
J. Plasma Phys. (2021), vol. 87, 905870511 © The Author(s), 2021.
Published by Cambridge University Press

1

doi:10.1017/S002237782100101X

Hydrodynamics of quantum corrections to the
Coulomb interaction via the third rank tensor
evolution equation: application to Langmuir

waves and spin-electron acoustic waves

Pavel A. Andreev 1,2,†
1Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russian Federation

2Faculty of Physics, Mathematics and Natural Sciences, Peoples Friendship University of Russia (RUDN
University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation

(Received 6 April 2021; revised 19 September 2021; accepted 28 September 2021)

The quantum effects in plasmas can be described by the hydrodynamics containing the
continuity and Euler equations. However, novel quantum phenomena are found via the
extended set of hydrodynamic equations, where the pressure evolution equation and the
pressure flux third-rank tensor evolution equation are included. These give the quantum
corrections to the Coulomb interaction. The spectra of the Langmuir waves and the
spin-electron acoustic waves are calculated. The application of the pressure evolution
equation ensures that the contribution of pressure in the Langmuir wave spectrum is
proportional to (3/5)v2

Fe rather than (1/3)v2
Fe, where vFe is the Fermi velocity.
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1. Introduction

Quantum plasmas have been intensively studied during the past two decades (Kremp
et al. 1999; Shokri & Rukhadze 1999; Golubnychiy et al. 2001). Quantum effects in the
electron component of plasmas become noticeable at low temperature. Hence, electrons
are in the state of a degenerate electron gas. Between 1999 and 2006, a major interest
of researchers was on the quantum Bohm potential (Kuz’menkov & Maksimov 1999;
Haas, Manfredi & Feix 2000; Anderson et al. 2002; Haas et al. 2003; Haas 2005).
The quantum Bohm potential can be interpreted as the quantum part of the pressure
appearing in addition to the Fermi pressure. The quantum Bohm potential increases
the contribution of the Fermi pressure to the dispersion dependencies of waves. This
increase becomes comparable with the Fermi pressure if the wavelength decreases to an
average interparticle distance. Some of these effects have already been reviewed (Shukla
& Eliasson 2010, 2011).

Spin dynamics of electrons provides diverse effects in quantum plasmas. A fundamental
derivation of the quantum hydrodynamic equations for the spin-1/2 quantum plasmas was
made in 2001 (Kuz’menkov, Maksimov & Fedoseev 2001a,b). However, major interest
in this field only began in 2007 (Andreev & Kuz’menkov 2007; Brodin & Marklund
2007; Marklund & Brodin 2007; Andreev & Kuz’menkov 2008; Mahajan & Asenjo 2011;
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Koide 2013; Uzdensky & Rightley 2014). The spin of the electron leads to an additional
hydrodynamic equation, which is called the spin density evolution equation. The
quasi-classical part of the flux of the spin has been considered in all papers on spin
quantum plasmas. The quantum part of the flux of the spin, which is the analogue of
the quantum Bohm potential, has also been considered in some papers (see for instance
Mahajan & Asenjo 2011). However, the pressure-like part of the flux of spin, called the
Fermi spin current or the thermal spin current, has not been considered in the majority of
works in this field. Its explicit form has been considered in recent papers for degenerate
electrons (Andreev 2016a, 2017a,b; Andreev & Kuz’menkov 2019).

The separate spin evolution quantum hydrodynamics, where electrons are considered
as two different fluids, was developed in 2015 (Andreev 2015; Andreev & Kuz’menkov
2015). This model shows that there is a spin-electron acoustic wave in the spin polarized
electron gas (Andreev 2015; Andreev & Kuz’menkov 2016a,b). Its existence is caused
by the difference of pressures for the spin-up and spin-down electrons. The possibility
of separation of electrons in two different fluids can be seen from the structure of the
Pauli equation, where the evolution of electron with chosen spin projections is described
by an independent equation. However, these two equations are traditionally combined
into a single matrix equation. Moreover, the identification of each electron in plasmas
to the state with fixed spin projection is not necessary. Each electron has a probability
to belong to both subsystems simultaneously. The electrostatic limit of the separate spin
evolution quantum hydrodynamics can be considered for the study of plasma waves,
because the spin-electron acoustic waves are found in this regime (Andreev 2015; Andreev
& Kuz’menkov 2015, 2016a,b). The Langmuir waves correspond to the simultaneous
oscillations of all electrons. The spin-electron acoustic waves correspond to oscillations
of spin-up and spin-down electrons with opposite phases.

There are examples of extended hydrodynamics (Tokatly & Pankratov 1999, 2000;
Miller & Shumlak 2016), where the equations for the evolution of the second-rank tensors
(the momentum flux and the spin flux) are included. These cover some spin-related wave
phenomena in quantum plasmas.

Here, it is demonstrated that the account of the higher-rank material field tensors like
the momentum flux and the third-order tensor, which is the flux of the momentum flux,
leads to a new source for the quantum effects in the quantum hydrodynamics of plasmas.
This is true for the spin-less regime because it appears as the quantum part of the Coulomb
interaction. This new source also contributes to the spin-electron acoustic waves.

Obviously, a similar generalization can be made for the spin–spin interaction. Moreover,
the third-rank tensor, which is the flux of the spin-current, evolution equation can also be
considered for a complete model of spin effects. These generalizations are left for future
papers.

This paper is organized as follows. In § 2, some fundamental definitions are introduced.
Final equations for the suggested model are presented in § 2. In § 3, dispersion
dependencies are derived and analysed. In § 4, a brief summary of the obtained results
is presented.

2. Electrostatic limit of the extended separate spin evolution hydrodynamics

Here, the extended quantum hydrodynamics is presented, which demonstrates a novel
source of quantum effects generalizing the quantum Bohm potential contribution.

The first equation of all sets of hydrodynamic equations is the continuity equation
demonstrating the conservation of the number of particles:

∂tns + ∇ · (nsvs) = 0, (2.1)
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where the subindex s corresponds to the projection of spin of the electron, s = u
corresponds to the spin-up electrons and s = d corresponds to the spin-down electrons.

Electrons are spin-1/2 fermions. They have two projections of spin. Electrons with
different spin projections can be considered as two different fluids. The quantum
hydrodynamic equations presented here give a generalization of the separate spin
evolution quantum hydrodynamic model. However, the electrostatic approximation is
considered here. Hence, no spin flip is presented in the continuity equation and the other
hydrodynamic equations below. Equation (2.1) shows the conservation of the number of
electrons with a fixed spin projection. Change of spin projections of the electrons is not
considered in this model. However, some spin effects come into play owing to the relative
motion of electrons with different spin projections.

The velocity field vs presented in the continuity equation obeys the Euler equation:

mns∂tv
α
s + mns(vs · ∇)vαs + ∂βTαβs

+ ∂βpαβs = −qens∂
αΦ. (2.2)

The Greek indexes α, β, etc. are the tensor indexes. Einstein’s rule is used for the
summation of the repeating Greek indexes.

Equations (2.1) and (2.2) are the fundamental hydrodynamic equations. They are well
known in classic hydrodynamics (Aleksandrov, Bogdankevich & Rukhadze 1984; Tokatly
& Pankratov 2000; Miller & Shumlak 2016). Their quantum analogues are well known in
quantum hydrodynamics (Haas et al. 2000; Shukla & Eliasson 2010, 2011).

The electrostatic potential Φ on the right-hand side of (2.2) has the following explicit
form:

Φ(r, t) = qe

∫
dr′ 1

|r − r′|(n↑(r′, t)+ n↓(r′, t)− n0i). (2.3)

Quasi-electrostatic potential Φ(r, t) (2.3) obeys the Poisson equation:

�Φ = −4πqe(n↑ + n↓ − n0i), (2.4)

where n0i is the equilibrium concentration of ions.
The left-hand side of the Euler equation contains the tensor associated with the quantum

Bohm potential Tαβs . The non-interacting part of the quantum Bohm potential is given by

Tαβs = − �
2

4m

[
∂α∂βns − ∂αns · ∂βns

ns

]
. (2.5)

The partial pressure pαβs is an independent function. Therefore, an equation for pressure
evolution is derived:

∂tpαβs + ∂γ (v
γ
s pαβs )+ pαγs ∂γ v

β
s + pβγs ∂γ v

α
s + ∂γQαβγ

s = 0. (2.6)

Purely quantum terms like Tαβs and the third-rank quantum Bohm potential tensor Tαβγs
cancel each other in (2.6). The pressure evolution equation has been considered in classical
plasmas (Tokatly & Pankratov 1999, 2000; Miller & Shumlak 2016).

The pressure evolution equation (2.6) obviously contains an independent function Qαβγ
s ,

which is the third-rank tensor. Next, the evolution equation for this third-rank tensor is
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derived:

∂tQαβγ
s + ∂δ(v

δ
s Qαβγ

s )+ Qαγ δ
s ∂δv

β
s + Qβγ δ

s ∂δv
α
s

+Qαβδ∂δv
γ
s + ∂δPαβγ δs = �

2

4m3
qens∂

α∂β∂γΦ. (2.7)

The complete expression for this equation is presented and discussed in the supplementary
material available at https://doi.org/10.1017/S002237782100101X before truncation is
made.

The derivation of (2.1)–(2.7) is made within the many-particle quantum hydrodynamic
method (Kuz’menkov & Maksimov 1999; Kuz’menkov et al. 2001a; Andreev 2016a;
Andreev & Kuz’menkov 2019; Andreev 2021). It means that the microscopic quantum
dynamics of many quantum objects is represented in terms of collective variables.
Moreover, these collective variables are quantum observable, which have a clear physical
meaning.

Equations (2.1)–(2.7) give the generalization of the separate spin evolution quantum
hydrodynamics (Andreev 2015) considered in the quasi-electrostatic regime. This
generalization is in the presence of the pressure evolution equation and the third-rank
tensor evolution equation. Below, it is shown that the pressure evolution equation gives the
increase of the speed of sound for the spin-electron acoustic waves in the long-wavelength
limit. The speed of sound increases by approximately 1.5 times. The further application
of the third-rank tensor evolution equation gives the contribution in the short-wavelength
limit, where a decrease of frequency is found. Moreover, the third-rank tensor evolution
equation contains a novel quantum term which is proportional to the third derivative of the
scalar potential of the electric field.

Equation (2.7) contains some independent functions. Derivation of (2.7) is motivated
by an attempt to find new quantum effects, which are presented mainly by the first term
on the right-hand side of (2.7). This term is proportional to �

2, while other terms are
proportional to �

4. However, terms proportional to �
4 can be crucial in the regime of the

separate spin evolution as is demonstrated below. It is expected that further derivation of
hydrodynamic equations for the higher-rank tensors will give small corrections which are
proportional to �

4 and �
6. For instance, the derivation shows that the evolution equation

for the fifth-rank tensor contains the interaction term proportional to �
4∂α∂β∂γ ∂δ∂μΦe.

Therefore, the truncation is made in the third-rank tensor evolution equation. To get a
closed set of hydrodynamic equations, we need to present all functions via the basic
hydrodynamic functions of our model: the concentration, the velocity field, the pressure
and the pressure flux third-rank tensor. The equation of state for Pαβγ δs is derived. For the
zero temperature Fermi distribution function, it has the following form:

Pαβγ δs = 6π2

35
Iαβγ δ0 (6π2)1/3

�
4n7/3

s

m4
, (2.8)

where
Iαβγ δ0 = δαβδγ δ + δαγ δβδ + δαδδβγ . (2.9)

Derivation of this equation is given in the Supplementary material.
The application of equation of state for the pressure perturbations in the Euler equation

gives a shift of the speed of sound. Similarly, the application of expression (2.8) for the
perturbations of Pαβγ δs allows us to make an estimation of the corresponding effects, but it
does not give a correct coefficient.
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Manfredi (2005) included the physically clear idea that the expression for pressure
should not always coincide with the Fermi pressure. The Fermi pressure provides the
results found for the equilibrium regime. Hence, if one considers the wave propagation, the
pressure perturbations can be described by an equation different from that for the Fermi
pressure. Equation (4.36) in Manfredi (2005) (see also discussion after (5.12)) shows that
the equation is equal to that for the Fermi pressure in the equilibrium limit and gives the
correct coefficient in front of the Fermi velocity in the spectrum of the Langmuir wave.
However, it is a phenomenological formula. Tokatly & Pankratov (1999) and Tokatly &
Pankratov (2000) demonstrated that the correct expression for the perturbations of the
pressure can be found from the hydrodynamics itself. However, this requires the pressure
evolution equation.

3. Collective excitations

The analysis of collective excitations is presented in a set of five subsections. However,
they can be split into two groups. §§ 3.1–3.4 are dedicated to the instabilities that appear
arising from the dynamics of the third-rank tensor and some generalizations of the model.
The second group is presented in § 3.5, which shows the stabilization of the spectrum that
accounts for the motion of ions.

Let us point out some more details on the physical motivation of the structure of
the paper. The first part is focused on the description of the perturbation of electrons
as the high-frequency excitations, so the motion of ions is neglected. Usually it works
well because the mass of ions is three–four orders larger than the mass of the electron.
However, the presence of quantum effects introduces a small-scale component in the
electron dynamics. So, a part of quantum dynamical properties of electrons appears in the
low-frequency regime. Therefore, the neglect of ion motion is inappropriate. Nevertheless,
the formal application of the limit of motionless ions is made in §§ 3.1 and 3.2 to
understand the consequences of this approximation within the presented model. However,
the complete physical picture is given in § 3.3, where the motion of ions is included. So,
no unexpected and unphysical instability exist.

3.1. Collective excitation in the electron gas described as a single fluid
Consider the propagation of plane longitudinal waves in an isotropic macroscopically
motionless electron–ion plasma medium.

The equilibrium concentration of electrons n0e is equal to the equilibrium concentration
of ions n0i. The ions are assumed to be motionless for the consideration of the
high-frequency excitations. The equilibrium velocity field are equal to zero v0e = 0. The
equilibrium pressure pαβ0e is given by the isotropic Fermi pressure pαβ0e = δαβ · pFe, where
pFe = (3π2)2/3n5/3

0e �
2/5me, pαβ0e = pαβ0u + pαβ0d is the superposition of partial pressures. The

equilibrium third-rank tensor is equal to zero for the zero temperature isotropic fermions
Qαβγ

0e = 0 (see Supplementary material). The equilibrium fourth-rank tensor is expressed
via the equilibrium concentration in accordance with the expression (2.8):

Pαβγ δ0e = Pαβγ δ0u + Pαβγ δ0d = 3π2

35
Iαβγ δ0 (3π2)1/3

�
4n7/3

0e

m4
. (3.1)

The scalar potential of the electric field is equal to zero in the equilibrium state Φ0 = 0.
Let us consider the small amplitude perturbations of all material fields involved in

the presented model for perturbations propagating parallel to x-direction: ne = n0e +
ñe, vx

e = 0 + ṽx
e , δpαβe = pαβ0e + δxαδxβ p̃xx

e , Qαβγ
e = 0 + δxαδxβδxγ Q̃xxx

e , Pαβγ δe = Pαβγ δ0e +
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6 P.A. Andreev

δxαδxβδxγ δxδP̃xxxx
e and Φ = 0 + Φ̃, where

P̃xxxx
e = (3π2)4/3

5
�

4n4/3
0e

m4
e

ñe = 1
5
v4

Feñe, (3.2)

with the Fermi velocity vFe = (3π2n0e)
1/3

�/me and Ixxxx
0 = 3.

Perturbation of each function is presented in the form of a plane wave:⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ñe

ṽx
e

p̃xx
e

Q̃xxx
e

Φ̃

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ne

Ve

Pe

Qe

Φampl

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

exp(−iωt + ikx). (3.3)

The described procedure leads to the standard form of the linearized continuity
equation:

ωñe = kn0eṽ
x
e . (3.4)

The linearized Euler equation has one modification. The single element of the pressure
tensor p̃xx

e is presented as the independent function:

ωmen0eṽ
x
e − kp̃xx

e − �
2k3

4me
ñe = qen0ekΦ̃. (3.5)

The perturbation of the pressure p̃xx
e can be found from the linearized pressure evolution

equation:
ωp̃xx

e = 3kpxx
0eṽ

x
e + kQ̃xxx

e . (3.6)

The first term on the right-hand side of the pressure evolution equation (3.6) provides
the partial expression for the pressure perturbation in accordance with the kinetic model
(Landau & Lifshitz 1980; Aleksandrov et al. 1984; Andreev 2016a):

p̃xx
partial = 3

pxx
0e

n0e
ñe = 3

5v
2
Feñe. (3.7)

Novel quantum effects enter the model via the second term on the right-hand side of (3.6).
The linearized equation for the third-rank tensor evolution has the following form:

ωQ̃xxx
e = kP̃xxxx

e + �
2

4m2
qen0ek3Φ̃. (3.8)

The presented model contains the traditional form of the linearized Poisson equation:

k2Φ̃ = 4πqeñe. (3.9)

Linearized equations (3.4)–(3.8) lead to the following dispersion equation, which is the
quadratic equation relative to ω2:

ω4 − ω2

(
ω2

Le + 3pxx
0

mn0
k2 + �

2k4

4m2

)

−
(
ω2

Le
�

2k4

4m2
+ k4 dPxxxx

0

dn0

)
= 0, (3.10)
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where ω2
Le = 4πe2n0e/me is the Langmuir frequency. The explicit form of the last term in

(3.10) can be found from (3.2). However, it is kept in implicit form to track its source. The
last group of terms is caused by the simultaneous contribution of the pressure evolution
equation and the third-rank tensor evolution equations. This group consists of two terms.
The first term is caused by the Coulomb interaction located on the right-hand side of the
third-rank tensor evolution equation (2.7). The second term, which is proportional to Pxxxx

0 ,
is caused by the last term on the left-hand side of (2.7).

It is useful to specify that the regime of electrostatic waves propagating parallel to the
external magnetic field is considered. However, the quantum effects entering the model
via the evolution of the third-rank tensor give an additional solution.

Here, the solution of (3.10) is presented as

ω2
± = 1

2

⎧⎪⎨
⎪⎩ω2

Le + 3pxx
0

mn0
k2 + �

2k4

4m2 ±
⎡
⎣(ω2

Le + 3pxx
0

mn0
k2 + �

2k4

4m2

)2

+ 4ω2
Le

�
2k4

4m2 + k4 δP
xxxx
0
δn0

⎤
⎦

1/2
⎫⎪⎬
⎪⎭ .
(3.11)

Solution ω2
− can be rewritten in the following form:

ω2
− = ω2

−ω
2
+

ω2+
= −ω

2
Le

�
2k4

4m2 + 1
5v

4
Fek

4

ω2+
. (3.12)

Equation (3.12) shows that ω2
− < 0. This can be also seen from (3.11).

It is clear that the second solution exists in the quasi-classical limit. However, it is
suppressed by the small thermal velocity dPxxxx

0 /dn0 ∼ v4
T in the low-temperature limit.

In the quantum regime with temperature T below the Fermi temperature TFe = mv2
Fe/2,

the quasi-classical contribution is also suppressed because it is proportional to the high
degree of the Planck constant �

4. However, the quantum-interaction part demonstrated
in this paper is proportional to the �

2 and the large frequency value ω2
Le. Therefore, the

existence of a solution is mainly caused by the first term on the right-hand side of (3.12)
found from the right-hand side of (2.7).

The prefactor in front of the quantum Bohm potential can differ from the single-particle
expression (Moldabekov, Bonitz & Ramazanov 2018), while the linear part of the
quantum Bohm potential can be strictly expressed via the concentration for the arbitrary
many-particle wave function and arbitrary strength of interaction. However, the account
of the evolution equations for the higher tensor rank like the pressure and the pressure
flux leads to modification of the coefficient in front of the Fermi velocity. Moreover,
further extension of the set of hydrodynamic equations can give correction of the prefactor
in front of the quantum Bohm potential. However, it requires the derivation of the
corresponding model beyond 20-moments approximation. Some phenomenological model
for the coefficient in front of the quantum Bohm potential can be adopted. However, our
comment is related to the systematic and consistent derivation of the coefficient in question
in terms of the quantum hydrodynamic method.

Let us consider the small wave vector limit of the obtained solution:

ω2
+ = ω2

Le, (3.13)

and

ω2
− = −�

2k4

4m2
− 1

5 k4v2
Fer

2
DF, (3.14)

where rDF = vFe/ωLe is the Debye radius for the degenerate electrons.
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FIGURE 1. Numerical analysis of (3.11), (3.10) and (3.15) is presented. The three upper lines
show the spectrum of the Langmuir wave in different regimes. The black continuous line
corresponds to the hydrodynamic spectrum based on the continuity and Euler equations together
with the Fermi pressure: ω2 = ω2

Le + (v2
Fek2)/3 + �

2k4/4m2. The red dotted line corresponds to
the application of the pressure evolution equation with the zero contribution of the third-rank
tensor. The green dashed line presents the spectrum of the Langmuir wave under influence of
the third-rank tensor evolution equation. The lowest line describes the module of the negative
frequency square | ω2 | of novel solution caused by the third-rank tensor evolution equation in
accordance with (3.14). The value of parameter Λ is presented in the figure. It corresponds to
n0 = 1023 cm−3.

Let us present the dimensionless form of (3.10):

ξ 4 − ξ 2(1 + (3/5)κ2 +Λκ4)− (Λ+ 0.2)κ4 = 0, (3.15)

where ξ = ω/ωLe, κ = kvFe/ωLe and Λ = �
2ω2

Le/(4m2v4
Fe) = [3π(3π2)1/3]−1/(rBn1/3

0 ),
where rB = �

2/me2 is the Bohr radius. Figure 1 shows two wave solutions in accordance
with (3.11)–(3.14). The short-wavelength decrease of the frequency of the Langmuir wave
caused by the non-zero contribution of the third-rank tensor can be seen from a comparison
of the two upper lines. The increment of the instability presented by the second wave
solution (3.12) is also demonstrated in figure 1. It appears in the short-wavelength regime.
Its stabilization can be expected under the influence of tensors of higher ranks.

The novel quantum effects presented by the third-rank tensor evolution manifest
themselves at κ ∼ 1, which corresponds to the wavelength λ = 2π/k = √

π(3π2)1/3
√

arD,
where the average interparticle distance is used a = 3

√
n0. As an estimation, we have

λ ≈ 6 × 10−8 cm≈ a ≈ rD for n0 = 1023 cm−3, which corresponds to the limits of the
quasi-classical motion.

3.2. Spin-electron acoustic waves
Consider the propagation of plane longitudinal waves in the direction of the external
magnetic field. The external magnetic field is one of the mechanisms of the spin
polarization formation. Magnetic conductive materials create a spontaneous spin
polarization of the lattice and the electron gas. For these materials, spin polarization of
electrons is non-zero even for the zero external magnetic field. The z-axis is directed
parallel to the equilibrium spin polarization S0z = n0↑ − n0↓.

The structure of the equilibrium state and the form of the perturbations are similar to
those described above for the single-fluid regime. Evolution of perturbations leads to the
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following dispersion equation:

1 =
∑

s

ω2
Ls

(
1 + �

2k4

4m2ω2

)

ω2 − 3pxx
0s

mn0s
k2 − �

2k4

4m2
− k4

ω2

dPxxxx
0s

dn0s

, (3.16)

where ω2
Ls = 4πe2n0s/m is the partial Langmuir frequency.

The dispersion equation (3.16) is obtained for the regime, where two waves (the
Langmuir wave and the spin-electron acoustic wave Andreev 2015) exist in the traditional
separate-spin-evolution quantum hydrodynamics construct of two continuity equations
and two Euler equations (Andreev 2015). Here, four waves are found. Hence, there are
two new solutions. One of them is found in the single-fluid regime (3.14). Therefore, the
regime of the separate spin evolution brings the novel solution.

If the contribution of the third-rank tensor is dropped, (3.16) simplifies to

1 =
∑

s

ω2
Ls

ω2 − 3pxx
0s

mn0s
k2 − �

2k4

4m2

. (3.17)

Equation (3.17) includes the contribution of the pressure perturbations from the pressure
evolution equation. Therefore, the speed of sound for the spin-electron acoustic waves
corresponds to the kinetic model (Andreev 2016a) in contrast with hydrodynamics based
on the continuity and Euler equations (Andreev 2015).

Let us present the dimensionless form of (3.16) as[
ξ 4 −

[
3
5
(1 − η)2/3κ2 +Λκ4

]
ξ 2 − κ4

5
(1 − η)4/3

]

×
[
ξ 4 −

[
3
5
(1 + η)2/3κ2 +Λκ4

]
ξ 2 − κ4

5
(1 + η)4/3

]

−1
2
(ξ 2 +Λκ4)

[
(1 − η)

[
ξ 4 −

[
3
5
(1 − η)4/3κ2 +Λκ4

]
ξ 2 − κ4

5
(1 − η)4/3

]

+(1 + η)

[
ξ 4 −

[
3
5
(1 + η)4/3κ2 +Λκ4

]
ξ 2 − κ4

5
(1 + η)4/3

]]
= 0, (3.18)

where η =| n↑ − n↓ | /(n↑ + n↓) is the spin polarization. It is used to plot the spectrum.
The result is demonstrated in figures 2 and 3. The spin polarization η is caused by the
magnetic field η = tanh(μBB0/εFe), where μB is the Bohr magneton, B0 is the external
uniform magnetic field and εFe = mv2

Fe/2 is the Fermi energy. However, ferromagnetic
metals demonstrate spin polarization. In the simplest way, it can be modelled as
the result of action of the effective inner magnetic field Beff. Hence, we have η =
tanh(μB(B0 + Beff)/εFe). Let us mention that the account of the internal field is a simple
phenomenological assumption showing the influence of the ferromagnetic state of the
sample on the conductivity electrons.

The separate spin evolution leads to the appearance of the second electrostatic wave (for
the motionless ions) (Andreev 2015). Moreover, (3.16) shows that the instability found in
the single-fluid regime of electrons (3.11) splits into two instabilities. Frequency of these
instabilities are shown in figure 2.
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FIGURE 2. Numerical analysis of (3.16) and (3.18). The blue continuous line shows the
spectrum of the Langmuir wave. The green dashed line shows the spectrum of the spin-electron
acoustic wave. The blue and black dotted lines correspond to the instabilities following from
the application of the pressure evolution equation and the third-rank tensor evolution equation,
respectively.

FIGURE 3. Numerical analysis of (3.16) and (3.18). The spin-electron acoustic waves are
considered in different regimes. The green continuous line corresponds to the hydrodynamic
spectrum based on the continuity and Euler equations together with the Fermi pressure, where
coefficient 1/3 is found in front of the square of the Fermi velocity v2

Fe. The other three regimes
correspond to the application of the pressure evolution equation. Hence, coefficient 3/5 is found
in front of the square of the Fermi velocity v2

Fe. The red dotted line corresponds to the spectrum
of spin-electron acoustic waves under influence of the third-rank tensor evolution equation at
the zero contribution of the quantum Bohm potential. The black continuous line includes the
contribution of the quantum Bohm potential with zero contribution of the third-rank tensor. The
green dashed line presents the spectrum under the influence of all effects presented in (3.16).

Modifications of the spectrum of the spin-electron acoustic waves under influence of
different effects are demonstrated in figure 3.

3.3. Variation of the fourth-rank tensor under the evolution of higher-rank tensors
Further extension of the hydrodynamic model of electrons is considered for stabilization
of the spectrum found above.
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Here, we present the ‘main’ part of the fourth-rank tensor evolution equation

∂tQ4 + ∂Q5 = 0, (3.19)

where tensor Q4 (tensor Q5) is the fourth (fifth)-rank tensor in the comoving frame
and ∂ presents the divergence of tensor Q5. Tensors Q4 and Q5 are variations from the
‘equilibrium-like’ terms presented by (2.8) for the fourth-rank tensor. The equilibrium-like
part of the fifth-rank tensor is equal to zero. Equation (3.19) is the ‘continuity’ equation for
the fourth-rank tensor. Hence, it is assumed that the flux of tensor Q4 (which is presented
by tensor Q5) is the major cause of the evolution of tensor Q4. Interaction does not appear
in (3.19), so it is not neglected there. We need to consider the contribution of the Coulomb
interaction in the evolution of tensor Q4. It can be found via the study of the evolution of
tensor Q5.

Let us present the simplified equation for the evolution of tensor Q5:

∂tQ5 = − �
4

16m5
qene∂

(5)Φ, (3.20)

where ∂(5) is the fifth-rank tensor composed of five space derivatives with different
indexes. Here, the flux of tensor Q5 is neglected. It is assumed that the major cause of
evolution of tensor Q5 is the interaction.

The application of additional equations (3.19) and (3.20) gives the extension of the
model presented above (2.1)–(2.7).

The linear approximation gives the following dispersion equation for the single-fluid
model of electrons:

ω6 − ω4 (ω2
Le + 3

5v
2
Fek

2 + ω2
q

)
−ω2 (ω2

Leω
2
q + 1

5v
4
Fek

4)− ω2
Leω

4
q = 0, (3.21)

where ω2
q = �

2k4/4m2. Here the last term is caused by the evolution of the fourth-rank
tensor and the fifth-rank tensor.

We do not present the numerical analysis of (3.21). We point out that no stabilization of
the instabilities found above is obtained.

However, the instability found above is a rather fast instability which is not observed in
plasmas. Therefore, we need to consider other mechanisms for the stabilization.

3.4. On exchange interaction
Two identical particles are indistinguishable in the quantum description. Hence, it is not
enough to present the many-particle wave function as the product of the single-particle
wave functions for the weakly interacting limit,

Ψ (R, t) = ψκ1(r1, t) · · · · · ψκN (rN, t), (3.22)

where R = {r1, . . . , rN}, κj is the full set of quantum numbers for jth particle. It is
necessary to include the property of anisotropy of the wave function relative to the
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permutation of arguments:

Ψ (· · · , ri, . . . , rj, . . . , t) = −Ψ (· · · , rj, . . . , ri, . . . , t). (3.23)

For the many-particle wave function, the weakly interacting particles can be presented in
the form of the Slater determinant:

Ψ (R, t) = 1√
N!

∥∥∥∥∥∥∥
ψκ1(r1, t) ψκ1(r2, t) · · · ψκ1(rN, t)
ψκ2(r1, t) ψκ2(r2, t) · · · ψκ2(rN, t)

· · · · · · · · · · · ·
ψκN (r1, t) ψκN (r2, t) · · · ψκN (rN, t)

∥∥∥∥∥∥∥ . (3.24)

The average energy of interaction of each pair of particles appears in the form of
two terms. One resembles the average energy which can also be obtained within the
simple wave function (3.22). The other, called the exchange part, appears owing to the
(anti)symmetrization of the wave function. This integral is non-zero if the wave functions
of two interacting particles overlap each other in some area of space. The average collective
exchange term is obtained for the hydrodynamic models (Lee & Jung 2013; Jung &
Akbari-Moghanjoughi 2014; Andreev & Ivanov 2015; Andreev 2016b). It is found in
the regime of small exchange interaction, so the Hartree part of the interaction in the
Hartree–Fock approximation, for the mean-field interaction gives the major contribution
in the collective effects.

From the practical point of view, the exchange interaction appears as an effective shift of
pressure. Moreover, the exchange term is negative, so it decreases the contribution of the
pressure. This is the decrease of the Fermi velocity from the constant value, where there is
the mechanism giving a positive shift of the Fermi velocity depending on the wave vector.
This mechanism is the another quantum effect, the quantum Bohm potential.

A systematic model of the exchange effects would require the calculation of the
exchange interaction in the pressure evolution equation and in the third-rank tensor
evolution equation.

3.5. Contribution of ions and stabilization of spectrum
Dispersion equations (3.10)–(3.18) are obtained in the high-frequency limit, where ions
are assumed to be motionless. However, the analysis of the obtained solutions shows that
the second solution ω2

− approximately presented by (3.14) is a low-frequency solution. It
shows that proper analysis of this phenomena requires an account of the ion motion.

Particularly, dimensionless frequency square ξ 2
− at the dimensionless wave vector near

the classical limit κ = 0.1 gives the value ξ 2
− ∼ 10−5. We compare it with the contribution

of ions. For the estimation of the contribution of ions, we choose the minimum of
two parameters min{ω2

IS/ω
2
Le, ω

2
Li/ω

2
Le} = {(3/5)(me/mi)κ

2,me/mi} = (3/5)(me/mi)κ
2 =

6 × 10−3 × (me/mi) ≈ 10−5 for the hydrogen ions. Here, ωIS presents the spectrum of ion
sound, ω2

IS = (3/5)(me/mi)v
2
Fek

2.
We substitute the contribution of all linearized hydrodynamic equations of electrons in

the Euler equation:

(
ω2 − ω2

q − 3
5v

2
Fe − v4

Fek
4

5ω2

)
δne = qen0

me

(
1 + ω2

q

ω2
+ ω4

q

ω4

)
k2δΦ̃, (3.25)

where ω2
q = �

2k4/4m2 is the characteristic quantum frequency. Frequency ω2
q appears from

different sources: the quantum Bohm potential and the quantum part of the Coulomb
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interaction in the third-rank tensor evolution equation. The term proportional to ω4
q

presents the contribution of the fifth-rank tensor evolution. Similarly, the Euler equation
for the ions appears in the following form:

ω2δni = qin0

mi
k2δΦ̃. (3.26)

Here, we repeat the Poisson equation,

�Φ̃ = −4πqe(δne − δni), (3.27)

where the perturbations of ions are presented.
We combine (3.25), (3.26) and (3.27). As the result, we get the dispersion equation:

1 = ω2
Li

ω2
+

ω2
Le

(
1 + ω2

q

ω2

)
(
ω2 − ω2

q − 3
5v

2
Fek2 − v4

Fek
4

5ω2

) , (3.28)

where the term proportional to ω4
q is neglected.

Equation (3.28) can be simplified in the required limit. We consider ω2 ∼ ω2
q at κ 	 1.

Hence, we find ω2, ω2
q, v

4
Fek

4/5ω2 	 3(v2
Fek

2)/5. Therefore, (3.28) reduces to

1 = ω2
Li

ω2
− ω2

Le
3
5v

2
Fek2

(
1 + ω2

q

ω2

)
. (3.29)

Equation (3.29) shows that the contribution of the third-rank tensor presented with
ω2

q modifies the coefficient in the spectrum of the ion acoustic wave, and gives no new
solution.

Let us show corresponding spectrum:

ω2 = 1

1 + 1
κ2

(
ω2

Li −
ω2

q

κ2

)
. (3.30)

The quantum contribution appearing from the third-rank tensor evolution equation gives
the decrease of the ion acoustic wave frequency. Let us mention that the quantum
corrections, like the quantum Bohm potential for ions, are small in comparison with the
described effects. This spectrum is illustrated in figure 4. It demonstrates the decrease of
the frequency under the influence of the pressure evolution equation and the third-rank
tensor evolution equation.

4. Conclusion

An extended hydrodynamic model demonstrating novel quantum effects is developed.
These quantum effects appear in addition to the well-known quantum Bohm potential and
spin effects. The model is presented for the electrostatic regime. Hence, the Coulomb
interaction is considered. Therefore, the quantum corrections to the Coulomb interaction
is found via evolution of the third-rank tensor. However, if one includes the spin–spin
interaction, this model gives the quantum part for the spin–spin interaction or any
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FIGURE 4. Numerical illustration of (3.30) is shown. The black solid line shows the spectrum
of the ion acoustic wave obtained with no application of the pressure evolution equation. It
corresponds to the absence of quantum term in (3.30). The blue dotted line shows the spectrum
of the ion acoustic wave following from the application of the pressure evolution equation and
the third-rank tensor evolution equation.

other interaction. Such generalizations will be considered in future work. Here, novel
quantum phenomena in plasmas are demonstrated using simple examples. Therefore, other
phenomena may not be covered by the known quantum effects. The presented model gives
the background for re-innovation of quantum phenomena caused by the quantum Bohm
potential.

Supplementary material

Supplementary material is available at https://doi.org/10.1017/S002237782100101X.
The Supplementary material contains details of the derivation of the basic equations
(2.1)–(2.7). The definitions of hydrodynamic functions are also presented as well as
calculations of the equations of state for the equilibrium values of the pressure second-rank
tensor, the third-rank tensor and the fourth-rank tensor.
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