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Holes and cracks in rigid foam films
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The classical problem of foam film rupture dynamics has been investigated when the
film interfaces exhibit very high rigidity due to the presence of specific surfactants.
Two new features are reported. First, a strong deviation from the well-known
Taylor–Culick law is observed. Second, crack-like patterns can be visualized in
the film; these patterns are shown to appear at a well-defined film shrinkage. The key
role of surface-active material on these features is quantitatively investigated, pointing
to the importance of surface elasticity to describe these fast dynamical processes
and thus providing an alternative tool to characterize surface elasticity in conditions
extremely far from equilibrium. The origin of the cracks and their consequences on
film rupturing dynamics are also discussed.
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1. Introduction

Despite its apparently useless character and simplicity, the dynamics of bursting of
soap bubbles has fascinated scientists for more than a century. Lucien Bull (Dubois
2000) made the first images of soap bubble bursts in 1904. The first theoretical
analysis dates back to Dupré and then to Taylor (1959) and Culick (1960), where
the presence of a rim at the edge of a hole created in the liquid film, collecting
the liquid during its movement, was considered. The constant hole opening velocity
Vc results from a balance between the rim inertia and surface tension in the film,
and is given by Vc =

√
2γeq/(ρh0), where γeq is the equilibrium surface tension,

ρ is the liquid density and h0 is the film thickness. These results are in good
agreement with stationary experiments performed on liquid sheets (Taylor 1959) and
have been extensively investigated by McEntee & Mysels (1969) in the case of soap
films thicker than 50 nm. More recently, satellite formation during edge retraction
(Lhuissier & Villermaux 2009b) and bubble entrapment (Bird et al. 2010) have been
investigated as these behaviours are crucial in many applications. Destabilization of
liquid sheets or bubbles indeed arises in many practical situations ranging from the
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building material industry, e.g. when glass sheets are moulded, to foam engineering,
food processing, biological membranes and environmental science (Bird et al. 2010).
In these applications, liquids can be viscous or contain surface-active materials. In
the latter situation, surface tension becomes a dynamical quantity, which depends
on the local surface concentration of surfactants, and thus on the elongation of the
surface; this is characterized by the surface elasticity denoted E (N m−1), defined
as the derivative of surface tension with respect to relative changes in surface area
A (E = (1/A)∂γ /∂A). The effect of surface elasticity has been observed through
the development of an aureole surrounding the opening hole and expanding with
time (Florence & Frens 1972; Liang, Chan & Choi 1996; Lhuissier & Villermaux
2009a). However, except in the case of very viscous liquids (Debrégeas, de Gennes
& Brochard-Wyart 1998), the opening dynamics always obeys the Taylor–Culick law,
although some deviations have been reported by Mysels (McEntee & Mysels 1969;
Florence & Mysels 1974), but hardly commented on. In this work, we investigate the
dynamics of bursting of circular films generated from surfactant solutions inducing
large surface elasticities and we report for the first time systematic deviations from
the Taylor–Culick law. A careful analysis allows us to estimate the surface elasticity
at both large compression and large compression rate in good agreement with reported
data in the literature. Moreover, unexpected effects of frame size are observed through
the appearance of new patterns, reminiscent of fractures or wrinkles in the film.

2. Experimental set-up

The experimental set-up consists of a circular metallic frame of radius R =
1.5–11 cm pulled out of a surfactant solution at different velocities to generate
films with various thicknesses. The film absolute thickness is determined through
a technique based on light absorption (Lastakowski et al. 2014; Petit et al. 2015),
and we denote by h0 the initial average thickness of the film. Film rupture is
initiated by approaching a heated needle and is recorded via a high-speed camera
(10 000 Hz, Photron SA-4). An image sequence is reported in figure 1(a), where
we measure the radius r of the expanding hole versus time, as shown in figure 1(b).
Surfactant solutions are produced in a 10–90 % glycerol–water mixture in which a dye
(Brilliant Black BN 60 %, Sigma, 5 g l−1) is added. They contain 3.3 g l−1 of sodium
lauryl ether sulphate (SLES, Stepan), 1.7 g l−1 of cocamidopropyl betaine (CAPB,
Goldschmidt) and myristic acid (MAc, Fluka) in the concentrations C described
in table 1. The surface elasticities of similar solutions are well characterized in
the literature (Mitrinova et al. 2013a) and span over two orders of magnitude
when the concentration C of MAc is varied as reported in table 1. These elastic
moduli are attributed to the surface properties of the adsorbed layer of MAc, whose
surface concentration is expected to increase with C up to saturation of the surface
(Golemanov et al. 2008). At the same time, micelles of the two cosurfactants (SLES
and CAPB) help to solubilize the poorly soluble fatty acid.

3. Results

Some remarkable features can be underlined. At first, the opening velocity is
constant as predicted by the Taylor–Culick law but smaller than expected (figure 1b).
Moreover, an aureole that has already been described in the past (Florence & Frens
1972; Liang et al. 1996; Lhuissier & Villermaux 2009a) is observed through spatial
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FIGURE 1. (a) Image sequence of a foam film rupture (h0= 10 µm, solution E – table 1).
The time lapse between images is 8 ms. (b) Radius r of the hole versus time t (h0 =
10 µm, solution E). The red line represents the prediction of Taylor–Culick, while the
black line shows the initial opening at constant velocity u0. The arrow denotes first crack
apparitions. Inset: picture of a ruptured foam film (solution C) which highlights aureole
formation. (c) Picture of a foam film (solution E) 37 ms after its breaking. The arrows
highlight crack-like patterns, which appear during the hole opening. Here, R corresponds
to the size of the frame, while λ is the characteristic length between two cracks (see text).
(d) Scheme of the film shape in the case of Taylor–Culick (free interfaces and rim) and
in the case of inhomogeneous surfactant repartition (aureole).

Solution A B C D E F

C (mM) — 0.055 0.11 0.22 0.88 2.2
γeq (mN m−1) 29 29 27 26 23 22
Eod (mN m−1) 4 50 90 200 400 400
E0(u0) (mN m−1) 60 200 2000 5000 2× 104 4× 104

E0(cracks) (mN m−1) — — 90 200 300 300

TABLE 1. Properties of the surfactant solutions used in the experiments: MAc
concentration C, equilibrium surface tension γeq and surface elasticities. The surface
tension γeq and elastic modulus Eod reported have been measured by Mitrinova et al.
(2013a) for similar solutions (without glycerol and dye). The surface tension is determined
by the static shape of the pendant drop whereas the surface elastic modulus is measured
by the oscillating drop method for small deformation (0.2–4 %) at a frequency of 0.2 Hz.
Here, E0(u0) corresponds to the elasticity deduced from the initial hole velocity using
(4.1) and E0(cracks) corresponds to the elasticity deduced from the hole radius at which
cracking occurs using (4.2).
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FIGURE 2. (a) Initial opening velocity u0 of the hole as a function of the film thickness
h0 for R= 3 cm. The MAc concentration C increases from dark to light points: solutions
A (E), B (@), C (D), D (♦), E (A) and F (?). (b) Initial opening velocity normalized
by the Culick velocity u0/Vc as a function of C (error bars: 95 % confidence intervals).
The magenta solid line shows the value measured for C = 0, with error bars shown
by the dotted lines. The values of u0/Vc are extracted by performing a least-squares
percentage fit for each solution, with weights taking into account the 1 µm error in
thickness measurements. In both panels, the black dashed lines represent the Taylor–Culick
law.

variations of the transmitted light, especially for the less rigid interfaces (inset
of figure 1b). The aureole front propagates at a velocity denoted uf . Then, some
dark patterns are observed (see arrows in figure 1c), which we denote cracks in
the following. This apparition coincides with a decrease of the opening velocity
(figure 1b), as the presence of these cracks modifies the bursting dynamics.

The initial opening velocity u0 is represented in figure 2(a) as a function of the
initial film thickness h0 for various solutions. Without MAc (solution A of table 1),
the velocity follows the Taylor–Culick law (E), which is consistent with interfaces of
low elasticity. However, in the presence of MAc, the initial velocity is lower than in
the previous case. For each MAc concentration, the initial velocity is proportional to
1/
√

h0 ∝ Vc. For each solution and different thicknesses, we thus extract the initial
opening velocity normalized by the Culick velocity. This quantity decreases when
the MAc concentration increases (figure 2b), that is, for larger surface elastic moduli
(Mitrinova et al. 2013a).

During the film opening, orthoradial cracks (perpendicular to the direction of
opening) appear in the film (figure 1a,c), at a well-defined radius of the hole rp.
Some specific irregular fold-like patterns and filaments have previously been reported
by McEntee & Mysels (1969), although not directly comparable to our observations.
For a given solution, figure 3(a) shows that the ratio rp/R is independent of the
frame radius (for R = 1.5–11 cm) and almost independent of the film thickness (for
h0 = 2–20 µm). The cracks thus appear for a well-defined critical compression of
the interface. Figure 3(b) shows that this critical compression decreases with MAc
concentration and the surface modulus. This critical compression is so large for
solution B that we cannot define it accurately.

4. Discussion

These two observations concerning the initial opening velocity and the onset
compression for cracks can be rationalized following the framework initially proposed
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FIGURE 3. (a) Critical compression of the interface for crack formation rP/R as a function
of the initial thickness h0 for solution E and different frame radii R= 1.5 cm (E), R=
3 cm (@) and R= 11 cm (A). (b) The critical compression rP/R averaged for thicknesses
h0 = 2–35 µm and R= 3 cm, as a function of MAc concentration C.

by Frankel & Mysels (1969) for the theoretical description of aureoles. They
considered that surfactants are insoluble, which is reasonable at the time scale
considered here: the duration of the opening R/u0, typically 30 ms, is smaller than
the surfactant desorption time τ . Indeed, although these processes are likely to be
dominated by surfactant exchange with micelles in our systems (Golemanov et al.
2008), a lower bound for τ is provided by the diffusion time across the film thickness
h2

0/D≈40 ms–2 s (for h0=2–40 µm and D=10−10 m2 s−1). Adsorption times longer
than 30 ms for myristic acid in these systems have also been reported (Mitrinova
et al. 2013b). A compressive shock thus propagates at the surface of the film. The
liquid is collected in an extended rim – an aureole – visible in figure 1(b) (inset) and
whose shape depends on the surface tension, film thickness and surface elasticity.

Viscous effects have also been neglected. Indeed, as no shear takes place within
the film thickness, the characteristic Reynolds number and surface Reynolds numbers
read Re = u0R/ν � 1 and Res = ρu0Rh0/κ respectively, with ν the kinematic bulk
viscosity and κ the intrinsic surface viscosity. Surface viscous dissipation cannot be
neglected a priori if values of κ measured at 0.2 Hz are considered (Golemanov
et al. 2008; Costa 2012). However, the surface viscosity is expected to collapse at
large frequencies, as shown in experiments and modelling (Lucassen & Van Den
Tempel 1972). Eventually, the observation of a constant initial velocity proportional
to 1/

√
h0 ∝ Vc (figures 1b and 2) is a key indication that inertia (and not viscous

effects) is dominant in this problem.

4.1. Deviation from the Taylor–Culick law
As mentioned above, we can neglect surface viscous effects. The deviation from
the Taylor–Culick law, observed in the presence of a certain type of surfactants, is
then attributed to surface elasticity. To take this effect into account, the dynamics
of the rim is now controlled by the balance between inertia and surface tension
spatial gradient. We assume here that the surface elasticity is constant up to a certain
compression. In this particular case, the velocity of the aureole front (delimiting the
frontier with the zone of undisturbed film whose thickness is still h= h0) simply reads
uf = √2E0/(ρh0) = VC

√
E0/γeq, which can be seen as a two-dimensional analogue

of sound (compression) velocity. The opening hole velocity can also be determined
by solving the self-similar profile of the aureole and applying mass conservation
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FIGURE 4. Solid black line: numerical prediction for the normalized hole velocity
u0/Vc= f (E0/γeq) for radial bursting ((4.1) and appendix A). The dashed line corresponds
to u0/Vc =

√
γeq/E0 expected for unidimensional bursting (Frankel & Mysels 1969).

Blue dashed line: prediction for the critical radius at which cracks appear, rP/R =√
γeq/E0f (E0/γeq) (4.2). The solid (respectively empty) symbols correspond to the

experimental data from figure 2 (respectively figure 3), from which we determine the
elastic moduli E0(u0) (respectively E0(cracks)). The same symbols and colours are used
as in figure 2(a).

(see appendix A). No analytical solution is provided in the considered radial geometry,
but numerical resolution shows that

u0 = Vcf (E0/γeq), (4.1)

where f is the decreasing function determined numerically (see appendix A) and
reported in figure 4. It is thus still proportional to the Taylor–Culick velocity Vc and
decreases with the interfacial elasticity E0, which is consistent with the experimental
observations of figure 2.

From our experimental measurements of u0 (figure 2) and using the numerical
solution of (4.1) represented in figure 4, an interfacial elasticity E0(u0) can be
deduced (figure 4) for each solution, which is reported in table 1 as a function of
the MAc concentration. These data are compared with measurements of the surface
moduli Eod from the oscillating drop method performed by Mitrinova et al. (2013a).
They show the same qualitative variation with C despite a discrepancy in the absolute
values obtained. However, the shrinkage amplitude and the compression time scales
differ by several orders of magnitude, and the surfactant monolayer at the interface
is expected to be highly non-Newtonian (Lucassen & Van Den Tempel 1972; Costa
2012).

4.2. Crack appearance
Snapshot inspection also shows that cracks appear when the compressive surface wave
(i.e. the aureole front) reaches the metallic frame of the film. Cracks are thus expected
for

rp

R
= u0

uf
=
√
γeq

E0
f
(

E0

γeq

)
. (4.2)

This prediction, represented in figure 4, is indeed in good agreement with our
observations: the hole radius when cracks appear rp increases with the frame radius R
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and decreases with the surface elasticity probed through MAc concentration variations,
as shown in figure 3. Eventually, this critical compression does not depend on the film
thickness h0, showing that elasticity is not affected by confinement in the experimental
configuration tested.

From this measured critical compression, another value of the surface elasticity,
denoted E0(cracks), can therefore be determined using (4.2); this is also plotted in
figure 4. These experimental values are reported for the different MAc concentrations
in table 1. In this case, very good agreement is obtained with the measured value of
the surface modulus (Mitrinova et al. 2013a), which confirms that the cracks arise
from a compression of the aureole when its front reaches the frame.

It should be noted that the values of surface elasticity deduced from our two
methods may differ. This is, however, expected due to our strong hypothesis of
constant elasticity. Indeed, while the aureole front velocity only depends on the
surface elasticity at very low compression rate (at the edge of the undisturbed film),
the hole opening velocity modelling takes into account the elasticity through large
interface compression. For large deformation, it is expected that the constant elasticity
model will fail: at large compression, the myristic acid surface concentration increases,
which should result in larger elasticity, as can be inferred from the moduli dependence
upon C (Mitrinova et al. 2013a). The effective modulus E0(u0) should then deviate
more from measurements at small deformations performed by the oscillating bubble
technique (Mitrinova et al. 2013a).

In addition, the effect of elasticity has indirect consequences on some features of
foam film rupture. For example, no flapping or transverse destabilization of the rim
was observed for our rigid soap films, in contrast to observations on low-elasticity
films and theoretical predictions (Lhuissier & Villermaux 2009b); however, the
reduced rim velocity could prevent the flapping instability from developing, and
subsequent film atomization (Lhuissier & Villermaux 2009b).

4.3. Crack-like patterns
Let us now discuss the observed crack-like patterns. During the fast deformation of
the surface, the surfactants behave as an insoluble monolayer, comparable to a lipid
monolayer experiencing a compression in a Langmuir trough (Lee 2008). In this case,
above a critical compression, such a monolayer can behave differently depending on
its structure. If it is liquid-like, it ejects the molecules in the bulk in the form of
vesicles or bilayers. If it is solid-like, it can bend as an elastic sheet or fracture as a
fragile material.

Although our experiment does not provide a microscopic characterization of this
transient surface structure, the crack pattern can be macroscopically characterized. In
particular, even though the cracks are irregularly distributed, the number of cracks per
radial segment can be counted; the deduced characteristic length between two cracks
denoted λ (figure 1c) is reported in figure 5 as a function of MAc concentration C
(a) and film thickness h0 (b).

The increase of λ with C can be expected in the abovementioned situations. On
the one hand, for higher bulk concentration, solubilization of interfacial surfactants is
more difficult, hence a reduced number of vesicles or bilayers are expelled. On the
other hand, a more concentrated solid-like layer will also exhibit a higher bending
modulus and the wavelength of the elastic ripples is expected to increase with this
modulus (Cerda & Mahadevan 2003). The decrease of the characteristic length with
the film thickness h0 is more unexpected. For the solid-like behaviour, a thinner
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FIGURE 5. (a) Characteristic length λ between two cracks as a function of MAc
concentration C for h0 = 11 ± 3 µm. (b) Characteristic length λ as a function of the
film thickness h0 for solution D. (c) Bursting of a soap film of thickness h0 = 3 µm
(solution E). The time lapse between the two images is 9 ms, and the two lines highlight
the velocity inhomogeneities.

elastic sheet will bend more easily than a thicker one, thus exhibiting smaller ripple
wavelength when buckled (Landau & Lifshitz 1975), in contrast to our observations.
If the cracks correspond to monolayer collapse by vesicle formation, it should not
be affected by the film thickness. However, varying film thickness also has an effect
on the velocity of compression or shrinkage rate. This parameter induces dynamical
structural change in the surfactant monolayers (as it does in bulk crystallization
processes for example (Cabane & Hénon 2003)). Finally, a complete understanding
of the origin of these crack-like patterns would require some local high-speed imaging
structural analysis, which is beyond the scope of the present paper.

The presence of these irregular cracks has direct consequences on the hole opening
dynamics. Indeed, when the aureole reaches the metallic frame, the hole opening slows
down (and even stops for the thinner rigid films) and then irregularly accelerates in
the region where the cracks appear. This feature is reported in figure 5(c). Moreover, a
velocity discontinuity in the liquid is observed, the outer region being at rest whereas
the inner region is deformed.

5. Conclusion

To conclude, we have shown that modification of the chemistry of surfactant
solutions can have a strong influence on macroscopic dynamical processes, as
observed in various situations in foams and foam films (Mysels, Frankel & Shinoda
1959; Couder, Chomaz & Rabaud 1989; Durand & Stone 2006; Cohen-Addad,
Hohler & Pitois 2013; Seiwert et al. 2013; Petit et al. 2015). However, here we have
investigated this effect under large deformations and in a fast dynamical process, i.e.
at large Reynolds numbers, where the effects of molecular scales and surfactants are
expected to be negligible.

The initial constant velocity opening dynamics is well described taking into account
the surface elasticity of the interfaces and was shown to be reduced at high surface
modulus. This may be responsible for the inhibition of rim fragmentation and
droplet ejection usually reported in liquid film ruptures (Lhuissier & Villermaux
2009b). Further studies should determine the role of the ejected droplets in rupture
propagation in macroscopic foams; the stability of these systems is indeed known to
depend dramatically on the surface elastic properties (Rio & Biance 2014). However,
finite-size effects soon become crucial: when the elastic compression surface wave
reaches the border of the frame, crack-like patterns, where velocity discontinuities
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FIGURE 6. (a) Profile of the film and notations; (b) variations of surface tension γ versus
shrinkage α in the simplified constant elasticity modelling; (c) h/h0 as a function of
r/(Vct)=

√
2w/V2

c for radial bursting and different values of αC (0.2, 0.4, 0.6, 0.8 from
top to bottom at the origin).

are observed, appear in the foam film. Determination of the origin of cracks, their
microscopic structure, their location and number, and how they control film opening
dynamics remains a challenge to tackle.
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Appendix A

A.1. Equations for radial bursting
We describe the radial bursting dynamics of a foam film of initially uniform thickness
h0 and include the effect of dynamic surface tension as first proposed by Frankel &
Mysels (1969): the surface tension γ is assumed to depend only on the shrinkage of
the surface α which by mass conservation is related to the film thickness α=h0/h. We
denote the surface elasticity by E(α) = dγ /dα. As viscous terms are negligible, the
capillary forces are balanced by the fluid inertia. Variations of fluid velocity across
the film are also neglected and equations are averaged over h. These equations can
be explicitly solved in the unidimensional case (Frankel & Mysels 1969). However,
in the case of radial bursting, a numerical resolution is necessary.

We consider a material element that initially has the position R (i.e. that has
Lagrangian variables (R, t)). At instant t, its position is r(R, t) and its thickness is
h(R, t) (figure 6a). The fluid velocity is u = ∂r/∂t and the shrinkage is defined as
α= h/h0∂r2/∂R2= (r/R)∂r/∂R. The momentum balance on the fluid element yields

ρrh
∂u
∂t
= 2r

∂γ

∂r
, (A 1)

which can be rewritten as

∂u
∂t
= 2E(α)

ρh0

r
R
∂α

∂R
=U2

α

r
R
∂α

∂R
, (A 2)

in which we have defined the characteristic velocity

Uα =
√

2E(α)
ρh0

. (A 3)
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Following the analysis of Frankel & Mysels (1969), we are looking for self-similar
solutions in the form r/t = f (R/t). We define the variables W = R2/(2t2) and w =
r2/(2t2) (w and W have the dimensions of square velocities) and we expect w=w(W).
The relative shrinkage is also set by α = dw/dW. Starting from (A 2), we find

W
w

[
1− W

w
dw
dW

]
dw
dW
=
[

U2
α=dw/dW −

2W2

w

]
d2w
dW2

. (A 4)

A first piece of information on the film dynamics can be inferred from this
equation: far from the hole, i.e. for large W, the film should remain undisturbed,
which corresponds to w = W and dw/dW = 1. This condition combined with (A 4)
yields [U2

α=1 − ((2W2)/w)](d2w/dW2) = 0, which implies that the matching with the
disturbed film can only be carried out at W =W0=U2

α=1/2. The velocity of the front
of the aureole, or extended rim corresponding to the disturbed film, is thus given by
uf =Uα=1 (Frankel & Mysels 1969).

Finally, the complete aureole profile and hole receding velocity will depend on the
form of the elasticity versus shrinkage.

A.2. Numerical resolution for a constant elasticity model
We consider at first order a model of constant elasticity E0, as described in figure 6(b).
We introduce here αc, which corresponds to the maximum shrinkage the film can
endure. For α > αc, the surface elasticity is constant and reads

dγ
dα
= E0 = γeq

1
1− αc

(A 5)

and then

Uα =U0 =
√

2E0

ρh0
=
√

E0

γeq
Vc, (A 6)

where Vc =
√

2γeq/(ρh0) is the Culick velocity.
Let us note that the aureole (the shock) is observed only if the compressive wave

propagation velocity Uα is larger than Vc, i.e. E0 > γeq. When α > αc, (A 4) can be
written as

W
w

[
1− W

w
dw
dW

]
dw
dW
=
[

U2
0 −

2W2

w

]
d2w
dW2

. (A 7)

In non-dimensionalized form (stating W̃ = 2W/V2
c and w̃ = 2w/V2

c ), this equation
reduces to

W̃
w̃

[
1− W̃

w̃
dw̃

dW̃

]
dw̃

dW̃
=
[

1
1− αc

− 2W̃2

w̃

]
d2w̃

dW̃2
, (A 8)

with the following two boundary conditions. For W̃ = 0, at the hole, we have the
maximum shrinkage (minimum value of αc): (dw̃/dW̃)(W̃ = 0) = αc. For W̃ = W̃0 =
1/(2(1− αc)), at the aureole front, the solution should match the undisturbed film
solution w̃(W̃0)= W̃0.

This equation is solved numerically with a shooting method. From the function
w(W), we can deduce the thickness profile, using the relation h/h0= 1/(dw/dW) for
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Holes and cracks in rigid foam films

different elasticities (figure 6c). As the elasticity increases (i.e. as αc becomes closer
to 1), we find that the aureole is thinner and wider, while for E0= γeq (corresponding
to αc = 0), one recovers a punctual rim receding at the Taylor–Culick velocity Vc.

We can also estimate the initial hole velocity u0=
√

2w(W = 0), which is shown in
figure 4 as a function of the ratio E0/γeq. We also observe that the results obtained
deviate from those obtained for unidimensional bursting (Frankel & Mysels 1969),
especially for large elasticities, emphasizing the crucial role of radial geometry.
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