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Abstract. An analysis of two experimental observations of Langmuir wave collapse
is performed. The corresponding experimental data are shown as evidence against
the occurrence of collapses. The physical reason preventing the collapses is found
to be the nonresonant electron diffusion in momentum. In this process, plasma
thermal electrons are efficiently heated at the expense of wave energy, therefore
intense collisionless wave dissipation takes place. The basic reason for the underes-
timation of nonresonant electron diffusion in the traditional theory is shown to be
the substitution of a real plasma by a plasma probabilistic ensemble.

A study of nonresonant electron diffusion refraining from ensemble substitu-
tion is performed. It is shown that its intensity is sufficient for suppression of Za-
kharov’s short-wavelength modulational plasma instability [Zakharov, V. E., Sov.
Phys. JETP 35, 908 (1972)]. This explains the nonoccurrence of Zakharov’s Lang-
muir wave collapse in experiments.

1. Introduction
The existing plasma kinetic theory was developed as a specific branch of nonequi-
librium statistical physics. Following the traditions of the latter, theorists substitute
real plasmas by probabilistic plasma ensembles, either directly or indirectly, and de-
velop evolution laws for the ensemble statistics. The corresponding laws are believed
to approximate the physical evolution of the plasma fairly well.

In this paper we look at two series of experiments that demonstrate the inconsis-
tency of this approach in practice. The first of the series was performed by the group
of Vyacheslavov (BudkerINP) and the second by Wong and his colleagues (Univer-
sity of California, Los Angeles). These widely reported beam–plasma experiments
were believed to confirm the conception of Langmuir wave collapse (Zakharov 1972)
but will be shown to constitute evidence against it. The absence of collapses in the
given experiments suggests the presence of intense collisionless wave dissipation
in the plasmas that precludes the development of the collapse. The intensity of
the corresponding dissipation contradicts the knowledge formulated in published
plasma kinetic studies. The basic reason for the underestimation of wave dissipa-
tion in the traditional theory is the substitution of a single plasma by a plasma
ensemble. With such a substitution, one unintentionally smears out the bulk of
some physical phenomena.
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2 V. I. Erofeev

The main goal of this paper is to show that in a real single plasma the col-
lisionless wave dissipation is always intense enough to prevent Langmuir wave
collapse.

The paper is organized as follows. In Sec. 2 we consider the above-mentioned
series of beam–plasma experiments with strong Langmuir turbulence. In Sec. 3
we present an auxiliary analysis of the problem of nonresonant electron diffusion.
(This phenomenon is the main channel of collisionless wave dissipation.) We show
there that the known results of traditional plasma kinetics comprise at least two
diverse ideas for the intensity of this process. The corresponding ideas result in
notably different pictures for the physical evolution of a plasma. To exemplify this
position, in Sec. 4 we show that the nonresonant electron diffusion is always suf-
ficient to preclude wave collapse in strong Langmuir turbulence. The difference in
conclusions regarding the presence or the absence of collapse in strongly turbulent
plasmas shows that ensemble studies cannot help one form an objective picture of
the physical evolution of a plasma. Correspondingly, a special kinetic consideration
of a ‘single’ plasma is required. The calculation of wave dissipation caused by non-
resonant electron diffusion in a single collisionless plasma is presented in Sec. 5.
In Sec. 6 we concisely list the basic points of this study and formulate our final
conclusions.

2. Experimental observations of strong Langmuir turbulence
In studies of plasma heating by powerful relativistic electron beams, much of the
interesting physics was discovered by the group of Vyacheslavov at BudkerINP
(Vyacheslavov et al. 1995, 1996, 1998a, 1998b; Burmasov et al. 1997). In the ex-
periments of this team, a beam excites Langmuir turbulence with an extremely
high intensity. This turbulence has long been recognized as being rather strong.
For instance, in a review on strong plasma turbulence by Robinson (1997, p. 565)
one finds, ‘. . . There are clearly strong signs of wave collapse and strong turbulence
in these experiments . . . ’. In all of the above-cited papers Vyacheslavov and his col-
leagues discussed various confirmations of the collapse physics. In particular, they
claimed once that in their experiment plenty of cavities collapsed from scales of
30 to 800 plasma Debye lengths, rD (Burmasov et al. 1997). To reinforce their
declarations concerning the strongly turbulent regime, note that Vyacheslavov
explicitly checked that the level of turbulence observed was 30 times larger than the
threshold of plasma instability with respect to long-scale transverse perturbations
(Vyacheslavov et al. 1995). We stress that this figure accounts for the effect of the
magnetic field: Vyacheslavov et al. used results of the study by Pozzoli and Ryutov
who considered long-wavelength modulational instability of a plasma in a magnetic
field (Pozzoli and Ryutov 1979). It can be shown that this 30-fold excess automati-
cally means that Zakharov’s short-length density cavities should constantly develop
and collapse.

Contrary to previous declarations, in the last report by Vyacheslavov et al. a trial
was undertaken to find channels of wave energy dissipation that were alternative to
wave collapse (Vyacheslavov et al. 2000). The reason is that the power of the plasma
electromagnetic emission at double the plasma frequency does not demonstrate any
increase in experiments compared with weakly turbulent estimates. This position
is a crucial one for conclusions regarding the presence or absence of collapse in the
experiments. Let us specify the increase in emission that should have manifested
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Impossibility of Zakharov’s short-wavelength modulational instability 3

itself had wave collapse been the main mechanism of turbulence removal from the
region of wave pumping.

In the case of homogeneous Langmuir turbulence the power of electromagnetic
radiation from a unit plasma volume at frequencies near 2ωpe can be evaluated as

P ∼ k3
(
ne

k3

Wke2

m2ω2
pe

)2 1
c3 ∼ nT
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)2(
ωpe
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)2(
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This estimate can be developed from formulae by Tsytovich (1970); the intermedi-
ate form of the estimate exposes its structure. Namely, a plasma volume falls into
domains with spatial dimensions of the order of the wave correlation length, k−1

(where k is the characteristic wavenumber in the turbulence spectrum). In each of
the domains, the electrons oscillate synchronously; emission from different domains
is uncorrelated. Wke2/(m2ω2

pe) is the typical acceleration of the plasma electron at
frequency 2ωpe (where W is the turbulence energy density).

We now develop the corresponding estimate for the case of Langmuir turbulence
that is composed of collapsing density cavities, using the idea of supersonic collapse.
Then the typical spatial dimension a of the cavity evolves as a ∼ (t0 − t)2/3. For
constant rate cavity generation the current I through scales a from a ∼ k−1 to
shorter scales is constant, therefore we have

I ≡ N (a)
da

dt
∼ N (a)/

√
a = constant,

where N (a) da gives the number of cavities with dimensions from a to a+ da in the
unit plasma volume. Therefore,

N (a) =
N (k−1)/k−1/2

a−1/2
∼ k4

√
ka.

(The natural assumption involved here was that on scales of k−1 the turbulence is a
compactly packed set of cavities with a ∼ k−1. Therefore one has N (k−1)k−1 ∼ k3.)
Correspondingly, the estimate for power emission at ω ≈ 2ωpe is
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∫
N (a) da

[
na3e

(Wk−3/a3)a−1e2

m2ω2
pe

]2
1
c3

∼ nT
(
W

nT

)2(
ωpe
kc

)2(
vTe
c

)2

kc

∫
k da

(ka)3/2
. (2)

In this estimate, emissions from independent cavities are not correlated, Wk−3/a3

denotes a typical value of the square of the electric field in the cavity and na3

denotes the number of electrons in the cavity. Electrons in the cavity oscillate syn-
chronously. It can clearly be seen that the power (2) is large compared with the
estimate (1). The final stages of collapse are stressed and provide a multiple increase
in the radiation intensity. It is worth noting that Vyacheslavov et al. developed a
more accurate calculation for the weakly turbulent estimate of a given intensity
(using kinetic formulae from Tsytovich (1970) and the measured turbulence spec-
trum), and still had not recognized any increase in the registered intensity as
compared with the estimate. Moreover, in the case of collapse the radiation at 2ωpe
should have contained spiky flashes, but no spikes were registered (Vyacheslavov
et al. 1998a).

Contrary to the suspicion of Vyacheslavov, in his experiments hot plasma elec-
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trons cannot arrest the collapse, neither at its initial stage nor at intermediate
stages of cavity compression. The reader can check this using data reported in
Vyacheslavov et al. (1995, 2000). (We remind the reader that arrest of the collapse
takes place at a scale a if the Landau damping on hot plasma electrons with velo-
cities v ∼ aωpe is comparable with the calculated rate of increase in electric field in
the cavity at the corresponding stage of the collapse. The former can be evaluated
as ωpenhot(aωpe)/n0, where nhot(aωpe) is the full density of hot plasma electrons with
v > aωpe. The rate of increase in the electric field can be evaluated as γmod(ka)−3/2,
where γmod is the growth rate of the modulational instability. The growth rate γmod

can be fairly well evaluated as γmod ∼ k(Te/M )1/2
[
(Teff/Te)1/2 − 1

]
, see Pozzoli

and Ryutov (1979).) Besides, it is not correct to speak about an ancillary role for
the collapses within a basically hydrodynamic plasma description: once Zakharov’s
theory is accepted and predicts intense collapse, the collapse should develop. It is
also not correct to speak about wave scattering on density inhomogeneities gen-
erated by the collapse within Zakharov’s paradigm: these density inhomogeneities
are the ready seeds for developing wave modulational instability that efficiently
transfers energy from waves to cavities. In short, a significant number of collapses
should have occurred in the experiments by Vyacheslavov et al., but they were not
observed.

Now consider other experimental results that are currently admitted as convinc-
ing evidence for Langmuir wave collapse, i.e. the experiments by Wong and his col-
leagues (Wong and Cheung 1984; McFarland and Wong 2000). In the experiments of
this team a fast electron beam is injected into a large, unmagnetized argon plasma,
and Langmuir plasma oscillations are excited. Over the course of time, a localized
field structure develops at a distance of 23 cm away from the point of beam injection.
The evolution of this structure resembles the collapse of Zakharov’s density cavity
with trapped Langmuir waves. From the very beginning Wong and his colleagues
assumed that they had observed nothing other than a true collapse of a single cav-
ity with a trapped Langmuir wave field (see Wong and Cheung 1984). Meanwhile, in
some aspects their experimental data contradicts the picture of Zakharov’s Lang-
muir wave collapse. First, it is not typical for Zakharov’s plasma hydrodynamics
that in a regime with a ‘sequential series of collapses’ they occurred at the same
point with an extremely accurate periodicity (McFarland and Wong 2000). It is
known rather well that Zakharov equations are capable of exhibiting stochasti-
cally unstable behaviour (see, e.g., Wong et al. 1995). That is, both the location
of the second collapse and its time delay from the first one should vary strongly
because of inevitable and unpredictable small variations in the plasma dynamics.
Secondly, the Langmuir waves that are released from the ‘collapsing cavity’ after
its ‘burning out’ do not have short wavelengths. Thus, McFarland and Wong re-
ported observations of corresponding Langmuir waves that they called freely propa-
gating electrostatic waves produced by intense, localized field structures (McFarland
and Wong 2000). The authors have measured the group velocity of these waves and
found it to be of the order vg ' 3v2

Te/vbeam. But this order of magnitude corre-
sponds to waves nearly resonant with the beam, whereas with shortening of the
wavelength (due to the wave collapse) the wave group velocity should have been
increased substantially. Therefore, the observed freely propagating electrostatic waves
are evidence against the collapse. Thirdly, reports by Wong and colleagues con-
tain yet more convincing evidence of the nonoccurrence of Zakharov’s Langmuir
wave collapse in their experiments. In Wong and Cheung (1984) it was deduced
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Impossibility of Zakharov’s short-wavelength modulational instability 5

that the saturated intensity of Langmuir waves in their experiment was of the
order of 0.3nTe� (me/mi)nTe, and therefore the wave packet was expected to col-
lapse supersonically. Note that the characteristic time of the collapse t0 should
be less than the inverse growth rate of the plasma short-scale modulational in-
stability. Using Zakharov’s original formula for the corresponding growth rate
γmax = 1/

√
3ωpe

√
me/miW/nTe ' 1/

√
3ωpi

√
W/nTe, with this, the time of col-

lapse development t0 should be less than 1/ωpi
√

3(W/nTe)−1 ≈ 3/ωpi. The actually
observed value of t0 is 20 times greater.

Finally, recall that the picture of the processes was quite reproducible from shot
to shot (the ‘collapses’ occurred at the same point of the installation and after the
same period since turning on the beam, see Wong and Cheung (1984)). In view of
this it is most natural to assume the following idea. The observed data represents
the complicated physics of the beam–plasma interaction, currently insufficiently
well explored, rather than the physics of Langmuir wave collapse. Basically, this
beam–plasma interaction has a hydrodynamic character: the beam can be consid-
ered as a jet with spatially and temporally varying longitudinal velocity of elec-
trons. (The hydrodynamic character of beam–plasma interaction is the true reason
that leads to the reproducibility of the experimental data.) This jet travels in a cold
plasma; the observed beam-excited Langmuir waves move along the beam with a
negligibly small group velocity (i.e. form a standing pattern). At the same time, the
phase velocities of excited Langmuir harmonics are only a little less than the beam
velocity.

In the one-dimensional approximation, the corresponding hydrodynamic beam–
plasma interaction is governed by the following simultaneous equations:(

∂2

∂t2
+ ω2

pe

)
∆ϕ = 4πe

∂2nb
∂t2

, (3)

∂vb
∂t

+ vb
∂vb
∂x

=
e

me
∇ϕ, (4)

∂nb
∂t

+ div(nbvb) = 0. (5)

Here ϕ is the electrostatic potential of the Langmuir waves, nb is the beam electron
density and e is an absolute value of electron charge. The first of these equations
describes wave excitation, the second is the beam electron motion equation and the
third is the beam electron continuity equation.

Note that on the boundary x = 0, i.e. at the place of beam injection, we have
nb = constant over the entire period when the beam is turned on, i.e. here any
excitation of Langmuir oscillations takes place only at the moment of beam turning
on and off (see (3)). Therefore, in the hydrodynamic beam–plasma interaction the
most interesting processes takes place at some distance from the beam entry. At the
location of the corresponding field structure, a constant energy exchange between
transiting beam electrons and plasma waves takes place, with periodic changes in
the direction of energy transfer. The corresponding changes in the field structure
resemble wave collapse.

It is noteworthy that the distance of 23 cm correlates well with the half-length of
the beam longitudinal flight for a period of electron bounce oscillation within the
potential trough of the accompanying wave. The corresponding evaluation of the
electron flight length can be performed in the following way. Looking at Fig. 3 of
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Wong and Cheung (1984), one finds that the typical amplitude of electron bounce
velocity oscillations around a mean value of 1.55× 109 cm s−1 is 108 cm s−1. (Note
that this value corresponds well to ideas of linear two-stream instability where the
phase velocity of a beam-excited Langmuir wave vph is less than the beam velocity
by a value of the order of vb(nb/n0)1/3.) The amplitude 108 cm s−1 of electron bounce
velocity oscillations defines the energy of these oscillations and hence the corre-
sponding amplitude of the electric field in mode Ẽ, namely Ẽ ∼√8πnbme(∆vb)2/2.
The longitudinal wavelength in this mode is the resonant one 2πvb/ωpe. In view of
this, the upper bound for the bounce frequency of the beam electron in this wave

in a frame that moves with the wave is
√
e/meẼωpe/(2πvb). Dividing the beam

velocity by this frequency and multiplying by 2π, we get 51 cm, and half of this
length is 25.5 cm, i.e. only 10% larger than 23 cm.

The above ideas agree with many of results by Wong and colleagues. They ex-
plain the good periodicity of the ‘collapses’, the absence of short free Langmuir
waves after the ‘collapse’ and the periodicity of the changes in the distribution of
beam electrons. They also explain the reason for the good reproducibility of the
experiments. In such a way, we advanced an idea of physics that corresponds to
the data observed in the given experiments to a greater degree than the collapse
physics.

An extended study of beam–plasma interaction within the suggested physical
picture is a problem worthy of an independent paper. For our purposes it is sufficient
to understand that the very first and the most commonly recognized reports on
observations of ‘true Zakharov Langmuir wave collapse’ are no more than a simple
misinterpretations of the experiments.

In such a way, two important series of ‘strong plasma turbulence’ experiments
do not exhibit Langmuir wave collapses. It is worth noting that these laboratory
experiments were well equipped with various plasma diagnostics, thus the reported
data, and hence our conclusions too, are extremely reliable. Later on we will show
that the nonoccurrence of Langmuir wave collapse in the given experiments ex-
emplifies in a most instructive way the impossibility of the corresponding physical
phenomenon in real turbulent plasmas.

As a matter of fact, the collapse of Langmuir waves is a mere theoretical
abstraction that cannot take place in nature. The idea of this phenomenon was
advanced within plasma hydrodynamics that oversimplifies plasma processes and
gives an inadequate picture of plasma physics. Zakharov assumed the model of
Langmuir turbulence with electrons oscillating synchronously at each point of the
plasma volume; that is, he disengaged himself from a picture of interpenetrating
electron jets in the plasma. With this, no place was left for electron diffusion
in momentum. This kinetic effect leads to rather quick dissipation of Langmuir
waves: they spend their energy on heating of plasma thermal electrons. Note that
prior to our study the given phenomenon has not received fair consideration.
After Tsytovich, the plasma community assumed that nonresonant electron dif-
fusion in the plasma conserved the total number of ‘Langmuir quanta’ and could
not lead to noticeable wave decay (see Tsytovich 1972, 1977). In particular, this
idea was a cornerstone that Zakharov had laid into the basement of his hydrody-
namics. In reality, Tsytovich substantially underestimated the intensity of non-
resonant electron diffusion. Let us thoroughly consider the problem of this
diffusion.
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3. Nonresonant electron diffusion in traditional plasma kinetics
Genetically, Tsytovich’s conclusions regarding the physics of nonresonant electron
diffusion were based on a rigorous perturbation expansion, and his approaches cor-
responded to the commonly accepted paradigm of plasma kinetics. The absence
of collapses in the above analysed experiments indicates problems with the base
of this paradigm. The main false cornerstone in traditional plasma kinetics is the
method of the plasma probabilistic ensemble. The reader is reminded that orig-
inally the method of the probabilistic ensemble was introduced into equilibrium
thermodynamics by Gibbs merely to simplify analytic studies (see Gibbs 1902).
In corresponding considerations the content of the ensemble is dictated by the
problem that the researcher considers, and ideas underlying one or other choice of
the ensemble (either the microcanonical or the big canonical ensemble) are rather
meaningful. In contrast, in studies of evolving nonequilibrium systems one cannot
advance reasons for the preference of one or other system ensemble. Varying the
content of the ensemble, one develops diverse pictures for the macroscopic evolution
of the ensemble statistics and therefore arrives at plenty of laws for the system evo-
lution. Generally, they contradict each other. In particular, some recognized results
of weak plasma turbulence theory comprise a consideration that gives a substantial
increase in the intensity of nonresonant electron diffusion in momentum compared
with Tsytovich’s rigorous calculations. Let us visualize the corresponding consid-
eration.

Nonresonant electron diffusion was discussed for the first time by Bass et al.
(1965). In particular, Bass et al. considered the case of a Langmuir wave with time
decay of the correlation function Φ(t) = 〈E(t+T )E∗(T )〉 following exp(−iωkt−|t|/τ ).
The frequency spectrum of this correlation function contains a Lorentzian structure
with frequency width 1/τ ,

Φω =
1
π

τ

1 + (ω − ωk)2τ 2 ∼
1/τ

(ω − ωk)2 + (1/τ )2 . (6)

The corresponding rate of the collisionless wave decay is ν = ω2
peτ/(1 + ω2

kτ
2) (see

the last but one formula in Bass et al. (1965)), which in the typical case of τ � ω−1
k ≈

ω−1
pe becomes ν = 1/τ . Note that Bass et al. have not advanced any arguments in

favour of the Lorentzian profile of a wave line. (Tsytovich’s related calculations
indicated a deformation of this profile, with the effect of substantially suppressing
the diffusion (Tsytovich 1972, 1977).)

A conclusion concerning the correspondence of the genuine wave line shape to
the Lorentzian profile and relevant estimates for the time τ can be inferred from
papers by Malkin (1982a, 1982b, 1982c, 1984). He adopted the Wyld diagram tech-
nique (Wyld 1961; Zakharov and L’vov 1975) to study Langmuir turbulence. As
a starting point for his considerations he used Zakharov’s plasma hydrodynamics
(Zakharov 1972). The main distinctive feature of Malkin’s calculations is that he
uses predominantly a two-time representation for the wave correlation function
Φk(t, t′). This function obeys an evolution equation. In the case of weak turbulence
the corresponding equation can be solved by iteration with successive direct integ-
ration over time t of the equation to obtain sequential approximations of Φk(t, t′).
It is noteworthy that the leading order of the two-time correlation function Φk(t, t′)
just corresponds to the assumption Φk(t, t′) ∼ exp(−iωkt− |t|/τ ), and hence really
possesses a true Lorentzian frequency profile. This can easily be checked for the
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case of stationary weak Langmuir turbulence. For evolving Langmuir turbulence,
the structure of the two-time correlation function is explicitly described in Malkin
(1982b) by equations (7) and (10), and it is the following:

Φk(t, t′) =


nk(t′) exp

[
−i
∫ t

t′
ωk(t1) dt1

]
, t > t′,

nk(t) exp

[
i

∫ t′

t

ω∗k (t1) dt1

]
, t < t′.

(7)

Here ωk(t) ≡ Re ωk(t)−iγnl
k (t) is the complex renormalized natural wave frequency.

γnl
k is the sign-inverted imaginary part of the renormalized wave natural frequency.

It measures the intensity of nonlinear interactions in the plasma. Following the
term advanced in Wyld’s diagram technique (Wyld 1961; Zakharov and L’vov 1975)
we call this feature the nonlinear wave damping rate.

In the case of stationary turbulence neither the wave spectral density nk nor the
wave natural frequency ωk depend on time, and expression (7) becomes

Φk(t, t′) = nk exp(−iRe ωk(t− t′)− γnl
k |t− t′|). (8)

This form coincides with one that was considered by Bass et al. Correspondingly, γnl
k

denotes the inverse correlation time τ−1. To put it another way, the rate of collision-
less wave dissipation due to nonresonant electron diffusion ν is equal quantitatively
to γnl

k . Depending on the turbulence energy density, it may be rather high.
In such a way, the modern theory of weak Langmuir turbulence comprises at least

two different opinions regarding the intensity of nonresonant electron diffusion.
It is noteworthy that both lines of the process study (following Tsytovich and
following Malkin’s ideas) were based on the ensemble method. Tsytovich developed
some relations on frequency harmonics of the wave field and then averaged them
over the plasma ensemble. In Malkin’s considerations the plasma ensemble entered
once through Zakharov’s hydrodynamic approximation to the plasma description†
and a second time through averaging over an infinitesimal external random force
that he used for developing the diagrammatic technique.

The difference in the two shapes for the wave frequency spectrum means that
corresponding calculations implied essentially different properties for the plasma
ensemble. This confirms our thesis that by varying the content of the plasma prob-
abilistic ensemble one may advance diverse opinions regarding some physical phe-
nomena. In the next section we reinforce this statement by the demonstration of
the suppression of short-scale plasma modulational instability by collisionless wave
dissipation following Malkin’s idea of wave line shape. (In the tradition of plasma
turbulence theory this instability takes place in a strongly turbulent plasma just
due to the inefficiency of Tsytovich’s nonresonant electron diffusion.)

The controversy between the two opinions regarding the physics of nonresonant
electron diffusion illustrates rather well the uselessness of the ensemble method for
plasma kinetic studies. Let us expand this statement to some extent.

Studying the evolution of some plasma ensemble, one can never be sure that

† In the hydrodynamic plasma description, the plasma ensemble is usually not directly
referred to but just implied, since here any real plasma cannot be distinguished from many
others with slightly different positions and momenta of individual plasma particles and
hence from many plasma ensembles.
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Impossibility of Zakharov’s short-wavelength modulational instability 9

the evolution of this ensemble repeats the macroscopic evolution of a given single
plasma. Naturally, for each single plasma one can compose plenty of ensembles
that follow the macroscopic behaviour of a given plasma in terms of the dynamics
of their statistics, but many others demonstrate quite different evolution of their
statistics. To have the possibility of selecting a ‘proper’ ensemble, one should per-
form a preliminary study of the macroscopic evolution of the single plasma itself,
because otherwise one cannot judge whether or not a certain ensemble adequately
models the behaviour of the plasma. From the viewpoint of common sense, after
learning the physics of a single plasma the search for the ‘proper ensemble’ becomes
a senseless enterprise. (The reader is reminded again that substitution of a physical
system by a system ensemble was proposed by Gibbs exclusively for the technical
simplification of the physical system study.)

In view of the last idea, the true physics of plasma evolution cannot be learned
without a direct study of a single evolving plasma. A kinetic approach fit for such
a study was created by the author and thoroughly reported in Erofeev (1997,
1998).† Using it, we consider in Sec. 5 the real physics of nonresonant electron
diffusion.

4. Suppression of Zakharov’s short-scale plasma modulational
instability
One of the most challenging problems of weak plasma turbulence theory was the
problem of the Langmuir condensate. This structure was believed to form in the
long-wavelength part of the turbulence spectrum as a result of wave scattering on
plasma particles and the inefficiency of the energy dissipation. There was a ques-
tion of finding a mechanism for the dissipation of its energy within the theory. The
currently recognized solution to this question was proposed in Zakharov (1972).
In the corresponding hydrodynamic plasma description, the Langmuir condensate
is unstable with respect to excitation of low-frequency short-wavelength perturba-
tions in plasma density. In view of this, Zakharov assumed that regions of high field
intensity and low ion density form constantly in the plasma with intense Langmuir
turbulence, and that they have a tendency to collapse. These regions were called
‘cavitons’, and they were assumed to collapse down to sizes of a few Debye lengths
where Landau damping becomes effective in transferring the energy of Langmuir
oscillations to epithermal plasma electrons.

In this section we intend to show that collisionless wave dissipation suppresses
Zakharov’s short-wavelength plasma modulational instability and hence precludes
Langmuir wave collapse. This will be organized as follows. In Sec. 4.1 we estimate
the rate of wave collisionless decay due to nonresonant electron diffusion. In Sec. 4.2
we present Zakharov’s data for the short-scale instability growth rate. In Sec. 4.3
we show that the corresponding growth rates are always small compared with the
collisionless wave damping rate.

† The reader should not be confused by the conclusions advanced in Erofeev (1997). At the
last stage of the reported analytical calculations the author missed a mistake. As a result, he
deduced a substantial increase in intensity of the three-wave process in a plasma. The given
mistake was corrected in Erofeev (1998): the corrected data for the process intensity coincides
basically with those of traditional calculations given in Kadomtsev (1965), Davidson (1972)
and Rogister and Oberman (1969).
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4.1. Estimates of wave dissipation due to nonresonant electron diffusion

Following Malkin’s idea of wave line shape, the rate of turbulence dissipation due
to nonresonant electron diffusion ν is equal quantitatively to some mean γnl of
the nonlinear wave damping rate γnl

k . Papers by Malkin contain all the necessary
estimates for γnl. In Malkin (1982a), a kinetic equation is derived that governs
weak Langmuir turbulence, taking account for nonlinear phenomena up to four-
wave interactions. Here the author has shown that the structure of the four-wave
collision integral differs substantially from that usually assumed on the basis of
a quantum-mechanical analogy (see, e.g., Kovrizhnykh 1965a, 1965b). Namely, he
has shown that part of the four-wave interaction (wave scattering by forced density
inhomogeneities) may be far more intense than wave scattering induced by plasma
ions. (Note that prior to Malkin’s work the common belief was the opposite.) Recall
Malkin’s estimates for characteristic inverse times of the corresponding nonlinear
processes.

First, one should distinguish cases with ∆k� k∗ = 1/3
√
m/Mr−1

D , where ∆k is
the typical width of the turbulence spectrum in wavevectors and with ∆k <∼ k∗.
In the former Langmuir waves can irradiate ion sound, whereas in the latter they
cannot. The estimate developed in Malkin (1982a) corresponds to the former case.
The inverse time of wave scattering induced by forced density inhomogeneities is

γfour ∼ ωpe
(
W

nT

)2
ωpe(∆kcs)

(∆ω)2

∆kcs
γs

. (9)

In this estimate, (∆kcs) represents the characteristic natural frequency of the ion
sound, with γs being the corresponding damping rate of the ion sound and ∆ω is
the width of Langmuir turbulence in natural frequencies.

The inverse time of wave scattering induced by the plasma ions is

γion ∼ ωpe W
nT

(
∆kcs
∆ω

)2

. (10)

In the case where ∆k <∼ k∗ the corresponding inverse times become

γfour ∼ ωpe
(
W

nT

)2 1
(∆krD)2 , (11)

(in a written form the reader may find this estimate in Malkin (1984), formula (9))
and

γion ∼ ωpe W
nT

, (12)

(this estimate can also be found in Tsytovich’s papers; for instance, in Tsytovich
(1970), formula (8.27)).

The given inverse times can be accepted as ready estimates of contributions to the
nonlinear wave damping rate that are due to corresponding nonlinear phenomena.
Note that it was just a time decay of the two-time correlation function Φk(t, t′)
with an increase of |t− t′| that Malkin used to obtain the corresponding estimates
(a track along this line can be recognized in above formulae (7) and (10) of Malkin
(1982b)).

4.2. Dispersion equation for Zakharov’s modulational instability

Bearing in mind the problem of the Langmuir condensate (a long-wavelength part of
the Langmuir wave spectrum), Zakharov approximated the condensate by a single
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Impossibility of Zakharov’s short-wavelength modulational instability 11

monochromatic Langmuir wave with k = 0. Therefore he considered the hydrody-
namic stability of a plasma with an intense plane monochromatic wave, generally
having k� 0. Recall his calculations. The complex amplitude ψ of the electrostatic
potential φ = 1

2 [ψ exp(−iωpet) + ψ∗ exp(iωpet)] satisfies the following equation in
Zakharov’s plasma hydrodynamics:

∆
(
i
∂ψ

∂t
+ 3

2ωper
2
D∆ψ

)
=
ωpe
2n0

[∇ · (δn∇ψ)] . (13)

This equation was complemented by the relation between the low-frequency pertur-
bations in plasma density δn and in the turbulence parameters. The motive force
for low-frequency perturbations is the ponderomotive force that acts on plasma
electrons (Miller force): the electrons are pushed out of regions with intense Lang-
muir oscillations. The electrons drag ions, and a density perturbation arises. This
effect can be described in terms of a high-frequency potential U = e2|ψ|2/(4mω2

pe)
and the Green function for density perturbations Ĝ. In a k–ω representation

δnkω = GkωUkω. (14)

The Green function Gkω is a functional of the electron distribution in momentum:

Gkω =
Lkω

M − 4πe2r2
DLkω

,

Lkω =
∫

[k · (∂f/∂v)]
kv− ω d3v.

(Here M is the ion mass.)
It is accepted practice to distinguish two different cases: that of a static approx-

imation to describe ion motions (τ−1� kvTi, where vTi is the ion thermal velocity
and τ is the characteristic time of a nonlinear process) and that of a hydrodynamic
approximation (τ−1� kvTi). In the static case

Gkω = −n0/(Ti + Te), (15)

and in the hydrodynamic case

Gkω =
n0

M

k2

ω2 + 2iγs(k)ω − c2
sk

2 . (16)

In the latter formula γs(k) is the damping rate of the ion sound.
For the monochromatic wave with given k, the unperturbed potential ψ is

ψ =
E

k
exp[−iωkt + i(k · r)], (17)

where
ωk = 3

2ωpek
2r2

D.

The potential (17) is a solution to (13) for δn = 0.
Linearizing equations (13) and (14) with the background of the above solution,

Zakharov took perturbations of δn and ψ in the form

δn ∼ exp[−iΩt + i(κ · r)],
δψ ∼ exp{−iΩt− iωkt + i[(k + κ) · r]},
δψ∗ ∼ exp{−iΩt + iωkt + i[(κ− k) · r]}.
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Conceptually, this means that he considered a coordinated evolution of the plasma
density perturbation and two side bands of the original wave.

The easy algebra that Zakharov omitted yields for Ω the following dispersion
equation:

1 +
ωpe
16

W

n2
0
GκΩ

{
[k · (k + κ)]2

k2(k + κ)2

1
−Ω + ω|k+κ| − ωk
+

[k · (k− κ)]2

k2(k− κ)2

1
Ω + ω|k−κ| − ωk

}
= 0. (18)

Here W = |E|2/(2π) is the wave (condensate) energy density.
Setting k = 0, one returns to the study of ‘condensate’ stability. Then the dis-

persion equation (18) becomes

Ω2 − ω2
κ = 1

8ωpeWn−2
0 ωκGκΩ cos2(α). (19)

In this equation α is an angle between the direction of E in the original oscillation
and κ.

The dispersion equations (18) and (19) were developed with the Langmuir con-
densate approximated by a plane wave. In reality, the Langmuir condensate is not
a plane wave, and only on spatial dimensions that are small compared with the
inverse width of the condensate in wavenumbers (∆k)−1, can it be approximated
by a plane wave. It should be stressed that at intermediate stages of the derivation
of (18), the coherence of the background Langmuir wave was essentially used, al-
though the final equations do not contain any hint as to this coherence. Therefore,
dispersion equations (18) and (19) are only valid for wavevectors κ with absolute
values that are large compared with ∆k: perturbations of this type only ‘feel’ the
Langmuir condensate as a plane wave. Had one tried to extend the above consid-
erations to smaller values of κ, one would have to take into account that a large
number of plane waves contribute to the wave field at typical perturbation lengths,
and interference from perturbations in δψ and δψ∗ owing to different waves would
have smoothed out the picture of the instability.

Thus, it is stated that the dispersion equations (18) and (19) are only applicable
for perturbations with κ� ∆k. Note that the opposite case of perturbations with
κ�∆k corresponds conceptually to the area of Vedenov–Rudakov analysis (Vede-
nov and Rudakov 1964). Note that our collisionless wave dissipation is sufficient
for suppression of the Vedenov–Rudakov modulational instability in all area where
κ�∆k (given without proof in this paper). Below we show the same for Zakharov’s
short-wavelength modulational instability, in all domain κ� ∆k. For brevity, we
call the corresponding instability a condensate instability.

We present formulae for the growth rates of the condensate instability Γ. In the
static case

Γ =

√
1
8ωκωpecos2(α)

W

n0(Te + Ti)
− ω2

κ, (20)

and in the hydrodynamic case

Γ =

√√√√√(ω2
κ + c2

sκ
2

2

)2

+ 1
8ωκωpecos2(α)c2

sκ
2 W

nTe
− ω2

κc
2
sκ

2 − ω2
κ + c2

sκ
2

2
. (21)

https://doi.org/10.1017/S002237780200185X Published online by Cambridge University Press

https://doi.org/10.1017/S002237780200185X


Impossibility of Zakharov’s short-wavelength modulational instability 13

4.3. Plasma stability

In this subsection we compare growth rates (20) and (21) with real collisionless
wave dissipation, to check the plasma stability. The case of the hydrodynamic
approximation to the description of ion motions is considered in Sec. 4.3.1, and the
case of the static approximation in Sec. 4.3.2.

4.3.1. Plasma stability in a hydrodynamic approximation. For the condensate insta-
bility to be possible, the growth rate Γ following (21) should exceed the character-
istic rate of wave energetic decay ν (a mean of the nonlinear wave damping rate).
Therefore we can write Γ2 > ν2, i.e.√(

ω2
κ + c2

sκ
2

2

)2

+ 1
8ωκωpe cos2(α)c2

sκ
2 W

nTe
− ω2

κc
2
sκ

2 − ω2
κ + c2

sκ
2

2
> ν2. (22)

Transfer (ω2
κ + c2

sκ
2)/2 to the right and then square; omitting equal terms on both

sides, we obtain

1
8ωκωpe cos2(α)c2

sκ
2 W

nTe
− ω2

κc
2
sκ

2 > ν2(ω2
κ + c2

sκ
2) + ν4. (23)

Let us soften the given requirement: skip the ν4 term on the right-hand side, and
also the ν2ω2

κ term. Then, after simple manipulations, the necessary condition for
instability takes the form

W

nT
> 12(κrD)2 +

16
3
ν2

ω2
pe

1
(κrD)2 . (24)

In this inequality, the right-hand side as a function of (κrD)2 takes its minimum
value at (κrD)2 = 2

3 (ν/ωpe), and the corresponding minimum value is 16ν/ωpe. Let
us check whether W/nT can exceed this minimum or not. Take ν >∼ γfour. Then in
the case, ∆k� k∗, the requirement W/nT > 16ν/ωpe reduces to

W

nT
<

9

64
√

3
(∆krD)3,

(see estimate (9)). But this condition contradicts the requirement that W should be
large compared with 12nT (∆krD)2 (see once again condition (24) where the lower
bound ∆k was set for wavenumber κ).

In the case ∆k <∼ k∗ the requirement W > 16nTν/ωpe becomes

W

nT
<

(∆krD)2

16
,

(see estimate (11)), which again contradicts the requirement W > 12nT (∆krD)2.

4.3.2. Plasma stability in a static approximation. According to (20), with respect to
excitation of perturbations with wavevector κ the plasma is unstable at W/nT >
12(κrD)2. Recall that our analysis is valid for κ � ∆k only. Taking κ ' ∆k, one
obtains a necessary condition for the condensate instability

W > 12nT (∆krD)2/q. (25)

Here q = Te/(Te + Ti), T ≡ Te.
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14 V. I. Erofeev

As a function of (κrD)2, the ‘instability growth rate’ (20) takes a maximum value
at cos2(α) = 1, (κrD)2 = 1

24W/nT . It is

Γmax = ωpe
q

16
W

nT
. (26)

Let us check whether it can exceed the wave damping rate ν or not. The easiest
consideration is in the case of the ‘condensate’ with ∆k <∼ k∗. For this case the lower
bound for dissipation ν is given by the estimate (11). Correspondingly, the growth
rate (26) is greater than ν only when the wave energy density does not exceed the
top bound nT (∆krD)2q/16. But this requirement contradicts condition (25).

In the case ∆k >∼ k∗, the value ν corresponds to estimate (9), with γs ' ∆kcs.
(The static approximation to the description of ion motion makes sense mainly in
isothermal plasmas, and there the ‘damping rate of ion sound’ is of the order of
its ‘natural frequency’. This gives a lower bound for the rate of wave scattering
on forced density inhomogeneities that equally well could be applied in the case
of ‘supersonic’ ion motions with ∂/∂t� (∆k)cs.) Correspondingly, the growth rate
(26) is greater than ν when

W

nT
<

3q
64

∆k
k∗

(∆krD)2,

where q is of the order of 1
2 . This condition is compatible with condition (25) only

when ∆k� 256k∗, which is unrealistic. For example, for a fully ionized plasma of
He4 the requirement ∆k � 256k∗ means ∆k � 1/2r−1

D , therefore even the linear
Landau damping of the corresponding spectrum is intense enough to suppress the
instability. For a hydrogen plasma the situation is even more dramatic.

The controversy between Tsytovich’s and Malkin’s ideas of wave line shapes
and the corresponding conclusions concerning the possibility/impossibility of short-
length plasma modulational instability substantiates the basic idea postulated in
the introduction: with substitution of a real plasma by a plasma ensemble one may
unintentionally smear out the bulk of some physical phenomenon under considera-
tion. Since the ensemble implied in Malkin’s theory leads to a lighter suppression of
the process intensity than Tsytovich’s ensemble, new estimates of the collisionless
wave dissipation provide us with a better picture of the wave energy dissipation. For
this reason, the conclusion of the impossibility of short-wavelength plasma modu-
lational instability is more reliable than the traditional deduction of its occurrence
in strongly turbulent plasmas.

At the same time, note that Malkin’s perturbations were based on a hydrody-
namic description of electron motion that assumed the absence of collisionless wave
dissipation; i.e. the corresponding theory of Langmuir turbulence is controversial.
Assuming, following Malkin and Zakharov after Tsytovich’s conclusions, that non-
resonant electron diffusion is not essential and therefore the hydrodynamic plasma
description is applicable, we arrived at rather large losses for the wave energy
just on heating of plasma electrons, because of their nonresonant diffusion. This
means that the idea of using electron hydrodynamics for a description of turbu-
lence kinetics is erroneous. Correspondingly, the conclusions developed on the basis
of Malkin’s estimates should be substantiated independently using a kinetic elec-
tron description. This emphasizes once again the importance of the forthcoming
section.
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5. Nonresonant electron diffusion in a single collisionless plasma
Physically, the classical ionized plasma is a mixture of individual charged parti-
cles. The full study of its evolution implies the simultaneous integration of motion
equations for all individual plasma particles. On a kinetic level of description this
corresponds to considering Klimontovich–Duprees distributions of particles in six-
dimensional phase space of spatial positions–momenta Ne,i(r, p, t) (Dupree 1963;
Klimontovich 1967),

Ne,i(r, p, t) =
∑
n

δ3(r− rn(t))δ3(p− pn(t)). (27)

Here the subscript ‘n’ signifies particles of the given species, functions rn(t) and
pn(t) describe trajectories of individual plasma particles. We call this distribution
function a microdistribution.

The microdistribution Nα(r, p, t) evolves according to the following partial dif-
ferential equation:

∂Nα
∂t

+ (v · ∇)Nα + eα

[(
E′ +

1
c

[v×B′]
)
· ∂Nα
∂p

]
= 0. (28)

The trajectories of the plasma particles are characteristics of this partial differential
equation; E′ and B′ are the electric and magnetic fields acting on a particle. One
can substitute the total electric and magnetic fields for these fields, since under any
consistent assumptions of particle structure the contribution of a particle to the
total field cannot influence the particle motion (except for the effect of the radiation
reaction).

Note that conceptually (28) is a continuity equation for particles of the given
species.

The total electric E and magnetic B fields are advanced in time by microdistribu-
tions Nα(r, p, t). Evolution equations of these fields are two of Maxwell’s equations
where the current and charge densities are associated with corresponding inte-
grals of the microdistributions. In a tensor description of the electromagnetic field,
Fij = ∂Ai(r, t)/∂rj−∂Aj(r, t)/∂ri (hereAj = (−ϕ(r, t),A(r, t)) are the contravariant
components of the four-dimensional vector potential), these Maxwell equations are

1
c

∂

∂t
Fβγ = −∂Fγ0

∂rβ
+
∂Fβ0

∂rγ
, (29)

1
c

∂

∂t
F β0 = −4π

c
jβ − ∂

∂rγ
F βγ . (30)

The first of these equations governs the evolution of the magnetic field and the
second governs the electric field.

Because of the large number of individual particles, full integration of the Klimon-
tovich–Dupree–Maxwell equations is technically infeasible. That is, the constructive
description of plasma macroscopic evolution cannot be based on the microdistribu-
tion. Some other function should be invented for objective characterization of the
plasma macroscopic state and its evolution. We suggest taking a mean density of
plasma particles within large volumes of phase space (r, p) for such a function. To
put it in another way, we average the microdistribution in phase space. The mode
of averaging should depend on the problem under study. For instance, Erofeev
(1997, 1998) were motivated by a desire to describe the effect of drift turbulence on
plasma diffusion across a leading magnetic field in a slab plasma geometry. Within
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this problem it is most natural to average along level surfaces of the plasma den-
sity, i.e. along planes normal to the density gradient. In a study of nonresonant
electron diffusion we are interested in the mean rate of electron heating in a unit
plasma volume. In view of this, it is convenient to average the microdistribution
over the plasma volume. Other problems may dictate another mode of phase space
averaging. Only one position is important here: to obtain a consistent statistic via
the averaging, a statistic that objectively describes the distribution of plasma par-
ticles in phase space while accounting for important physical details of the problem
under study. Below we disengage ourselves temporarily from the particular prob-
lem at hand and discuss some general principles of the corresponding phase space
averaging and the subsequent construction of a plasma kinetic description. In this
consideration we assume that the problem is homogeneous along at least one spatial
axis.

Take any point (r, p) of phase space and surround it by a six-dimensional par-
allelepiped, with centre at (r, p). Having averaged the microdistribution Nα over
the parallelepiped, we choose the average as the current value of the distribution
function at a given point fα(r, p, t).

For the most important part of the phase space, where the bulk of plasma par-
ticles are located (outside the high energetic tail of the distribution), the corre-
sponding parallelepipeds contain very large numbers of particles provided that
the volume of the parallelepipeds is sufficiently large (V � (mαvTα)3/n; the par-
allelepipeds are taken to be uniform). Therefore, if we wander in space from point
to point, the variation of N , the total number of particles in parallelepipeds cor-
responding to different points of the plasma volume, is negligibly small compared
with N . This variation can be neglected, and therefore the function fα provides a
statistically reliable description of the plasma particle distributions in phase space.
The evolution of this statistic is strictly specified for each single plasma. With this,
the plasma study reduces to developing a good approximation for the corresponding
evolution law.

In a homogeneous plasma, we do not need small gradations of the distribution
with respect to spatial variables x, y and z. In the long run, we are interested in
developing the mean rate of electron heating in the unit plasma volume. Conse-
quently, the spatial dimensions of a parallelepiped can be taken to be as large as
required, up to the corresponding linear dimensions of the plasma volume. At the
expense of these large dimensions, the momentum dimensions of the parallelepiped
can be chosen to be small compared with the thermal velocity.

At this point some extra comments are in order. Hearing about Langmuir tur-
bulence, the reader with a traditional education may recall the notion of the wave,
the plasma natural oscillation, and ask for its place within the theory. Equally, for
the place of other structural elements of the turbulence, e.g. solitons (Beresin and
Karpman 1964, 1967; Krall 1969), collapsing density cavities with trapped Lang-
muir waves (Zakharov 1972), etc. Within a traditional approach, these structures
are revealed by scrupulous analysis of the dynamics of small-scale spatial grada-
tions in the particle distributions. This implies the availability of the corresponding
gradations that are embodied in the concept of a distribution function of Vlasov
type, fα(r, p, t). In our theory, such gradations are not available. The minimal scale
of spatial gradations in the distribution is the same spatial dimension as the auxil-
iary six-dimensional parallelepiped, and attempts to lessen it without an undesir-
able increase in scale of the momentum gradations leads to a loss of reliability of
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our statistic fα. Moreover, we deliberately choose spatial scales of averaging that
are large compared with the characteristic wavelength in the Langmuir turbulence
spectrum (the correlation length of the turbulence). With this, our statistic fα does
not demonstrate oscillations with plasma frequency, and all of its time evolution
runs on a rather large time scale of nonresonant electron diffusion.

The impossibility of the simultaneous achievement of small gradations in the
distribution along all axes of phase space should not be regarded as a disadvantage
of our approach. Following common sense, the primary objects of the plasma tur-
bulence are plasma particles, whereas waves, collapsing cavities and other objects
are secondary objects that were discerned in studies of particle kinetics. In the tra-
ditional paradigm, these structures are regarded as independent physical realities,
and much effort has been spent on their study. But from the practical point of
view, there is no sense in viewing the interplay of tiny structures in the turbulent
plasma. Really, the plasma macrophysics depend only on correlation properties of
the turbulent field, i.e. on correlation functions freed from tiny features of the above
structures and their complicated interaction. Correspondingly, it is natural to take
the correlation function as a basic object of the theory, and in the forthcoming
theory it properly accounts for the integral effect of the mentioned tiny structures.

As a matter of fact, our basic problem is to develop an evolution equation for
the well-defined statistic fα, the averaged microdistribution. This problem itself
dictates strictly the forthcoming logic of the process used to solve it. One should
not be anxious from the very beginning about waves and other structures here: their
effect is correctly described by the final equations. The reader should understand
that our insight into plasma problems dictates the corresponding schemes for their
solution, and attempts to implement the ideas of the traditional paradigm into the
body of these schemes are void of any sense.

An evolution equation for the distribution fα (i.e. of the averaged microdistri-
bution) can be developed using the continuity equation (28); the logic of the cor-
responding calculations is well described in Erofeev (1997). This equation has the
form[
∂

∂t
+ vβ

∂

∂rβ
+
eα
c
vi

0F
iβ ∂

∂pβ

]
fα(r, p, t) = −eα

c
vi

∂

∂pβ
〈δF iβ(r, t)Nα(r, p, t)〉r. (31)

It is seen that the distributions fe,i are advanced in time by some moments of the
two-point correlation function, 〈δF iβ(r + R, t′)Nα(r, p, t)〉r. Similarly, the two-point
correlation function is advanced in time by the three-point correlation function,

〈δF iβ(r + R′, t′′)δF jγ(r + R, t′)Nα(r, p, t)〉r,
with the evolution equation(

∂

∂t
+ vβ

∂

∂rβ
+
eα
c
vi

0F
iβ ∂

∂pβ

)
〈δF iβ(r + R, t′)Nα(r, p, t)〉

= −eα
c
vj

〈
δF iβ(r + R, t′)δF jγ(r, t)

∂

∂pγ
Nα(r, p, t)

〉
. (32)

The three-point correlation function is advanced in time by a four-point correlation
function, etc. The corresponding equation hierarchy can be truncated in the case
of weak plasma turbulence theory at any desired order, and then one reduces the
problem to a study of the coordinated evolution of the distributions fe,i(p, t) and
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the two-time correlation function

Φiβjγ(r′, t′, r, t) = 〈δF iβ(r′, t′)δF jγ(r, t)〉.
(For details of our notation consult Erofeev (1997).) We will not develop the cor-
responding calculations here as they are also well described in Erofeev (1997). The
results can be presented as follows. Evolution of the two-time correlation function
is governed by simultaneous equations with the structure

1
c

∂

∂t
〈δF βγ(r, t)δF kl(r′, t′)〉 = − ∂

∂rβ
〈δF γ0(r, t)δF kl(r′, t′)〉

+
∂

∂rγ
〈δF β0(r, t)δF kl(r′, t′)〉, (33)

1
c

∂

∂t
〈δF β0(r, t)δF kl(r′, t′)〉

= − ∂

∂rγ
〈δF βγ(r, t)δF kl(r′, t′)〉

−4π
c

∫
d3r1dt1σ

βm·
··γ (r, t, r1, t1)〈δF ·γm·(r1, t1)δF kl(r′, t′)〉

−4π
c

∑
α

eα

∫
d3p vβ Pkl

α (r, p, t, r′, t′). (34)

σβm···γ (r, t, r1, t1) denotes a conductivity tensor. (Following the causality principle, at
t < t1 it is identically zero.) It contains both a linear part (that is independent
of the plasma turbulence) and nonlinear corrections. The term Pkl

α (r, p, t, r′, t′) is a
nonlinear integral of the two-time correlation function. The evolution of a two-point
correlation function satisfies (33) and (34) irrespective of the order of consideration:
accounting for higher expansion orders only affects the accuracy of the presentation
of nonlinear effects in σ̂ and P̂.

In the graphical notation advanced in Erofeev (1997) the image of the lowest
order of P̂ is given by the bottom line in Fig. 17 of that paper. The graphical
analogue of σ̂ is given by the expression in the top two lines of the same figure, which
is connected to the entry of a wavy line (of the two-time correlation function).

Let us comment on the origin of (33) and (34). Conceptually, the two-time corre-
lation function satisfies vacuum Maxwell equations (29) and (30) when the external
charge and current densities are associated with the respective integrals of the two-
point correlation function. Correspondingly, after expressing the two-point corre-
lation function via two-time correlation functions and substituting equations (29)
and (30), one arrives at equations (33) and (34).

In the case of homogeneous weak Langmuir turbulence, equations (33) and (34)
can be simplified by a transition to the Fourier transform of a two-time correlation
function,

Φijkl
k (t, t′) =

∫
1

(2π)3 d
3R exp(−ik · R)

〈
δ̃F

ij (
r + 1

2 R, t
)
δ̃F

kl (
r− 1

2 R, t′
) 〉
.

The field of Langmuir waves is a potential one, therefore it can be described by a
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scalar function

Φk(t, t′) =
kβkγ
k2 Φk

β0γ0(t, t′).

With this, the simultaneous equations (33) and (34) reduce to a single evolution
equation:

∂

∂t
Φk(t, t′) = −4π

∫
dt1 σk(t, t1)Φk(t1, t′)−Bk(t, t′). (35)

Using this equation, one can express the two-time correlation function Φk(t, t′) in
the time domain t > t′ in terms of spectral characteristics of the turbulence. (In
the domain t < t′ the function can be reconstructed using the property of self-
adjointness Φk(t, t′) = Φ∗k(t′, t).) The logic of the corresponding calculation can be
introduced as follows.

Suppose we are dealing with a steady homogeneous plasma and that the turbu-
lence energy is infinitesimally small. That is, one can neglect by Bk(t, t′) and by
nonlinear corrections in σ̂. Then the only solutions to (35) are natural oscillations.
If we replace the function Φk(t, t′) by the oscillating function Φk(t′) exp[−iωk(t−t′)]
then (35) reduces to a dispersion equation.

Furthermore, if we return to a time-dependent collisionless plasma and include
nonlinear corrections (i.e. restore Bk(t, t′) and corrections in σ̂), this will modify
the situation slightly. Namely, the key part of the two-time correlation function
comprises the natural oscillations, and all the remaining terms are the forced oscil-
lations related to the natural oscillations in some way.

If one accepts the given image of the two-time correlation function, one can
conclude that the term Bk(t, t′) as a function of t − t′ decays at t > t′ for a time
roughly equal to the inverse frequency width of the spectrum. Note that this inverse
width is small compared with the decay time of the oscillations, and therefore at
t − t′ > 0 the term B slightly modifies the natural oscillations. This is the case
provided that the energy density of the turbulent wave field is sufficiently low
(more correctly, we are likely to have the well-known applicability condition of
weak plasma turbulence theory).

There are two natural frequencies for a given k that correspond to Langmuir
waves. One is a positive frequency corresponding to a wave travelling along k,
and another is a negative one corresponding to a wave travelling in the opposite
direction. For this reason, within the domain t > t′ the expression for the leading
order of the two-time correlation function is of the form

Φk(t, t′) =
∑
s=±

nsk(t′) exp(−i
∫ t

t′
ωsk(τ ) dτ ), (36)

where ωsk(t) is a solution to the dispersion equation

− iωsk(t) + 4π
∫ t

−∞
dt′ σk(t, t′) exp

(
i

∫ t

t′
ωsk(τ ) dτ

)
= 0. (37)

(Note that natural frequencies ωsk are renormalized here: they account for the effect
of nonlinear phenomena in the plasma.)

In (36) the function nsk(t′) satisfies the relation

Φk(t′, t′) =
∑
s=±

nsk(t′). (38)

It is real and positive. This feature corresponds conceptually to the traditional
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spectral density of plasma waves. In view of this, we assign the term wave spectral
density to the feature nk(t).

It is worth noting that the solution (36) is not an arbitrary approximation to the
two-time correlation function. We advanced it as the most natural lowest-order
solution satisfying the evolution equation (35). This solution can be improved by
successive iterations consisting of direct integration of (35) over time t. In weak
Langmuir turbulence accounting for higher corrections leads to unimportant mod-
ifications in kinetic equations. (To put it more correctly, accounting for the corre-
sponding corrections leads to higher corrections to time derivatives of distributions
fe,i and the wave spectral density nk.)

Finally, in the case of stationary plasma and turbulence neither renormalized
natural frequencies ωsk = sωsk − iγnl

sk nor the spectral density nk depend on time.
Therefore we have

Φk(t, t′) =
∑
s=±

nsk exp[−isωsk(t− t′)− γnl
sk|t− t′|]. (39)

The frequency spectrum of this correlation function splits into two Lorentzian
profiles corresponding to Langmuir waves with wavevectors k and−k, respectively:

Φkω ≡ 1
2π

∫ ∞
−∞

Φk(t, t′) exp[iω(t− t′)] =
1
π

∑
s=±

nskγ
nl
sk

(ω − sωsk)2 + γnl
sk

2 . (40)

Thus, we have shown that the frequency spectrum of the wave correlation func-
tion just corresponds to the assumption made by Bass et al. (see (6)).

Note that introduction of natural oscillations in our above procedure appears
only as a method of calculation of the two-time correlation function. By no means
do these natural oscillations separate the ‘wavy’ part of the two-time correlation
function from the others. Though, undoubtedly, traditional waves are entirely in-
cluded within our natural oscillations, and in abstraction of traditional weak tur-
bulence of a ‘Vlasov plasma’ they are the only contributors to the spectral density.
For this reason, below we will freely use the term ‘wave’ to denote imaginary collec-
tive motion of our Klimontovich–Dupree plasma that gives the same contribution
to the two-point correlation function as the wave of traditional theory.

The lowest-order evolution equation for the electron distribution function is a
graphic equation written in Erofeev (1997) in Fig. 4. Translating this equation into
analytic form, we obtain

∂

∂t
fe =

e2

c2 v
m ∂

∂pβ

∫
d3r1 d

3p1

∫ t

−∞
dt′0Gα(r, p, t, r1, p1, t

′)

×〈δ̃F ·βm·(r, t) δ̃F
·δ
n·(r1, t

′)〉 vn1
∂

∂pδ1
fe(r1, p1, t

′). (41)

Here 0Gα(r, p, t, r1, p1, t
′) is a bare Green function for the given species. It is a

solution to equation(
∂

∂t
+ vβ

∂

∂rβ
+
eα
c
vi

0F
iβ ∂

∂pβ

)
0Gα = δ3(p− p′)δ3(r− r′)δ(t− t′). (42)

The most convenient representation of the bare Green function ˆ0Gα is its Fourier
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representation:

0Gαk(p, t, p′, t′) ≡
∫
d3r 0Gα(r, p, t, r′, p′, t′) exp[−ikβ(rβ − r′β)], (43)

where the calculation is straightforward. In our case of a nonmagnetized plasma it
is

0Gαk(p, t, p′, t′) ≡ 0Gαk(p, t, t′)δ3(p− p′) = exp[−i(k · v)(t− t′)]δ3(p− p′). (44)

This formula is written for t > t′: at t < t′ the bare Green function is identically
zero, because of the causality principle.

As a matter of fact, the reader may arrive at (41) without appeal to formulae from
Erofeev (1997). Take (32). The lowest order of its right-hand side is the two-time
correlation function multiplied by the momentum derivative of the distribution
function fα. Inverting this equation (integrating it over time), one develops a lowest-
order expression of the two-point correlation function. After its substitution into
the collision integral (31), one obtains (41).

Because of the potentiality of the wave field, only components with n = m = 0 of
the two-time correlation function are present (have nonzero values). Furthermore,
in our order of consideration it is sufficient to substitute the two-time correlation
function by its lowest order

〈δ̃F 0β
(r, t)δ̃F

0δ
(r1, t

′)〉 ≈
∫
d3k exp[ik · (r− r1)]

kβkδ

k2

×
∑
s=±

nsk exp[−isωsk(t− t′)− γnl
sk|t− t′|]. (45)

It is seen that the effect of different waves can be considered independently. There-
fore below we skip contributions corresponding to all but one k. Also, we make use
of (44). Then (41) reduces to the next one

∂fe
∂t

= e2 d

dp

[∫ ∞
0

0Gp(r, τ )Φ(r, τ ) dr dτ
d

dp
fe(p, t− τ )

]
, (46)

where

Φ(r, τ ) = exp(ik · r)
∑
s=±

nsk exp[−isωsk(t− t′)− γnl
sk|t− t′|]. (47)

Equation (46) exhibits the one-dimensional character of the problem: it is natu-
ral to consider spatial and momentum dependences along the direction of wave
propagation only.

The function 0Gp(r, t) is an inverted Fourier transform of the function 0Gαk(p, t, t′),
which was introduced in (44).

Time variation of the distribution fe(p, t) in the right-hand side of (46) can be
ignored: this corresponds to the lowest-order approximation in W/nT . Owing to
this, the evolution equation becomes the usual diffusion equation.

After substitution of 0Gp and Φ by their expressions in Fourier transforms, the
diffusion equation (46) takes the form

∂fe
∂t

=
d

dp

[
D(p)

dfe
dp

]
,

D(p) = e2
∫ ∞

0

0G−kp(t)Φk(t) dk dt.

 (48)
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The integration variable k is left here because the mixed contributions of the se-
lected wave and the counterpropagating wave should be divided. (Equation (45)
shows that the original wave and its counterpropagating twin enter mixed into the
two-time correlation function.) This gives an opportunity to rearrange the integral
in right-hand side of (48). The remaining calculations are easy to perform; select-
ing terms containing nk and neglecting the dispersion addition to ωpe, one has the
result:

D(p) = e2 2γnl
k nk

(kv − ωpe)2 + γnl
k

2 . (49)

For bulk plasma electrons v ∼ vTe� ωpe/k, and hence

D(p) ≈ e2 2γnl
k nk

ω2
pe

. (50)

Therefore the rate of bulk electron heating is

dQ

dt
=
∫
p2dp

2m
d

dp

[
D(p)

df

dp

]
=

2γnl
k nknee

2

ω2
pem

= γnl
k
nk

2π
. (51)

Note that value nk/(2π) is the energy of the wave. Really, in terms of traditional
wave amplitudes Ẽk, the energy of the Langmuir wave is |Ẽk|2/(2π). At the same
time, in interpretation following the logic of Erofeev (1997, 1998) one has nk ≡
|Ẽk|2. That is, the rate of plasma heating per single wave, i.e. the rate of wave
collisionless decay, is γnl

k , in full accordance with the calculation by Bass et al.
Note also that γnl

k cannot take negative values, otherwise the two-time correlation
function Φk(t, t′) would not have decayed with increasing |t − t′| (see (47)). With
this, the bulk plasma electrons can only be heated at the expense of wave energy,
i.e. ‘non-resonant electron cooling’ is impossible.

Thus, we have performed a study of nonresonant electron diffusion in a single
plasma. This study confirmed both the Lorentzian structure of the wave correlation
function and data on nonresonant electron diffusion by Bass et al.

Note one more experimental argument in favour of the above developed kin-
etics. Vyacheslavov et al. mentioned that hot plasma electrons contain nearly half
the energy deposited in the plasma (Vyacheslavov et al. 2000). This feature can
be easily explained in our theory. Assume that the wave scattering on density
inhomogeneities defines the lower bound for the nonlinear wave damping rate γnl.
With this, the rate of wave energy transfer to hot plasma electrons is the same as
the rate of direct wave energy transfer to bulk plasma electrons via nonresonant
electron diffusion.

Finally, let us discuss one more line of reasoning in favour of our kinetic approach.
As was noted at the beginning of the section, the most adequate plasma description
is given by the Klimontovich–Dupree–Maxwell equations, but full integration of
these equations is technically impossible. This forces theorists to use more simpli-
fied approaches for the plasma description. They are either kinetic (of the type of
traditional weak plasma turbulence theory and our one) or hydrodynamic (of the
type of Zakharov’s plasma description). With corresponding simplifications in the
plasma description, one inevitably loses its completeness. For this reason, none of
the simplified approaches gives a picture of plasma evolution that does not diverge
over time from the real plasma macroscopic evolution. Therefore, one can rely upon
simplified descriptions of plasma evolution only on restricted time scales. This gen-
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eral position inevitably results in an asymptotic character of convergence of any
perturbation theory that can be advanced for developing plasma kinetics. Regard-
less of the essence of perturbation theory, consecutive iterations will at best first
converge up to some optimal order of consideration, but then inevitably diverge:
those familiar with diagrammatic approaches know well about this distinctive fea-
ture of perturbation expansions. For this reason, the most consistent goal that
one can pursue in developing any kinetics is to describe quantitatively the current
evolution of a plasma and turbulence with as high precision as possible. Calcula-
tions within our two-time formalism are aimed at this goal by the very intention
of successive iterations. In contrast, iteration techniques used in traditional calcu-
lations (e.g. by Tsytovich) were developed without understanding the significance
of restrictions imposed on the theory by the asymptotic convergence of the pertur-
bation expansions. Let us substantiate this statement.

In traditional kinetic calculations theorists usually develop nonlinear relations
for frequency harmonics of the electromagnetic field and the distribution function.
The unconditional use of frequency in plasma kinetic calculations implies that the
plasma evolves up to t = ∞: all the history of this evolution is fixed in frequency
spectra of the electromagnetic field and the distribution function. Meanwhile, in real
observations the plasma ‘lives’ usually only for a time comparable with the time of
its observation, especially in plasma installations. Therefore, one tries to understand
physics that develops in a plasma during a sufficiently restricted period. One has
no interest in the influence of delayed periods of plasma evolution on the run of
current processes, especially when the plasma has not existed at the corresponding
delayed periods. Furthermore, theorists average this history of the plasmas infinite
evolution over a plasma probabilistic ensemble. It cannot be the case other than
that during this averaging some information about the plasma evolution falls out.
One has a right to think that one loses only inessential information about the
plasma time evolution in delayed periods and retains all the crucial information
about the current plasma evolution. But this thought cannot be substantiated by
any consistent argument: the difference in Tsytovich’s conclusions regarding the
physics of nonresonant electron diffusion and ours undoubtedly is evidence against
the consistency of such an argument.

The above statement can be emphasized by the following remark. In no situation
can sequential approximations in our two-time formalism and in traditional pertur-
bations (of the Tsytovich’s type) approach each other, by virtue of the asymptotic
character of their convergency and difference in the leading orders of the wave
correlation function.†

6. Summary
In this paper we have analysed observations of strong Langmuir turbulence in
beam–plasma experiments by Vyacheslavov et al. (BudkerINP) and by Wong et
al. (University of California, Los Angeles). Following the tradition of plasma the-

† The reader is reminded that the lowest order of the wave correlation function is usually
assumed to be in the form Φkω = Nkδ(ω − ωk) within the traditional theory. Here ωk is
the wave natural frequency, which is real (generally renormalized). That is, the wave is
associated with a single line, and any line broadening appears only in the next after leading
approximation. The corresponding line shape does not have a Lorentzian structure, in full
accordance with Tsytovich’s observation.
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ory (established after Zakharov (1972)), in both series of experiments Langmuir
wave collapse should have taken place. We have discovered that the corresponding
experimental data are against the occurrence of Langmuir wave collapse.

We assumed that the developed contradiction indicates that plasma theory under-
values substantially collisionless wave dissipation. We considered the main channel
of the corresponding dissipation, the nonresonant electron diffusion in momenta.
We have found that apart from the commonly accepted idea of the process fol-
lowing Tsytovich (1972, 1977), the theory comprises an alternative picture of the
nonresonant electron diffusion with a substantial increase in the rate of wave ener-
getic decay. We have particularly checked that a new diffusion picture results in
suppression of the plasma hydrodynamic instability with respect to spontaneous
development of short-wavelength spatial modulation in the plasma density and
simultaneous correlated spatial modulation in the energy density of electron Lang-
muir oscillations. The reader is reminded that the corresponding instability was
originally regarded as an initial stage of Zakharov’s Langmuir wave collapse. The
difference in conclusions regarding the occurrence/nonoccurrence of this instability
illustrates that traditional theory cannot provide one with a reliable picture of the
physical evolution of a plasma. We have stated that the basic false cornerstone of
the theory is the method of the probabilistic ensemble, a key method of nonequi-
librium statistical physics. The contradiction in the two pictures of nonresonant
electron diffusion shows that the method of the plasma probabilistic ensemble is of
no use in kinetic studies of real plasmas.

We have abandoned substitution of a real plasma by a plasma ensemble and per-
formed a study of nonresonant electron diffusion in a single collisionless plasma.
Our study confirmed the idea of intense collisionless wave dissipation and the im-
possibility of Langmuir wave collapse.

In such a way, we have pointed out a more natural direction for the development
of the plasma kinetic theory.
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