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Recently, an alternative measure of uncertainty called extropy is proposed by Lad
et al. [12]. The extropy is a dual of entropy which has been considered by researchers.
In this article, we introduce an alternative measure of uncertainty of random variable
which we call it cumulative residual extropy. This measure is based on the cumulative
distribution function F . Some properties of the proposed measure, such as its estimation
and applications, are studied. Finally, some numerical examples for illustrating the theory
are included.
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1. INTRODUCTION

Let X be a non-negative and absolutely continuous random variable (rv) with probability
density function (pdf) f . To measure the uncertainty contained in X, the entropy was
defined by Shannon [24] as follows:

H(X) = −
∫ +∞

0

f(x) log f(x)dx.

where “log” is the natural logarithm with the convention 0 log 0 = 0. Among various inten-
sions to define possible alternative information theoretic measures, Rao et al. [20] proposed
the cumulative residual entropy (CRE) and studied its properties. This measure replaces
density function by the survival function. For a non-negative rv X with cumulative dis-
tribution function (cdf) F and survival function (sf) F̄ = 1 − F the CRE was defined as
follows:

ξ(X) = −
∫ +∞

0

F̄ (x) log F̄ (x)dx.

Lad et al. [12] provided a completion to theories of information based on entropy, resolving
a longstanding question in its axiomatization as proposed by Shannon [24] and followed
by Jaynes [11]. They showed that Shannon’s entropy function has a complementary dual
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function which is called “extropy”. They also analyzed the extropy function for densities,
showing that relative extropy constitutes a dual to the Kullback–Leibler divergence, widely
recognized as the continuous entropy measure. For non-negative rv X, its extropy was
defined as

J(X) = −1
2

∫ +∞

0

f2(x)dx. (1)

Several properties of this new information measure such as the maximum extropy
distribution and its statistical applications were displayed in Lad et al. [12].

One statistical application of extropy is to score the forecasting distributions. For
example, under the total log scoring rule, the expected score of a forecasting distribution
equals the negative sum of the entropy and extropy of this distribution (see Gneiting and
Raftery, [9]). In commercial or scientific areas such as astronomical measurements of heat
distributions in galaxies, the extropy has been universally investigated (see Furuichi and
Mitroi [8]; Vontobel [25]). Most recently, Qiu [13] further studied this new measure, explor-
ing some characterization results, monotone properties and lower bounds of extropy of order
statistics and record values. He also investigated the symmetric properties of extropy of order
statistics. Qiu and Jia [14] proposed residual extropy to measure residual uncertainty of a
non-negative rv as

J(X; t) = − 1
2F̄ 2(t)

∫ +∞

t

f2(x)dx, t ≥ 0.

They studied monotone properties and characterization results of this measure and discussed
similar properties of the proposed measure of order statistics. Qiu and Jia [15] proposed
two estimators for extropy and they developed a goodness-of-fit test for standard uniform
distribution. Yang et al. [28] studied the relations between extropy and variational distance
and determined the distribution which attains the minimum or maximum extropy among
these distributions within a given variation distance from any given probability distribution.
Qiu et al. [16] explored an expression of the extropy of a mixed systems lifetime.

In this paper we introduce a new measure of uncertainty that will be called cumulative
residual extropy (CREX). The basic idea is to replace the pdf with the cdf in extropy
definition (1). The cdf is more regular than the pdf, because the pdf is computed as the
derivative of the cdf. Moreover, in practice what is of interest and/or measurable is cdf. For
example, if the rv is the life span of a machine, then the event of interest is not whether
the life span equals t, but rather whether the life span exceeds t.

The rest of the paper is organized as follows: Section 2 contains the definition of CREX
and a description of its properties in the form of several theorems. We determine upper and
lower bounds and inequalities concerning CREX, moreover we give a relationship between
CREX and extropy. Also, we show that the exponentially distributed rv have maximum
CREX. In Section 3, we discuss proportional hazard model and Gini index. Some stochastic
order properties are discussed in Section 4. In Section 5, we consider the problem of esti-
mating the CREX by means of the empirical CREX. In this regards, we use two different
empirical estimators of cdf to estimate CREX. Finally, in Section 6, we derive two applica-
tions of the CREX to risk measure and independence. In particular, we study the absolute
value of CREX as a risk measure. For comparing the absolute value of CREX with the stan-
dard deviation and the right-tail risk measure, several examples are also given. Moreover
by using CREX, we introduce a new measure of independence between two rvs.
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Figure 1. Graph of ξJ(X) for 0 ≤ a ≤ 10, b = 0.5 (left panel) and 0 ≤ a ≤ 15 (right
panel).

2. CUMULATIVE RESIDUAL EXTROPY

For rv X, by analogy to Rao et al. [20], we propose the following definition of the CREX.

Definition 2.1: For a non-negative rv X with an absolutely continuous sf F̄ , we define the
CREX as

ξJ(X) = −1
2

∫ +∞

0

F̄ 2(x)dx. (2)

Example 2.2: To study the ξJ(X) value for some distributions we have

(I) If X is exponentially distributed with parameter λ > 0, then ξJ(X) = −(1/4λ).
(II) If X is uniformly distributed in [0, b], then ξJ(X) = −(b/6).

(III) If X is power distribution with parameter a > 0, then ξJ(X) = −(a2/(((a + 1)(2a + 1))).
(IV) Let X is finite range distribution with sf F̄ (x) = (1 − ax)b, a > 0, b > 0, x ∈ (0, 1/a),

then ξJ(X) = −(1/(a(1 + 2b))).
(V) Let X has Pareto distribution with parameters (α, β), so that F̄ (x) =

(βα)/((x + β)α), x ≥ 0, β > 0. If 0 < α < 1 then ξJ(X) = −∞, where as if α ≥ 1,
then ξJ(X) = −(β/((2(2α − 1))).

(VI) If X is Rayleigh distribution with parameter α > 0, then ξJ(X) = −√
π/32α.

In the following, to learn more about the characteristics of the CREX, we will plot it
in some considered distributions in Example 2.2.

Figure 1 gives the graphs of ξJ(X) for finite range with b = 0.5 and power distributions.
Note that ξJ(X) for finite range distribution is increasing and for power distribution is
decreasing.

Figure 2 provides the graphs of ξJ(X) for Rayleigh and Pareto distributions with
α = 2. Note that ξJ(X) for Rayleigh distribution is increasing and for Pareto distribution
is decreasing.

Remark 2.3: CREX can be used to compare the uncertainties of lifetimes of two systems.
Let X1 and X2 be two such outcomes from two independently conducted experiments under
identical conditions. Then X1 − X2 measures the uncertainty in rv X with pdf f and sf F̄ .
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Figure 2. Graph of ξJ(X) for 0 ≤ α ≤ 15 (left panel) and 0 ≤ β ≤ 5, α = 2 (right panel).

Since X1 and X2 are independent rvs, the sf of X1 − X2 is given by

W̄ (x) =
∫ +∞

−∞
f(x)F̄ (u + x)dx.

This implies the probability of X1 = X2 approximately equals to

W̄ (0) =
1
2

= − ξJ(X)∫ +∞
0

F̄ (x)dx
.

Now, let two rvs X and Y be lifetimes of two systems. If the CREX of rv X is less than Y ,
that is, ξJ(X) ≤ ξJ(Y ), we can say that, X has less uncertainty than Y . This compares the
uncertainties of two rvs also proposed for the extropy (see Qiu et al. [16]).

The following theorem gives the sufficient condition for CREX to be finite.

Theorem 2.4: Let X be a non-negative rv. If for some p > (1/2), E(Xp) < +∞ then
ξJ(X) ∈ (−∞.0].

Proof: Using (2) it is enough to show −∞ < − ∫ +∞
0

F̄ 2(x)dx, that is equivalent to show∫ +∞
0

F̄ 2(x)dx < +∞. We can obtain

∫ +∞

0

F̄ 2(x)dx =
∫ 1

0

F̄ 2(x)dx +
∫ +∞

1

F̄ 2(x)dx

≤ 1 +
∫ +∞

1

F̄ 2(x)dx

≤ 1 +
∫ +∞

1

[
E(Xp)

xp

]2

dx

= 1 + E2(Xp)
∫ +∞

1

1
x2p

dx,

where in the third relation, we use Markov’s inequality. The last integral is finite if p > (1/2).
Thus, the result follows. �
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Remark 2.5: We know that the variance of rv X is defined as

σ2 = V ar(X) = E(X2) − E2(X),

where σ is the standard deviation. If σ2 exists (σ2 < +∞), then, E(X2) < +∞ and from
Theorem 2.4, ξJ(X) ∈ (−∞, 0]. Therefore, existence of variance is the sufficient condition
for the convergence of CREX.

In the following proposition, we discuss the effect of linear transformations on the
CREX.

Proposition 2.6: Let X be a non-negative rv. If Y = aX + b, with a > 0 and b ≥ 0, then
ξJ(Y ) = aξJ(X).

Proof: The result follows by noting that F̄aX+b(x) = F̄X((x − b)/a), x ≥ 0 and using (2).
�

Theorem 2.7: (Weak convergence) Let Xn be a sequence of N-dimensional random vectors
converging in distribution to a random vector X. If all the Xn are bounded in Lp for some
p > (N/2), then

lim
n→+∞ ξJ(Xn) = ξJ(X).

Proof: Because Xn converges to X in distribution, we get

lim
n→+∞ F̄ 2

|Xn|(x) = F̄ 2
|X|(x), x ∈ RN

+ .

On the other hand, we can obtain

F̄ 2
|Xn|(x) ≤

N∏
i=1

F̄
2/N
|Xi| (xi)

≤
N∏

i=1

[
I[0,1](xi) +

1
xp

i

I[1,∞](xi)E(|Xni
|p)]2/N

,

where first and second relations are obtained by Holder’s inequality and Eq. (19) of Rao
et al. [20], respectively. Therefore, for (2p/N) > 1, F̄ 2

|Xn|(x) is bounded by an integrable
function. Thus, dominated convergence theorem completes the proof. �

Now, we shall focus on upper and lower bounds for CREX. In the following theorem,
we show that the CREX of the sum of two independent rvs is not larger than that of each
one unlike the extropy (see Qiu et al., 2018).

Theorem 2.8: Let X and Y be two non-negative and independent rvs with sfs F̄ and Ḡ,
respectively. Then

ξJ(X + Y ) ≥ max
{

ξJ(X) − E(Y )
2

, ξJ(Y ) − E(X)
2

}
.
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Proof: Since X and Y are independent rvs, the sf of X + Y is given by

H̄(x) =
∫ +∞

0

F̄ (x − t)dG(t).

Using Jensen’s inequality, we have

H̄2(x) =
[ ∫ +∞

0

F̄ (x − t)dG(t)
]2

≤
∫ +∞

0

F̄ 2(x − t)dG(t).

Integrating both sides of the above inequality with respect to x from 0 to +∞, we obtain

ξJ(X + Y ) ≥ −1
2

∫ +∞

0

(∫ +∞

0

F̄ 2(x − t)dG(t)
)

dx

= −1
2

∫ +∞

0

dG(t)
( ∫ t

0

F̄ 2(x − t)dx +
∫ +∞

t

F̄ 2(x − t)dx

)

= −E(Y )
2

+ ξJ(X).

Similarly, we can obtain ξJ(X + Y ) ≥ −(E(X)/2) + ξJ(Y ). This completes the proof. �

Remark 2.9: From (2), the CREX of a rv is always non-positive. Thus, Theorem 2.8 holds
that

ξJ(X + Y ) ≥ ξJ(X) + ξJ(Y ) −
(

E(X) + E(Y )
2

)
.

Theorem 2.10: Let X be a non-negative rv with CRE, ξ(X) and CREX, ξJ(X). Then,
(i)

ξJ(X) ≥ −E(X)
2

. (3)

(ii)

ξJ(X) ≤ 1
2
[
ξ(X) − E(X)

]
. (4)

Proof: (i) Since F̄ 2(x) ≤ F̄ (x), the result follows by recalling definition of CREX. The
proof of (ii) follows from inequality − log x ≥ (1 − x), for x > 0. �

Remark 2.11: (i) For a non-negative rv X, Rao et al. [20] have shown that ξ(X) ≤
(E(X2))/(2E(X)). Thus, (3) and (4) rewritten as

ξJ(X) ≥ −E(X2)
4ξ(X)

, (5)

and

ξJ(X) ≤ 1
2

[
E(X2)
2E(X)

− E(X)
]
. (6)
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It should be noted here that lower and upper bounds in (3) and (6) are sharper than the
lower bound and the upper bound in (5) and (4), respectively. Since CREX of an exponential
variable with mean λ is −(λ/4), inequality (6) shows that the exponentially distributed rv
with mean

−2
[

E(X2)
2E(X)

− E(X)
]

have maximum CREX.
(ii) For the random lifetime X of a system, the residual life [X − t|X > t] is the time

elapsing between the failure time X and an inspection time t given that at time t the system
has been found working. For all x ≥ 0 such that F (x) > 0 the mean residual life is given by

mF (t) = E(X − t|X > t) =
∫ +∞

t

F̄ (x)
F̄ (t)

dx.

Asadi and Zohrevand [3] expressed that ξ(X) = E(mF (X)). Thus, (4) is equivalent to

ξJ(X) ≤ 1
2
[
E(mF (X)) − E(X)

]
.

To illustrate the above results let us consider the following example.

Example 2.12: Let X be distributed by uniformly on (0, a), a > 0. For CREX in this case,
Theorem 2.10 gives ξJ(X) ≥ −(a/4) and ξJ(X) ≤ −(a/8). Based on the results (5) and
(6) lower and upper bounds are ξJ(X) ≥ −(a/3) and ξJ(X) ≤ −(a/12). This means that
the lower bound and the upper bound in (3) and (6) are sharper than the lower bound and
the upper bound in (5) and (4), respectively.

Let X1,X2, . . . , Xn be n iid non-negative rvs having sfs F̄ . If Xi:n denotes the ith
order statistics in this sample of size n, then the lifetime of a series system is determined
by X1:n and the lifetime of a parallel system is determined by Xn:n with sfs F̄1:n and
F̄n:n, respectively. The following proposition provides lower bounds for CREX of series and
parallel systems based on the mean lifetime of their components.

Proposition 2.13: Let X1,X2, . . . , Xn be iid non-negative continuous rvs with common sfs
F̄ . Then,

(i) ξJ(Xn:n) ≥ −n2E(X)
2 ,

(ii) ξJ(Xn:n) ≥ n2ξJ(X),

(iii) ξJ(X1:n) ≥ −E(X)
2 ,

(iv) ξJ(X1:n) ≥ ξJ(X),

where X1:n = min{X1,X2, . . . , Xn} and Xn:n = max{X1,X2, . . . , Xn}.
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Proof: From (2), we have

ξJ(Xn:n) = −1
2

∫ +∞

0

[
1 − (1 − F̄ (x))n

]2
dx

≥ −1
2

∫ +∞

0

[
1 − (1 − nF̄ (x))

]2
dx

= −n2

2

∫ +∞

0

F̄ 2(x)dx

≥ −n2

2

∫ +∞

0

F̄ (x)dx = −n2E(X)
2

,

where the first inequality is obtained by using Bernoulli’s inequality. Also, the third relation
gives, ξJ(Xn:n) ≥ n2ξJ(X).

We know that, F̄ 2
1:n(x) = F̄ 2n(x) ≤ F̄ 2(x) ≤ F̄ (x). Hence, from (2) the proof for both

(iii) and (iv) is quite straightforward. �

Example 2.14: Let X1,X2, . . . , Xn be iid non-negative continuous rvs uniformly distributed
on (0, 1). Here, E(X) = (1/2) and

ξJ(Xn:n) = − n2

(2n + 1)(n + 1)
≥ −n2

4
,

for n ≥ 1. Thus, (i) holds. From Example 2.2, ξJ(X) = −(1/6), which confirms (ii). It is
clear that also (iii) holds,

ξJ(X1:n) = − 1
4n + 2

≥ −1
4
, n ≥ 1.

On the other hand, ξJ(X1:n) ≥ −(1/6), for n ≥ 1, which confirms (iv).

Following theorem provided an alternative expression of the CREX, which is expressed
in terms of stop-loss transforms. The stop-loss transform HF (t) of a rv X is defined as

HF (t) = E(max{X − t, 0}) =
∫ +∞

t

F̄ (x)dx.

Theorem 2.15: Let X be a non-negative absolutely continuous rv with CREX, ξJ(X).
Then, we have

ξJ(X) = −1
2
[E(X) − E(HF (X))], (7)

Proof: From (2) and by Fubini’s theorem, we have

ξJ(X) = −1
2

∫ +∞

0

F̄ 2(x)dx = −1
2

∫ +∞

0

F̄ (x)
( ∫ +∞

x

f(t)dt

)
dx

= −1
2

∫ +∞

0

f(t)
( ∫ t

0

F̄ (x)dx

)
dt. (8)

On the other hand,∫ t

0

F̄ (x)dx =
∫ +∞

0

F̄ (x)dx −
∫ +∞

t

F̄ (x)dx = E(X) − HF (t), (9)
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where last equation is obtained from (2). The proof of (7) then follows from the substitution
of (9) in (8). �

Remark 2.16: Using the relation mF (t) = (HF (t))/(F̄ (t)), we can obtain another alter-
native expression of the CREX, which is expressed in terms of mean residual life
function:

ξJ(X) = −1
2
[
E(X) − E(F̄ (X)mF (X))

]
. (10)

Example 2.17: Let X have an uniform distribution in [0, b]. We have HF (x) =
((b − x)2)/(2b) and mF (x) = ((b − x)/2). Hence,

ξJ(X) = −1
2

[
E(X) − E

(
(b − X)2

2b

)]
= − b

6
.

In the following, we give a relationship between CREX and extropy.
Let X be a rv with pdf f and let w(x) be a non-negative real function such that

0 < E(w(X)) < ∞. Then a rv Y is said to have the weighted distribution associated to X
and w(x) if its sf is given by

F̄w(t) =
E[w(X)|X > t]

E[w(X)]
F̄ (t).

Rao [18,19] presented a unified theory of weighted distributions, identifying various situa-
tions which can be modeled by using them. The equilibrium rv Y corresponding to a renewal
process with lifetime X is a rv with sf given by

F̄ e(t) =
1

E(X)

∫ +∞

t

F̄ (x)dx,

which is a weighted rv obtained from X and w(x) = (F̄ (x))/(f(x)). On the other hand,

E(HF (X)) = E(X)E(F̄ e(X)).

Hence, by replacing above equation in (7), we have

ξJ(X) = −E(X)
2

[
1 − E(F̄ e(X))

]
.

For the equilibrium rv Y corresponding to rv X we obtain the following result. The proof
is omitted.

Proposition 2.18: Let X be a non-negative continuous rv and let Y be the equilibrium rv
corresponding to X. Then,

J(Y ) =
ξJ(X)
E2(X)

.
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3. PROPORTIONAL HAZARD MODEL AND GINI INDEX

The well-known proportional hazard model is described by the following relation between
survival functions of random life times as

F̄θ∗(x) =
[
F̄ (x)

]θ
, x ∈ R, θ > 0, (11)

where F̄θ∗ is sf of non-negative rv Xθ∗ . The mean value of Xθ∗ , θ ∈ (0, 1], arises in the
constructions of actuarial risk measures (see Subsection 6.1). Gupta and Gupta [10] studied
this model from a reliability point of view and discussed the monotonicity of failure rates.
It is easy to see that

ξJ(X) = −E(Xθ∗)
2

,

θ = 2. Now, consider the following result to compare ξJ(X), ξJ(Xθ∗) and ξJ(θX).

Proposition 3.1: There holds

ξJ(Xθ∗) ≥ ξJ(X) ≥ ξJ(θX) if θ ≥ 1,

the inequality being reversed if 0 < θ ≤ 1.

Proof: From Definition 2.1 and (11), for θ > 1 (0 < θ ≤ 1) we obtain

ξJ(Xθ∗) = −1
2

∫ +∞

0

F̄ 2θ(x)dx

≥ (≤) − 1
2

∫ +∞

0

F̄ 2(x)dx = ξJ(X). (12)

On the other hand, we have

ξJ(θX) = −1
2

∫ +∞

0

F̄ 2
(x

θ

)
dx = θξJ(X) ≤ (≥)ξJ(X).

�

The following result immediately follows from Proposition 3.1 and by recalling that the
right-hand side of (11) is sf of the minimum iid rvs (X1:n) when the power is integer.

Corollary 3.2: Let X1,X2, . . . , Xn be iid rvs, with n a positive integer. Then,

ξJ(nX1) ≤ ξJ(X1:n),

where X1:n = min{X1,X2, . . . , Xn}.
The Gini index or Gini coefficient is a statistical measure of distribution. It is often

used as a gauge of economic inequality, measuring income distribution or, less commonly,
wealth distribution among a population. The Gini index is given by

gini(X) =
E(|X − Y |)
E(X + Y )

=
E(|X − Y |)

2E(X)
= 1 −

∫ +∞
0

F̄ 2(x)dx

E(X)
,

where X and Y are independent rvs and have the same distribution as X. See Wang [26]
for more details. Using above equation, the CREX can be expressed as Gini index:

ξJ(X) =
E(X)

2
[
gini(X) − 1

]
. (13)
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Example 3.3:

(I) For the Gamma distribution with mean αβ, α > 0, β > 0 we have

gini(X) =
Γ((2α + 1)/2)

αΓ(α)
√

π
.

Thus, (13) gives

ξJ(X) =
β

2

[
Γ((2α + 1)/2)

Γ(α)
√

π
− 1

]
.

(II) For the log-normal distribution with mean exp{μ + (σ2/2)}, μ ∈ R, σ > 0 we have
gini(X) = erf(σ/2) where erf is the error function. Therefore, the CREX for this
case is

ξJ(X) =
exp{μ + (σ2/2)}

2
[erf(σ/2) − 1].

From (13) and Proposition 3.1, we have the following result. The proof is omitted.

Proposition 3.4: There holds

gini(Xθ∗) ≥ gini(X) ≥ gini(θX) if θ ≥ 1,

the inequality being reversed if 0 < θ ≤ 1.

Remark 3.5: Schezhtman and Yitzhaki [22] introduced a measure of association between X
and Y based on Gini’s mean difference (GMD). The GMD associated to rv X is defined as

GMD = E(|X − Y |) = 2
[
E(X) −

∫ +∞

0

F̄ 2(x)dx

]
, (14)

where X and Y are independent rvs distributed as X. It is argued by Yitzhaki [29] that
the GMD, as a measure of variability, shares many properties of the variance of X and is
more informative than the variance for the distributions that are far from normality. An
interesting observation regarding the variance of X and the GMD is that both of them can
be written as special cases of covariance. In fact, one can write V ar(X) = Cov(X,X), while
GMD = 4Cov(X,F (X)) (see Yitzhaki and Schechtman, [30]). By Definition 2.1 and (14),
the CREX can be expressed as GMD:

ξJ(X) =
GMD − 2E(X)

4
= Cov(X,F (X)) − E(X)

2
.

4. STOCHASTIC ORDERS

In this section, we provide some results on the CREX ordering of rvs. We need the following
definition in which X and Y denote random variables with cdfs F and G, pdfs f and g, and
sfs F̄ and Ḡ, respectively.

Definition 4.1 ([23]): X is said to be smaller than Y

1) in the likelihood ratio order, denoted by X ≤lr Y , if (f(x)/g(x)) is decreasing in x,
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2) in the hazard rate order, denoted by X ≤hr Y , if λF (x) ≥ λG(x) for all x, where
λF (x) = (f(x)/F̄ (x)) is the hazard rate function,

3) in the usual stochastic order, denoted by X ≤st Y , if F̄ (x) ≤ Ḡ(x) for all x,
4) in the dispersive order, denoted by X ≤disp Y , if G−1(F (x)) − x is increasing in

x ≥ 0,
5) in the increasing concave (convex) order, denoted by X ≤icv Y (≤icx), if E[φ(X)] ≤

E[φ(Y )] for all

increasing concave (convex) functions φ such that the expectations exist of X.

The connections between the earlier mentioned stochastic orders are described in the
following diagram (see Shaked and shanthikumar, 2007)

X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y ⇒ X ≤icx Y,

X ≤disp Y ⇒ X ≤st Y (≥st) if lX = lY > −∞ (uX = uY < +∞),

where lX , uX , lY , and uY are endpoints of supports of X and Y, respectively. The following
theorem describes the relationship between CREX and increasing concave ordering.

Theorem 4.2: Let X and Y be two non-negative absolutely continuos rvs with sfs F̄ and Ḡ,
respectively. If X ≤icv Y then ξJ(X) ≥ ξJ(Y ).

Proof: We know that
∫ t

0
F̄ (x)dx is an increasing concave function. Hence, the proof follows

from (8) and recalling the definition of increasing concave order. �

Remark 4.3: The increasing concave ordering is the corresponding ordering for returns
instead of losses. This is also known as second order stochastic dominance (SSD), especially
in the economic literature. If X ≤icv Y holds, where X and Y are risky returns, then any
risk averse decision maker prefers Y to X (see Rothschild and Stiglitz [21]). Note that
X ≤icv Y holds, if and only if −X ≥icx −Y . The increasing convex ordering is also known
as stop-loss order in actuarial sciences. The reason is that X ≤icx Y holds if and only if
HF (t) ≤ HG(t).

The following theorem describes the relationship between CREX and usual stochastic
ordering. The proof is omitted.

Theorem 4.4: Let X and Y be two non-negative absolutely continuos rvs with sfs F̄ and Ḡ,
respectively. If X ≤st Y then ξJ(X) ≥ ξJ(Y ).

Example 4.5: Let X and Y have cdfs F (x) = (x/b), 0 ≤ x ≤ b and G(x) = (x/c),
0 ≤ x ≤ c, respectively. It is easy to see that X ≤st Y , for c ≥ b. But, using Example 2.2,
we obtain

ξJ(X) = − b

6
≥ − c

6
= ξJ(Y ).

Remark 4.6: For some families of distributions such as exponential and Parto, ξJ(X) can
be easily computed in closed form and thus, the ordering can be directly obtained. But the
ordering for other distributions can be obtained by application of the Theorem 4.4 (ordering
parametric families) and using dispersion, likelihood ratio, and usual stochastic ordering. For
example, it can be easily shown that, if X has a gamma distribution with shape parameter θ,
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then for θ0 < θ1, Xθ0 ≤lr Xθ1 and thus Xθ0 ≤st Xθ1 . So we have ξJ(Xθ0) ≥ ξJ(Xθ1). If X
has a Weibull distribution with shape parameter γ, then for γ0 < γ1, Xγ0 ≥disp Xγ1 , and
thus Xγ0 ≥st Xγ1 . Therefore, ξJ(Xγ0) ≤ ξJ(Xγ1).

Theorem 4.4 can be used in order statistics and record values as following corollary.
For comprehensive discussion on various concepts of order statistics and record values see
Arnold et al. [2] and David and Nagaraja [7].

Corollary 4.7: (i) Suppose that Xi:n and Yi:n denote the ith order statistic in samples of
size n, X1,X2, . . . , Xn and Y1, Y2, . . . , Yn respectively. If X ≤st Y , then Xi:n ≤st Yi:n and
we have ξJ(Xi:n) ≥ ξJ(Yi:n), i = 1, 2, . . . , n.

(ii) Suppose that Un and Vn denote the nth record of two sequences of random vari-
ables {Xn, n ≥ 1} and {Yn, n ≥ 1}, respectively. If X ≤st Y , then Un ≤st Vn and we have
ξJ(Un) ≥ ξJ(Vn).

In the following theorem, we show that CREX can be a superadditive functional.

Theorem 4.8: Let X and Y be two independent non-negative rvs with right-end support
points uX = uY < +∞. If X and Y have log-concave densities, then

(i) ξJ(X + Y ) ≥ max{ξJ(X), ξJ(Y )}.
(ii) ξJ(X + Y ) ≥ ξJ(X) + ξJ(Y ).

Proof: Let X have a log-concave density. From Theorem 3.B.7 of Shaked and Shanthiku-
mar [23], one can conclude that X ≤disp X + Y for any rv Y independent of X. Since uX =
uY < +∞, we have, X ≥st X + Y . Hence, Theorem 4.4 implies that ξJ(X + Y ) ≥ ξJ(X).
Similar result also holds when Y has a log-concave density i.e. ξJ(X + Y ) ≥ ξJ(Y ). This
completes the proof of part (i). Also, we can prove part (ii), noting that the CREX of a rv
is always non-positive. �

5. ESTIMATION

In this section we consider the problem of estimating the CREX by means of the empirical
CREX. In this regards, we use two different empirical estimators of the cdf to estimate
CREX.

Definition 5.1: Let X1, . . . , Xn be a random sample drawn from a population having cdf
F . From (1) we define the empirical CREX as

ξJ(Fn) = −1
2

∫ ∞

0

(1 − Fn(x))2dx.
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where Fn is an empirical estimator of F . Hence, denoting by X(1) ≤ X(2) ≤ · · · ≤ X(n)

the order statistic of random sample, we get

ξJ(Fn) = −1
2

n−1∑
j=1

∫ X(j+1)

X(j)

(1 − Fn(x))2dx, (15)

which is the empirical CREX and converges to CREX of X:

ξJ(Fn) → ξJ(X) a.s. as n → ∞.

The first estimator (ξJ1(Fn)) can be obtained by replacing empirical cdf in (15) as

ξJ1(Fn) = −1
2

n−1∑
j=1

(
X(j+1) − X(j)

) (
1 − j

n

)2

, (16)

where for X(j) ≤ x < X(j+1)

Fn(x) =
j

n
, j = 1, 2, . . . , n − 1.

Since smoothed estimators have a better performance compared to non-smoothed
estimators, we make another estimator based on kernel-smoothed estimator of the cdf.

In a similar way, the second estimator (ξJ2(Fh)) can be achieved by replacing empirical
kernel-smoothed estimator in (15) as

ξJ2(Fh) = −1
2

n−1∑
j=1

∫ X(j+1)

X(j)

(1 − Fh(xj))
2
dx,

= −1
2

n−1∑
j=1

(
X(j+1) − X(j)

)
(1 − Fh(xj))

2
, (17)

where Fh(·) is defined by Nadaraya (1964) as

Fh(x) =
1
n

n∑
i=1

L

(
x − Xi

h

)
,

where L is the cdf of a positive kernel K, i.e L(x) =
∫ x

−∞ K(t)dt and h is a bandwidth
parameter. Meanwhile, we use the normal kernel which is optimal in a mean square error
sense, though the loss of efficiency is small and due to its convenient mathematical properties
is often used, which means K(x) = φ(x), where φ is the standard normal density function.

It is important to point out, to estimate the bandwidth (h) we use Sarda (1993) method
which is considered the following selection method that minimizes the leave-one-out criterion

CV (h) =
1
n

n∑
i=1

{Fh,−i(Xi) − Fn(Xi)}2
,

where Fh,−i(Xi) is leave-one-out version of the kernel-smoothed estimator of cdf which is
defined as

Fh,−i(x) =
1

n − 1

∑
j �=i

L

(
x − Xj

h

)
.
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Table 1. Mean and variance of the empirical CREX

n E[ξJ1(Fn)] V ar[ξJ1(Fn)] E[ξJ2(Fh)] V ar[ξJ2(Fh)]

5 −0.200 0.012 −0.289 0.022
10 −0.225 0.007 −0.291 0.009
20 −0.237 0.004 −0.296 0.004
30 −0.241 0.003 −0.299 0.003
40 −0.242 0.002 −0.308 0.002
50 −0.245 0.002 −0.310 0.002
100 −0.248 0.001 −0.313 0.001

Example 5.2: Let X1,X2, . . . , Xn be a random sample of exponentially distributed rvs
with parameter θ. Recalling Pyke (1965), the sample spacings are independent, with
X(j) − X(j−1) exponentially distributed with parameter θ(n − j). Hence, from (16) we have:

E[ξJ1(Fn)] = − 1
2nθ

n−1∑
j=1

(
1 − j

n

)
, V ar[ξJ1(Fn)] =

1
4n2θ2

n−1∑
j=1

(
1 − j

n

)2

,

similarly,

E[ξJ2(Fh)] = − 1
2θ

n−1∑
j=1

(1 − Fh(xj))
2

n − j
, V ar[ξJ2(Fh)] =

1
4θ2

n−1∑
j=1

(1 − Fh(xj))
4

(n − j)2
.

Table 1 shows mean and variance of the empirical CREX for random samples from expo-
nential distribution with mean 1 and some choices of n. Based on the results of Table 1,
by increasing sample size the values of mean and variance of the proposed estimators
are decreased which results from dependence of the mean and variance of the empirical
estimators to the sample size.

The following are two examples that clarify the effectiveness of the empirical CREX
measure to perform some estimations.

Example 5.3: This data set includes an active repair time (in hours) for an airborne com-
munication transceiver reported by [4], which was originally given by Chhikara and Folks [6].
The actual observations are listed below.

0.2, 0.3, 0.5, 0.5, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0, 1.1, 1.3,
1.5, 1.5, 1.5, 1.5, 2.0, 2.0, 2.2, 2.5, 2.7, 3.0, 3.0, 3.3, 3.3, 4.0, 4.0, 4.5, 4.7, 5.0, 5.4, 5.4,
7.0, 7.5, 8.8, 9.0, 10.3, 22.0, 24.5.

To check the validity of using exponential distribution for fitting to repair time data,
Kolmogorov–Smirnov (K-S) test is applied. The K-S statistic of the distance between the
fitted and the empirical distribution functions (based on the parameter θ = 0.2773) is 0.1597
and the corresponding p-value is 0.1914. Therefore, it is reasonable to use the exponential
distribution to fit the data which can be seen in left panel of Figure 3 too.

The value of CREX based on the exponential distribution is equal to −0.9016 but
empirical estimator (ξJ1(Fn)) and kernel-smoothed estimator (ξJ2(Fh)) are −0.6685 and
−0.7441 respectively which ξJ2(Fh) is more closer than ξJ1(Fn) to the theoretical value.

The right panel in Figure 3 shows that by increasing sample size, the empirical estima-
tors become closer to the theoretical value which is due to dependence of them on n. Also, it
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Figure 3. Histogram of the active repair times data (left panel) and empirical estimators
(right panel).

Figure 4. Histogram of the average wind speed data (left panel) and empirical estimators
(right panel).

can be seen that the second empirical estimator approaches the amount of the theory value
more quickly than the first empirical estimator. Therefore, we conclude that the proposed
kernel-smoothed estimator is more accurate than empirical estimator.

Example 5.4: In this example, we consider one average wind speed data analysis reported
in Best et al. [5]. The following data represent 30 average daily wind speeds (in km/h) for
the month of November 2007 recorded at Elanora Heights, a northeastern suburb of Sydney,
Australia:

2.7, 3.2, 2.1, 4.8, 7.6, 4.7, 4.2, 4.0, 2.9, 2.9, 4.6, 4.8, 4.3, 4.6, 3.7, 2.4, 4.9, 4.0, 7.7,
10.0, 5.2, 2.6, 4.2, 3.6, 2.5, 3.3, 3.1, 3.7, 2.8, 4.0.

The wind speed data were analyzed initially by Best et al. [5] and Alizadeh et al. [1],
who fitted the Rayleigh distribution successfully. As we checked, since the probability value
of the K-S test is equal to 0.1262 so that the Rayleigh distribution has a good fit to these
data which can be seen in the left panel of Figure 4 too.

The value of CREX based on the Rayleigh distribution is equal to −1.408 but empirical
estimator (ξJ1(Fn)) and kernel-smoothed estimator (ξJ2(Fh)) are −0.6158 and −0.6627
respectively which ξJ2(Fh) is more closer than ξJ1(Fn) to the theoretical value.

It can be seen in the right panel of Figure 4 that by increasing sample size the empirical
estimators become closer to the theoretical value. Also, as can be seen that the second
empirical estimator approaches the amount of the theory value more quickly than the first
empirical estimator. Therefore, we conclude once again that the ξJ2(Fh) estimator is more
accurate than the ξJ1(Fn) estimator.

In the following, we perform a simulation study to compare the performance of the
proposed empirical estimators based on simulated data from active repair time and average
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Figure 5. Empirical estimators for exponential distribution (left panel) and the Rayleigh
distribution (right panel).

wind speed data. Figure 5 provides a convenient visual summary of comparing proposed
estimators which one can easily infer that the proposed estimators are affected by sample
size and generally the second empirical estimator is more accurate than the first estimator.
In addition, it is evident that for sample size more than 80 the proposed estimators have
good accuracy to estimate the theoretical values.

6. APPLICATIONS

In this section, we derived two applications of the CREX to risk measure and independence.

6.1. Risk Measures

Yang [27] studied CRE as an alternative risk measure for heavy-tailed distribution when
variance does not exist. Also, Ramsay [17] showed that standard deviation σ(X) is not an
appropriate tool to measure large insurance risks with large tailed skewed distributions.
Hence, Wang [26] proposed a measure of the right-tail risk, namely, the right-tail deviation
given by

D(X) =
∫ +∞

0

√
F̄ (x)dx − E(X).

|ξJ(X)| preserves some basic properties of D(X). From Proposition 2.6, we obtain |ξJ(aX +
b)|
= a|ξJ(X)|, a > 0, b > 0. Furthermore, we get a monotonicity property for |ξJ(X)| under
the hypothesis of usual stochastic order (see Section 4). Also, from Theorem 4.8, subadditiv-
ity property of |ξJ(X)| can be hold. Therefore, we can consider |ξJ(X)| as a risk measure.
It is to be noted that when σ(X) of heavy-tailed distribution does not exist, you can use
CREX to measure the risk, such as Pareto distribution for 1 < α < 2 (see Example 2.2). To
compare |ξJ(X)|, D(X) and σ(X) we present the following examples.

Example 6.1: Again consider Example 2.2. Then

(I) For a uniform distribution we get

|ξJ(X)| = D(X) =
b

6
<

b

2
√

3
= σ(X).
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(II) For the exponential distribution we have

|ξJ(X)| =
1
4λ

<
1
λ

= D(X) = σ(X).

(III) For pareto distribution with parameters α > 2 and β > 0 we can see that

|ξJ(X)| =
β

2(2α − 1)
<

αβ

(α − 1)(α − 2)
= D(X).

Moreover, it follows that

|ξJ(X)| <
β
√

α

(α − 1)
√

α − 2
= σ(X).

In this case for 1 < α < 2, D(X) and σ(X) do not exist and we can use CREX to
measure the risk.

Example 6.2: Let X has a Weibull distribution with parameters λ > 0, γ > 0 and sf F̄ (x) =
exp{−λxγ}, x ≥ 0. After some standard calculations, we obtain

|ξJ(X)| =
Γ(1/γ)
4γλ1/γ

> (<)
Γ(1/γ)[21/γ − 1]

γλ1/γ
, for γ > 3.10628 (0 < γ < 3.10628),

where Γ(.) is the complete gamma function. Moreover,

|ξJ(X)| > (<)

[
Γ(1 + (2/γ)) − Γ2(1 + (1/γ))

]1/2

λ
, for γ > γ0 (0 < γ < γ0),

where γ0 is near a point 2.78.

6.2. Independence of Two rvs

In this section, a new measure of independence using CREX was derived, which can be used
to measure the independence between two rvs.

Suppose we have n samples of two continuous rvs (X,Y ), {(x1, y1), (x2, y2), . . . , (xn, yn)},
we aim to infer from the sample data if X and Y are independent rvs. The commonly used
method is to calculate the correlation between X and Y , then perform the hypothesis test-
ing of H0 : X and Y are independent, H1: Not H0. However, we know that corr(X,Y ) = 0
does not imply X,Y are independent except for the normal distribution for which the inde-
pendence and uncorrelated are equivalent. Here, we derived a new measure of independence
using CREX, which can measure the true independence rather than the correlation between
two rvs. First, we defined the conditional CREX as

ξJ(X|Y ) = −1
2

∫ +∞

0

F̄ 2
X|Y (x|y) dx, y > 0, (18)

where F̄X|Y (x|y) = P (X > x|Y > y). Note that when X and Y are independent, then from
(18) it is easy to obtain

ξJ(X|Y ) = ξJ(X).
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Definition 6.3: Let X,Y be two real valued rvs, define

rξJ(X,Y ) = 1 − ξJ(Y |X)
ξJ(Y )

.

The simulation results show that CREX measure is asymptotically better than the
correlation measure, especially when n is sufficiently large.

Proposition 6.4: For any rv X and Y ,

rξJ(X,Y ) =

{
0 if X and Y are independent,

1 if Y is a function of X.

Proof: It follows from the property of conditional CREX. �

Corollary 6.5: Let {Xn}n∈N be rvs converging to X in distribution, and {Yn}n∈N be rvs
converging to Y in distribution. Then

lim
n→∞ rξJn

(Xn, Yn) =

{
0 if Xn and Yn are independent,

1 if Yn is a function of Xn.

Proof: It follows from the weak convergence theorem and the above proposition. �

We perform two experiments to test the independence between two rvs using the mea-
sure rξJn

and the correlation method. Since all random numbers can be obtained from the
uniform random numbers, we focus on the the uniform distributions.

Experiment 1. Generate samples from uniform distribution in (0, 1) as follows:

• step 1, generate 50 samples, {x(1)
1 , x

(1)
2 , . . . , x

(1)
50 } and let X(1) denote this array;

• step 2, generate 100 samples, {x(2)
1 , x

(2)
2 , . . . , x

(2)
100} and let X(2) denote this array;

• step n, generate 50n samples, {x(n)
1 , x

(n)
2 , . . . , x

(n)
50n} and let X(n) denote this array.

We generate 200 times and get a sequence of arrays X(1),X(2), . . . , X(200) and the
length of X(n) is 50n. Do the same procedure and obtain the other sequence of arrays
Y (1), Y (2), . . . , Y (200).

Since we generate two sets of random samples independently, we may assume X(n) and
Y (n) are independent. Based on Corollary 3, rξJn

(X(n), Y (n)) → 0 as n → ∞.
The numerical results in Figure 6 show that as n → ∞, rξJn

(X(n), Y (n)) and
corr(Xn, Yn) decrease to zero asymptotically.

Experiment 2. Construct a new sequence {Z(1), Z(2), . . . , Z(200)} where Z(n) =
sin(100X(n)), n = 1, 2, . . . , 200, a highly non-linear function of X(n). Recalculate rξJn

of
(X(n), Z(n)) and corr(X(n), Z(n)). The results in Figure 7 show that rξJn

concentrated
around 0.44 as n increases, which entails dependence between X(n) and Z(n). But the
values of corr(Xn, Zn) reveal no information.

7. CONCLUSION

In this paper, an alternative measure of uncertainty of a rv was introduced which was called
cumulative residual extropy. Proposed measure is based on the cumulative distribution
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Figure 6. Pearson correlation plot (left panel) and CREX correlation plot (right panel).

Figure 7. Pearson correlation plot (left panel) and CREX correlation plot (right panel).

function F . Upper and lower bounds were determined and inequalities concerning CREX
and it shows that the exponentially distributed rv have maximum CREX. Proportional
hazard model and Gini index were studied. Also, some results on the CREX ordering of
rvs were provided, such as the relationship between CREX and increasing concave ordering
and the relationship between CREX and usual stochastic ordering. Then, we considered
the problem of estimating the CREX by means of the empirical cumulative extropy by
proposing two different empirical estimators of cdf to estimate the extropy. We concluded
that the proposed estimators are affected by sample size and generally the second empirical
estimator is more accurate than the first estimator. Finally, two applications of the CREX
were presented to risk measure and independence problem.

In the future, we will consider the dynamic version of CREX and study some properties
of it.
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