO18] and in some sense [BO19]. We can no longer perform the
construction using only the parameters s(x), u(x), α(x), because now the spaces Es , Eu

are higher-dimensional, and each vector defines its own parameter. More specifically,
consider the following definition, for each fixed χ > 0.

The non-uniformly hyperbolic locus NUHχ . This is the set of points x ∈ M for which
there is a splitting TxM = Esx ⊕ Eux such that the following conditions hold.
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FIGURE 7. The stable graph transforms are defined at scales qs , and the unstable graph transforms at scales qu.

(NUH1) Every v ∈ Esx contracts in the future at least −χ and expands in the past:

lim sup
n→+∞

1

n
log ‖df nv‖ ≤ −χ and lim inf

n→+∞
1

n
log ‖df−nv‖ > 0.

(NUH2) Every v ∈ Eux contracts in the past at least −χ and expands in the future:

lim sup
n→+∞

1

n
log ‖df−nv‖ ≤ −χ and lim inf

n→+∞
1

n
log ‖df nv‖ > 0.

(NUH3) The parameters s(x) = sup v∈Esx
‖v‖=1

S(x, v) and u(x) = sup w∈Eux
‖w‖=1

U(x, w) are

finite, where

S(x, v) =
√

2

( ∑

n≥0

e2nχ‖df nv‖2
)1/2

,

U(x, w) =
√

2

( ∑

n≥0

e2nχ‖df−nw‖2
)1/2

.

In [BO19], this definition is similar to the definition of the set χ-summ. Again, NUHχ
is f -invariant, and for each x ∈ NUHχ we can define a linear transformation C(x) : Rn →
TxM that sends the canonical metric on Rn to the Lyapunov inner product 〈〈·, ·〉〉 on TxM .
We again have the block representation

C(f (x))−1 ◦ dfx ◦ C(x) =
[
Ds 0
0 Du

]
,
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where Ds is a ds × ds matrix such that ‖Dsv‖ ≤ e−χ‖v‖ for all v ∈ Rds and Du is a du ×
du matrix such that ‖D−1

u w‖ ≤ e−χ‖w‖ for all w ∈ Rdu . This is the higher-dimensional
Oseledets–Pesin reduction; see Lemma 2.5(2). Define the Pesin chart 9x as in §2.2.4,
and the parameter Q(x) = H ‖C(f (x))−1‖−48/β , where H = H (β, ε) is a constant
that allows us to keep the estimates of order ε and to absorb multiplicative constants.
Then a higher-dimensional version of Theorem 2.6 holds; see [BO18, Theorem 1.13].
From now on, we can repeat the two-dimensional construction, defining the param-
eters q(x), qs(x), qu(x), the non-uniformly hyperbolic locus NUH∗

χ , an s-admissible
manifold at 9x as a set of the form V s = 9x{(t , F(t)) : t ∈ [−qs(x), qs(x)]ds }, where
F : [−qs(x), qs(x)]ds → Rdu is a C1+β/3 function such that F(0) = F ′(0) = 0 and
‖F ′‖0 + Holβ/3(F ′) ≤ 1

2 , where the norms are taken in [−qs(x), qs(x)]ds , and similarly
u-admissible manifolds. Then Theorem 2.3 holds (see [BO18, Proposition 2.8]), and so
every x ∈ NUH∗

χ has local stable and unstable manifolds.

2.3. Maps with discontinuities and bounded derivative. In the previous section we
considered diffeomorphisms defined on closed (compact without boundary) surfaces.
There are natural examples that do not fit into this context, for example Poincaré
return maps of flows and billiard maps. Their common feature is the presence of
discontinuities, and the possible explosion of derivatives. In this section and the
next we will discuss how to adapt the methods of §2.2 to cover these examples,
focusing on the changes that are needed to make the arguments work. We start by
dealing with surface maps with discontinuities and bounded derivative. The reference
is [LS19].

2.3.1. Definitions and examples. Let M be a compact surface, possibly with boundary.
To avoid multiplicative constants in the calculations, we assume that M has diameter
smaller than one. Let D+, D− be closed subsets of M, and consider a map f : M\D+ →
M with inverse f−1 : M\D− → M . Let D := D+ ∪ D− be the set of discontinuities of
f. We require f , f−1 to be local C1+β diffeomorphisms.

Regularity of f. There is a constant L > 0 with the following property.

• For every x ∈ M\D+ there is an open set U ∋ x such that f ↾U is a diffeomorphism
onto its image with C1+β norm at most L .

• For every x ∈ M\D− there is an open set V ∋ x such that f−1 ↾V is a diffeomorphism
onto its image with C1+β norm at most L .

In particular, ‖df±1‖ is bounded away from zero and infinity, so the integrability
condition in the Oseledets theorem holds for any f -invariant probability measure. The
main difficulty when dealing with f as above is that, as x approaches D , the open sets
U , V become smaller, hence the domains of Pesin charts also need to be smaller. To
avoid this issue, we only consider trajectories that do not approach D exponentially
fast.

Here is the example to have in mind. Let N be a three-dimensional closed Riemannian
manifold, let X be a C1+β vector field on N such that X(p) 6= 0 for all p ∈ N , and let
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FIGURE 8. Discontinuities for f : in the picture, x ∈ D+ and y ∈ D−.

ϕ = {ϕt }t∈R be the flow generated by X. We can reduce the dynamics of ϕ to the dynamics
of a surface map by constructing a global Poincaré section M for ϕ as follows.

• Fix ε > 0 small enough.
• For each p ∈ N , consider a closed differentiable discD(p) centered at p with diameter

smaller than ε such that 6 (TqD(p), X(q)) > π/2 − ε for all q ∈ D(p).
• Let FB(p) := ⋃

|t |≤ε ϕ
t [D(p)] be the flow box defined by D(p). Using that X 6= 0,

we see that FB(p) contains an open ball centered at p.
• By compactness, N is covered by finitely many flow boxes FB(p1), . . . , FB(pℓ).

Therefore M = D(p1) ∪ · · · ∪D(pℓ) is a global Poincaré section for ϕ. With some extra
work, we can make the discs D(p1), . . . , D(pℓ) pairwise disjoint, hence the return time
function t : M → (0, ∞) is bounded away from zero and infinity. See [LS19, §2] for
details.

Let f : M → M be the Poincaré return map of M, that is, f (x) = ϕt(x)(x). The map
f has discontinuities, with D± = {x ∈ M : f±1(x) ∈ ∂M} (observe that in this case f is
defined on all of M, but f±1 is discontinuous on D±); see Figure 8.

Nevertheless, where f±1 is continuous, its C1+β norm is uniformly bounded. This
occurs because, at continuity points, f±1 has the form ϕτ where τ has uniformly bounded
C1+β norm; see [LS19, Lemma 2.5] for details.

2.3.2. Non-uniform hyperbolicity. To apply the methods of §2.2, we only consider
trajectories that do not approach D exponentially fast. Let d be the distance in M.

The non-uniformly hyperbolic locus NUH∗
χ . This is the set of points x ∈ M satisfying

conditions (NUH1)–(NUH3) of page 2609 and the following additional condition.

(NUH4) Subexponential convergence to D :

lim
n→±∞

1

n
log d(f n(x), D) = 0.
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The idea of looking at trajectories satisfying condition (NUH4) is not new. It goes back
to Sinaı̆ in the context of billiards [Sin70], which we will discuss in §2.4. See also the
section ‘Overcoming influence of singularities’ in [KSLP86]. At the level of invariant
measures, (NUH4) is related to the following notion.

f-adapted measure. An f -invariant measure on M is called f-adapted if the function
log d(x, D) ∈ L1(µ). A fortiori, µ(D) = 0.

By the Birkhoff ergodic theorem, if µ is f -adapted then (NUH4) holds µ-a.e. If in
addition µ is χ-hyperbolic, then (NUH1)–(NUH3) hold µ-a.e. and therefore µ is carried
by NUHχ , that is, µ[NUHχ ] = 1.

For each x ∈ NUHχ , the linear map C(x) can be defined as before, and Lemma 2.5
remains valid with the same proof. To define the Pesin chart 9x , we just need to adjust its
domain of definition, according to the distance of x to D . Let δ(x) = ε3/βd(x, D).

Pesin chart. The Pesin chart at x ∈ NUHχ is the map 9x : [−δ(x), δ(x)]2 → M defined
by 9x := expx ◦ C(x).

We also redefine Q(x) accordingly. Let ρ(x) := d({f−1(x), x, f (x)}, D).

Parameter Q(x). For x ∈ NUHχ , let Q(x) = ε3/β min{‖C(f (x))−1‖−12/β
Frob , ερ(x)}.

With this definition, the representation of f in Pesin charts fx := 9−1
f (x) ◦ f ◦9x is well

defined in [−10Q(x), 10Q(x)]2. (We take the opportunity to observe that the definition of
Q(x) in [LS19] has a small error, since it does not depend on d(f (x), D) and so we
cannot guarantee that fx is well defined; see [LS19, Theorem 3.2 and Corollary 3.6].
Nevertheless, this can be easily fixed with the definition we give here.) Indeed, Q(x) ≤
εδ(f (x)) and so

(f ◦9x)([−10Q(x), 10Q(x)]2) ⊂ 9f (x)([−δ(f (x)), δ(f (x))]2).

Again, in the domain [−10Q(x), 10Q(x)]2 the map fx is a small perturbation of a
hyperbolic matrix.

Now define the parameters q, qs , qu, the set NUH∗
χ , and the graph transforms F

s/u
x as

in the previous section, then construct local invariant manifolds for each x ∈ NUH∗
χ . We

finish this section by proving an analogue of Lemma 2.7.

LEMMA 2.10. If µ is an f-invariant probability measure supported on NUHχ , then µ is
supported on NUH∗

χ .

Proof. By assumption, limn→±∞(1/n) log d(f n(x), D) = 0 for µ-a.e. x ∈ M . Let
Q̃(x) = ε3/β‖C(f (x))−1‖−12/β

Frob be the ‘old’ Q. Since df is uniformly bounded, we can
proceed exactly as in Lemma 2.7 to conclude that limn→±∞(1/n) log Q̃(f n(x)) = 0 for
µ-a.e. x ∈ M . But then limn→±∞(1/n) log Q(f n(x)) = 0 for µ-a.e. x ∈ M . �

2.4. Maps with discontinuities and unbounded derivative. Next, we consider surface
maps with discontinuities and unbounded derivative. Added to the difficulty that Pesin
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charts are defined in smaller domains, now ‖df±1‖ can approach zero and infinity, so
even the integrability condition in the Oseledets theorem is no longer automatic. The first
development of Pesin theory in this context was [KSLP86], where the interest was in
applying it to billiard maps. Since its beginnings, the ergodic theory of billiard maps was
mainly focused on a reference Liouville measure. This is the case in [KSLP86], where
the authors construct invariant manifolds Lebesgue almost everywhere and use them to
prove ergodic theoretic properties such as the Ruelle inequality. On the contrary, in the
next sections we follow the same approach as §2.2, not focusing on a particular measure
but rather on the set of points with some hyperbolicity. The reference for this section is
[LM18].

2.4.1. Definitions and examples. Let M be a compact surface, possibly with boundary.
Again, we assume that M has diameter smaller than one. Let D+, D− be closed subsets of
M, and consider f : M\D+ → M with inverse f−1 : M\D− → M . Let D := D+ ∪ D−

be the set of discontinuities of f. We require the following conditions on f.

Regularity of f. There are constants 0 < β < 1 < a and K > 0 such that for all x ∈ M\D
there is d(x, D)a < r(x) < d(x, D) such that if Dx = B(x, r(x)) then the following
assumptions hold.

• If y ∈ Dx then ‖df±1
y ‖ ≤ d(x, D)−a .

• If y1, y2 ∈ Dx and f (y1), f (y2) ∈ Dx′ then ‖d̃fy1 − d̃fy2‖ ≤ Kd(y1, y2)
β , and if

y1, y2 ∈ Dx and f−1(y1), f−1(y2) ∈ Dx′′ then ‖˜df−1
y1 − ˜

df−1
y2 ‖ ≤ Kd(y1, y2)

β .

The first assumption says that df±1 blows up at most polynomially fast, and the second
says that df±1 is locally β-Hölder. The examples to have in mind are billiard maps, as we
now explain. Given a compact domain T ⊂ R2 or T ⊂ T2 with piecewise C3 boundary,
consider the straight-line motion of a particle inside T, with specular reflections in ∂T . The
phase space of configurations isM = ∂T × [−π/2, π/2] with the convention that (r , θ) ∈
M represents r = collision position at ∂T and θ = angle of collision. Given (r , θ) ∈ M ,
let (r+, θ+) be the next collision and (r−, θ−) be the previous collision. Let {r1, . . . , rk}
be the break points of ∂T , and define:

D
+ = {r+ = ri for some i} ∪

{
θ+ = ±π

2

}
,

D
− = {r− = ri for some i} ∪

{
θ− = ±π

2

}
.

The billiard map is f : M\D+ → M defined by f (r , θ) = (r+, θ+), with inverse f :
M\D− → M defined by f (r , θ) = (r−, θ−). Since ∂T (usually) has two normal vectors
at ri , we cannot define f±1(r , θ) if r± = ri . When θ± = ±π/2, the trajectory has a
grazing collision, and f±1 is usually discontinuous on (r , θ). Furthermore, df±1 becomes
arbitrarily large in a neighborhood of (r , θ). This justifies the choice of D± above. See
[CM06] for details.

Sinaı̆ showed that f has a natural invariant Liouville measure µSRB = cos θdrdθ ,
which is ergodic for dispersing billiards [Sin70]. Bunimovich constructed examples
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(1) (2) (3) (4)

FIGURE 9. (1) is a Sinaı̆ billiard table. The others are Bunimovich billiard tables: (2) is a pool table with pockets,
(3) is a stadium, (4) is a flower.

of ergodic nowhere dispersing billiards [Bun74a, Bun74b, Bun79]. These billiards,
known as Bunimovich billiards, are non-uniformly hyperbolic. See some examples in
Figure 9. Recently, Baladi and Demers constructed measures of maximal entropy for some
finite-horizon periodic Lorentz gases [BD20]; for more see §4.1.

2.4.2. Non-uniform hyperbolicity. We continue only considering trajectories that do not
approach D exponentially fast, and define the non-uniformly hyperbolic locus NUHχ as in
§2.3.2. Similarly, an f -invariant measure µ is called f-adapted if log d(x, D) ∈ L1(µ).

Since log ‖df±1‖ is usually unbounded, some measures might not satisfy the integrabil-
ity condition in the Oseledets theorem. Due to the regularity of f, the functions log ‖df±1‖
and log d(x, D) are comparable, therefore log ‖df±1‖ ∈ L1(µ) when log d(x, D) ∈
L1(µ). Hence the Oseledets theorem holds for f -adapted measures which shows that
f -adaptability is a natural assumption. In particular, if µ is f -adapted and χ-hyperbolic,
then (NUH1)–(NUH4) hold µ-a.e. and so µ is carried by NUHχ . For each x ∈ NUHχ , we
define C(x) as before, and Lemma 2.5 remains valid with the same proof.

Pesin chart. The Pesin chart at x ∈ NUHχ is 9x : [−d(x, D)a , d(x, D)a]2 → M ,
defined by 9x := expx ◦ C(x).

The definition of Q(x) is more complicated. Let ρ(x) = d({f−1(x), x, f (x)}, D).

Parameter Q(x). For x ∈ NUHχ , define

Q(x) = ε3/β min{‖C(x)−1‖−24/β
Frob , ‖C(f (x))−1‖−12/β

Frob ρ(x)72a/β}.

As before, the choice of the powers is not canonical but just an artifact of the proof.
The above definition depends on f−1(x), x, f (x), and is strong enough to construct
local invariant manifolds, and to run the methods of Part two, §3. Firstly, in the domain
[−10Q(x), 10Q(x)]2 the representation of f in Pesin charts fx := 9−1

f (x) ◦ f ◦9x is
a small perturbation of a hyperbolic matrix; see [LM18, Theorem 3.3]. Defining the
parameters q, qs , qu, the set NUH∗

χ , and the graph transforms F
s/u
x as before, we construct

local invariant manifolds for each x ∈ NUH∗
χ . Finally, we establish an analogue of

Lemmas 2.7 and 2.10.

LEMMA 2.11. If µ is an f-adapted probability measure supported on NUHχ , then µ is
supported on NUH∗

χ .
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Proof. It is enough to show that

lim
n→±∞

1

n
log ‖C(f n(x))−1‖Frob = lim

n→±∞
1

n
log ρ(f n(x)) = 0

for µ-a.e. x ∈ M . By (NUH4), the second equality holds. For the first equality, let
Q̃(x) = ε3/β‖C(f (x))−1‖−12/β

Frob be the ‘old’ Q, and observe that the regularity assumption
on f implies that log[(Q̃ ◦ f )/Q̃] ∈ L1(µ) if and only if log d(x, D) ∈ L1(µ). Since µ
is f -adapted, we get that log[(Q̃ ◦ f )/Q̃] ∈ L1(µ). Now proceed as in Lemma 2.7 to
conclude that limn→±∞(1/n) log ‖C(f n(x))−1‖Frob = 0 for µ-a.e. x ∈ M . �

3. Part two: Symbolic dynamics
Symbolic dynamics is an important tool for the understanding of ergodic and statistical
properties of dynamical systems, both smooth and non-smooth. The field of symbolic
dynamics is enormous and covers various contexts, from the study of symbolic spaces
to the theory of complexity functions; see, for example, [Fer99, Kit98]. Here, we only
discuss the use of symbolic dynamics to represent smooth dynamical systems. The main
idea is simple and can be summarized in two steps: firstly, divide the phase space of a
system into finitely or countably many pieces, which we call rectangles; secondly, instead
of describing the trajectory of a point by the exact positions in the phase space, just record
the sequence of rectangles that the trajectory visits. We call the second step above a coding.
This procedure can be performed in a wide setting. For instance, any partition defines a
coding in the usual way. Such flexibility allows its use in various contexts.

• Periodic points of continuous intervals maps: proof of the Sharkovsky theorem using
Markov graphs; see, for example, [BH11].

• Milnor and Thurston’s kneading theory of continuous intervals maps: description of
the trajectory of the critical point with respect to monotonicity intervals [MT88].

• Geodesics on surfaces of constant negative curvature: Hadamard represented closed
geodesics using sequences of symbols [Had98]; see also [KU07].

In this survey we focus on symbolic dynamics for smooth systems with some hyperbolicity,
uniform and non-uniform. The final goal is to describe the invariant measures and ergodic
theoretical properties of such systems, and for that a mere coding is not enough: it is
important to recover codings, that is, to know which trajectories are coded in the same
way. This reverse procedure is called decoding. Good codings are those for which we can
satisfactorily decode. It has long been observed that uniform expansion provides a good
decoding: two different trajectories eventually stay far apart and therefore cannot visit the
same rectangles. This property, that different trajectories eventually stay far apart, is known
as expansivity. It also occurs for (U)-systems, due to the exponential dichotomy of solutions
mentioned in §2.1.

Another required property on the coding is that the space of sequences coding the
trajectories should be as simple as possible and at the same time rich enough to reflect the
structure of the original smooth system. This property is certainly satisfied if the rectangles
have the Markov property, since in this case every path on the graph is naturally associated
to a genuine orbit. Apart from some technical assumptions, when this occurs we call the
partition a Markov partition.
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Let us give a simple example of its usefulness. Let f : K → K be the horseshoe map
described in Example 2 of §2.1.1 (Smale’s horseshoe). Since K has a fractal structure, it
seems rather complicated to understand its periodic points and invariant measures. But the
system has a Markov partition that induces a continuous bijection π : 6 → K between
the symbolic space 6 = {0, 1}Z and K, that commutes the shift map on 6 and the map f.
Hence we can analyze the dynamical properties of f by means of the dynamical properties
of the shift map.

In the next sections, we explain how to construct Markov partitions for smooth systems
with some hyperbolicity, both uniform and non-uniform. The conclusion is the existence
of a symbolic model. Let us give the definitions. Let G = (V , E) be an oriented graph. We
assume that V is finite or countable, and that for each v, w ∈ V there is at most one edge
v → w.

Topological Markov shift. Let

6 = {{vn}n∈Z ∈ V Z : vn → vn+1, ∀n ∈ Z}

be the set of Z-indexed paths on G , and let σ : 6 → 6 be the left shift. The pair (6, σ) is
called a topological Markov shift (TMS).

An element of6 is denoted by v = {vn}n∈Z. We endow6 with the distance d(v, w) :=
exp[−min{|n| : n ∈ Z such that vn 6= wn}]. Let 6# be the recurrent set of 6, defined by

6# =
{
{vn}n∈Z ∈ 6 :

∃v, w ∈ V such that vn = v for infinitely many n > 0
and vn = w for infinitely many n < 0

}
.

When V is finite, 6# = 6. Let f : M → M be a diffeomorphism.

Symbolic model for diffeomorphism. A symbolic model for f : M → M is a triple
(6, σ , π) where (6, σ) is a TMS and π : 6 → M is a Hölder continuous map such that
π ◦ σ = f ◦ π and the restriction π ↾6# : 6# → π [6#] is finite-to-one.

Hence a symbolic model is a TMS together with a projection map π that commutes
f and σ , and that is finite-to-one on π [6#]. A diffeomorphism can have many symbolic
models. Some of them are bad, when π [6#] is much smaller than the subsets where f
displays an interesting dynamics. A good symbolic model is one for which π [6#] contains
the subset where f displays chaotic dynamics. For us, this occurs when π [6#] carries
χ-hyperbolic measures. To define a symbolic model for flows, we add the flow direction to
the TMS.

Topological Markov flow. Given a TMS (6, σ) and a Hölder continuous function r :
6 → R with 0 < inf r ≤ sup r < ∞, define the pair (6r , σr) by:

• 6r = {(v, t) : v ∈ 6, 0 ≤ t ≤ r(v)} with the identification (v, r(v)) ∼ (σ (v), 0);
• σr = {σ tr }t∈R : 6r → 6r the unit speed vertical flow on 6r , called the suspension

flow (see Figure 10).

The pair (6r , σr) is called a topological Markov flow (TMF).
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FIGURE 10. The suspension flow σr : starting at (v, 0), flow at unit speed until hitting the graph of r, then return
to the basis via the identification (v, r(v)) ∼ (σ (v), 0) and continue flowing.

An element of 6r is denoted by (v, t). Let 6#
r be the recurrent set of 6r ,

6#
r = {(v, t) ∈ 6r : v ∈ 6#}.

See [LS19] for basic properties on (6r , σr). Let ϕ : M → M be a flow.

Symbolic model for flow. A symbolic model for ϕ : M → M is a triple (6r , σr , πr) where
(6r , σr) is a TMF and πr : 6r → M is a Hölder continuous map such that πr ◦ σ tr =
ϕt ◦ πr for all t ∈ R for which the restriction πr ↾6#

r
: 6#

r → πr [6#
r ] is finite-to-one.

3.1. Symbolic dynamics for uniformly hyperbolic systems. There are at least two general
ways of constructing Markov partitions for uniformly hyperbolic systems. One of them, due
to Sinaı̆, is called the method of successive approximations [Sin68a, Sin68b]. The second,
due to Bowen, is called the method of pseudo-orbits [Bow08]. Their common feature is
the use of the local invariant manifolds constructed in Part one, §2, as dynamically defined
systems of coordinates. For completeness and ease of understanding, we also describe
the construction of Adler and Weiss for hyperbolic toral automorphisms [AW67]. Since
for non-uniformly hyperbolic systems we will make use of the method of pseudo-orbits,
we will only sketch the other techniques, and the details can be found in the original
papers. We start by defining Markov partitions (and their flow counterpart) in the context
of uniformly hyperbolic systems, and explain how they generate symbolic models. It
is important to mention that, for uniformly hyperbolic systems, the vertex set V of the
oriented graph G is finite.

3.1.1. Markov partitions/sections. Let f : M → M be a diffeomorphism. As already
mentioned, our goal is to construct a partition of M so that the dynamics of f can be
represented by a TMS. Let G = (V , E) be the graph defining the TMS (6, σ). The vertex
set V is the set of partition elements, and each edge in E will represent one possible
transition by the iteration of f. If v0 → v1 and v1 → v2 are edges, then their concatenation
is a path from v0 to v2. This property, translated to the dynamics of f, is the Markov
property. More precisely, if R0, R1, R2 are the partition elements associated to v0, v1, v2,
then there is a point x ∈ R0 such that f (x) ∈ R1 and there is a point y ∈ R1 such that
f (y) ∈ R2. The Markov property ensures that there is a point z ∈ R0 such that f (z) ∈ R1

and f 2(z) ∈ R2.
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Imagine, for a moment, that f is uniformly expanding. If we define edges R0 → R1

when f (R0) ∩ R1 6= ∅, then the above property is not guaranteed. If instead we define
R0 → R1 when f (R0) ⊃ R1, then the above concatenation holds. When f is a uniformly
hyperbolic diffeomorphism, the definition of edges requires two inclusions, one for each
invariant direction. Let us give the definitions. The references for the discussion in this
section are [Bow08] for diffeomorphisms and [Bow73] for flows. Let f : M → M be an
Axiom A diffeomorphism, and fix ε > 0 small. By Part one, §2, each x ∈ �(f ) has a
local stable manifold W s

loc(x) = V s[x] and a local unstable manifold Wu
loc(x) = V u[x].

By definition, W s/u

loc (x) is tangent to Es/ux at x, hence W s
loc(x), W

u
loc(x) are transversal

at x. The maps x ∈ �(f ) 7→ W
s/u

loc (x) are continuous; see, for example, [Shu87, Theorem
6.2(2)]. Hence, if x, y ∈ �(f ) with dist(x, y) ≪ 1 then W s

loc(x) and Wu
loc(y) intersect

transversally at a single point. Fix δ ≪ ε, and consider the following definition.

Smale bracket. For x, y ∈ �(f ) with d(x, y) < δ, the Smale bracket of x and y is defined
by {[x, y]} := W s

loc(x) ∩Wu
loc(y).

For R ⊂ �(f ), let R∗ denote the interior of R in the induced topology of �(f ).

Rectangle. A subset R ⊂ �(f ) is called a rectangle if it satisfies the following properties.

(1) Regularity. R = R∗ and diam(R) < δ.
(2) Product structure. x, y ∈ R ⇒ [x, y] ∈ R.

The product structure means that R is a rectangle in the system of coordinates given
by the local invariant manifolds. Let W s/u(x, R) := W

s/u

loc (x) ∩ R. Regardless of whether

W
s/u

loc (x) are smooth manifolds, since �(f ) is usually a fractal set, W s/u(x, R) are also
usually fractal.

It is easy to construct rectangles: given ρ > 0, let W s/u
ρ (x) = W

s/u

loc (x) ∩ B(x, ρ);
if x ∈ �(f ), then [Wu

ρ (x) ∩�(f ), W s
ρ(x) ∩�(f )] is a rectangle for all ρ > 0 small

enough. Let R be a finite cover of �(f ) by rectangles.

Markov partition. R is called a Markov partition for f if it satisfies the following
properties.

(1) Disjointness. The elements of R can only intersect at their boundaries (boundaries
are considered with respect to the relative topology of W s/u(x, R); see [Bow08]).

(2) Markov property. If x ∈ R∗ and f (x) ∈ S∗, then

f (W s(x, R)) ⊂ W s(f (x), S) and f−1(Wu(f (x), S)) ⊂ Wu(x, R).

If R only satisfies (2), we call it a Markov cover. The two latter inclusions represent
two Markov properties, one for each invariant direction. Geometrically, they ensure that if
two rectangles intersect, then the intersection occurs all the way from one side to the other,
with respect to the system of coordinates of the local invariant manifolds; see Figure 11.
We stress that, while here every rectangle has non-empty interior, in the non-uniformly
hyperbolic situation we will not be able to guarantee this.

Now let ϕ : M → M be an Axiom A flow. Recall the definitions of §2.3.1. Given an
interval I ⊂ R and Y ⊂ M , let ϕI (Y ) := ⋃

t∈I ϕ
t (Y ).
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FIGURE 11. The Markov property: if f (R) intersects S non-trivially, then f (R) crosses S completely all the way
from one side to the other.

Proper section. A finite family M = {B1, . . . , Bn} is a proper section of size α if there
are closed differentiable discs D1, . . . , Dn transverse to the flow direction such that the
following properties hold.

(1) Closedness. Each Bi is a closed subset of �(ϕ).
(2) Cover. �(ϕ) = ⋃n

i=1 ϕ
[0,α](Bi).

(3) Regularity. Bi ⊂ int(Di) and B∗
i = Bi , where B∗

i is the interior of Bi in the induced
topology of Di ∩�(ϕ).

(4) Partial order. For i 6= j , at least one of the sets Di ∩ ϕ[0,4α](Dj ) and Dj ∩
ϕ[0,4α](Di) is empty; in particular, Di ∩Dj = ∅.

For simplicity, denote B1 ∪ · · · ∪ Bn also by M . Let f : M → M be the Poincaré
return map of M , and t : M → (0, ∞) the return time function. By properties (2) and
(4), 0 < inf t ≤ sup t ≤ α. By transversality, the stable/unstable directions of ϕ project to
stable/unstable directions of the Poincaré map f. Also, local invariant manifolds of f are
projections, in the flow direction, of local invariant manifolds of ϕ, and we can similarly
define the Smale bracket [·, ·] for f.

The maps f , t are not continuous, but they are continuous on the subset

M
′ :=

{
x ∈ M : f k(x) ∈

⋃
B∗
i , ∀k ∈ Z

}
.

Considering points in M ′ avoids many problems, the first being the definition of the
Markov property. We do not want to consider a transition from Bi to Bj when f (Bi) ∩ Bj
is a subset of ∂Bj .

Transitions. We write Bi → Bj if there exists x ∈ M ′ such that x ∈ Bi , f (x) ∈
Bj . When this happens, define T s(Bi , Bj ) := {x ∈ M ′ : x ∈ Bi , f (x) ∈ Bj } and

T u(Bi , Bj ) := {y ∈ M ′ : y ∈ Bj , f−1(y) ∈ Bi}.

Markov section. M is called a Markov section of size α for ϕ if it is a proper section of
size α with the following additional properties.

(5) Product structure. Each Bi is a rectangle.
(6) Markov property. If Bi → Bj , then

x ∈ T
s(Bi , Bj ) ⇒ W s(x, Bi) ⊂ T

s(Bi , Bj ),

y ∈ T
u(Bi , Bj ) ⇒ Wu(y, Bj ) ⊂ T

u(Bi , Bj ).
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Above, W s(x, Bi) = {[x, y] : y ∈ Bi} is the intersection of the local stable manifold of
f at x with Bi . The definition of Wu(y, Bj ) is similar.

3.1.2. Markov partitions/sections generate symbolic models. If R is a Markov partition
for f, then we have a symbolic model for f.

• G = (V , E) with V = R and E = {R → S : f (R∗) ∩ S∗ 6= ∅}.
• π : 6 → �(f ) is defined for R = {Rn}n∈Z ∈ 6 by

{π(R)} :=
⋂

n≥0

f n(R−n) ∩ · · · ∩ f−n(Rn) =
⋂

n≥0

f n(R−n) ∩ · · · ∩ f−n(Rn).

Alternatively, π(R) is the unique x ∈ �(f ) such that f n(x) ∈ Rn, for all n ∈ Z. The
map π is well defined due to the Markov property and uniform hyperbolicity. Clearly
f ◦ π = π ◦ σ . Additionally, π is a finite-to-one continuous surjection that is one-to-one
on a residual subset of �(f ); see [Bow08, Theorem 3.18] for details.

If M is a Markov section for ϕ, then ϕ has a symbolic model.

• G = (V , E) with V = M and E = {Bi → Bj : ∃x ∈ M ′ such that x ∈ B∗
i , f (x) ∈

B∗
j }.

• π : 6 → M is defined for B = {Bn}n∈Z ∈ 6 by

{π(B)} :=
⋂

n≥0

f n(B−n) ∩ · · · ∩ f−n(Bn) =
⋂

n≥0

f n(B−n) ∩ · · · ∩ f−n(Bn).

• r : 6 → R is defined by r := t ◦ π .
• πr : 6r → �(ϕ) is defined by πr(B, t) := ϕt [π(B)].

Again, π is well defined because of the Markov property and uniform hyperbolicity, and
satisfies f ◦ π = π ◦ σ . Also, π is a finite-to-one continuous surjection that is one-to-one
on M ′; see [Bow73] for details.

Therefore, to get symbolic models for uniformly hyperbolic symbolic systems, it is
enough to construct Markov partitions/sections.

3.1.3. Markov partitions for two-dimensional hyperbolic toral automorphisms. This
method, developed by Adler and Weiss [AW67], constructs finite Markov partitions for
two-dimensional hyperbolic toral automorphisms. A particular case was constructed by
Berg [Ber68]. Consider the cat map introduced in Example 1 of §2.1.1 , and let E0 =
(0, 0) ∈ T2. Clearly, f (E0) = E0. Since the matrix A is hyperbolic, E0 has two eigendirections;
let us callW s the contracting one andWu the expanding one. By linearity,W s andWu are
the (global) stable and unstable manifolds of E0.

To obtain a Markov partition, we construct a fundamental domain of T2 whose sides
are pieces of W s and Wu, and then subdivide this domain into finitely many rectangles
satisfying the Markov property. In Figure 12, we draw one possibility for the tessellation
of R2 by one such fundamental domain. For a general two-dimensional hyperbolic toral
automorphism, the construction of the fundamental domain consists of two steps.

Step 1. Take a cover R of T2 by finitely many rectangles whose sides belong to W s and
Wu such that every non-trivial intersection f (R∗) ∩ S∗ is connected, that is, f (R∗) does
not intersect S∗ ‘twice’.
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FIGURE 12. A tessellation of R2 by fundamental domains whose sides are parallel to W s and Wu.

FIGURE 13. A Markov partition for the cat map by three rectangles R1, R2, R3, and the graph defining the
respective TMS.

Step 2. Since f contractsW s , which is the stable manifold of the fixed point E0, the stable
boundary of f (R) is contained in W s , while its unstable boundary containsWu. Partition
R further by adding the pre-image of the unstable segments of f (R).

The final cover R is a finite Markov partition; see [AW70] for details. The projection
map π : 6 → T2 is a finite-to-one continuous surjection that is one-to-one on the set {x ∈
T2 : f n(x) ∈ ⋃

R∈R R∗, ∀n ∈ Z}.
In our example, it is enough to divide the fundamental domain into three rectangles

R1, R2, R3 as in Figure 13. We leave it as an exercise for the reader to show that the
images f (R1), f (R2), f (R3) are as depicted in Figure 13, so that {R1, R2, R3} is a Markov
partition. The graph defining the TMS is also depicted in Figure 13.

For higher-dimensional hyperbolic toral automorphisms, a similar construction works,
but there is an important difference from the two-dimensional case: the boundary of a
Markov partition is not smooth [Bow78a].

3.1.4. The method of successive approximations for diffeomorphisms. This method, due
to Sinaı̆ [Sin68a, Sin68b], provides Markov partitions for Anosov diffeomorphisms. It
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FIGURE 14. The horizontal component of Si,k+1\Si,k is the union of sets of the form f (A), where A is a horizontal
subset of Sj ,k\Sj ,k−1. Above, A is composed of the two ticker segments in the left figure and the added set is in

gray in the right figure.

was later modified by Bowen to also work for Axiom A diffeomorphisms [Bow70a].
The construction consists of three main steps. Below, we explain them for Anosov
diffeomorphisms.

Step 1 (Coarse graining). Let T = {Ti} be a finite cover of M by rectangles (as we have
argued in §3.1.1, it is easy to build one such cover).

Step 2 (Successive approximations). Recursively define families Sk = {Si,k} and Uk =
{Ui,k} of rectangles as follows.

• Si,0 = Ui,0 = Ti .
• If Sk , Uk are defined, let

Si,k+1 :=
⋃

x∈Si,k
{[y, z] : y ∈ Si,k , z ∈ f (W s(f−1(x), Sj ,k)) for f−1(x) ∈ Sj ,k},

Ui,k+1 :=
⋃

x∈Ui,k
{[z, y] : y ∈ Ui,k , z ∈ f−1(Wu(f (x), Uj ,k)) for f (x) ∈ Uj ,k}.

Let Si := ⋃
k≥0 Si,k , Ui := ⋃

k≥0 Ui,k , and Zi := [Ui , Si]. Then Z = {Zi} is a Markov
cover.

Let us understand the above definitions. Representing the stable direction by the
horizontal direction, we identify what are the horizontal components of Si,k+1\Si,k; see
Figure 14. Start by observing that the horizontal component of Si,1\Si,0 is the union of
sets of the form f (A), where A = W s(f−1(x), Sj ,0)\f−1(W s(x, Si,0)). Each such A has
diameter less than 1, hence f (A) has diameter less than κ , thus Si,1 equals the union of
Si,0 and a set of horizontal diameter less than κ . Similarly, the horizontal component of
Si,2\Si,1 is the union of sets of the form f (A), where A is a horizontal subset of Sj ,1\Sj ,0,
therefore Si,2 equals the union of Si,1 and a set of horizontal diameter less than κ2. By
induction, Si,k+1 equals the union of Si,k and a set of horizontal diameter less than κk+1.
This shows that each Si is well defined, and the same occurs for each Ui .

Step 3 (Bowen–Sinaı̆ refinement). To destroy non-trivial intersections, refine Z as
follows. For Zi , let Ii = {j : Z∗

i ∩ Z∗
j 6= ∅}. For j ∈ Ii , let Eij = cover of Zi by rectangles

(see Figure 15):

Esuij := {x ∈ Z∗
i : W s(x, Zi) ∩ Z∗

j 6= ∅, Wu(x, Zi) ∩ Z∗
j 6= ∅},

Es∅ij := {x ∈ Z∗
i : W s(x, Zi) ∩ Z∗

j 6= ∅, Wu(x, Zi) ∩ Zj = ∅},
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FIGURE 15. Eij = {Esuij , Es∅ij , E∅u
ij , E∅∅

ij } is a cover of Zi by rectangles.

E∅u
ij := {x ∈ Z∗

i : W s(x, Zi) ∩ Zj = ∅, Wu(x, Zi) ∩ Z∗
j 6= ∅},

E∅∅
ij := {x ∈ Z∗

i : W s(x, Zi) ∩ Zj = ∅, Wu(x, Zi) ∩ Zj = ∅}.

Hence R := cover defined by {Eij : Zi ∈ Z , j ∈ Ii} is a Markov partition for f, and
the induced π : 6 → M is a finite-to-one continuous surjection that is one-to-one on {x ∈
M : f n(x) ∈ ⋃

R∈R R∗, ∀n ∈ Z}.

3.1.5. The method of successive approximations for flows. Ratner applied the method of
successive approximations to three-dimensional Anosov flows [Rat69]. Later she extended
it to higher-dimensional Anosov flows [Rat73], and Bowen used it for Axiom A flows
[Bow73]. Below, we follow Bowen’s construction. As usual, the main difficulty when
dealing with flows is the presence of discontinuities for the Poincaré return map.

Consider a proper section C . Since the stable/unstable directions of ϕ project to
stable/unstable directions of the Poincaré map f, it is easy to construct rectangles inside C .
Let R be a cover of C ∩�(ϕ) by rectangles. To apply successive approximations (Step 2
of §3.1.4), proceed as follows.

• Take L > 0 large such that for every x ∈ R ∈ R there are C+, C− ∈ C such that
ϕL(W s

loc(x)) ⊂ ϕ[−α,α](C+) and ϕ−L(Wu
loc(x)) ⊂ ϕ[−α,α](C−). The existence of L

follows from the uniform hyperbolicity of ϕ.
• For each such x, take a neighborhood V ∋ x small enough such that ϕL(V ) ⊂

ϕ[−α,α](C+) and ϕ−L(V ) ⊂ ϕ[−α,α](C−), and define f+
V : V → C+ and f−

V : V →
C− by

f+
V := (projection to C+) ◦ ϕL and f−

V := (projection to C−) ◦ ϕ−L.

• Pass to a finite collection of neighborhoods V as above, and apply the method of
successive approximations to the maps f+

V , f−
V . The resulting cover by rectangles has

a Markov property: for each x ∈ R there are k, ℓ > 0 such that x satisfies a stable
Markov property at f k(x) and an unstable Markov property at f−ℓ(x).

• The values of k, ℓ are uniformly bounded by some N > 0.
• To get the Markov property for f, apply a refinement procedure along the iterates

−N , . . . , N of f. The resulting partition M is a Markov section for ϕ.

For the details see [Bow73].

3.1.6. The method of pseudo-orbits. Bowen provided an alternative method to construct
Markov partitions for Axiom A diffeomorphisms [Bow08]. His idea was to use the
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theory of pseudo-orbits and shadowing, which explores the expected richness on the
orbit structure of uniformly hyperbolic systems. These notions appeared in the qualitative
theory of structural stability for uniformly hyperbolic systems. Indeed, Anosov considered
a version of pseudo-orbits for flows, which he called ε-trajectories, and used them to prove
that Anosov flows are structurally stable; see [Ano70, Theorem 1].

Let f : M → M be an invertible map. An orbit of f is a sequence {xn}n∈Z such that
f (xn) = xn+1 for all n ∈ Z, while a pseudo-orbit is a sequence {xn}n∈Z such that f (xn) ≈
xn+1 for all n ∈ Z. In other words, a pseudo-orbit is an orbit up to small errors at each
iteration. This is exactly what a computer returns when we try to iterate a map: due to
roundoff errors, the sequence is not a real orbit but just a pseudo-orbit. Since a hyperbolic
matrix remains hyperbolic after a small perturbation, Theorem 2.2 holds for pseudo-orbits,
as we will see below: changing f (x) to some nearby y, we can represent f in the Lyapunov
charts 9x and 9y and still obtain a small perturbation of a hyperbolic matrix. This is the
main tool to introduce the symbolic model. To maintain consistency with Part one, §2, we
continue to assume that M is a surface.

3.1.6.1. Pseudo-orbits. Recall the definition of Lyapunov charts from §2.1.5: for ε > 0
small enough, we let Q = ε3/β and define, for each x ∈ M , its Lyapunov chart 9x :
[−Q, Q]2 → M . Recall that 9x is 2-Lipschitz and its inverse is 2L -Lipschitz. The
splitting Es ⊕ Eu is continuous, so there is δ = δ(ε) > 0 such that if d(x, y) < δ then
‖9−1

y ◦9x − Id‖1+β/2 < ε3, where the norm is taken in [−Q, Q]2. (The composition

9−1
y ◦9x is well defined in [−Q, Q]2. To see this, fix ε > 0 small enough so that each

9x is well defined in the larger domain [−10LQ, 10LQ]2. Taking δ = δ(ε) > 0 small
enough, if d(x, y) < δ then 9x([−Q, Q]2) ⊂ B(x, 4Q) ⊂ B(y, 5Q) ⊂ 9y([−10LQ,
10LQ]2).)

ε-overlap. Two Lyapunov charts 9x , 9y are said to ε-overlap if d(x, y) < δ. When this

happens, we write 9x
ε≈ 9y .

Hence, if two points are close enough, the charts they define are essentially the same.
This notation is somewhat redundant for uniformly hyperbolic systems, but we prefer to
state it as above because it helps understand the symbolic model and the difficulties when
we consider non-uniformly hyperbolic systems.

If 9f (x)
ε≈ 9y , then we can write f in the Lyapunov charts 9x and 9y as fx,y =

9−1
y ◦ f ◦9x . Since fx,y = 9−1

y ◦9f (x) ◦ fx =: g ◦ fx , where g := 9−1
y ◦9f (x) is a

small perturbation of the identity, the map fx,y is again a small perturbation of a

hyperbolic matrix. The same reasoning happens if 9f−1(y)

ε≈ 9x , in which case f−1
x,y =

9−1
x ◦ f−1 ◦9y , the representation of f−1 in the Lyapunov charts 9x and 9y , is also a

small perturbation of a hyperbolic matrix. This is summarized in the next theorem, which
is the version of Theorem 2.2 in the present context.

THEOREM 3.1. For all ε > 0 small enough, if 9f (x)
ε≈ 9y , then fx,y is well defined

in [−Q, Q]2 and can be written as fx,y(v1, v2) = (Av1 + h1(v1, v2), Bv2 + h2(v1, v2)),
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where:

(1) |A|, |B−1| < λ (cf. Lemma 2.1);
(2) ‖hi‖1+β/3 < ε for i = 1, 2.

If 9f−1(y)

ε≈ 9x then a similar statement holds for f−1
x,y .

Observe that, in contrast to Theorem 2.2, above we can only control the C1+β/3 norm.
This slight decrease is necessary to keep the estimates of size ε.

Edge. We write 9x
ε→ 9y if 9f (x)

ε≈ 9y and 9f−1(y)

ε≈ 9x .

Conditions 9f (x)
ε≈ 9y and 9f−1(y)

ε≈ 9x are called nearest neighbor conditions.

Pseudo-orbit. A sequence of Lyapunov charts {9xn}n∈Z is called a pseudo-orbit if9xn
ε→

9xn+1 for all n ∈ Z.

We point out that classically a pseudo-orbit is a sequence of points instead of
Lyapunov charts, but so far these notions coincide, since 9xn

ε→ 9xn+1 is equivalent to
d(f (xn), xn+1) < δ and d(f−1(xn+1), xn) < δ.

3.1.6.2. Graph transforms. Assume that 9x
ε→ 9y . Since f±1

xy are perturbations of
hyperbolic matrices, we can proceed as in §2.1.6 and define graph transforms between
admissible manifolds at 9x and 9y . First, we need to redefine admissibility. For instance,
we can no longer require F(0) = 0, since this property is not preserved by the maps f±1

x,y

(unless f (x) = y). For ease of exposition, we continue not to prescribe the precision in
this definition.

Admissible manifolds. An s-admissible manifold at 9x is a set of the form V s =
9x{(t , F(t)) : |t | ≤ Q}, where F : [−Q, Q] → R is a C1 function such that F(0) ≈ 0
and ‖F ′‖C0 ≈ 0. Similarly, a u-admissible manifold at 9x is a set of the form V u =
9x{(G(t), t) : |t | ≤ Q}, where G : [−Q, Q] → R is a C1 function such that G(0) ≈ 0
and ‖G′‖C0 ≈ 0.

Let M s
x , M u

x be the space of all s, u-admissible manifolds at 9x respectively, and

introduce metrics on M
s/u
x as before. Assume that 9x

ε→ 9y .

Graph transforms F s
x,y , F u

x,y . The stable graph transform F s
x,y : M s

y → M s
x is the

map that sends V s ∈ M s
y to the unique F s

x,y[V s] ∈ M s
x with representing function F

such that 9x{(t , F(t)) : |t | ≤ Q} ⊂ f−1(V s). Similarly, the unstable graph transform
F u
x,y : M u

x → M u
y is the map that sends V u ∈ M u

x to the unique F u
x,y[V u] ∈ M u

y with
representing function G such that 9y{(G(t), t) : |t | ≤ Q} ⊂ f (V u).

Again, the hyperbolicity of f±1
x,y implies the following result.

THEOREM 3.2. If 9x
ε→ 9y , then F s

x,y and F u
x,y are well-defined contractions.

Consequently, each pseudo-orbit has local stable and unstable manifolds.
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Stable/unstable manifolds. The stable manifold of v = {9xn}n∈Z is the unique
s-admissible manifold V s[v] ∈ M s

x0
defined by

V s[v] := lim
n→∞

(F s
x0,x1

◦ · · · ◦ F
s
xn−1,xn)[Vn]

for some (any) sequence {Vn}n≥0 with Vn ∈ M s
xn

. The unstable manifold of v is the unique
u-admissible manifold V u[v] ∈ M u

x0
defined by

V u[v] := lim
n→−∞

(F u
x−1,x0

◦ · · · ◦ F
u
xn,xn+1

)[Vn]

for some (any) sequence {Vn}n≤0 with Vn ∈ M u
xn

.

The observations at the end of §2.1.6 can be repeated verbatim. In particular, V s[v] only
depends on the future {9xn}n≥0, while V u[v] only depends on the past {9xn}n≤0.

Shadowing. v = {9xn}n∈Z is said to shadow x if f n(x) ∈ 9xn([−Q, Q]2), for all n ∈ Z.

THEOREM 3.3. (Shadowing lemma) Every pseudo-orbit v shadows a unique point {x} =
V s[v] ∩ V u[v].

This follows from the hyperbolicity of each f±1
xn,xn+1

.

3.1.6.3. Construction of a Markov partition. We now explain how Bowen used the
above tools to construct a Markov partition for f. The construction involves two codings, the
first being usually infinite-to-one and the second finite-to-one. We divide the construction
into three steps. Let f : M → M be Axiom A, and let L > 1 be a Lipschitz constant
for f±1.

Step 1 (Coarse graining). Fix a finite subset X ⊂ �(f ) that is (δ/2L)-dense in �(f ),
and let A = {9x : x ∈ X}. Let G = (V , E) be the oriented graph with vertex set V = A

and edge set E = {9x ε→ 9y}, and let (6, σ) be the TMS defined by G . Observe that an
element of 6 is a pseudo-orbit.

Step 2 (Infinite-to-one extension). Using the shadowing lemma, define a map π : 6 →
�(f ) by

{π(v)} := V s[v] ∩ V u[v].

The map π has the following properties.

• π is surjective. For every x ∈ �(f ), choose {xn}n∈Z ⊂ X such that d(f n(x), xn) <
δ/2L. Then v = {9xn}n∈Z is a pseudo-orbit, since

d(f (xn), xn+1) ≤ d(f (xn), f
n+1(x))+ d(f n+1(x), xn+1)

≤ Ld(xn, f n(x))+ d(f n+1(x), xn+1) < δ/2 + δ/2L < δ,

and similarly d(f−1(xn+1), xn) < δ. Clearly, π(v) = x.
• π ◦ σ = f ◦ π . This follows from the shadowing lemma, since if v shadows x then

σ(v) shadows f (x).
• π is usually infinite-to-one. Imagine, for example, that for some x ∈ �(f ) there are

xn, yn ∈ X such that d(f n(x), xn) < δ/2L and d(f n(x), yn) < δ/2L. Any choice
of zn ∈ {xn, yn} defines a pseudo-orbit {9zn}n∈Z that shadows x, hence π−1(x) has
cardinality at least 2Z, which is uncountable.
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The third property above is, in general, unavoidable. Hence, (6, σ , π) is not a symbolic
model for f. But the Markov structure of 6 induces, via π , a cover of �(f ) satisfying a
(symbolic) Markov property.

The Markov cover Z . Let Z := {Z(v) : v ∈ A }, where

Z(v) := {π(v) : v ∈ 6 and v0 = v}.

In other words, Z is the family defined by the natural partition of 6 into cylinder at the
zeroth position. In general, each Z(v) is fractal. Admissible manifolds allow us to define
invariant fibers inside each Z ∈ Z . Let Z = Z(v).

s/u-fibers in Z . Given x ∈ Z, let W s(x, Z) := V s[v] ∩ Z be the s-fiber of x in Z for
some (any) v = {vn}n∈Z ∈ 6 such that π(v) = x and v0 = v. Similarly, let Wu(x, Z) :=
V u[v] ∩ Z be the u-fiber of x in Z.

Observe that, while V s/u[v] are smooth manifolds,W s/u(x, Z) is usually fractal. Below
we collect the main properties of Z .

PROPOSITION 3.4. The following statements hold for all ε > 0 small enough.

(1) Covering property. Z is a cover of �(f ).
(2) Product structure. For every Z ∈ Z and every x, y ∈ Z, the intersection

W s(x, Z) ∩Wu(y, Z) consists of a single point, and this point belongs to Z.
(3) Symbolic Markov property. If x = π(v) with v = {vn}n∈Z ∈ 6, then

f (W s(x, Z(v0))) ⊂ W s(f (x), Z(v1)) and f−1(Wu(f (x), Z(v1))) ⊂ Wu(x, Z(v0)).

Statement (1) follows from the surjectivity of π . To prove (2), we define a Smale bracket
[·, ·]Z for each Z ∈ Z as follows. Write Z = Z(v), and let x = π(v), y = π(w) where
v = {vn}n∈Z, w = {wn}n∈Z ∈ 6 with v0 = w0 = v. Then W s(x, Z) ∩Wu(y, Z) consists
of a unique point z = π(u) where u = {un}n∈Z is defined by:

un =
{
vn if n ≥ 0,
wn if n ≤ 0.

The equality z = π(u) follows from the shadowing lemma. Observe that z ∈ Z. We write
z =: [x, y]Z . Finally, part (3) follows from the Markov structure of 6. At this point,
it is also important to show that the above definitions are compatible among the elements
of Z .

LEMMA 3.5. The following statements hold for all ε > 0 small enough.

(1) Compatibility. If x, y ∈ Z(v0) and f (x), f (y) ∈ Z(v1) with v0
ε→ v1 then

f ([x, y]Z(v0)) = [f (x), f (y)]Z(v1).
(2) Overlapping charts properties. If Z = Z(9x), Z′ = Z(9y) ∈ Z with Z ∩ Z′ 6= ∅

then:

(a) Z ⊂ 9y([−Q, Q]2);
(b) if x ∈ Z ∩ Z′ then W s/u(x, Z) ⊂ V s/u(x, Z′);
(c) if x ∈ Z, y ∈ Z′ then V s(x, Z) and V u(y, Z′) intersect at a unique point.
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FIGURE 16. The diamond argument.

Statement (1) also follows from the Markov structure of 6, while (2) follows from the
fine control we have on the Lyapunov charts inside each rectangle [−Q, Q]2. Lemma 3.5
allows us to consider Smale brackets of different intersecting rectangles.

Step 3 (Bowen–Sinaı̆ refinement). We repeat verbatim Step 3 from §3.1.4. The resulting
partition R is a Markov partition. By §3.1.2, we obtain a symbolic model (6̂, σ̂ , π̂),
where (6̂, σ̂ ) is the TMS defined by the graph Ĝ = (V̂ , Ê) with vertex set V̂ =
R and edge set Ê = {R → S : f (R∗) ∩ S∗ 6= ∅}. Let π̂ : 6 → �(f ) be defined for
R = {Rn}n∈Z ∈ 6 by

{π̂(R)} :=
⋂

n≥0

f n(R−n) ∩ · · · ∩ f−n(Rn) =
⋂

n≥0

f n(R−n) ∩ · · · ∩ f−n(Rn).

Then π̂ is a finite-to-one surjection that is one-to-one on the set {x ∈ �(f ) : f n(x) ∈⋃
R∈R R∗, ∀n ∈ Z}.
We remark that the method of pseudo-orbits also works for uniformly expanding maps,

in which case the TMS is one-sided. To do this, assume for simplicity that f : M → M

satisfies d(f (x), f (y)) ≥ κ−1d(x, y). Define Lyapunov charts simply by 9x := expx ,

then define an edge 9x
ε→ 9y if and only if d(f (x), y) ≪ 1, and prove that each

pseudo-orbit {9xn}n≥0 shadows a single point x ∈ M . Now implement Steps 1–3.

3.1.6.4. Bowen relation. We explain why π̂ is finite-to-one. The proof follows Bowen
[Bow78b], and is sometimes referred as the diamond argument, as justified by Figure 16;
see also [Adl98, Lemma 6.7]. Bowen’s idea was to investigate the quotient map π : 6 →
M . For us, this argument will be extremely useful to prove, in §3.2, that the coding obtained
for non-uniformly hyperbolic maps is finite-to-one. For uniformly hyperbolic maps, this
argument is not essential, but we stress that the method is of interest in its own right and
introduces a relation, nowadays called the Bowen relation, that precisely characterizes the
loss of injectivity of π .

Consider the triple (6̂, σ̂ , π̂) as above. Define a relation in R by R ∼ S if and only
if R ∩ S 6= ∅. Assume that R ∼ S. If x ∈ R and y ∈ S, let [x, y] be their Smale bracket,
which is well defined by part (2)(c) of Lemma 3.5. Let R = {Rn}n∈Z, S = {Sn}n∈Z ∈ 6.
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Bowen relation. We say that R ≈ S if Rn ∼ Sn for all n ∈ Z.

This clearly defines an equivalence relation on 6, with π̂(R) = π̂(S) if and only if
R ≈ S. Let N = #R.

LEMMA 3.6. The following statements hold for all ε > 0 small enough.

(1) If Rn → · · · → Rm and Sn → · · · → Sm are paths on Ĝ such that Rn = Sn, Rm =
Sm and Rk ∼ Sk for k = n, . . . , m, then Rk = Sk for k = n, . . . , m.

(2) π̂ is everywhere at most N2-to-one, that is, for every x we have #π̂−1(x) ≤ N2.

Proof. The original reference is [Bow78b, pp. 13–14]. As mentioned by Bowen himself,
statement (2) was pointed out by Brian Marcus. Write A = Rn = Sn and B = Rm = Sm.
For part (1), choose x, y such that f k(x) ∈ R∗

k and f k(y) ∈ S∗
k for k = n, . . . , m. Define z

by the equality f n(z) = [f n(x), f n(y)]. Since Rk ∼ Sk , we have f k(z) = [f k(x), f k(y)]
for k = n, . . . , m. Noting that f n(x), f n(y) ∈ A∗ and fm(x), fm(y) ∈ B∗, we have that
f n(z) ∈ A∗ and fm(z) ∈ B∗. Now we use the Markov property.

• The Markov property for the stable direction at f n(x) ∈ A implies that f k(z) ∈
W s(f k(x), Rk) for k = n, . . . , m. Indeed, we can prove inductively that f k(z) ∈
(W s(f k(x), Rk))∗, the interior of W s(f k(x), Rk) in the relative topology of Rk . In
particular, f k(z) ∈ R∗

k for k = n, . . . , m.
• Applying the same argument for the unstable direction of fm(y) ∈ B, we obtain that

f k(z) ∈ S∗
k for k = n, . . . , m.

Hence f k(z) ∈ R∗
k ∩ S∗

k and so Rk = Sk , which proves (1). Now we prove (2). If some x
has more than N2 pre-images, then there are two of them, say R and S, and two indices
n < m such that (Rn, . . . , Rm) 6= (Sn, . . . , Sm) with Rn = Sn and Rm = Sm. Since
f k(x) ∈ Rk ∩ Sk , we have Rk ∼ Sk for k = n, . . . , m. This contradicts part (1). �

3.2. Symbolic dynamics for non-uniformly hyperbolic systems. We finally arrive at
the core of the discussion, showing how to employ the method of pseudo-orbits for
non-uniformly hyperbolic systems. As mentioned in the introduction, Katok was the first
to use the theory of pseudo-orbits for hyperbolic measures [Kat80], and constructed
what are now called Katok horseshoes. Restricted to C1+β surface diffeomorphisms, his
construction provides finite Markov partitions that approximate the topological entropy.
For that, he used Pesin theory on subsets where the parameters vary continuously. This
approach is not genuinely non-uniformly hyperbolic, because it discards regions with
bad behavior of such parameters. In this section we explain how this difficulty was
solved by Sarig [Sar13]. The starting step is to control the hyperbolicity parameters
more effectively, as explained in §2.2. We will now use it to present a finer theory
of pseudo-orbits, that in particular provides symbolic models for non-uniformly hyper-
bolic systems. The idea for construction of the symbolic model is similar to Bowen’s
method described in §3.1.6, but instead of Lyapunov charts we use (double) Pesin
charts as vertices of the TMS. In order to code all points with some non-uniform
hyperbolicity, we will invariably need countably many such charts. Hence, while for
uniformly hyperbolic systems the TMS has finitely many states, now it will have countably
many.
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In the following sections we will restrict ourselves to C1+β surface diffeomorphisms.
Later we explain how to perform the construction in other settings, which include
higher-dimensional diffeomorphisms, flows, and billiard maps. We will emphasize five
main ingredients in the proof:

• ε-overlap;
• ε-double charts;
• coarse graining;
• improvement lemma;
• inverse theorem.

The first two are discussed in the next subsection, and the others in the subsequent
subsections.

3.2.1. Preliminaries. Let M be a closed connected smooth Riemannian surface, let
f : M → M be a C1+β diffeomorphism, and fix χ > 0. Recall the definitions of the
non-uniformly hyperbolic locus NUHχ and Pesin charts 9x from §2.2.2. One important
part of the construction will be to restrict the domains of Pesin charts, tuning them properly.
Since we want to end up with countably many of them, we choose their sizes from a
countable set. Fix ε > 0 small enough, and let Iε := {e−εn/3 : n ≥ 0}. We redefine Q(x)
as follows.

Parameter Q(x). For each x ∈ NUHχ , define Q(x) to be the largest element of Iε that is

less than or equal to ε3/β‖C(f (x))−1‖−12/β
Frob .

In other words, we truncate Q(x) to Iε. Now define the parameters q, qs , qu and the
non-uniformly hyperbolic locus NUH∗

χ as in §§2.2.5 and 2.2.6. Observe that q, qs , qu ∈
Iε. To obtain a finite-to-one coding, we need a recurrence assumption on the parameter q,
so we define a subset of NUH∗

χ as follows.

The non-uniformly hyperbolic locus NUH#
χ .

NUH#
χ =

{
x ∈ NUH∗

χ : lim sup
n→+∞

q(f n(x)) > 0 and lim sup
n→−∞

q(f n(x)) > 0
}

.

It is important to notice that this recurrence assumption is harmless for measures, since
an analogue of Lemma 2.7 holds: if µ is an f -invariant probability measure supported
on NUH∗

χ , then it is supported on NUH#
χ . This follows from the Poincaré recurrence

theorem (we leave the details to the reader). We now state the main result we wish to
discuss.

THEOREM 3.7. Let f : M → M be as above. For every χ > 0, there exist a TMS (6, σ)
and a Hölder continuous map π : 6 → M such that:

(1) π ◦ σ = f ◦ π ;
(2) π [6#] = NUH#

χ ;
(3) the restriction π ↾6# : 6# → NUH#

χ is finite-to-one.

Remember the definition of the recurrent set 6# at the beginning of §3. Theorem 3.7
does not rely on any measure, and instead provides a single symbolic model that codes
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all χ-hyperbolic measures at the same time. Theorem 3.7 is a strengthening of Theorem
1.3 established by Sarig in [Sar13]. The main difference between Theorem 3.7 and
[Sar13, Theorem 1.3] is that Sarig’s construction relies on Lyapunov regularity, and as
a consequence he only obtains an inclusion of the form π [6#] ⊃ NUH#

χ . But rehearsing
the same arguments of his proof inside the non-uniformly hyperbolic loci we have defined
here provides the above statement. This observation grew from ongoing work with Buzzi
and Crovisier [BCL], in which we need a more intrinsic construction to make it work
for three-dimensional flows. The proof of Theorem 3.7 makes essential use of the low
dimension of M: since the bundles Es , Eu are one-dimensional, we are able to apply
arguments of bounded distortion. If M has dimension larger than two, then Es , Eu can
both have dimension larger than one, and there is no a priori reason for them to satisfy
bounded distortion estimates. Nevertheless, building on his previous work [BO18], Ben
Ovadia was able to obtain a result similar to Theorem 3.7 that works in any dimension
[BO19]; for more see §3.2.7.

3.2.1.1. ε-overlap of Pesin charts. We start by establishing an analogue of Theorem 3.1.
In the uniformly hyperbolic situation, the map x 7→ 9x is continuous, hence the norm of
9−1
y ◦9x can be controlled by d(x, y). For non-uniformly hyperbolic systems, the maps

x ∈ NUHχ 7→ esx , eux are not necessarily continuous, so even though d(x, y) ≪ 1 we can
still have 9−1

y ◦9x with large norm, if the behavior of C(x) and C(y) are very different.
Therefore, we only allow overlaps when, in addition to taking nearby points, their matrices
C are close. For the definition, we allow Pesin charts to have different domains: for each
η ∈ Iε, define 9ηx := 9x ↾[−η,η]2 .

ε-overlap. Two Pesin charts9η1
x1 , 9η2

x2 are said to ε-overlap if η1/η2 = e±ε and d(x1, x2)+
‖C̃(x1)− C̃(x2)‖ < (η1η2)

4. When this happens, we write 9η1
x1

ε≈ 9
η2
x2 .

This notion was introduced in [Sar13]. It constitutes the first main ingredient in the
proof of Theorem 3.7. The definition is strong enough to guarantee that the hyperbolicity
parameters of x1 and x2 are almost the same; see [Sar13, Lemma 3.3] or [LM18,
Proposition 3.4]. We are now able to recover Theorem 3.1.

THEOREM 3.8. For all ε > 0 small enough, if 9ηf (x)
ε≈ 9

η′
y , then fx,y is well defined

on [−10Q(x), 10Q(x)]2 and can be written as fx,y(v1, v2) = (Av1 + h1(v1, v2), Bv2 +
h2(v1, v2)) where:

(1) |A|, |B−1| < e−χ (cf. Theorem 2.6);
(2) ‖hi‖1+β/3 < ε for i = 1, 2.

If 9η
′

f−1(y)

ε≈ 9
η
x then a similar statement holds for f−1

x,y .

This is [Sar13, Proposition 3.4].

3.2.1.2. ε-double charts. Now that we have a good notion of overlap between Pesin
charts, we want to define graph transforms. The approach will be similar to §2.2.7, where
we defined stable and unstable graph transforms using different scales qs and qu. In that

https://doi.org/10.1017/etds.2020.80 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.80


2638 Y. Lima

subsection, we also gave a dynamical explanation of the recursive equations in Lemma
2.8(2) that qs , qu satisfy. To extend this to Pesin charts, we consider two scales for each
chart, one that controls the stable direction and another that controls the unstable direction.
Hence we do not work with Pesin charts alone, but instead consider different objects, called
double charts, and use them to define stable and unstable graph transforms. This idea, also
introduced in [Sar13], is the second main ingredient in the proof of Theorem 3.7.

ε-double chart. An ε-double chart is a pair of Pesin charts 9p
s ,pu

x = (9
ps

x , 9p
u

x ) where
ps , pu ∈ Iε with 0 < ps , pu ≤ Q(x).

Intuitively, just as qs/u(x) are choices for the sizes of local stable/unstable manifolds
at x, the parameters ps/pu represent candidates for the sizes of local stable/unstable
manifolds of pseudo-orbits. To make sense of this, let us first define transitions between
ε-double charts.

Edge v
ε→ w. Given ε-double charts v = 9

ps ,pu
x and w = 9

qs ,qu
y , we draw an edge from

v to w if the following conditions are satisfied.

(GPO1) 9
qs∧qu
f (x)

ε≈ 9
qs∧qu
y and 9p

s∧pu
f−1(y)

ε≈ 9
ps∧pu
x .

(GPO2) ps = min{eεqs , Q(x)} and qu = min{eεpu, Q(y)}.

Condition (GPO1) allows us to represent f nearby x by Pesin charts at x and y,
and similarly for f−1. Condition (GPO2) is a greedy algorithm that chooses the local
hyperbolicity parameters as large as possible, and is the counterpart of Lemma 2.8(2) for
pseudo-orbits.

ε-generalized pseudo-orbit (ε-gpo). An ε-generalized pseudo-orbit is a sequence v =
{9p

s
n,pun

xn }n∈Z of ε-double charts such that 9
psn,pun
xn

ε→ 9
ps
n+1,pu

n+1
xn+1 for all n ∈ Z.

This definition is much stronger than the one given in §3.1.6. Observe that if v is an
ε-gpo then by (GPO2) we have that

ps0 = inf{eεnQ(xn) : n ≥ 0} and pu0 = inf{eεnQ(x−n) : n ≥ 0}.

These equations are very similar to the definitions of qs/u; see §2.2.6.

3.2.1.3. Graph transforms. To finally define graph transforms, it remains to strengthen
the notion of admissibility. Let v = 9

ps ,pu
x be an ε-double chart.

Admissible manifolds. An s-admissible manifold at v is a set of the form V s =
9x{(t , F(t)) : |t | ≤ ps}, where F : [−ps , ps] → R is a C1+β/3 function such that:

(AM1) |F(0)| ≤ 10−3(ps ∧ pu);
(AM2) |F ′(0)| ≤ 1

2 (p
s ∧ pu)β/3;

(AM3) ‖F ′‖C0 + Holβ/3(F ′) ≤ 1
2 , where the norms are taken in [−ps , ps].

Similarly, a u-admissible manifold at v is a set of the form V u = 9x{(G(t), t) : |t | ≤ pu}
where G : [−pu, pu] → R is a C1+β/3 function satisfying (AM1)–(AM3), where the
norms are taken in [−pu, pu].
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Note that ps/u control the domains of the representing functions, and ps ∧ pu controls
their behavior at 0. Let M s

v , M u
v be the space of all s, u-admissible manifolds at v, which

are metric spaces with the same metrics as before. For each edge v
ε→ w, define the stable

graph transform F s
v,w : M s

w → M s
v and the unstable graph transform F u

v,w : M u
v → M u

w

as before. An analogue of Theorem 3.2 holds, and we can similarly define stable and
unstable manifolds for every ε-gpo v.

Stable/unstable manifolds. The stable manifold of an ε-gpo v = {vn}n∈Z is the unique
s-admissible manifold V s[v] ∈ M s

v0
defined by

V s[v] := lim
n→∞

(F s
v0,v1

◦ · · · ◦ F
s
vn−1,vn)[Vn]

for some (any) sequence {Vn}n≥0 with Vn ∈ M s
vn

. The unstable manifold of v is the unique
u-admissible manifold V u[v] ∈ M u

v0
defined by

V u[v] := lim
n→−∞

(F u
v−1,v0

◦ · · · ◦ F
u
vn,vn+1

)[Vn]

for some (any) sequence {Vn}n≤0 with Vn ∈ M u
vn

.

These manifolds are genuine Pesin invariant manifolds; see [Sar13, Proposition 6.3].
In particular, if y, z ∈ V s[v] then s(y)/s(z) = e±const, and similarly for V u[v]. We point
out that if F is the representing function of V s[v] and Fn is the representing function of
(F s

v0,v1
◦ · · · ◦ F s

vn−1,vn)[Vn] for n ≥ 0, then ‖F − Fn‖C1 → 0 as n → ∞, and the same
holds for the representing function of V u[v]. This follows from the Arzelà–Ascoli theorem,
since the C1+β/3 norm of representing functions is uniformly bounded; see, for example,
part (2) in the proof of [Sar13, Proposition 4.15]. We also define shadowing.

Shadowing. We say that v = {9p
s
n,pun

xn }n∈Z shadows x if f n(x) ∈ 9xn([−psn ∧ pun , psn ∧
pun]2) for all n ∈ Z.

The shadowing lemma is still valid, again with {x} = V s[v] ∩ V u[v]; see [Sar13,
Theorem 4.16(1)].

3.2.2. Coarse graining. The third main ingredient in the proof of Theorem 3.7 involves
choosing countably many charts that shadow all orbits of interest. For uniformly hyperbolic
systems, a sufficiently dense set of points is enough. For non-uniformly hyperbolic
systems, the construction is more elaborate. Firstly, the definition of ε-overlap depends
on ‖C̃(x)− C̃(y)‖, which depends on a comparison between s(x), u(x), α(x) and
s(y), u(y), α(y). Secondly, nearest neighbor conditions do not follow from control at
x and y. Fortunately, all parameters involved in the construction belong to a precompact
set, so there are countable dense subsets.

THEOREM 3.9. For all ε > 0 sufficiently small, there exists a countable set A of ε-double
charts with the following properties.

(1) Discreteness. For all t > 0, the set {9p
s ,pu

x ∈ A : ps , pu > t} is finite.
(2) Sufficiency. If x ∈ NUH#

χ then there is an ε-gpo v ∈ A Z that shadows x.

(3) Relevance. For all v ∈ A there is an ε-gpo v ∈ A Z with v0 = v that shadows a
point in NUH#

χ .
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The original statement is [Sar13, Theorem 4.16]. The discreteness property (1) says that
Pesin blocks require only finitely many ε-double charts, while the relevance property (3)
guarantees that none of the ε-double charts is redundant.

Sketch of proof. Define X := M3 × GL(2, R)3 × (0, 1]. For each x ∈ NUH∗
χ , let Ŵ(x) =

(x, C, Q) ∈ X with

x = (f−1(x), x, f (x)), C = (C(f−1(x)), C(x), C(f (x))), Q = Q(x).

Let Y = {Ŵ(x) : x ∈ NUH∗
χ }. For each triple ℓ = (ℓ−1, ℓ0, ℓ1) ∈ N3

0, define

Yℓ := {Ŵ(x) ∈ Y : eℓi ≤ ‖C(f i(x))−1‖ < eℓi+1, −1 ≤ i ≤ 1}.

Then Y = ⋃
ℓ∈N3

0
Yℓ, and each Yℓ is precompact in X by definition. For each j ≥ 0, choose

a finite set Yℓ(j) ⊂ Yℓ such that for every Ŵ(x) ∈ Yℓ there exists Ŵ(y) ∈ Yℓ(j) such that:

(a) d(f i(x), f i(y))+ ‖ ˜C(f i(x))− ˜C(f i(y))‖ < e−8(j+2) for −1 ≤ i ≤ 1;
(b) Q(x)/Q(y) = e±ε/3.

We define the countable set of ε-double charts as follows.

The alphabet A . Let A be the countable family of 9p
s ,pu

x such that:

(CG1) Ŵ(x) ∈ Yℓ(j) for some (ℓ, j) ∈ N3
0 × N0;

(CG2) 0 < ps , pu ≤ Q(x) and ps , pu ∈ Iε;
(CG3) e−j−2 ≤ ps ∧ pu ≤ e−j+2.

This alphabet satisfies (1) and (2) but not necessarily (3). We can easily reduce it to
a sub-alphabet A ′ satisfying (1)–(3) as follows. Call v ∈ A relevant if there is v ∈ A Z

with v0 = v such that v shadows a point in NUH#
χ . Since NUH#

χ is f -invariant, every
vi is relevant. Then A ′ = {v ∈ A : v is relevant} is discrete because A ′ ⊂ A , and it is
sufficient and relevant by definition. �

Referring to the steps of §3.1.6.3, we have just completed Step 1. Now let G = (V , E)
be the oriented graph with vertex set V = A and edge setE = {v ε→ w}, and let (6, σ) be
the TMS generated by G . The proof of sufficiency actually gives more: if x ∈ NUH#

χ then
there is a recurrent ε-gpo v ∈ 6# that shadows x. By the shadowing lemma, π : 6 → M

defined by {π(v)} := V s[v] ∩ V u[v] is an infinite-to-one extension of f such that π [6#] ⊃
NUH#

χ .

3.2.3. Improvement lemma. The fourth main ingredient in the proof of Theorem 3.7
is an important fact that will imply the reverse inclusion π [6#] ⊂ NUH#

χ as well as the
inverse theorem in the next subsection. We start by observing that points of π [6#] do have
stable and unstable directions. If v is an ε-gpo, then for x ∈ V u[v] we can take eux to be
the tangent vector (any tangent vector) to V u[v] at x. This direction indeed contracts in the
past and expands in the future; see [Sar13, Proposition 6.3(2)] and claim (i) in the proof
of [Sar13, Proposition 6.5]. Similarly, for x ∈ V s[v] we can take the tangent vector (any
tangent vector) to V s[v] at x to be the stable direction esx .
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FIGURE 17. Improvement lemma: the graph transform improves ratios.

Fix v ∈ 6#, and let x = π(v). Since {x} = V s[v] ∩ V u[v], esx , eux are defined. If we
prove that s(x), u(x) < ∞, then (NUH3) holds and automatically (NUH1)–(NUH2) hold
as well, implying that x ∈ NUHχ . The proof that s(x), u(x) < ∞ is very delicate, since a
priori there is no reason for x to have hyperbolic behavior as good as the behavior of the
centers of the ε-double charts of v. But the notions of ε-overlap and admissibility are so
strong that indeed s(x), u(x) < ∞. The proof of this fact relies on a general philosophy
that f improves smoothness along the unstable direction, and f−1 improves smoothness
along the stable direction. In terms of graph transforms, the ratios of s, u parameters
improve. We call this an improvement lemma. The heuristics for such improvement can

be explained as follows. Assume that v
ε→ w, where v = 9

ps0,pu0
x0 and w = 9

ps1,pu1
x1 , let

V s ∈ M s
w and Ṽ s = F s

v,w[V s], and fix a point y ∈ Ṽ s . In particular f (y) ∈ V s ; see
Figure 17. Assuming that s(y) < ∞, we want to compare the ratios s(f (y))/s(x1) and
s(y)/s(x0). Proceeding as in the proof of Lemma 2.1, we have s(y)2 = 2 + Cs(f (y))2,
where C = ‖df esy‖2e2χ . By the ε-overlap, we also have s(x0)

2 ≈ 2 + Cs(x1)
2, and so

s(y)2/s(x0)
2 ≈ (2 + Cs(f (y))2)/(2 + Cs(x1)

2). If the initial ratio is s(f (y))2/s(x1)
2 =

K ≫ 1, then the new ratio is s(y)2/s(x0)
2 ≈ (2 +KCs(x1)

2)/(2 + Cs(x1)
2) < K . The

same occurs if K ≪ 1, in which case the new ratio becomes greater than K.

LEMMA 3.10. (Improvement lemma) For ε > 0 small enough, and for ξ ≥ √
ε, if

s(f (y))/s(x1) = e±ξ , then s(y)/s(x0) = e±(ξ−Q(x0)
β/4).

Hence the ratio improves whenever it is outside [e−
√
ε, e

√
ε]; see [Sar13, Lemma 7.2]

for a proof. Here is the first main consequence of this important lemma.

COROLLARY 3.11. π [6#] ⊂ NUHχ , that is, if x = π(v) for v ∈ 6#, then s(x),
u(x) < +∞.

The proof can be found in [Sar13, §7.1]. We summarize it as follows. Let vnk = v

for infinitely many nk > 0. Since v = 9
ps ,pu
z is relevant, there is V s ∈ M s

v such that
s(y) < ∞ for every y ∈ V s . Starting with Vnk = V s , pull it back through the graph
transforms to get Ṽ sk ∈ M s

v0
. If k is large enough, then the original ratio s(y)/s(z) passes

through sufficiently many improvementsQ(z) so that s(wk)/s(x0) = e±ξ for all wk ∈ Ṽ sk ,
for some fixed ξ ≥ √

ε. Since the representing functions of Ṽ sk converge to the representing
function of V s[v] in the C1 norm, we conclude that s(x) < ∞. Similarly, we obtain that
u(x) < ∞.
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3.2.4. Inverse theorem. The fifth and final main ingredient in the proof of Theorem 3.7
is the inverse theorem. To understand its importance, recall that once we have constructed
an infinite-to-one coding π , the next step is to apply a Bowen–Sinaı̆ refinement to the
Markov cover Z induced by π . Since 6 has countably many states, the Markov cover is
countable, so that after refining the resulting partition could be uncountable (for example,
the refinement of the dyadic intervals in [0, 1] is the point partition). One condition that
guarantees a countable refinement is local finiteness: Z is locally finite if every Z ∈ Z

only intersects finitely many other Z′ ∈ Z . The understanding of intersections Z ∩ Z′

comes from an inverse problem: if π(v) = x, how is v defined in terms of x? The next
theorem (essentially) answers this question.

THEOREM 3.12. (Inverse theorem) Let v = {9p
s
n,pun

xn }n∈Z ∈ 6#, and let π(v) = x. Then
the following properties hold for all n ∈ Z.

(1) Control of x: dist(xn, f n(x)) < const.
(2) Control of α: sin α(xn)/sin α(f n(x)) = e±const.
(3) Control of s, u: s(xn)/s(f n(x)) = u(xn)/u(f

n(x)) = e±const.
(4) Control of ps , pu: psn/q

s(f n(x)) = pun/q
u(f n(x)) = e±const.

In particular, x ∈ NUH#
χ , and so π [6#] = NUH#

χ .

The above theorem is not the original reference [Sar13, §6], since it did not make use of
q, qs , qu. Instead, the original statement considered two ε-gpos v, w ∈ 6# and compared
their parameters directly. The constant appearing in the theorem is of the order of 3

√
ε. The

assumption v ∈ 6# is essential to guarantee parts (3) and (4), since the proof uses that the
trajectories visit a Pesin block infinitely often. Theorem 3.12 states that each coordinate of
v is uniquely defined ‘up to bounded error’. Below we explain how to get the estimates for
n = 0.

Control of x and α. Let F , G be the representing functions of V s , V u. Since
F(0), G(0) ≈ 0, the graphs of F , G intersect close to the origin (0, 0). Applying 9x0 ,
we conclude that d(x0, x) ≪ 1. To control the angle, we use that ‖F ′‖C0 , ‖G′‖C0 ≪ 1
and so the graphs of F , G intersect almost perpendicularly. Applying 9x0 , we get that
α(x0) ≈ α(x); see Figure 18.

Control of s, u. The proof is identical to the proof of Corollary 3.11.
Observe that parts (2)–(3) imply that Q(xn)/Q(f n(x)) = e±const for all n ∈ Z.
Control of ps , pu. We prove the first estimate ps0/q

s(x) = e±const (the second is
analogous). The idea is to observe that ps0 and qs(x) are defined as infima of comparable
sequences. Indeed, by definition we have

qs(x) = inf{eεnQ(f n(x)) : n ≥ 0},
and by (GPO2) we have

ps0 = inf{eεnQ(xn) : n ≥ 0}.

Since Q(xn)/Q(f n(x)) = e±const for all n ≥ 0, it follows that ps0/q
s(x) = e±const.

The above argument differs from the original one, and does not require any maximality
assumption on qs . Indeed, it comes for free from the recurrence of v.
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FIGURE 18. Control of x and α.

3.2.5. Bowen–Sinaı̆ refinement. Local finiteness allows us to refine the Markov cover
of NUH#

χ and obtain a countable Markov partition. As mentioned in §3.1.1, the notion
of Markov cover/partition for non-uniformly hyperbolic systems will be weaker than the
one for uniformly hyperbolic systems, since we are not able to control the topology of
the rectangles. Indeed, due to Theorem 3.12, the Markov cover is the projection of the
canonical partition of 6# (instead of 6) into cylinders at the zeroth position, hence
rectangles will not have the regularity property. This loss of topological control compels us
to perform the refinement in a more abstract way, and then check that the resulting partition
still generates a finite-to-one symbolic extension. The reader who is already comfortable
with the uniformly hyperbolic situation will not see much difficulty in the adaptations.

The Markov cover Z . Let Z := {Z(v) : v ∈ A }, where

Z(v) := {π(v) : v ∈ 6# and v0 = v}.

Restricted to 6#, cylinders are neither closed nor empty, so the same occurs for Z(v).
Nevertheless, s/u-fibers are still well defined in Z .

PROPOSITION 3.13. The following statements are true.

(1) Covering property. Z is a cover of NUH#
χ .

(2) Product structure. For every Z ∈ Z and every x, y ∈ Z, the intersection
W s(x, Z) ∩Wu(y, Z) consists of a single point, and this point belongs to Z.

(3) Symbolic Markov property. If x = π(v) with v = {vn}n∈Z ∈ 6#, then

f (W s(x, Z(v0))) ⊂ W s(f (x), Z(v1)) and f−1(Wu(f (x), Z(v1))) ⊂ Wu(x, Z(v0)).

(4) Local finiteness. For every Z ∈ Z , the set {Z′ ∈ Z : Z ∩ Z′ 6= ∅} is finite.

Parts (1)–(3) are analogues of Proposition 3.4. The novelty is part (4), which follows
from Theorem 3.9(1) and Theorem 3.12(3): if v = 9

ps ,pu
x and w = 9

qs ,qu
y satisfy
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Z(v) ∩ Z(w) 6= ∅ then ps/qs = pu/qu = e±const, hence

#{Z(w) ∈ Z : Z(v) ∩ Z(w) 6= ∅} ≤ #{w ∈ A : qs , qu ≥ e−const(ps ∧ pu)} < ∞.

Inside each Z ∈ Z , define the Smale bracket [·, ·]Z as before. Lemma 3.5 remains valid;
see [Sar13, Lemmas 10.7, 10.8, 10.10]. We now refine Z . For Z, Z′ ∈ Z such that Z ∩
Z′ 6= ∅, let EZZ′ = cover of Z by rectangles:

EsuZ,Z′ = {x ∈ Z : W s(x, Z) ∩ Z′ 6= ∅, Wu(x, Z) ∩ Z′ 6= ∅};
Es∅Z,Z′ = {x ∈ Z : W s(x, Z) ∩ Z′ 6= ∅, Wu(x, Z) ∩ Z′ = ∅};
E∅u
Z,Z′ = {x ∈ Z : W s(x, Z) ∩ Z′ = ∅, Wu(x, Z) ∩ Z′ 6= ∅};

E∅∅
Z,Z′ = {x ∈ Z : W s(x, Z) ∩ Z′ = ∅, Wu(x, Z) ∩ Z′ = ∅}.

The above definition is simpler than the one for uniformly hyperbolic systems, since we
do not take relative interiors nor closures. Let R be the partition that refines all of EZZ′ .
Again due to Theorem 3.9(1) and Theorem 3.12(3), R and Z satisfy two additional local
finiteness properties:

• for all R ∈ R, the set {Z ∈ Z : Z ⊃ R} is finite;
• for all Z ∈ Z , the set {R ∈ R : R ⊂ Z} is finite.

Inside each R ∈ R, the Smale brackets [·, ·]Z do not depend on Z, hence we can define
[·, ·] on R.

LEMMA 3.14. R is a Markov partition.

(1) Product structure. If x, y ∈ R ∈ R then [x, y] ∈ R.
(2) Markov property. If R, S ∈ R and if x ∈ R, f (x) ∈ S then

f (W s(x, R)) ⊂ W s(f (x), S) and f−1(Wu(f (x), S)) ⊂ Wu(x, R).

Let Ĝ = (V̂ , Ê) be the graph with V̂ = R and Ê = {R → S : f (R) ∩ S 6= ∅} (com-
pare this definition with the one given in Step 3 of §3.1.6.3). Let (6̂, σ̂ ) be the TMS defined
by Ĝ , and define π̂ : 6 → M by

{π̂(R)} :=
⋂

n≥0

f n(R−n) ∩ · · · ∩ f−n(Rn).

In comparison to the previous constructions, we take closures because the Rn are not
necessarily closed. A priori, the image of π̂ could be much bigger than the image of
π . Fortunately, this is not the case: for each R ∈ 6̂#, there is an ε-gpo v ∈ 6# such
that π̂(R) = π(v); see the proof of [Sar13, Theorem 12.5]. Therefore π̂ [6̂#] = π [6#] =
NUH#

χ .
We point out that π̂ is compatible with the Smale brackets in 6 and R. More

specifically, for R = {Rn}n∈Z, S = {Sn}n∈Z ∈ 6 with R0 = S0, let U = [R, S] where
U = {Un}n∈Z is defined by

Un =
{
Rn if n ≥ 0,
Sn if n ≤ 0.
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FIGURE 19. The affiliation property R ∼ S, which might occur even when R ∩ S = ∅.

Then π̂([R, S]) = [π̂(R), π̂(S)]. This is [BPVL20, Lemma 4.4], and it is used to
study the simplicity of generic fiber-bunched cocycles over non-uniformly hyperbolic
diffeomorphisms.

3.2.6. Affiliation and Bowen relation. We investigate how π̂ : 6̂# → NUH#
χ loses injec-

tivity. In the uniformly hyperbolic situation, we saw in §3.1.6.4 that this is characterized
by the Bowen relation. Sarig was able to obtain a similar characterization [Sar13], which
was further explored by Boyle and Buzzi [BB17].

Affiliation. Two rectangles R, S ∈ R are called affiliated if there exist Z, Z′ ∈ Z such
that Z ⊃ R, Z′ ⊃ S and Z ∩ Z′ 6= ∅. If this occurs, we write R ∼ S. See Figure 19.

Affiliation is more complicated than mere non-empty intersection, and it arises from the
need to take closures in the definition of π̂ . If R ∼ S as above, then Lemma 3.5 implies
that we can take Smale brackets between points of Z and Z′.

Bowen relation. We say that R ≈ S if and only if Rn ∼ Sn for all n ∈ Z.

The following result was implicit in [Sar13], as explained in [BB17, §8.3].

LEMMA 3.15. If R, S ∈ 6̂#, then π̂(R) = π̂(S) if and only if R ≈ S.

Now we apply the diamond argument, as in §3.1.6.4, by choosing n < m such that
the rectangle configuration (R, Z, S, Z′) of Figure 19 is the same at positions n and m.
Introduce

N(R) := #{(S, Z′) ∈ R × Z : R ∼ S and Z′ ⊃ S}.

The local finiteness of R and Z imply that N(R) < ∞ for all R ∈ R. For fixed R, S ∈
R and n < m, the pigeonhole principle implies that if there are more than N(R)N(S)
paths Rn → · · · → Rm such that Rn ∼ R and Rm ∼ S, then two of them have the same
rectangle configuration at iterates n and m, as expressed below.

THEOREM 3.16. Let R ∈ 6̂#, with Rn = R for infinitely many n < 0 and Rm = S

for infinitely many m > 0, and let x = π̂(R). Then #[π̂−1(x) ∩ 6̂#] ≤ N(R)N(S). In
particular, the restriction π̂ ↾6̂# : 6̂# → NUH#

χ is finite-to-one.

The original proof [Sar13, Theorem 12.8] has a small error that was corrected in
[LS19]. This concludes the proof of Theorem 3.7.
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3.2.7. Higher dimensions. Recently, building on his previous work [BO18], Ben Ovadia
obtained a higher-dimensional version of Theorem 3.7 [BO19]. Regarding the five main
ingredients, the first three can be adapted to higher dimensions, with many extra technical
difficulties; see [BO18, §§2 and 3]. But the improvement lemma and inverse theorem
require different approaches. Indeed, each x = π(v) has many parameters S(x, v) and
U(x, w), and in principle it is not clear with which reference parameters they should
be compared. Let us explain how to make the estimates for S(x, v). Let V s[v] =
9x0{(t , F(t)) : t ∈ [−ps0, ps0]ds } be the stable manifold of v = {9p

s
n,pun

x0 }n∈Z ∈ 6#. Let
x ∈ V s[v], with x = 9x0(x) = 9x0(t , F(t)). The candidate for stable subspace at x is
Ẽsx = (d9x0)x[H s

x ], where H s
x is the subspace tangent to {(t , F(t)) : t ∈ [−ps0, ps0]ds } at

x. Observing that the stable subspace at x0 is (d9x0)0[Rds × {0}], consider a linear trans-
formation H s

x → Rds × {0} given by the derivative of the projection (t , F(t)) 7→ (t , 0) at
x = (t , F(t)). Applying d9x0 , we obtain a linear transformation 4x : Ẽsx → Esx0

. Since
the graph of F is almost horizontal, 4x is almost an isometry. The improvement lemma
can be stated as follows: if v ∈ Ẽsf (y) satisfies S(f (y), v)/S(x1, 4f (y)v) = exp[±ξ ] for

some ξ ≥ √
ε, then

S(y, w)

S(x0, 4yw)
= exp[±(ξ − 1

6Q(x0)
β/6)]

for w = df−1
f (y)v; see [BO18, Lemma 4.6]. This improvement lemma implies two

properties:

• π [6#] ⊂ NUHχ (see Claim 1 in the proof of [BO18, Lemma 4.7]);
• the inverse theorem (see [BO18, §4]).

3.2.8. Uniform hyperbolicity versus non-uniform hyperbolicity. In Table 1 we summa-
rize the main differences between the constructions of symbolic models for uniformly
hyperbolic and non-uniformly hyperbolic systems.

3.2.9. Surface maps with discontinuities. We now explain the constructions in the
contexts of §§2.3 and 2.4. Let us start with surface maps with discontinuities and bounded
derivative. As in the previous section, take Iε := {e−εn/3 : n ≥ 0} and truncateQ(x) to Iε,
then consider ε-overlap and ε-gpo as in §3.2.1. To prove Theorem 3.9, we need to control
more parameters: for ℓ = (ℓ−1, ℓ0, ℓ1) and k = (k−1, k0, k1), define

Yℓ,k :=
{
Ŵ(x) ∈ Y :

eℓi ≤ ‖C(f i(x))−1‖ < eℓi+1, −1 ≤ i ≤ 1
e−ki−1 ≤ d(f i(x), D) < e−ki , −1 ≤ i ≤ 1

}
.

Using these precompact sets, proceed as in the proof of Theorem 3.9. Theorem 3.12 works
without modification, as well as Theorem 3.7.

As mentioned in §2.3, the prototypical examples for surface maps with discontinuities
and bounded derivative are Poincaré return maps of three-dimensional flows with positive
speed. Let N be a three-dimensional closed Riemannian manifold, let X be a C1+β vector
field on N such that X(p) 6= 0 for all p ∈ N , and let ϕ = {ϕt }t∈R be the flow generated
by X. In §2.3 we constructed a global Poincaré section M, equal to the finite union of
transverse discs, such that the return time function t : M → (0, ∞) is bounded away
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TABLE 1. Comparison between the methods and objects used in the construction of symbolic models for uniformly hyperbolic and
non-uniformly hyperbolic systems.

Uniformly hyperbolic Non-uniformly hyperbolic

Coding All points NUH#
χ

Chart Lyapunov chart: uniform size Pesin chart: size Q with (1/n) log Q(f n(x)) → 0

Vertices Finite number of Lyapunov charts Countable number of ε-double charts

Edges 9x → 9y : f (x) ≈ y and f−1(y) ≈ x 9
ps ,pu
x

ε→ 9
qs ,qu
y : (GPO1) and (GPO2)

Rep. function F ∈ C1 such that F(0) ≈ 0 and ‖F ′‖C0 ≈ 0 F ∈ C1+β/3 with (AM1)–(AM3)

π : 6 → M {π(v)} = V s [v] ∩ V u[v] Same

Cover Z Z(v) = {π(v) : v0 = v} closed sets Z(v) = {π(v) : v ∈ 6#, v0 = v}

Refinement Relative interiors and closures Set-theoretical refinement

Partition R Markov with regular rectangles Markov without control of relative interiors

Graph (V̂ , Ê) V̂ = R, Ê = {R → S: f (R∗) ∩ S∗ 6= ∅} V̂ = R, Ê = {R → S: f (R) ∩ S 6= ∅}

π̂ : 6̂ → M {π̂(R)} = ⋂
n≥0 f

n(R−n) ∩ · · · ∩ f−n(Rn) {π̂(R)} = ⋂
n≥0 f

n(R−n) ∩ · · · ∩ f−n(Rn)

Finite-to-one #π̂−1(x) ≤ (#R)2, for all x ∈ M #[π̂−1(x) ∩ 6̂#] < ∞, for all x ∈ M

https://doi.org/10.1017/etds.2020.80 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/etds.2020.80


2648 Y. Lima

from zero and infinity. Then the Poincaré return map f : M → M has discontinuities and
bounded derivative.

We now relate the hyperbolic properties of ϕ and f. Let χ̃ > 0. It is possible to
define a non-uniformly hyperbolic locus NUHχ̃ (ϕ) for ϕ, similar to the definition on
page 2609. This is part of an ongoing project with Buzzi and Crovisier [BCL]. Let
NUHχ be the non-uniformly hyperbolic locus of f. If x ∈ M ∩ NUHχ̃ (ϕ), then x satisfies
(NUH1)–(NUH3) for χ := χ̃ inf(t). Indeed, the flow trajectory of x spends at least time
inf(t) between visits to M; see [LS19, Lemma 2.6]. To prove that x ∈ NUHχ , it remains
to check (NUH4). Here we encounter a problem: the section M could be chosen in such a
bad way that every trajectory of f converges exponentially fast to D , and so (NUH4) never
holds. To bypass this difficulty, we need to choose M carefully so that most ϕ-trajectories
define f -trajectories satisfying (NUH4). Unfortunately, we do not know how to construct
such a section. What we know, and this is done in [LS19], is how to construct one section
for each fixed measure (more generally, for a countable set of fixed measures). Fortunately,
this is enough for many applications.

Let µ be a χ̃-hyperbolic probability measure for ϕ, and let ν be its projection to M,
which is χ-hyperbolic for f. The goal is to choose M so that ν is f -adapted. Consider
a one-parameter family of global Poincaré sections {Mr}, by changing the radii of each
disc of M. More specifically, let Mr = Dr(p1) ∪ · · · ∪Dr(pℓ), r ∈ [a, b], such that each
Mr is a global Poincaré section for ϕ and tr : Mr → (0, ∞) is uniformly bounded away
from zero and infinity. Let fr : Mr → Mr be the Poincaré return map, and let νr be the
projection of µ to Mr . The next result is [LS19, Theorem 2.8].

THEOREM 3.17. For Lebesgue-a.e. r ∈ [a, b], the measure νr is fr -adapted.

Proof. Let Dr be the discontinuity set of fr . It is enough to show that

νr

{
x ∈ Mr : lim inf

|n|→∞
1

|n| log d(f nr (x), Dr) < 0

}
= 0 for a.e.r ∈ [a, b].

For α > 0, let

Aα(r) :=
{
x ∈ Mb : ∃ infinitely many n ∈ Z such that

1

|n| log d(f nb (x), Dr) < −α
}

.

It is enough to prove that νb[Aα(r)] = 0 for Lebesgue-a.e. r ∈ [a, b]. Let Iα(x) :=
{a ≤ r ≤ b : x ∈ Aα(r)}. Since 1Aα(r)(x) = 1Iα(x)(r), by Fubini’s theorem we have∫ b
a
νb[Aα(r)]dr =

∫
Mb

Leb[Iα(x)]dνb(x), so it is enough to prove that

Leb[Iα(x)] = 0 for all x ∈ Mb.

The set Iα(x) is contained in the lim sup of intervals {In}n∈Z with |In| ≈ e−α|n|. Since∑
n∈Z e

−α|n| < ∞, by the Borel–Cantelli lemma we get that Leb[Iα(x)] = 0. �

Combining Theorems 3.7 and 3.17, we obtain the following result, proved in [LS19]
(see page 2622 for the definition of TMF).

THEOREM 3.18 Let ϕ : N → N be as above. For each χ-hyperbolic measure µ, there
exist a TMF (6r , σr) and πr : 6r → N Hölder continuous such that:
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(1) πr ◦ σ tr = ϕt ◦ πr for all t ∈ R;
(2) πr [6#

r ] has full µ-measure;
(3) πr is finite-to-one on πr [6#

r ].

Now consider surface maps with discontinuities and unbounded derivative. In some
sense, the definition ofQ(x) given on page 30 allows us to concentrate the difficulty in this
single parameter, but the statements need to be re-proved using this new definition. Let us
see how to get Theorem 3.9. Remember from §2.4.1 that f is well behaved inside each ball
Dx = B(x, r(x)). For t > 0, letMt = {x ∈ M : d(x, D) ≥ t}. Since M has finite diameter
(we are even assuming it is smaller than one), eachMt is precompact. Fix a countable open
cover P = {Di}i∈N0 of M\D such that:

• Di := Dzi = B(zi , r(zi)) for some zi ∈ M;
• for every t > 0, {D ∈ P : D ∩Mt 6= ∅} is finite.

For ℓ = (ℓ−1, ℓ0, ℓ1), k = (k−1, k0, k1), a = (a−1, a0, a1), define

Yℓ,k,a :=



Ŵ(x) ∈ Y :

eℓi ≤ ‖C(f i(x))−1‖ < eℓi+1, −1 ≤ i ≤ 1
e−ki−1 ≤ d(f i(x), D) < e−ki , −1 ≤ i ≤ 1
f i(x) ∈ Dai , −1 ≤ i ≤ 1



 ,

then proceed as in the proof of Theorem 3.9.
Another feature that requires better control is bounded distortion inside each V s/u[v].

This is proved in [LM18, Proposition 6.2]. In summary, under finer analysis, it is possible
to prove all that is needed to obtain Theorem 3.7. This is [LM18, Theorem 1.3], and
establishes problem #17 in Bowen’s notebook [Bow17]. The proof actually works under
greater generality that covers not only billiard maps but also some situations where
the derivative of M and the behavior of expx are more complicated, for instance when
R, ∇R, ∇2R, ∇3R grow at most polynomially fast with respect to the distance to D , inter
alia when M is a moduli space of curves equipped with the Weil–Petersson metric; see
[BMW12].

4. Part three: Applications
There are two canonical applications of Markov partitions:

• estimating the number of closed orbits;
• establishing ergodic properties of equilibrium measures.

Indeed, the Markov partition generates a finite-to-one extension of NUH#
χ , and it is

possible to lift measures without increasing their entropy.
Let X be a set, A a sigma-algebra, and T : X → X a measurable Z- or R-action.

Given a T-invariant probability measure µ, let hµ(T ) denote its Kolmogorov–Sinaı̆
entropy. Given two such systems (X, A , T ) and (Y , B, S), let π : (X, A ) → (Y , B) be a
surjective measurable extension map, that is, π ◦ T = S ◦ π . Assume that π−1(y) is finite
for all y ∈ Y .

Projection of measure. If µ̂ is a T-invariant probability measure on (X, A ), then
its projection µ = µ̂ ◦ π−1 is an S-invariant probability measure on (Y , B) such that
hµ(S) = hµ̂(T ).
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Indeed, by the Abramov–Rokhlin formula, hµ̂(T )− hµ(S) is equal to the average
entropy on the fibers. Since each of them is finite, they do not carry entropy. See [ELW11]
for a proof of the Abramov–Rokhlin formula. In general, it is much harder to lift measures
without increasing the entropy. In our setting, we can do this.

Lift of measure. If µ is an S-invariant probability measure on (Y , B), then

µ̂ =
∫

Y

1

|π−1(y)|
( ∑

x∈π−1(y)

δx

)
dµ(y)

is a T-invariant probability measure on (X, A ) such that hµ(S) = hµ̂(T ).

Firstly, one has to check that µ̂ is well defined; see, for example, [Sar13, Proposition
13.2]. The preservation of entropy follows again from the Abramov–Rokhlin formula.
In particular, if the variational principle holds in (X, A , T ) and (Y , B, S), then their
topological entropies coincide.

The above conclusions also hold if there are sets X# ⊂ X and Y # ⊂ Y such that:

• the restriction π ↾X# : X# → Y # is finite-to-one;
• every T-invariant probability measure is supported on X#, and every S-invariant

probability measure is supported on Y #.

It is in this way that invariant measures for non-uniformly hyperbolic systems relate with
invariant measures for symbolic spaces. In the next two sections we explain some of the
applications.

4.1. Estimates on the number of closed orbits. Given two sequences {an}n≥1, {bn}n≥1,
let us write an ≍ bn if there are constants C, n0 > 1 such that C−1 ≤ an/bn ≤ C for all
n ≥ n0, and an ∼ bn if limn→∞(an/bn) = 1. Assume that f : M → M is a transitive
uniformly hyperbolic diffeomorphism, and let (6, σ , π) be a symbolic model. Given
n ≥ 1, let Pern(f ), Pern(σ ) denote the number of periodic orbits of period n for f , σ
respectively, and write h = htop(f ) = htop(σ ). Recall that 6 has finitely many states.
Also (6, σ) is transitive, and if f is topologically mixing then (6, σ) is as well
[Bow70a, Proposition 30]. Since π is finite-to-one (indeed, bounded-to-one), Pern(f ) ≍
Pern(σ ). If p ≥ 1 is the period of the TMS, then Perpn(σ ) ∼ pepnh; see, for example,
[Kit98, Observation 1.4.3]. Hence Perpn(f ) ≍ epnh. If f is topologically mixing, then
Pern(f ) ≍ enh.

Now let f : M → M be non-uniformly hyperbolic, where M can have any dimension.
Since π is finite-to-one, there is a constant C > 0 such that Pern(f ) ≥ C × Pern(σ ) for
all n ≥ 1. The reverse inequality might not hold, because π only codes trajectories inside
NUHχ , and f can have many more (even uncountably many) periodic orbits outside of
NUHχ . Even if we only count isolated periodic orbits, the growth rate of Pern(f ) can be
superexponential [Kal00].

For a TMS with countably many states, good estimates on Pern(σ ) are related to the
existence of measures of maximal entropy, as observed by Gurevič [Gur69, Gur70]. He
showed that every transitive TMS admits at most one measure of maximal entropy, and
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such measure exists if and only if there is p ≥ 1 such that, for every vertex v,

#{v ∈ 6 : σpn(v) = v, v0 = v} ≍ epnhmax ,

where hmax = hmax(σ ) = sup{hν(σ ) : ν is σ -invariant probability measure on 6}. We
add the assumption that f has a χ-hyperbolic measure of maximal entropy, in which case
h = htop(f ) = hmax(σ ). Measures of maximal entropy exist for C∞ diffeomorphisms
[New89], although they might not be hyperbolic (for example, the product of an Anosov
diffeomorphism and an irrational rotation). For surface diffeomorphisms with positive
topological entropy, ergodic measures of maximal entropy are χ-hyperbolic for every
χ < htop(f ), by the Ruelle inequality.

Assuming that f possesses a χ-hyperbolic measure of maximal entropy, repeat the
arguments used for uniformly hyperbolic systems inside a transitive component of (6, σ).
If p ≥ 1 is the period of this component, then Perpn(σ ) ≍ epnh, and so Perpn(f ) ≥
C × epnh for all n ≥ n0. This was proved by Sarig in dimension two [Sar13, Theorem
1.1] and by Ben Ovadia in higher dimension [BO18, Theorem 1.4].

Let us make some comments on the period p. Assume that f is topologically mixing.
Recently, Buzzi was able to use the finite-to-one coding to define a one-to-one coding.
Together with a precise counting on the TMS, he concluded that Pern(f ) ≥ C × enh for all
n ≥ n0 [Buz20]. His proof works whenever the smooth system has a finite-to-one coding
with some extra properties, which are true for diffeomorphisms [BO18, Sar13] and billiard
maps [LM18].

Now let ϕ : M → M be a flow and (6r , σr) be a TMF. Given T > 0, let PerT (ϕ) and
PerT (σr) denote the number of closed trajectories of ϕ and σr respectively, with minimal
period ≤ T . Note that (v, t) ∈ PerT (σr) if and only if there is a minimal period n ≥ 1
such that v ∈ Pern(σ ) and rn(v) ≤ T , hence estimating PerT (σr) is more complicated. For
uniformly hyperbolic flows, there are precise estimates.

• Geodesic flows on closed hyperbolic surfaces: in constant curvature, Huber proved
that PerT (ϕ) ∼ eT /T [Hub59]. In variable curvature, Sinaı̆ gave the first estimates
[Sin66], which were later significantly sharpened by Margulis [Mar69], who proved
that PerT (ϕ) ∼ CeT h/T where C = 1/h (C. Toll, unpublished).

• Axiom A flows: Bowen proved that PerT (ϕ) ≍ eT h/T [Bow72a]. If the flow is topo-
logically weak mixing, Parry and Pollicott proved that PerT (ϕ) ∼ eT h/T h [PP83],
and Pollicott and Sharp found an estimate for the error term [PS01].

We also mention a result for manifolds with Gromov hyperbolic fundamental group
(for example, manifolds that admit a metric with Anosov geodesic flow). Knieper and
Coornaert counted free homotopy classes of closed geodesics estimating the growth rate
of conjugacy classes in the fundamental group [CK02, Kni83].

Now consider non-uniformly hyperbolic flows. For geodesic flows in non-positively
curved rank-one manifolds, the following facts are known.

• Knieper showed that π0(T ) ≍ eT h/T , where π0(T ) counts the homotopy classes of
simple closed geodesics with length less than T [Kni97, Kni02].

• For certain metrics constructed by Donnay [Don88] and Burns and Gerber [BG89],
PerT (ϕ) ∼ eT h/T h [Wea].
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For the flows in Theorem 3.18, if there exists a measure of maximal entropy then
there is T0 > 0 such that PerT (ϕ) ≥ C × eT h/T for all T ≥ T0 [LS19, Theorem 8.1].
This estimate strengthens Katok’s bound lim infT→∞(1/T ) log PerT (ϕ) ≥ h; see [Kat80,

Kat82]. The proof in [LS19] uses a dichotomy for TMF; see [LLS16, Theorem 4.6].
We end this section by mentioning some results for two-dimensional billiard maps.

As seen in §2.4.1, every billiard map preserves an invariant Liouville measure µSRB.
Using the countable Markov partition constructed in [BSC90], Chernov proved that
lim inf(1/n) log Pern(f ) ≥ hµSRB(f ) [Che91, Corollary 2.4]. Better estimates can be
obtained using measures of maximal entropy. Recently, Baladi and Demers gave sufficient
conditions for periodic Lorentz gases (Sinaı̆ billiards with non-intersecting scatterers) to
have measures of maximal entropy [BD20]. This occurs when the billiard map satisfies
two properties.

(1) Finite horizon: there is no trajectory that makes only tangential collisions.
(2) h∗ > s0 log 2.

The second assumption requires some explanation. Part of their work involves defining
a topological entropy h∗ for finite-horizon Lorentz gases, which is an upper bound for
all metric entropies [BD20, Theorem 2.3(4)]. Fixing an angle θ0 ≈ π/2 and n0 > 0, let
s0 ∈ (0, 1) be the smallest number such that any orbit of length n0 has at most s0n0

collisions with |θ | > θ0. Under conditions (1)–(2), there is an f -adapted measure µ∗
such that hµ∗(f ) = h∗ [BD20, Theorem 2.4]. Using [LM18] and [Buz20], it follows that
Pern(f ) ≥ C × enh∗ for n sufficiently large.

Here are some examples of billiards satisfying conditions (1) and (2) of [BD20]. If Kmin

is the minimum curvature of the scatterer boundaries and τmin is the minimum free flight
time, then h∗ > log(1 + 2Kminτmin). Consider the two-parameter family (r , R) of Lorentz
gases in T2 with two discs as scatterers, one centered at the origin (0, 0) with radius R and
the other at (1/2, 1/2) with radius r; see Figure 20. Baladi and Demers found a domain
in the parameter space for which log(1 + 2Kminτmin) ≥ 1

2 log 2 ≥ s0 log 2, hence [BD20,
Theorem 2.4] applies. There are also numerical experiments dealing with scatterers located
in a triangular lattice indicating that h∗ > s0 log 2 whenever the scatterers do not intersect
and the billiard has finite horizon [GB95].

4.2. Equilibrium measures. Let (Y , S), where Y is a complete metric separable space
and S : Y → Y is continuous, and let ψ : Y → R be a continuous potential. The following
definitions are standard.

Topological pressure. The topological pressure of ψ is Ptop(ψ) := sup{hµ(S)+∫
ψ dµ}, where the supremum ranges over all S-invariant probability measures for which∫
ψ dµ makes sense and hµ(S)+

∫
ψ dµ 6= ∞ − ∞.

Equilibrium measure. An equilibrium measure forψ is an S-invariant probability measure
µ such that Ptop(ψ) = hµ(S)+

∫
ψ dµ.

A special case occurs when ψ ≡ 0: equilibrium measures are measures of maximal
entropy. If π : (X, T ) → (Y , S) is finite-to-one, then equilibrium measures for ψ lift
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FIGURE 20. If r , R are chosen inside a specific polygon in the parameter space then there is an f -adapted measure
of maximal entropy, and Pern(f ) ≥ C × enh∗ for all large n.

to equilibrium measures for ψ̂ = ψ ◦ π . If π is Hölder continuous, then ψ̂ is Hölder
continuous whenever ψ is. In our context, we can apply the thermodynamical formalism
for Hölder continuous potentials in TMS to obtain ergodic properties of equilibrium
measures of Hölder continuous potentials in uniformly and non-uniformly hyperbolic
systems.

Since a transitive TMS with finitely many states has a unique measure of maximal
entropy [Par64], every uniformly hyperbolic transitive diffeomorphism has a unique
measure of maximal entropy [Bow70a], equal to the projection of the measure of maximal
entropy in (6, σ). Prior to this, Gurevič obtained some partial results, using the work of
Sinaı̆ and of Berg (Berg proved that for hyperbolic toral automorphisms the Haar measure
is the only measure of maximal entropy [Ber69]). Bowen also showed that every Hölder
continuous potential has a unique equilibrium measure [Bow75b], and it is either Bernoulli
or Bernoulli times a period [Bow75a].

Using the same analogy, Bowen and Ruelle proved that Hölder continuous potentials
on uniformly hyperbolic flows have unique equilibrium measures [BR75]. In this case,
equilibrium measures of (6r , σr) are related to equilibrium measures of (6, σ); see
[BR75, Proposition 3.1].

For non-uniformly hyperbolic C1+β surface diffeomorphisms, Sarig proved that each
Hölder continuous potential has at most countably many ergodic hyperbolic equilibrium
measures [Sar13, Theorem 1.2], and each of them is either Bernoulli or Bernoulli
times a period [Sar11]. The proof uses that for topologically transitive TMS each
Hölder continuous potential has at most one equilibrium measure [BS03], and different
topologically transitive subgraphs of a TMS have disjoint vertex sets. The same holds
for higher-dimensional diffeomorphisms [BO18], and for three-dimensional flows [LS19].
In the flow case, each such equilibrium measure is either Bernoulli or Bernoulli times
a rotation [LLS16]. Since geodesic flows cannot have rotational components (they are
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a particular case of Reeb flows), the following corollary holds: if S is a closed smooth
orientable Riemannian surface with non-positive and non-identically zero curvature, then
the geodesic flow of S is Bernoulli with respect to its (unique) measure of maximal entropy;
see [LLS16, Corollary 1.3].

Let us mention some results on the uniqueness of measures of maximal entropy
for non-uniformly hyperbolic geodesic flows. The uniqueness referred in the previous
paragraph follows from the work of Knieper, who proved it for geodesic flows on closed
rank-one manifolds [Kni98], and also for geodesic flows on symmetric spaces of higher
rank [Kni05]. Gelfert and Ruggiero proved the uniqueness for geodesic flows on surfaces
without focal points and genus greater than one [GR19]. Burns et al. proved the uniqueness
of many equilibrium states (including some multiples of the geometric potential and the
zero potential) of geodesic flows on rank-one manifolds [BCFT18], and there is a recent
preprint that obtains similar results for geodesic flows on surfaces without focal points
[CKP20]. There is also a recent preprint that proves the uniqueness of the measure of
maximal entropy for geodesic flows on surfaces without conjugate points [CKW19].

Uniqueness of measures of maximal entropy for C∞ transitive surface diffeomorphisms
with positive topological entropy has recently been obtained. Essentially, the results of
[Sar13] were not able to give uniqueness because it was not clear how to overrule the
possibility that two measures in the surface lift to two different transitive components of the
TMS. This difficulty was solved by Buzzi, Crovisier, and Sarig [BCS18], who showed that
if two measures have positive entropy and are homoclinically related (a notion introduced
in [RHRHTU11]) then they can be lifted to the same transitive component of the TMS.
This can be regarded as a version of [Bow70a, Proposition 30]. They also prove that if the
diffeomorphism is C∞, then all measures of maximal entropy are homoclinically related
(this uses Yomdin’s theory), hence there is a unique measure of maximal entropy. It would
be interesting to obtain similar results for three-dimensional flows and billiard maps.
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