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Abstract

A detailed study of Wakefield excitation in very dense quantum plasma is presented. Electric and magnetic Wakefields
have been obtained for a particular profile of the laser pulse, using perturbative technique involving orders of the
incident laser beam. The Wakefields can trap electrons and accelerate them to extremely high energies. It is observed
that the quantum effects significantly change the classical nature of the Wakefield. The axial and radial forces acting
on a test electron due to the Wakefields have been evaluated.
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1. INTRODUCTION

Acceleration of electrons by laser Wakefield (Tajima &
Dawson, 1979) has been one of the most developed areas
of interest during the past 20 years, leading to a number of
theoretical and experimental efforts. In a laser Wakefield ac-
celerator (LWFA), a high intensity laser pulse with duration
approximately equal to plasma oscillation period, generates a
large amplitude plasma wave with phase velocity that is close
to the speed of light. A beam of electrons interacting with this
wave can be effectively accelerated. The pioneering idea of
Tajima and Dawson, has been theoretically explored and
experimentally verified (Andreev et al., 1994; Balakirev
et al., 2001; Blumenfeld et al., 2007; Faure et al., 2004;
Geddes et al., 2004; Gorbunov et al., 2003; Jha et al.,
2005; Joshi, 2007; Kawata et al., 2005; Koyama et al.,
2006; Leemans et al., 2006; Lifshitz et al., 2006; Lourenco
et al., 2010; Lotov, 2001; Luttikhof et al., 2009; Malka &
Fritzler, 2004; Malka et al., 2002; Mangles et al., 2004;
Marques et al., 1996; Masuda & Miura, 2009; Maltis
et al., 2006; Phuoc et al., 2008; Pukhov & Meyer-ter-Vehn,
2002; Schlenvoigt, 2008; Siders et al., 1996; Takahashi
et al., 2004; Wang et al., 2009; Xie et al., 2009; Zhou
et al., 2007).
Recently, studies concerning high-density plasmas (quan-

tum plasma) that are created by high intensity laser pulses
have received attention and pertinent research activities

have been observed. Quantum affects appear in ultra-small
electronic devices (Markowich et al., 1990), dense astrophy-
sical plasmas (Jung, 2001), and laser plasmas (Kremp et al.,
1999). The high-density, low-temperature quantum Fermi
plasma is significantly different from the low-density, high
temperature “classical plasma” obeying the Maxwell-
Boltzmann distribution. In the dense Fermi plasma, the elec-
tron degeneracy leads to a consideration of the Fermi-Dirac
electron distribution and electron tunneling through the
quantum Bohm potential (Gardner & Ringhofer, 1996; Man-
fredi, 2005). The quantum statistical pressure and the quan-
tum Bohm force affect the electron dynamics that results in
collective interactions in dense quantum plasmas. The
studies regarding Wakefield generation in quantum plasmas
have been recently reported (Shukla et al., 2009).

In this work, we have carried out a detailed analytical
study of plasma Wakefield generation in quantum plasma.
We have used perturbative technique involving orders of
the incident laser beam to obtain explicit electric and mag-
netic Wakefields. Further, the accelerating force acting on a
test electron has been evaluated. The results show that the
accelerating force is increased due to the collective contri-
butions of statistical pressure and the quantum Bohm force.
Such a study has not been reported in literature before.

In Section 2, the lowest order fast oscillating plasma elec-
tron velocities and density perturbations have been derived.
Coupling the time averaged current densities with Maxwell’s
equations, the generated electric and magnetic Wakefields
have been obtained in Section 3. In Section 4, the axial
and radial forces acting on a moving test electron have
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been derived and analyzed graphically. Section 5 is devoted
to summary and discussion.

2. LASER-PLASMA INTERACTION

We consider the propagation of linearly polarized laser beam
represented by the electric vector �E = êxEo cos (kz− ωt)
(êx is the unit vector of polarization) propagating in an uni-
form quantum plasma of density no. In quantum plasma,
the electrons obey the equations
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= − e

m
�E + 1

c
(�v × �B)

[ ]
− 1

2
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∂n
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and

�∇.�E = −4πe(n− no). (3)

n = no + n(1)
( )

is the electron density, m is the electron rest
mass, ħ is the Planck’s constant divided by 2π, and vF is
the Fermi velocity. The fourth term on the right-hand side
of Eq. (1) denotes the Fermi electron pressure. The fifth
term is the quantum Bohm potential and is due to the quan-
tum corrections in the density fluctuation. The classical
equations may be recovered in the limit of ħ= 0. The ponder-
omotive force of the high-frequency laser pulse drives longi-
tudinal waves with a frequency much smaller than ω, but fast
enough for the dynamics to take place on the electron time-
scale. The ions form a neutralizing background in dense
plasma. A correct relativistic treatment of quantum effects
should rely on the moments of a relativistic Wigner function
(Bialynicki et al., 1991; Shin, 1996). Perturbatively, expand-
ing Eqs. (1) and (2) for the first order of the electromagnetic
field, we get
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and

∂n(1)

∂t
+ (no. �∇v(1) + v(1). �∇no) = 0. (5)

The last term in Eq. (4) has been obtained by using the
perturbative expansion (Cao et al., 2008),
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Assuming the perturbed density to vary according to
(Bret, 2007) n(1)= ηexpi(kr− ωt), we get from Eqs.(3),
(4), and (5),

n(1) = − eknoEoΩ

m
sin (kz− ωt),

where Ω = ω2 + k2V2
F + (h− 2

k4/4m2)
{ }−1

. High frequency

laser pulse propagating in collisionless quantum plasma pro-
vides a periodic force due to which the plasma electrons os-
cillate with the frequency of the laser. This high frequency
fluctuation in charge density becomes source of a longitudi-
nal electric field and velocity in quantum plasma, which are
given by

E(1)
z = −Ωω2

poEo cos (kz− ωt),

and

v(1)Z = −caΩΩp sin (kz− ωt),

respectively, where ω2
po = 4πnoe2/m (the electron plasma

frequency), Ωp = {ω2
po + k2V2

F + (h− 2
k4/4m2)} and

a = eEo/mcω.

3. WAKEFIELDS

To proceed with the study of excitation of plasma waves, we
use the quasistatic approximation where the plasma fluid
equations are written in terms of independent variables ξ=
z− ct and τ= t. It is assumed that the laser does not
evolve significantly as it transits a plasma electron (Esarey
et al., 1997). Thus, plasma electrons experience a laser
field that is a function of ξ and r variables only. Electric
and magnetic Wakefields can be obtained using the time
dependent Maxwell’s equations

�∇ × �E = − 1
c

∂�B
∂t

,

�∇ × �B = 4π
c
�J + 1

c

∂�E
∂t

.

The radial profile of the laser field is Gaussian and the gen-
erated fields are assumed to be axisymmetric. The field
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components may be written as,
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where Jr and Jz are transverse and axial current densities,
respectively. In order to obtain the second order slow com-
ponents of the plasma electron velocity, we substitute the
first order quantities into the force equation, which gives
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where, Ωs = −1+ k2V2
FΩ+ (h− 2

k4/4m2Ω)
{ }

; Er and Ez

represents the radial and axial electric Wakefields. The
above equations have been obtained by substituting the
value of vz

(1) averaged over the polar angle θ. It is observable
that the ponderomotive nonlinear effects contribute to trans-
verse as well as longitudinal Wakefield generation. The pon-
deromotive force is modified due to the contribution of first
order longitudinal velocity of plasma electrons. Further, the
quantum effects appear significantly in both transverse and
longitudinal velocities. From Eqs. (6) and (7), we get
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Combining Eqs. (6a) and (6b) and substituting in Eq. (8)
gives

Er = − 1
k2p
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− m

4e
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s
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. (10)

Eqs. (9) and (10) are the principal equations for generation of
axial and transverse electric Wakefields in a dense quantum
plasma. The magnetic Wakefields can be obtained from Eq.
(6a). The radial dependence of transverse electric and mag-
netic Wakefields can be considered to be a higher order

effect. The lowest order axial Wakefield is given as
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[ ]
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p
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.

Considering a laser pulse a2 = a2r sin
2 (πξ/L), where ar2= ao

2

exp(−2r2/ro
2), the solution of the above equation, within the

pulse (0≤ ξ≤ L) and behind the pulse (ξ< 0) are,
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8
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and
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where

ε = mc2a2r/e and f = 1− k2po L

4π2

2( )−1

.

Similarly, from Eq. (10) the lowest order transverse Wake-
fields within (0≤ ξ≤ L) and behind (ξ< 0) the pulse are

E(0)
r = − εr

2r2o
Ω2Ω2

p f cos kpo(L− ξ)
[

+ (Ω2
s − Ω2Ω2
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− f cos kpoξ
}
+ Ω2

s cos
2πξ
L
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(12b)

The lowest order magnetic field, within (0≤ ξ≤ L) and
behind (ξ< 0) the pulse is obtained by substituting the
value axial and transverse electric Wakefield from Eqs.
(11) and Eq. (12) in Eq. (6a). The magnetic field within
the pulse is Bθ

(0)= 0, while the magnetic field behind the
pulse is

B(0)
θ = − εr

2r2o
Ω2

s cos
2πξ
L

[

− f cos kpoξ+Ω2Ω2
p f cos kpoξ− Ω2

s + f (1−Ω2Ω2
p)
]
.

(12c)

It is evident that the above field is zero for on-axis (r= 0)
propagation.

Electric, magnetic Wakefields, and electron acceleration in quantum plasma 269

https://doi.org/10.1017/S026303461200002X Published online by Cambridge University Press

https://doi.org/10.1017/S026303461200002X


On further perturbative expansion of Eq. (9), the equation
for first order axial Wakefield comes out to be,
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where, Ωk = (ekk poΩ/m)Eo sin (kz− ωt). In solving the
above equation, the first order axial fields within and
behind the pulse are found to be
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respectively. The first order transverse electric Wakefields
within and at the back of the pulse are obtained by substitut-
ing Eq. (13) into Eq. (10) as
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respectively. Substitution of Eqs. (13) and (14) into Eq. (6a)
give the first order magnetic Wakefields within and behind
the pulse.
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and

B(1)
θ = − 3rLεf

k por4o
(Ω2Ω2

p − 1) 1− r2

r2o

( )
sin kpoξ. (15b)

The higher order (second and higher) Wakefields can be
obtained similarly. It is evident that all the Wakefields are
proportional to the intensity of the laser pulse.

4. ELECTRON ACCELERATION

The maximum axial Wakefields within and behind the
pulse are obtained using Eqs. (11) and (13) evaluated in
the limit L→ λp as
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The maximum transverse electric Wakefield for L→ λp is
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and the maximum magnetic Wakefield is found to be
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In a LWFA, we consider a test electron moving along
the z-direction of the laser plasma interaction region. The
maximum longitudinal force experienced by test electron is
given by,

Fz = −eEzm.

The electron will be accelerated by this force if Fz> 0. The
maximum transverse force is,

Fr = −eErm + eBθm.

The evolution of the normalized force within the pulse
Fz,r/mcωpo with ξ/L is shown in Figure 1 for no=1034

m−3, ao
2= 0.05, ro= 15.0 μm and r= 4.0 μm. The solid

curve represents the axial while the dotted line represents
the transverse force. The force is greater in the axial direc-
tion in comparison to the transverse direction.

The variation of the normalized force behind the pulse
Fz,r/mcωpo with ξ/L is shown in Figure 2 for the same par-
ameters as in Figure 1. The solid line represents the axial
white the dotted represents the transverse force. The force
is greater in the axial direction then in the transverse direc-
tion. The accelerating force produced due to Wakefields in
quantum plasma is greater than that produced in classical
plasma for similar values of parameters.

5. SUMMARY AND DISCUSSION

We have studied in detail, the Wakefield generation by an in-
tense laser pulse traveling through dense quantum plasma.
We have used the electron continuity and electron momen-
tum equation including the quantum statistical pressure and
the quantum Bohm force, together with the Poisson equation
to obtain the perturbed density and velocity. Equations for

Fig. 1. Variation of the normalized force within the pulse Fz,r/mcωpo with
ξ/L for no= 1034 m−3, ao

2= 0.05, ro= 15.0 μm and r= 4.0 μm.

Fig. 2. Variation of the normalized force behind the pulse Fz,r/mcωpo with
ξ/L for no= 1034 m−3, ao

2= 0.05,ro= 15.0 μm and r= 4.0 μm.
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Wakefields are setup for radial Gaussian field amplitude.
Electric and magnetic Wakefields have been derived with
the help of time dependent Maxwell’s equations using quasi-
static approximation. It is found that ponderomotive non-
linear effects, quantum force and quantum statistical
pressure contribute to transverse as well as longitudinal
Wakefield generation. However, nonlinear terms represent-
ing vortex motion contribute only to transverse velocity com-
ponents. The zeroth and first order electric and magnetic
Wakefields (both transverse and longitudinal) within and
behind the pulse have been obtained for a sinusoidal pulse
profile.
The maximum axial and transverse forces acting on a test

electron due to theWakefields have been evaluated. The vari-
ation of these forces with ξ/L have been studied graphically.
It is found that even weak short pulses are capable of gener-
ating considerable Wakefields. The force behind the pulse is
greater than within the pulse. Wakefields generated within
the pulse are of the same order, whereas behind the pulse,
axial field is greater than transverse. Simultaneous accelera-
tion focusing is observed in the regime where FZ > 0 and
Fr < 0. The laser induced Wakefields can trap electrons
and accelerate them to high energies at nanoscales in dense
plasmas, such as those in the next generation intense laser-
solid density plasma experiments, free electron lasers, plas-
monic devices and in compact astrophysical objects (Harding
& Lai, 2006).
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