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Abstract

The problem of mechanically formalizing and proving metatheoretic properties of program-

ming language calculi, type systems, operational semantics, and related formal systems has

received considerable attention recently. However, the dual problem of searching for errors

in such formalizations has attracted comparatively little attention. In this article, we present

αCheck, a bounded model checker for metatheoretic properties of formal systems specified

using nominal logic. In contrast to the current state of the art for metatheory verification,

our approach is fully automatic, does not require expertise in theorem proving on the part

of the user, and produces counterexamples in the case that a flaw is detected. We present

two implementations of this technique, one based on negation-as-failure and one based on

negation elimination, along with experimental results showing that these techniques are fast

enough to be used interactively to debug systems as they are developed.

KEYWORDS: nominal logic, model checking, counterexample search, negation elimination

1 Introduction

Much of modern programming languages research is founded on proving properties

of interest by syntactic methods, such as cut elimination, strong normalization, or

type soundness theorems (Pierce 2002). Convincing syntactic proofs are challenging

to perform on paper for several reasons, including the presence of variable binding,

substitution, and associated equational theories (such as α-equivalence in the λ-

calculus and structural congruences in process calculi), the need to perform reasoning

by simultaneous or well-founded induction on multiple terms or derivations, and

the often large number of cases that must be considered. Paper proofs are believed

to be unreliable due in part to the fact that they usually sketch only the essential
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Fellowship.
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part of the argument, while leaving out verification of the many subsidiary lemmas

and side conditions needed to ensure that all of the proof steps are correct and that

all cases have been considered.

A great deal of attention, reinvigorated by the POPLMark Challenge (Aydemir

et al. 2005), has been focused on the problem of metatheory mechanization, that

is, formally verifying such properties using computational tools. Formal, machine-

checkable proof is widely agreed to provide the highest possible standard of evidence

for believing such a system is correct. However, all theorem proving/proof assistant

systems that have been employed in metatheory verification (to name a few Twelf,

Coq, Isabelle/HOL, HOL, Abella, Beluga) have steep learning curves; using them to

verify the properties of a non-trivial system requires a significant effort even after the

learning curve has been surmounted, because inductive theorem proving is currently

a brain-bound, not CPU-bound, process. Moreover, verification attempts provide

little assistance in the case of an incorrect system, even though this is the common

case during the development of such a system. Verification attempts can flounder

due to either flaws in the system, mistakes on the user’s part, or the need for new

representations or proof techniques compatible with mechanized metatheory tools.

Determining which of these is the case (and how best to proceed) is part of the

arduous process of becoming a power user of a theorem-proving system.

These observations about formal verification are not new. They have long been

used to motivate model checking (Clarke et al. 2000). In model checking, the user

specifies the system and describes properties which it should satisfy; it is the

computer’s job to search for counterexamples or to determine that none exist.

Although it was practical only for small finite-state systems when first proposed

more than 30 years ago, improved techniques for searching the state space efficiently

(such as symbolic model checking) have now made it feasible to verify industrial

hardware designs. As a result, model checking has gained widespread acceptance in

industry.

We argue that mechanically verified proof is neither the only nor always the

most appropriate way of gaining confidence in the correctness of a formal system;

moreover, it is almost never the most appropriate way to debug such a system,

especially in early stages of development. This is certainly the case in the area

of hardware verification, where model checking has surpassed theorem proving in

industrial acceptance and applicability. For finite systems such as hardware designs,

model checking is, in principle, able to either guarantee that the design is correct, or

produce a concrete counterexample. Model-checking tools that are fully automatic

can often leverage hardware advances more readily than interactive theorem provers

that require human guidance. Model checkers do not generally require as much

expertise as theorem provers; once the model specification and formula languages

have been learned, an engineer can formalize a design, specify desired properties, and

let the system do the work. Researchers can (and have) focused on the orthogonal

issue of representing and exploring the state space efficiently so that the answer

is produced as quickly as possible. This separation of concerns has catalyzed

great progress toward adoption of model checking for real-world verification

problems.
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We advocate mechanized metatheory model checking as a useful complement to

established theorem-proving techniques for analyzing programming languages and

related systems. Of course, such systems are usually infinite state, so they cannot

necessarily be verified through brute-force search techniques, but we can at least

automate the search for counterexamples over bounded, but arbitrarily large, subsets

of the search space. Such bounded model checking (failure to find a simple

counterexample) provides a degree of confidence that a design is correct, albeit

not as much confidence as full verification. Nevertheless, this approach shares other

advantages of model checking: it is CPU bound, not brain bound; it separates high-

level specification concerns from low-level implementation issues; and it provides

explicit counterexamples. Thus, bounded model checking is likely to be more helpful

than verification typically is during the development of a system.

In this article, we describe αCheck, a tool for checking desired properties of formal

systems implemented in αProlog, a nominal logic programming language. Nominal

logic programming combines the nominal terms and associated unification algorithm

introduced by Urban et al. (2004) with nominal logic as explored by Pitts (2003),

Gabbay and Cheney (2004), and Cheney (2016). In αProlog, many object languages

can be specified using Horn clauses over abstract syntax trees with “concrete” names

and binding modulo α-equivalence (Cheney and Urban 2008).

Roughly, the idea is to test properties/specifications of the form H1 ∧ · · · ∧Hn ⊃
A by searching exhaustively (up to a bound) for a substitution θ such that

θ(H1), . . . , θ(Hn) all hold but the conclusion θ(A) does not. Since we live in a

logic programming world, the choice of what we mean by “not holding” is crucial,

as we must choose an appropriate notion of negation. We explore two approaches,

starting with the standard negation-as-failure rule, known as NAF (Section 4). This

choice inherits many of the positive characteristics of NAF , e.g. its implementation

being simple and quite effective. However, it does not escape the traditional

problems associated with an operational notion of negation, such as the need

for full instantiation of all free variables before solving the negated conclusion

and the presence of several competing semantics (three-valued completion, stable

semantics, etc. (Apt and Bol 1994)). The latter concern is significant because the

semantics of NAF has not yet been investigated for nominal logic programming.

As a radical solution to this impasse, we therefore adopt the technique of negation

elimination, abridged as NE (Barbuti et al. 1990; Momigliano 2000), a source-to-

source transformation replacing negated subgoals with calls to equivalent positively

defined predicates (Section 5). In this way, the resulting program is a negation-free

αProlog program, possibly with a new form of universal quantification, which we call

extensional. The net results brought by the disappearance of the issue of negation are

the avoidance of the expensive term generation step needed to ground free variables,

the recovery of a clean proof-theoretic semantics and the possibility of optimization

of properties by goal reordering.

We maintain that our tool helps to find bugs in high-level specifications of

programming languages and other calculi automatically and effectively (Section 2.2).

The beauty of metatheory model checking is that, compared to other general forms

of system validation, the properties that should hold are already given to the
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user/tester by means of the theorems that the calculus under study is supposed to

satisfy; of course, those need to be fine tuned for testing to be effective, but we are

mostly free of the thorny issue of specification/invariant generation.

Our experience (Section 6) has been that while brute-force testing cannot yet

find “deep” problems (such as the well-known unsoundness in old versions of

ML involving polymorphism and references) by itself, it is extremely useful for

eliminating “shallow” bugs such as typographical errors that are otherwise time

consuming and tedious to eliminate. This applies in particular to regression testing

of specifications.

To sum up, the contributions of this paper are

• the presentation of the idea of metatheory model checking, as a complementary

approach to the formal verification of properties of formal systems;

• the adaptation of negation elimination to a fragment of nominal logic

programming, endowing αProlog with a sound and declarative notion of

negation;

• the description of the αCheck tool;

• an extensive set of experiments that show that the tool has encouraging

performance and is immediately useful in the validation of the encoding of

formal systems.

This paper is a major extension of our previous work (Cheney and Momigliano

2007), where we give full details about the correctness of the approach, we

significantly enlarge the set of experiments and we give an extensive review of

related work, which has notably expanded since the initial conference publication.

In fact, the idea of using testing and counter-model generation alongside formal

metatheory verification has, in the past few years, gone mainstream; this happened

mainly by importing the idea of property-based testing pioneered by the QuickCheck

system (Claessen and Hughes 2000) into environments for the specification of

programming languages, e.g., PLT-Redex (Felleisen et al. 2009), or outright proof

assistants such as Isabelle/HOL (Blanchette et al. 2011) and Coq (Paraskevopoulou

et al. 2015). Our approach helped inspire some of these techniques, and remains

complementary to most of them; we refer to Section 7 for a detailed comparison.

The structure of the remainder of the article is as follows. Following a brief

introduction to αProlog, Section 2 presents αCheck at an informal, tutorial level.

Section 3 introduces the syntax and semantics of a core language for αProlog, which

we shall use in the rest of the article. Section 4 discusses a simple implementation

of metatheory model checking in αProlog based on negation-as-failure. Section 5

defines a negation elimination procedure for αProlog, including extensional universal

quantification. Section 6 presents experimental results that show the feasibility and

usefulness of metatheory model checking. Sections 7 and 8 discuss related and future

work and conclude. Detailed proofs as well as the debugged code of the example in

Section 2.2 can be found in the electronic appendix of this paper.
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2 Tutorial example

2.1 αProlog background

We will specify the formal systems whose properties we wish to check, as well as

the properties themselves, as Horn clause logic programs in αProlog (Cheney and

Urban 2008). αProlog is a logic programming language based on nominal logic and

using nominal terms and their associated unification algorithm for resolution, just

as Prolog is based on first-order logic and uses first-order terms and unification for

resolution. Unlike ordinary Prolog, αProlog is typed; all constants, function symbols,

and predicate symbols must be declared explicitly. We provide a brief review in

this section and a more detailed discussion of a monomorphic core language for

αProlog in Section 3; many more details, including examples illustrating how to

map conventional notation for inference rules to αProlog and a detailed semantics,

can be found in Cheney and Urban (2008). We provide further discussion of related

work on nominal techniques in Section 7.

In αProlog, there are several built-in types, functions, and relations with special

behavior. There are distinguished name types that are populated with infinitely

many name constants. In program text, a name constant is generally a lower case

symbol that has not been declared as something else (such as a predicate or

function symbol). Names can be used in abstractions, written a\M in programs.

Abstractions are considered equal up to α-renaming of the bound name for the

purposes of unification in αProlog. Thus, where one writes λx.M, νx.M, etc. in a

paper exposition, in αProlog one writes lam(x\M), nu(x\M), etc. In addition, the

freshness relation a # t holds between a name a and a term t that does not contain

a free occurrence of a. Thus, where one would write x �∈ FV (t) in a paper exposition,

in αProlog one writes x # t.

Horn clause logic programs over these operations suffice to define a wide variety

of core languages, type systems, and operational semantics in a convenient way.

Moreover, Horn clauses can also be used as specifications of desired program

properties, including basic lemmas concerning substitution as well as main theorems

such as preservation, progress, and type soundness. We therefore consider the

problem of checking specifications

#check "spec" n : H1, ..., Hn => A.

where spec is a label naming the property, n is a parameter that bounds the search

space, and H1 through Hn and A are atomic formulas describing the preconditions

and conclusion of the property. As with program clauses, the specification formula

is implicitly universally quantified. As a simple, running example, we consider the

lambda-calculus with pairs, together with appropriate specifications of properties

that one usually wishes to verify. The abstract syntax, substitution, static, and

dynamic semantics for this language are shown in Figure 1, and the αProlog encoding

of the syntax of this language is shown in the first part of Figure 2.

Terms and substitution. In contrast to other techniques such as higher order abstract

syntax, there is no built-in substitution operation in αProlog, so we must define

it explicitly. Nevertheless, substitution can be defined declaratively, see Figure 2.
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Types A,B ::= 1 | A ∗ B | A → B
Terms M ::= x λx . M | M1 M2 M1,M2 fst M | snd M
Values V ::= λx . M V1 V2

Contexts Γ ::= · | Γ, x : A

M /x} =
x{M /x} = M
y{M /x} = y (x = y)

(M1M2){M /x} = M1{M /x}M2{M /x}
M1, M2 M /x} = M1{M /x}, M2{M /x

(fst M ){M /x} = fst (M {M /x})
(snd M ){M /x} = snd (M {M /x})
(λy .M ){M /x} = λy .M {M /x} (y FV (x ,M ))

: 1
T-1

x : A ∈ Γ
Γ x : A

T-VAR
x Γ Γ, x : A M : B

Γ λx : A.M : A → B
T-ABS

Γ M1 : A1 Γ M2 : A2

Γ M1, M2 : A1 ∗ A2
T-PAIR

Γ M1 : A → B Γ M2 : A

Γ M1M2 : B
T-APP

Γ M : A1 ∗ A2

Γ fst M : A1
T-FST

Γ M : A1 ∗ A2

Γ snd M : A2
T-SND

λx : A.M V M {V /x} E-ABS

M1 M1

M1M2 M1M2
E-APP1

M M

V M V M
E-APP2

M1 M1

M1,M2 M1,M2
E-PAIR1

M M

V ,M V ,M
E-PAIR2

M M

fst M fst M
E-FST

M M

snd M snd M
E-SND

fst V1,V2 V1
E-FP

snd V1,V2 V2
E-SP

Fig. 1. Static and dynamic semantics of the λ-calculus with pairs.

For convenience, αProlog provides a function-definition syntax, but this is simply

syntactic sugar for its relational implementation. Most cases are straightforward; the

cases for variables and lambda abstraction both use freshness subgoals to check that

variables are distinct or do not appear fresh in other expressions. Despite these side

conditions, substitution is a total function on terms quotiented by α-equivalence;

see Gabbay (2011) and Pitts (2013) for more details.

After the definition of the sub function, we have added some directives that state

desired properties of substitution that we wish to check. First, the sub_fun property

states that the result of substitution is uniquely defined. Since sub is internally

translated to a relation in the current implementation, this is not immediate, so it

should be checked. Second, sub_id checks that substituting a variable with itself

has no effect. The sub_fresh property is the familiar lemma that substituting has

no effect if the variable is not present in M; the last property sub_sub is a standard

substitution commutation lemma.

Types and typechecking. Next, we turn to types and typechecking, shown in Figure 3.

We introduce constructors for simple types, namely unit, pairing, and function

types. The typechecking judgment is standard. In addition, we check some standard
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id : name_type.

tm : type.

ty : type.

var : id -> tm.

unit : tm.

app : (tm,tm) -> tm.

lam : id\tm -> tm.

pair : (tm,tm) -> tm.

fst : tm -> tm.

snd : tm -> tm.

func sub(tm,id,tm) = tm.

sub(var(X),X,N) = N.

sub(var(X),Y,N) = var(Y) :- X # Y.

sub(app(M1,M2),Y,N) = app(sub(M1,Y,N),sub(M2,Y,N)).

sub(lam(x\M),Y,N) = lam(x\sub(M,Y,N)) :- x # (Y,N).

sub(unit,Y,N) = unit.

sub(pair(M1,M2),Y,N) = pair(sub(M1,Y,N),sub(M1,Y,N)).

sub(fst(M),Y,N) = fst(sub(M,Y,M)).

sub(fst(M),Y,N) = snd(sub(M,Y,N)).

#check "sub_fun" 5 : sub(M,x,N) = M1, sub(M,x,N) = M2 => M1 = M2.

#check "sub_id" 5 : sub(M,x,var(x)) = M.

#check "sub_fresh" 5 : x # M => sub(M,x,N) = M.

#check "sub_sub" 5 : x # N’

=> sub(sub(M,x,N),y,N’) = sub(sub(M,y,N’),x,sub(N,y,N’)).

Fig. 2. αProlog specification of the λ-calculus: Terms and substitution.

unitTy : ty.

==> : ty -> ty -> ty. infixr ==> 5.

** : ty -> ty -> ty. infixl ** 6.

type ctx = [(id,ty)].

pred wf_ctx(ctx).

wf_ctx([]).

wf_ctx([(X,T)|G]) :- X # G, wf_ctx(G).

pred tc(ctx,tm,ty).

tc([(V,T)|G],var(V), T).

tc(G,lam(x\E),T1 ==> T2) :- x # G, tc ([(x,T1)|G], E, T2).

tc(G,app(M,N),T) :- tc(G,M,T ==> T0),

tc(G,N,T0).

tc(G,pair(M,N),T1 ** T2) :- tc(G,M,T1), tc(G,N,T2).

tc(G,fst(M),T1) :- tc(G,M,T1 ** T2).

tc(G,snd(M),T1) :- tc(G,M,T1 ** T2).

tc(G,unit,unitTy).

#check "tc_weak" 5 : x # G, tc(G,E,T), wf_ctx(G) => tc([(x,T’)|G],E,T).

#check "tc_sub" 5 : x # G, tc(G,E,T), tc([(x,T)|G],E’,T’), wf_ctx(G)

=> tc(G,sub(E’,x,E),T’).

Fig. 3. αProlog specification of the λ-calculus: Types, contexts, and well-formedness.
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pred value(tm).

value(lam(_)).

value(unit).

value(pair(V,W)) :- value(V),value(W).

pred step(tm,tm).

step(app(lam(x\M),N),sub(N,x,M)) :- value(N).

step(app(M,N),app(M’,N)) :- step(M,M’).

step(app(V,N),app(V,N’)) :- value(V), step(N,N’).

step(pair(M,N),pair(M’,N)) :- step(M,M’).

step(pair(V,N),pair(V,N’)) :- value(V), step(N,N’).

step(fst(M),fst(M’)) :- step(M,M’).

step(fst(pair(V1,V2)),V1) :- value(V1), value(V2).

step(snd(M),snd(M’)) :- step(M,M’).

step(snd(pair(V1,V2)),V2) :- value(V1), value(V2).

pred progress(tm).

progress(V) :- value(V).

progress(M) :- step(M,_).

pred steps(exp,exp).

steps(M,M).

steps(M,P) :- step(M,N), steps(N,P).

#check "tc_pres" 5 : tc([],M,T), step(M,M’) => tc([],M’,T).

#check "tc_prog" 5 : tc([],E,T) => progress(E).

#check "tc_sound" 5 : tc([],E,T), steps(E,E’) => tc([],E’,T).

Fig. 4. αProlog specification of the λ-calculus: Reduction, type preservation, progress, and

soundness.

properties of typechecking, including weakening (tc_weak) and the substitution

lemma (tc_sub). Note that since we are merely specifying, not proving, the substi-

tution lemma, we do not have to state its general form. However, since contexts are

encoded as lists of pairs of variables and types, to avoid false positives, we do have

to explicitly define what it means for a context to be well-formed: contexts must not

contain multiple bindings for the same variable. This is specified using the wf_ctx

predicate.

Evaluation and soundness. Now we arrive at the main point of this example, namely

defining the operational semantics and checking that the type system is sound with

respect to it, shown in Figure 4. We first define values, introduce one-step and multi-

step call-by-value reduction relations, define the progress relation indicating that a

term is not stuck, and specify type preservation (tc_pres), progress (tc_prog), and

soundness (tc_sound) properties.

2.2 Specification checking

The alert reader may have noticed several errors in the programs in Figures 2–4. In

fact, every specification we have ascribed to it is violated. Some of the bugs were

introduced deliberately, others were discovered while debugging the specification
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using an early version of the tool. Before proceeding, the reader may wish to try to

find all of these errors.

We now describe the results of a run of αCheck on the above program, using

the NAF back end.1 Complete source code for αProlog and running instructions for

these examples can be found at http://github.com/aprolog-lang/.

First, consider the substitution specifications. αCheck produces the following

(slightly sanitized) output for the first one:

Checking for counterexamples to

sub_fun: sub(M,x,N) = M1, sub(M,x,N) = M2 => M1 = M2

Checking depth 1 2

Counterexample found:

M = fst(var(x))

M1 = fst(var(x))

M2 = snd(var(V))

N = var(V)

The first error is due to the following bug:

sub(fst(M),Y,N) = snd(sub(M,Y,N))

should be

sub(snd(M),Y,N) = snd(sub(M,Y,N))

The second specification also reports an error:

Checking for counterexamples to

sub_id: sub(M,x,var(x)) = M

Checking depth 1

Counterexample found:

M = var(V1)

x # V1

which appears to be due to the typo in the clause

sub(var(X),Y,N) = var(Y) :- X # Y.

which should be

sub(var(X),Y,N) = var(X) :- X # Y.

After fixing these errors, no more counterexamples are found for sub_fun, but we

have

Checking for counterexamples to

sub_id: sub(M,x,var(x)) = M

Checking depth 1 2 3

Counterexample found:

M = pair(var(x),unit)

Looking at the relevant clauses, we notice that

1 Negation elimination finds somewhat different counterexamples, as we discuss in Section 6.
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sub(pair(M1,M2),Y,N) = pair(sub(M1,Y,N),sub(M1,Y,N)).

should be

sub(pair(M1,M2),Y,N) = pair(sub(M1,Y,N),sub(M2,Y,N)).

After this fix, the only remaining counterexample involving substitution is

Checking for counterexamples to

sub_id: sub(M,x,var(x)) = M

Checking depth 1 2 3

Counterexample found:

M = fst(lam(y\var(y)))

The culprit is this clause

sub(fst(M),Y,N) = fst(sub(M,Y,M)).

which should be

sub(fst(M),Y,N) = fst(sub(M,Y,N)).

Once these bugs have been fixed, the tc_sub property checks out, but tc_weak

and tc_pres are still violated:

Checking for counterexamples to

tc_weak: x # G, tc(G,E,T), wf_ctx(G) => tc([(x,T’)|G],E,T)

Checking depth 1 2 3

Counterexample found:

E = var(V)

G = [(V,unitTy)]

T = unitTy

T’ = unitTy ** unitTy

--------

Checking for counterexamples to

tc_pres: tc([],M,T), step(M,M’) => tc([],M’,T)

Checking depth 1 2 3 4

Counterexample found:

M = app(lam(x\var(x)),unit)

M’ = var(V)

T = unitTy

For tc_weak, of course, we add to the too-specific clause

tc([(V,T)|G],var(V), T).

the clause

tc([_| G],var(V),T) :- tc(G,var(V),T).

For tc_pres, M should never have type-checked at type T, and the culprit is the

application rule:

tc(G,app(M,N),T) :- tc(G,M,T ==> T0),

tc(G,N,T0).

Here, the types in the first subgoal are backwards, and should be
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tc(G,app(M,N),T) :- tc(G,M,T0 ==> T),

tc(G,N,T0).

Some bugs remain after these corrections, but they are all detected by αCheck. In

particular, the clauses

tc(G,snd(M),T1) :- tc(G,M,T1 ** T2).

step(app(lam(x\M),N),sub(N,x,M)) :- value(N).

should be changed to

tc(G,snd(M),T2) :- tc(G,M,T1 ** T2).

step(app(lam(x\M),N),sub(M,x,N)) :- value(N).

After making these corrections, none of the specifications produce counterexamples

up to the depth bounds shown.

3 Core language

The implementation of αProlog features a number of high-level conveniences

including parameterized types such as lists, polymorphism, function definition

notation, and non-logical features such as NAF and the “cut” proof-search pruning

operator. For the purposes of metatheory model checking, we consider only input

programs within a smaller, better-behaved fragment for which the semantics (and

accompanying implementation techniques) are well-understood (Cheney and Urban

2008). In particular, to simplify the presentation, we consider only monomorphic,

non-parametric types; for convenience, our implementation handles lists as a special

case.

A signature Σ = (ΣD,ΣN,ΣP ,ΣF ) consists of sets ΣD and ΣN of base data types

δ, including a distinguished type o of propositions, and name types ν, respectively,

along with a collection ΣP of predicate symbols p : τ → o together with one ΣF of

function symbol declarations f : τ → δ. Here, types τ are formed according to the

following grammar:

τ ::= 1 | δ | τ× τ′ | ν | 〈ν〉τ

where 〈ν〉τ classifies name-abstractions, δ ∈ ΣD and ν ∈ ΣN . We consider constants

of type δ to be function symbols of arity 1→ δ.

Given a signature Σ, the language of terms over sets V of (logical) variables

X,Y , Z, . . . and A of names a, b, . . . is defined by the following grammar:

t, u ::= a | π ·X | 〈〉 | 〈t, u〉 | 〈a〉t | f(t)

π ::= id | (a b) ◦ π

π denotes a permutation over names, and π · X its suspended action on a logic

variable X. Suspended identity permutations are often omitted; that is, we write X

for id ·X. The abstract syntax 〈a〉t corresponds to the concrete syntax a\t for name-

abstraction. We say that a term is ground if it has no variables (but possibly does

contain names), otherwise it is non-ground or open. These terms are precisely those
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used in the nominal unification algorithm of Urban et al. (2004), and we will reuse

a number of definitions from that paper and from Cheney and Urban (2008); the

reader is encouraged to consult those papers for further explanation and examples.

We define the action of a permutation π on a name as follows:

id(a) = a

((a b) ◦ π)(c) =

⎧⎨
⎩

b π(c) = a

a π(c) = b

c c /∈ {a, b}

Note that these permutations have finite support, that is, the set of names a such that

π(a) �= a is finite, so π(−) is the identity function on all but finitely many names.

This fact plays an important role in the semantics of nominal logic and αProlog

programs.

The swapping operation is extended to act on ground terms as follows:

π · 〈〉 = 〈〉 π · f(t) = f(π · t)
π · 〈t, u〉 = 〈π · t, π · u〉 π · a = π(a)

π · 〈a〉t = 〈π · a〉π · t

Nominal logic includes two atomic formulas, equality (t ≈τ u) and freshness (s #τ

u). In nominal logic programming, both are treated as constraints, and unification

involves freshness constraint solving. The meaning of ground freshness constraints

a #τ u, where a is a name and u is a ground term of type τ, is defined using the

following inference rules, where f : τ→ δ ∈ ΣF :

a �= b

a #ν b a #1 〈〉
a #τ t

a #δ f(t)

a #τ1
t1 a #τ2

t2

a #τ1×τ2
〈t1, t2〉

a #ν ′ b a #τ t

a #〈ν ′〉τ 〈b〉t a #〈ν ′〉τ 〈a〉t

We define similarly the equality relation, which identifies abstractions up to “safe”

renaming:

a ≈ν a 〈〉 ≈1 〈〉
t1 ≈τ1

u1 t2 ≈τ2
u2

〈t1, t2〉 ≈τ1×τ2
〈u1, u2〉

t ≈τ u

f(t) ≈δ f(u)

a ≈ν b t ≈τ u

〈a〉t ≈〈ν〉τ 〈b〉u
a #ν (b, u) t ≈τ (a b) · u

〈a〉t ≈〈ν〉τ 〈b〉u

We adopt the convention to leave out the type subscript when it is clear from the

context.

The Gabbay–Pitts fresh-name quantifier N, which, intuitively, quantifies over names

not appearing in the formula (or in the values of its variables) can be defined in

terms of freshness; that is, provided the free variables and name of φ are {a, 
X},
the formula Na:ν. φ(a) is logically equivalent to ∃A:ν. A # 
X ∧ φ(A) (or, dually,

∀A:ν.A # 
X ⊃ φ(A)). However, as explained by Cheney and Urban (2008), we

use N-quantified names directly instead of variables because they fit better with

the nominal terms and unification algorithm of Urban et al. (2004). In αProlog

programs, the N-quantifier is written new.
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Given a signature, we consider goal and (definite) program clause formulas G and

D, respectively, defined by the following grammar:

E ::= t ≈ u | t # u

G ::= ⊥ | � | E | p(t) | G ∧ G′ | G ∨ G′ | ∃X:τ. G | Na:ν. G

D ::= � | p(t) | G ⊃ D | D ∧ D′ | ∀X:τ. D

This fragment of nominal logic known as N-goal clauses, which disallows the N

quantifier in the head of clauses, has been introduced in previous work (Cheney and

Urban 2008) and resolution based on nominal unification has been shown sound

and complete for proof search for this fragment. This is in contrast to the general

case where the more complicated (and NP-hard) equivariant unification problem

must be solved (Cheney 2010). For example, the clause

tc(G,lam(x\M),T ==> U) :- x # G, tc([(x,T)|G],M,U).

can be equivalently expressed as the following N-goal clause:

tc(G,lam(M),T ==> U) :- new x. exists N. N = x\M, tc([(x,T)|G],N,U).

Although we permit programs to be defined using arbitrary (sets of) definite

clauses Δ in N-goal form, we take advantage of the fact that such programs can

always be elaborated (see discussion in Section 5.2 of Cheney and Urban (2008))

to sets of clauses of the form ∀
X. G ⊃ p(t). It is also useful to single out in an

elaborated program Δ all the clauses that belong to the definition of a predicate,

def(p,Δ) = {D | D ∈ Δ, D = ∀
X. G ⊃ p(t)}.
We define contexts Γ to be sequences of bindings of names or of variables:

Γ ::= · | Γ, X:τ | Γ#a:ν

Note that names in closed formulas are always introduced using the N-quantifier; as

such, names in a context are always intended to be fresh with respect to the values

of variables and other names already in scope when introduced. For this reason, we

write name-bindings as Γ#a:ν, where the # symbol is a syntactic reminder that a

must be fresh for other names and variables in Γ.

Terms are typed according to the following rules:

Γ � 〈〉 : 1
a : ν ∈ Γ
Γ � a : ν

X : τ ∈ Γ Γ � π : perm

Γ � π ·X : τ

Γ � t1 : τ1 Γ � t2 : τ2

Γ � 〈t1, t2〉 : τ1 × τ2

Γ � a : ν Γ � t : τ
Γ � 〈a〉t : 〈ν〉τ

f : τ→ δ ∈ Σ Γ � t : τ

Γ � f(t) : δ

The judgment Γ � π : perm simply checks that all swappings in π involve names of

the same type. The typing rules for goals and definite clauses are straightforward.

We write TΣ
Γ[[τ]] for the set of all well-formed terms of type τ in signature Σ with

variables assigned types as in Γ and likewise we write GΣ
Γ and DΣ

Γ for the sets of

goals and respectively definite clauses formed with constants from Σ and variables

from Γ.

We define constraints to be G-formulas of the following form:

C ::= � | t ≈ u | t # u | C ∧ C ′ | ∃X:τ. C | Na:ν. C
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Γ;Δ;
R

Γ;K |= E

Γ; Δ;K ⇒ E
con

Γ;Δ;K ⇒ G1 Γ;Δ;K ⇒ G2

Γ;Δ;K ⇒ G1 ∧ G2
∧R

Γ;Δ;K ⇒ Gi

Γ;Δ;K ⇒ G1 ∨ G2
∨Ri

Γ;K |= ∃X :τ.C Γ, X :τ ;Δ;K, C ⇒ G

Γ;Δ;K ⇒ ∃X :τ.G
∃R

Γ;K |= Na:ν.C Γ#a:ν;Δ;K, C ⇒ G

Γ;Δ;K ⇒ Na:ν.G
NR

Γ;K |= ∃X : C ∧ t ≈ u Γ,X : ;Δ;K,C ⇒ G (∀X : G ⊃ p(t)) ∈ Δ

Γ;Δ;K ⇒ p(u)
back

Fig. 5. Proof search semantics of αProlog programs with backchaining.

We writeK for a set of constraints. Constraint solving is modeled by the satisfiability

judgment Γ;K |= C . Let θ be a valuation, i.e. a function from variables to ground

terms. We say that θ matches Γ (notation θ : Γ) if θ(X) : Γ(X) for each X, and all of

the freshness constraints implicit in Γ are satisfied, that is, if Γ = Γ1, X:τ,Γ2#a:ν,Γ3

then a # θ(X), as formalized by the following three rules:

θ : ·
θ : Γ · � θ(X) : τ

θ : Γ, X:τ

θ : Γ ∀X ∈ Γ.a # θ(X)

θ : Γ#a:ν

Define satisfiability for valuations as follows:

θ |= �
θ |= t ≈ u ⇐⇒ θ(t) ≈ θ(u)

θ |= t # u ⇐⇒ θ(t) # θ(u)

θ |= C ∧ C ′ ⇐⇒ θ |= C and θ |= C ′

θ |= ∃X:τ. C ⇐⇒ for some t : τ, θ[X := t] |= C

θ |= Na:ν. C ⇐⇒ for some b # (θ, C), θ |= C[b/a]

Then we say that Γ;K |= C holds if for all θ : Γ such that θ |=K, we have θ |= C .

Efficient algorithms for constraint solving and unification for nominal terms of the

above form and for freshness constraints of the form a # t were studied by Urban

et al. (2004). Note, however, that we also consider freshness constraints of the form

π ·X # π′ ·Y . These constraints are needed to express the α-inequality predicate neq

(see Figure 10 in Section 5.2). Constraint solving and satisfiability become NP-hard

in the presence of these constraints (Cheney 2010). In the current implementation

of αProlog, such constraints are delayed until the end of proof search, and any

remaining ones of the form π · X # π′ · X are checked for consistency by brute

force, as these are essentially finite domain constraints. Any remaining constraint

π ·X # π′ · Y , where X and Y are distinct variables, is always satisfiable.

We adapt here the “amalgamated” proof-theoretic semantics of αProlog programs,

introduced in Cheney and Urban (2008), based on previous techniques stemming

from CLP (Leach et al. 2001) — see Figure 5. This semantics allows us to focus

on the high-level proof search issues, without requiring us to introduce or manage

low-level operational details concerning constraint solving. Differently from the

cited paper, we use a single backchaining-based judgment Γ; Δ;K ⇒ G, where Δ
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J1

J2

J3

Γ3;C3 |= M y N

Γ3;Δ;C3 ⇒ M y N
con

J4 Γ4;Δ;C4
R

Γ3;Δ;C3 ⇒ tc((y , T ) :: G,N ,U )
back

Γ3; Δ;C3 ⇒ M y N ∧ tc((y , T ) :: G, N ,U )
∧R

Γ2;Δ;C2 ⇒ ∃N .M y N ∧ tc((y , T ) :: G, N ,U )
∃R

Γ1;Δ;C1 ⇒ Ny.∃N .M y N ∧ tc((y , T ) :: G, N ,U )
NR

·;Δ; · ⇒ tc([], lam( x var(x)),A ⇒ A)
back

where:

J1 = ·; · |= ∃G, M ,T ,U .C1 ∧ E1

Γ1 = G : ctx,M : tm,T : ty,U : ty

E1 = tc(G, lam(M ),T ⇒ U ) ≈ tc([], lam( x var(x)),A ⇒ A)

C1 = G = [] ∧ M = x var(x) ∧ T = A ∧ U = A

J2 = Γ1;C1 |= Ny.

Γ2 = Γ1#y

C2 = C1,

J3 = Γ1;C1 |= ∃N .N = var(y)

Γ3 = Γ2,N : tm

C3 = C2,N = var(y)

J4 = Γ3;C1,C2 |= ∃G ,X ,T .C3 ∧ E2

Γ4 = Γ3,G : ctx,X : id,T : tm

C4 = X = y ∧ T = U

E4 = tc((X , T ) :: G , var(X ), T ) ≈ tc((y, T ) :: G, N ,U )

Fig. 6. Partial derivation of goal tc([], lam(〈x〉var(x)), A⇒ A).

is our (fixed and elaborated) program and K a set of constraints, rather than the

partitioning of goal-directed or uniform proof search, and program clause-directed

or focused proof search (Miller et al. 1991). This style of judgment conforms better

to the proof techniques required to proving the correctness of the NE transformation

(see Section 5).

Figure 6 shows the derivation of the goal tc([], lam(〈x〉var(x)), A⇒ A), illustrating

how the rules in Figure 5 work. These rules are highly non-deterministic, requiring

choices of constraints in the ∃R, NR and backchaining rules. The choice of constraint

in the backchaining rule typically corresponds to the unifier, while constraints

introduced in the ∃R and NR rules correspond to witnessing substitutions or freshness

assumptions. These choices are operationalized in αProlog using nominal unification

and resolution in the operational semantics given by Cheney and Urban (2008), to

which we refer for more explanation.

4 Specification checking via negation-as-failure

The #check specifications correspond to specification formulas of the form:

N
a.∀
X. G ⊃ A (1)
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gen[[τ ]] : TΣ
Γ [[τ ]] → GΣ

Γ

gen[[1]](t) = t

gen [[τ1 × τ2]](t) = ∃X1:τ1,X2:τ2.t X1,X2 gen [[τ1]](X1) ∧ gen[[τ2]](X2)

gen [[δ]](t) = genδ(t)

gen [[ ν τ ]](t) = Na:ν.∃X :τ.t a X ∧ gen[[τ ]](X )

gen [[ν]](t) =

genδ(t) :− {∃X :τ.t ≈ f (X ) ∧ gen[[τ ]](X ) | f : τ → δ ∈ Σ}

Fig. 7. Term-generator predicates.

where G is a goal and A an atomic formula (including equality and freshness

constraints). Since the N-quantifier is self-dual, the negation of a formula (1) is of

the form N
a.∃
X.G∧¬A. A (finite) counterexample is a closed substitution θ providing

values for 
X that satisfy this formula using NAF : that is, such that θ(G) is derivable,

but the conclusion θ(A) finitely fails.

We define the bounded model checking problem for such programs and properties

as follows: given a resource bound (e.g. a bound on the sizes of counterexamples or

number of inference steps needed), decide whether a counterexample can be derived

using the given resources, and if so, compute such a counterexample.

To begin with, we consider two approaches to solving this problem using NAF .

First, we could simply enumerate all possible valuations and test them using negation-

as-failure. More precisely, given predicates gen[[τ]] : τ→ o for each type τ (see Figure

7), which generate all possible values of type τ, we may translate a specification of

the form (1) to a goal

N
a.∃
X:
τ. gen[[τ1]](X1) ∧ · · · ∧ gen[[τm]](Xm) ∧ G ∧ not(A) (2)

where not(A) is the ordinary negation-as-failure familiar from Prolog. In fact, we

only need to generate ground values for the free variables of A, to ensure that

negation-as-failure is well-behaved, since we can push the existential quantifiers of

any variables mentioned only in G into G. Such a goal can simply be executed in

the αProlog interpreter, using the number of resolution steps permitted to solve each

subgoal as a bound on the search space. This method, combined with a complete

search strategy such as iterative deepening, will find a counterexample, if one exists.

However, this is clearly wasteful, as it involves premature commitment to ground

instantiations. For example, if we have

gen[[τ]](X), gen[[τ]](Y ), bar(Y ), foo(X), not(baz(X,Y ))

and we happen to generate an X that just does not satisfy foo(X), we will still

search all of the possible instantiations of Y and derivations of bar(Y ) up to the

depth bound before trying a different instantiation of X. Instead, it is more efficient

to use the definitions of foo and bar to guide search toward suitable instantiations

of X and Y . Therefore, we consider an approach that first enumerates derivations of

the hypotheses and then tests whether the negated conclusion is satisfiable under the

resulting answer constraint. Compared with the ground substitution enumeration

technique above, this derivation-first approach simply delays the gen predicates until
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Fig. 8. “Finished” derivations for tc(G,E,T) up to depth 3.

after the hypotheses:

N
a.∃
X:
τ. G ∧ gen[[τ]](X1) ∧ · · · ∧ gen[[τ]](Xn) ∧ not(A) (3)

Of course, if G is a complex goal, the order in which we solve its subgoals can also

affect search speed, but we leave this choice in the hands of the user in the current

implementation.

In essence, this derivation-first approach generates all “finished” derivations of

the hypothesis G up to a given depth, considers all sufficiently ground instantiations

of variables in each up to the depth bound, and finally tests whether the conclusion

finitely fails for the resulting substitution. A finished derivation is the result of

performing a finite number of resolution steps on a goal formula in order to obtain

a goal containing only equations and freshness constraints. For example, the proof

search tree in Figure 8 shows all of the finished derivations of tc(G,E, T ) using at

most three resolution steps. Here, the conjunction of constraint formulas along a

path through the tree describes the solution corresponding to the path.

We note in passing that the dichotomy between the two approaches above corre-

sponds to the well-known problem that property-based systems such as QuickCheck

face when trying to test conjectures with hard-to satisfy premises — and this is

especially acute when random testing is used. The derivation-first approach is a very

simple rendering of the idea of smart generators (Bulwahn 2012a), thanks to the fact

that we are already living in a logic programming world — we discuss this further

in Section 7.

The gen[[τ]] predicates are implemented as a built-in generic function in αProlog:

Given a #check directive N
a.∀
X. G ⊃ A, the interpreter generates predicates genδ
for the (user-defined) datatypes δ over which the free variables of A range. Note

that we do not exhaustively instantiate base types such as name-types; instead, we
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just use a fresh variable to represent an unknown name. This appears to behave

correctly, but we do not have a proof of correctness.

The implementation of counterexample search using negation-as-failure described

in this section still has several disadvantages:

• NAF is unsound for non-ground goals, so we must sooner or later blindly

instantiate all free variables before solving the negated conclusion.2 This may

be expensive, as we have argued before, and prevents optimizations by goal

reordering. For an analogy, NE is to NAF as symbolic evaluation is to standard

(ground) testing in property-based testing, see Section 7.2.

• Proving soundness (and completeness) of counterexample search, particularly

with respect to names, requires proving properties of negation-as-failure in

αProlog that have not yet been studied.

• Nested negations are not well-behaved, so we cannot use negation (nor, of

course, if-then-else) in “pure” programs or specifications we wish to check.

Notwithstanding years of research, NAF (and an unsound version of it, by the

way) is the negation operator offered by Prolog. However, we are not interested in

programming, but in disproving conjectures and therefore relying on an operational

interpretation of negation seems sub-optimal.

We therefore consider an alternative approach, which, almost paradoxically,

addresses the issue of negation in logic programming by eliminating it.

5 Specification checking via negation elimination

Negation elimination (NE) (Barbuti et al. 1990; Momigliano 2000; Muñoz-

Hernández et al. 2004) is a source-to-source transformation aimed at replacing

negated subgoals with calls to equivalent positively defined predicates. NE by-passes

complex semantic and implementation issues arising for NAF since, in the absence of

local (existential) variables, it yields an ordinary (α)Prolog program, whose success

set is included in the complement of the success set of the original predicate that

occurred negatively. In other terms, a predicate and its complement are mutually

exclusive. Moreover, for terminating programs, we also expect exhaustivity: that is,

either the original predicate or its negation will succeed on a given input — of

course, we cannot expect this for arbitrary programs that may denote sets whose

complement is not recursively enumerable. When local variables are present, the

derived program will also feature a form of extensional universal quantification, as

we detail in Section 5.2.

We begin by summarizing how negation elimination works at a high level.

Replacing occurrences of negated predicates with positive ones that are operationally

equivalent entails two phases:

• Complementing (nominal) terms. One reason an atom can fail is when its

arguments do not unify with any clause head in its definition. To exploit this

2 As well known, this can be soundly weakened to checking for bindings of the free variables of the goal
upon a successful derivation of the latter.
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observation, we pre-compute the complement of the term structure in each

clause head by constructing a set of terms that differ in at least one position.

This is known as the (relative) complement problem (Lassez and Marriott

1987), which we describe next in Section 5.1.

• Complementing (nominal) clauses. The idea of the clause complementation

algorithm is to compute the complement of each head of a predicate definition

using term complementation, while clause bodies are negated pushing negation

inwards until atoms are reached and replaced by their complement and

the negation of constraints is computed. The contributions of each of the

original clauses are finally merged. The whole procedure can be seen as a

negation normal form procedure, which is consistent with the operational

semantics of the language. The clause complementation algorithm is described

in Section 5.2.

5.1 Term complement

An open term t in a given signature can be seen as the intensional representation of

the set of its ground instances. Accordingly, the complement of t is the set of ground

terms which are not instances of t.

A complement operation satisfies the following desiderata: for fixed t, and all

ground terms s

1. Exclusivity: it is not the case that s is both a ground instance of t and of its

complement.

2. Exhaustivity: s is a ground instance of t or s is a ground instance of its

complement.

As it was initially observed in Lassez and Marriott (1987), this cannot be achieved

unless we restrict to linear terms, viz. such that they have no repeated occurrences

of the same logic variables. However, this restriction is immaterial for our intended

application, thanks to left-linearization, a simple source to source transformation,

where we replace repeated occurrence of the same variable in a clause head with

fresh variables that are then constrained in the body by ≈.

Complementing nominal terms, however, introduces new and more significant

issues, similarly to the higher order case. There, in fact, even restricting to pat-

terns, (intuitionistic) lambda calculi are not closed under complementation, due

the presence of partially applied lambda terms. Consider a higher order pattern

(lam [x] E) in Twelf’s concrete syntax, where the logic variable E does not depend

on x. Its complement contains all the functions that must depend on x, but this is not

directly expressible with a finite set of patterns. This problem is solved by developing

a strict lambda calculus, where we can directly express whether a function depends

on its argument (Momigliano and Pfenning 2003). Although we do not consider

logical variables at function types in αProlog, the presence of names, abstractions,

and swappings leads to a similar problem. Indeed, consider the complement of

say lam(x\var(x)): it would contain terms of the form lam(x\var(Y)) such that

x # Y. This means that the complement of a term (containing free or bound names)
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not [[τ ]] : TΣ
Γ [[τ ]] → P(TΣ

Γ [[τ ]])

not [[τ ]](t) = ∅ when τ ∈ {1, ν, ν τ} or t is a variable

not [[τ1 × τ2]](t1, t2) = {(s1, ) | s1 ∈ not [[τ1]](t1)} ∪ {( , s2) | ss ∈ not [[τ2]](t2)}
not [[δ]](f (t)) = {g( ) | g ∈ Σ, g : σ → δ,f = g} ∪ {f (s) | s ∈ not [[τ ]](t)}

Fig. 9. Term complement.

cannot again be represented by a finite set of nominal terms. A possible solution is to

embrace the (constraint) disunification route and this means dealing (at least) with

equivariant unification; this is not an attractive option since equivariant unification

has high computational complexity as shown in (Cheney 2010). As far as NE is

concerned, it is simpler to further restrict N-goal clauses to a fragment that is term

complement-closed: require terms in the heads of source program clauses to be

linear and also forbid occurrence of names (including swapping and abstractions)

in clause heads. These are replaced by logic variables appropriately constrained in

the clause body by a concretion to a fresh name. A concretion, written t@ a, is the

elimination form for abstraction. Concretions need not be taken as primitives, since

they can be implemented by translating G[t@ a] to ∃X. t ≈ 〈a〉X ∧G[X]. However,

we will not expand their definition during NE— this would introduce pointless

existential variables that would be turned into extensional universal quantifiers as

we explain in the next Section 5.2.

For example, the N-goal clause:

tc(G,lam(M),T ==> U) :- new x. exists Y. M = x\Y, tc([(x,T)|G],Y,U).

can instead be written as follows:

tc(G,lam(M),T ==> U) :- new x. tc([(x,T)|G],M@x,U).

avoiding an explicit existential quantifier in the body of the clause. Thus, we can

simply use a type directed functional version of the standard rules for first-order

term complementation, listed in Figure 9, where f : τ→ δ.

The correctness of the algorithm, analogously to previous results (Barbuti et al.

1990; Momigliano and Pfenning 2003), can be stated in the following constraint-

conscious way, as required by the proof of the main Theorem 1:

Lemma 1 (Term exclusivity)

Let K be consistent, s ∈ not[[τ]](t), FV (u) ⊆ Γ and FV (s, t) ⊆ 
X. It is not the case

that both Γ;K |= ∃
X:
τ. u ≈ t and Γ;K |= ∃
X:
τ. u ≈ s.

5.2 Clause complementation via generic operations

Clause complementation is usually described in terms of the contraposition of the

only-if part of the completion of a predicate (Barbuti et al. 1990; Bruscoli et al. 1994;

Muñoz-Hernández et al. 2004). We instead present a judgmental, syntax-directed

approach. To complement atomic constraints such as equality and freshness, we

need (α-)inequality and non-freshness; we implemented these using type-directed
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neq [[τ ]] : TΣ
Γ [[τ ]] × TΣ

Γ [[τ ]] → GΣ
Γ

neq [[1]](t , u) = ⊥
neq [[τ1 × τ2]](t , u) = neq [[τ1]](π1(t), π1(u)) ∨ neq [[τ2]](π2(t), π2(u))

neq [[δ]](t , u) = neqδ(t , u)

neq [[ ν τ ]](t , u) = Na:ν.neq [[τ ]](t @ a, u @ a)

neq [[ν]](t , u) = t # u

neqδ(t , u) :− {∃X ,Y :τ.t ≈ f (X ) ∧ u ≈ f (Y ) ∧ neq [[τ ]](X , Y )

| f : τ → δ ∈ Σ}
∨ {∃X :τ,Y :τ .t ≈ f (X ) ∧ u ≈ g(Y )

| f : τ → δ, g : τ → δ ∈ Σ, f = g}

nfr [[ν, τ ]] : TΣ
Γ [[ν]] × TΣ

Γ [[τ ]] → GΣ
Γ

nfr [[ν,1]](a, t) = ⊥
nfr [[ν, τ1 × τ2]](a, t) = nfr [[ν, τ1]](a, π1(t)) ∨ nfr [[ν, τ2]](a, π2(t))

nfr [[ν, δ]](a, t) = nfrν,δ(a, t)

nfr [[ν, ν τ ]](a, t) = Nb:ν .nfr [[τ ]](a, t @ b)

nfr [[ν, ν]](a, b) = a ≈ b

nfr [[ν, ν ]](a, b) = ⊥ (ν = ν )

nfrν,δ(a, t) :− {∃X :τ.t ≈ f (X ) ∧ nfr [[ν, τ ]](a, X ) | f : τ → δ ∈ Σ}

Fig. 10. Inequality and non-freshness.

notG( ) = ⊥
notG(⊥) =

notG(p(t)) = p¬(t)

notG(t ≈τ u) = neq [[τ ]](t , u)

notG(a #τ u) = nfr [[ν, τ ]](a, u)

notG(G ∧ G ) = notG(G) ∨ notG(G )

notG(G ∨ G ) = notG(G) ∧ notG(G )

notG(∃X :τ.G) = ∀∗X :τ.notG(G)

notG( Na:ν.G) = Na:ν.notG(G)

Fig. 11. Negation of a goal.

notD
i (∀X : p(t) :− G) = {∀X : p¬

i (u) | u ∈ not [[τ ]](t)} ∧
∀X : p¬

i (t) :− notG(G)

Fig. 12. Negation of a single clause.

code generation within the αProlog interpreter. We write neqδ , nfrν,δ , etc. as the

names of the generated clauses (cf. analogous notions in Fernández and Gabbay

(2005)). Each of these clauses is defined as shown in Figure 10, together with

mutually recursive auxiliary type-indexed functions neq[[τ]], nfr[[ν, τ]], etc. which are

used to construct appropriate subgoals for each type.
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notD(def(p, Δ)) =

n

i=1

notD
i (∀X : p(ti) :− Gi) ∧ ∀X . p¬(X ) :−

n

i=1

p¬
i (X )

where Δp = {p(t1) :− G1, . . . , p(tn ) :− Gn}
is the set of all clauses in Δ with head p.

Fig. 13. Negation of def(p,Δ).

Complementing goals, as achieved via the notG function (Figure 11), is quite

intuitive: we just put goals in negation normal form, respecting the operational

semantics of failure. Note that the self-duality of the N-quantifier (cf. Pitts (2003),

Gabbay and Pitts (2002)) allows goal negation to be applied recursively. The

existential case is instead more delicate: a well-known difficulty in the theory of

NE is that in general Horn programs are not closed under complementation, as first

observed in Mancarella and Pedreschi (1988); if a clause contains an existential

variable, i.e. a variable that does not appear in the head of the clause, the

complemented clause will contain a universally quantified goal, call it ∀∗X:τ. G.

Moreover, this quantification cannot be directly realized by the standard generic

search operation familiar from uniform proofs (Miller et al. 1991). In the latter

case, ∀X : A.G succeeds iff so does G[a/X], for a new eigenvariable a, while the

∀∗ quantification refers to every term in the domain, viz. ∀∗X:τ. G holds iff so

does G[t/X] for every (ground) term of type τ. We call this extensional universal

quantification.

We add to the rules in Figure 5 the following ω-rule for extensional universal

quantification in the sense of Gentzen and others:

∧
{Γ, X:τ; Δ;K, C ⇒ G | Γ;K |= ∃X:τ. C}

Γ; Δ;K⇒ ∀∗X:τ. G
∀∗ω

This rule says that a universally quantified formula ∀∗X:τ.G can be proved if

Γ, X:τ; Δ;K, C ⇒ G is provable for every constraint C such that Γ;K |= ∃X:τ. C

holds. Since this is hardly practical, the number of candidate constraints C being

infinite, we operationalize this rule in our implementation, similarly to Muñoz-

Hernández et al. (2004), by alternating between using the traditional ∀R rule and

type-directed expansion of the quantified variable, as shown in Figure 14: at every

stage, as dictated by the type of the quantified variable, we can either instantiate X

by performing a one-layer type-driven case distinction and further recur to expose

the next layer by introducing new ∀∗ quantifiers, or we can break the recursion

by viewing ∀∗ as generic quantification. The latter is available in the (first-order)

Hereditary Harrop formulæ extension of αProlog. This procedure is sound but may

not be complete w.r.t. ∀∗ω.

We now move to clause complementation, which is carried out definition-wise: if

∀(p(t) ← G) is the ith clause in def(p,Δ), i ∈ 1 . . . n, its complement must contain

a “factual” part motivating failure due to clash with (some term in) the head;

the remainder notG (G) expresses failure in the body, if any. This is accomplished

in Figure 12 by the notD
i function, where a set of negative facts is built via term

complementation not(t); moreover, the negative counterpart of the source clause
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Γ,X :τ ;Δ;K ⇒ G

Γ;Δ;K ⇒ ∀∗X :τ.G
∀∗∀

Γ;Δ;K ⇒ G[ /X ]

Γ;Δ;K ⇒ ∀∗X :1.G
∀∗1

Γ;Δ;K ⇒ ∀∗X1:τ1.∀∗X2:τ2.G[ X1,X2 /X ]

Γ;Δ;K ⇒ ∀∗X :τ1 × τ2.G
∀∗×

Γ;Δ;K ⇒ Na:ν.∀∗Y :τ.G[ a Y /X ]

Γ;Δ;K ⇒ ∀∗X : ν τ.G
∀∗abs

Γ;Δ;K ⇒ {∀∗Y :τ.G[f (Y )/X ] | f : τ → δ ∈ Σ}
Γ;Δ;K ⇒ ∀∗X :δ.G

∀∗δ

Fig. 14. Proof search rules for extensional universal quantification.

pred not_tc ([(id,ty)],exp,ty).

not_tc([],var(_),_).

not_tc([(_,_)| G],var(X),T) :- not_tc(G,var(X),T).

not_tc(G,app(M,N),U) :- forall* T. (not_tc(G,M,arr(T,U));

not_tc(G,N,T)).

not_tc(G,lam(M),T ==> U) :- new x. not_tc([(x,T)|G],M@x,U).

not_tc(G,pair(M,N),T ** U) :- not_tc(G,M,T) ; not_tc(G,N,U).

not_tc(G,fst(M),T) :- forall* U. not_tc(G,M,T ** U).

not_tc(G,snd(M),U) :- forall* T. not_tc(G,M,T ** U).

not_tc(_,lam(_),unitTy).

not_tc(_,lam(_),_ ** _).

not_tc(_,unit,_ ==> _).

not_tc(_,unit,_ ** _).

not_tc(_,pair(_,_),unitTy).

not_tc(_,pair(_,_),_ ==> _).

Fig. 15. Negation of typechecking predicate (with manual simplification).

is obtained via complementation of the body. Finally, all the contributions from

each source clause in a definition are merged by conjoining the above in the body

of a clause for another new predicate symbol, say p¬(X), which calls all the p¬i
(Figure 13).

We list in Figure 15 the complement of the typechecking predicate from Section 2,

which we have simplified by renaming and inlining the definitions of the p¬i .3

As expected, local variables in the application and projection cases yield the

corresponding ∀∗-quantified bodies.

The most important property for our intended application is soundness, which we

state in terms of exclusivity of clause complementation. Extend the signature Σp as

follows: for every p add a new symbol p¬ and for every clause pi ∈ (def(p,Δ)) add

new p¬i . Let Δ− = notD (def(p,Δ)) for all p in ΣP .

Theorem 1 (Exclusivity)

LetK be consistent. It is not the case that Γ; Δ;K⇒ G and Γ; Δ−;K⇒ notG (G).

Completeness (exhaustivity) can be stated as follows: if a goal G finitely fails from

Δ, then its complement notG (G) should be provable from Δ−. In a model checking

3 The unsimplified definition consists of more than 40 clauses.
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context, this is a desirable, though not vital property. Logic programs in fact may

define recursively enumerable relations, and the complement of such a program will

not capture the complement of the corresponding relation — consider for a simple

example, a Δ that defines the r.e. predicate halts that recognizes Turing machines

halting on their inputs; it is obvious that the predicate ¬halts cannot define the exact

complement of halts. We therefore cannot expect true completeness results unless

we restrict to recursive programs, and determining whether a logic program defines

a recursive relation is an orthogonal well-studied issue, see, e.g. the termination

analysis approach taken in the Twelf system (Pientka 2005). In any case, we do not

believe completeness is necessary for our approach to be useful, since we are mostly

interested in testing systems with undecidable predicates such as first-order sequent

calculi or undecidable typing/evaluation relations.

6 Experimental evaluation

We implemented counterexample search in the αProlog interpreter using both

(grounded) negation-as-failure and negation elimination, as described in the previous

section. In this section, we present performance results comparing these approaches.

We first measure the time needed by each approach to find counterexamples (TFCE).

Then we measure the amount of time it takes for a given approach to exhaust its

search space up to a given depth bound (TESS).

For NE , we considered two variants, one (called NE ) in which the ∀∗ quantifier

is implemented fully as a primitive in the interpreter, and a second in which ∀∗ is

interpreted as ordinary intensional ∀. The second approach, which we call NE−, is

incomplete relative to the first; some counterexamples found by NE may be missed

by NE−. Nevertheless, NE− is potentially faster since it avoids the overhead of run-

time dispatch based on type information (and since it searches a smaller number of

counterexample derivations).

All test have been performed under Ubuntu 15.04 on an Intel Core i7 CPU 870,

2.93 GHz with 8 GB RAM. We, somewhat arbitrarily, time-out the computation

when it exceeds 40 seconds.

6.1 The λ-calculus with pairs

We first go back to the examples in Section 2, using both the “buggy” version we

have presented and the debugged version in the electronic appendix.

Time to find counterexamples. For checks involving substitution, all counterexamples

were found by all approaches in less than 0.01 seconds. Table 1 shows the times

needed for checks involving typechecking, in seconds. The first column shows the

name of the checked property and the others the time taken together with the search

depth where the counterexample has been found by each technique.

In this benchmark, the three approaches NAF , NE , and NE− are basically

equivalent, despite the fact that the latter two potentially cover more of the search

space within a given depth bound. This is not always the case, as some of the other
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Table 1. TFCE and relative depths for code with bugs

NAF NE NE−

tc weak <0.01, 3 <0.01, 2 <0.01, 2

tc subst <0.01, 3 0.17, 3 0.15, 3

tc pres <0.01, 4 <0.01, 4 <0.01, 4

tc prog <0.01, 4 <0.01, 5 <0.01, 5

tc sound 3.76, 5 2.79, 5 2.14, 5

case studies mentioned in Section 6.3 showcase. In fact, axiomatizing what holds

to be true is intrinsically more economical than stating what is false. This is one

reason why techniques such as NAF , which gives an operational rather than logical

solution to the frame problem, have been so empirically successful. These results

also indicate that pragmatically speaking the faster NE− approach can be used first,

with NE as a backup if no counterexamples are found using NE−.

When using the derivation-first approach, the counterexamples found by NAF

(and discussed in Section 2) are in all cases but one (tc prog) ground instances of

the ones found by NE . In this benchmark, there is not a significant difference in

the depth bound, but in general NAF tends to find the counterexample at a smaller

bound than NE (and NE−).

Time to exhaust a finite search space. For each technique and test, we measured

TESS for n = 1, 2, . . . up to the point where we time-out. The experimental results

are shown in Table 2. For each test, we used the largest n for which all three

approaches were successful within the time-out. Note that we report the results

according to the “best” ordering of subgoals that we have experimented with.

These results are mixed. In some cases, particularly those involving substitution,

NE and NE− are clearly much more efficient (up to 10 times faster) than the

NAF approach. In others, particularly key results such as substitution and type

soundness, NE often takes significantly longer, up to five times, with NE− usually

doing better. On the other hand, for the tc_prog checks, both NE -based techniques

are competitive.

However, it is important to note that the search spaces considered by each of the

approaches for a given depth bound are not equivalent. Thus, it is not meaningful

to compare the different approaches directly based on the search bounds. Indeed,

it is not clear how we should report the sizes of the search spaces, since even a

simple unifier X = f(c, Z) represents an infinite (but clearly incomplete) subset of

the search space. We can, however, get an idea of the relationship between the search

spaces based on the depths at which counterexamples are found.

The translation of negated clauses in NE and NE− (Section 5) is a conjunction

of disjunctions. This causes our algorithm to do inefficient backtracking. This

can probably be improved using standard optimization techniques which are not

implemented in the current αProlog prototype. An alternative is changing the clause

complementation algorithm to obtain a more “succinct” negative program: some

initial results are presented in Cheney et al. (2016).
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Table 2. Time to search up to bound n for debugged code

n NAF NE NE−

sub fun 5 1.38 0.25 same as NE

sub id 7 9.85 0.82 same as NE

sub fresh 4 3.93 0.75 same as NE

sub comm 4 39.39 5.96 same as NE

tc weak 5 2.14 6.58 3.33

tc subst 4 6.15 33.56 26.86

tc pres 6 0.27 1.04 same as NE

tc prog 8 6.84 8.18 same as NE

tc sound 7 6.15 29.4 6.01

A second major source of inefficiency, which accounts for the difference be-

tween NE− and NE , is the extensional quantifier; in fact, NE− outperforms

NE significantly for checks tc weak, tc subst, tc sound involving extensional

quantifiers in the negation of tc. The culprit is likely the implementation of

extensional quantification as a built-in proof search operation, which dispatches

on type information at run-time. This is obviously inefficient and we believe it could

be improved. However, doing so appears to require significant alterations to the

implementation.

Variations. We performed also some limited experiments comparing the two ap-

proaches based on negation-as-failure, and by changing the order of subgoals

(Table 3) w.r.t. TFCE and TESS. Not surprisingly, we found that placing the

generator predicates at the end of the list of hypotheses, and giving preference

to most constrained predicates (in terms of least number of clauses), generators

included, can make some difference, especially in terms of TESS. In fact, time-outs

in this case are more frequent. However, type-driven search, that is, putting the type

generator first, seems in this case the most successful strategy in terms of TFCE.

The most constrained goal first heuristic can be applied to NE and NE− as

well. We will not report the experimental evidence, but point out the in the NE

case we definitely want to give precedence to predicates that do not use extensional

quantification. In both cases, by the very fact that negated predicates are now

positivized, they can be re-ordered as appropriate. This in contrast with NAF ,

where negated predicates must occur after grounding. Finally, we remark that those

orderings are not hard-coded but stay in the hands of the user, as she writes her

#check directives. This is important, as general heuristics cannot replace the user

understanding of the system under test (SUT).

6.2 Security type systems

For another test, we selected a variant of a case study mentioned in Blanchette and

Nipkow (2010): an encoding of the security type system of Volpano et al. (1996),

whereby the basic imperative language IMP is endowed with a type system that

prevents information flow from private to public variables. Given a fixed assignment
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Table 3. TFCE and TESS with NAF and different orderings on tc prog and tc sound

check TFCE TESS

tc([],E,T),gen exp(E) => progress(E) <0.01, 4 6.84, 8

gen exp(E),tc([],E,T) => progress(E) <0.01, 4 31.2, 8

tc([],E,T),steps(E,E’),gen ty(T),gen exp(E’) => tc([],E’,T) 3.74, 5 6.07, 7

tc([],E,T),steps(E,E’),gen exp(E’),gen ty(T) => tc([],E’,T) 3.98, 5 6.17, 7

steps(E,E’),tc([],E,T),gen ty(T),gen exp(E’) => tc([],E’,T) 5.62, 5 7.38, 7

gen ty(T),tc([],E,T),gen exp(E’),steps(E,E’) => tc([],E’,T) 1.11, 5 t.o., 7

gen ty(T),tc([],E,T),steps(E,E’),gen exp(E’) => tc([],E’,T) 0.36, 5 18.9, 7

gen ty(T),gen exp(E’),tc([],E,T),steps(E,E’) => tc([],E’,T) 9.82, 5 t.o., 7

gen exp(E’),gen ty(T),tc([],E,T),steps(E,E’) => tc([],E’,T) t.o. t.o., 7

sec a ≤ sec x l ≤ sec x

l x := a

sec x ≤ sec a l ≤ sec x
bug2

l x := a

l c1 l c2
bug1

l c1; c2

max (sec b) l c

l WHILE b DO c

l SKIP

max (sec b) l c1 max (sec b) l c2

l IF b THEN c1 ELSE c2

Fig. 16. Bugged rules for the Volpano et al. type system.

sec of security levels (naturals) to variables, then lifted to arithmetic and Boolean

expressions, the typing judgment l � c reads as command c does not contain any

information flow to variables lower then l and only safe flows to variables � l. We

inserted two mutations in the typing rule, one (bug1) suggested by Nipkow and

Klein (2014), which forgets an assumption in the sequence rule; the other (bug2),

inverting the first disequality in the assignment rule — the latter slipped in during

encoding. We show in Figure 16 the typing rules, where the over-strike and the box

signal the inserted mutations.

The properties that are influenced by those mutations relate states that agree

on the value of each variable below a certain security level, denoted as σ1 ≈�l σ2

(resp. σ1 ≈<l σ2) iff ∀x. sec x � l → σ1(x) = σ2(x) (resp. <). Given a standard

big-step evaluation semantics for IMP (Winskel 1993), relating an initial state σ and

a command c to a final state τ (〈c, σ〉 ↓ τ):

Confinement If 〈c, σ〉 ↓ τ and l � c, then σ ≈<l τ.

Non-interference If 〈c, σ〉 ↓ σ′, 〈c, τ〉 ↓ τ′, σ ≈�l τ and 0 � c, then σ′ ≈�l τ
′.

Our encoding is fully relational, where, for example, states and security assignments

are reified in association lists. We cannot rely on built-in types such as integers and

booleans, which αCheck does not handle yet, but we have to employ hand-written

(inefficient) datatypes for unary natural numbers and booleans. Finally, this case

study does not exercise binders intensely, as nominal techniques have a role in
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Table 4. TFCE on Volpano benchmark

NAF NE NE−

bug1 Confinement 0.03, 5 0.76, 7 t.o.

Non-interference 10.32, 8 8.13, 8 t.o.

bug2 Non-interference 3.91, 8 3.61, 8 t.o.

Table 5. TESS on Volpano benchmark

n NAF NE

Confinement 8 9.74 4.31

Non-interference 8 13.14 6.94

representing program variables as names and using freshness to guarantee well-

formedness of states and of variable security settings.

We sum up the results in Tables 4 and 5. A first thing to note is that negation elim-

ination is doing fairly well w.r.t. NAF catching the non-interference counterexamples,

notwithstanding having essentially to rely on extensional quantification: NE− in fact

shows its incompleteness here, failing to find any counterexample — this is why we

do not even bother to measure its TESS-behavior. NE ’s TESS behavior is also quite

pleasing and more so asymptotically, as we show in Figure 17.

For bug1, NE finds this counterexample to confinement: c is (SKIP ; x := 0),

sec x = 0, l > 0, σ maps x to a non-zero level and τ to 0. This would not hold were

the typing rule to check the second premise. A not too dissimilar counterexample

falsifies non-interference: c is (SKIP ; x := y), sec x = 0, sec y > 0, l = 0 and σ

maps y to n > 1 and x unconstrained (i.e. to a logic variable), while τ maps y to > 0

and keeps x unconstrained. NAF finds ground instances of the above, for example

in the first case l = 4. We omit the details of the counterexample to bug2.

6.3 Further experience

In addition to the examples discussed above, we have used the checker in several

more substantial examples. In this section, we briefly summarize some additional

experimental results and experiences with larger examples.

First, we discuss three case studies in which we defined object languages and

specified some of their desired properties from extant research papers:

• LF equivalence algorithms and their structural properties (Harper and Pfen-

ning 2005), which were formally verified in Nominal Isabelle by Urban et al.

(2011), with three mutations inserted.

• λzap, a “faulty lambda calculus” (Walker et al. 2006).

• The example based on “Causal commutative arrows and their

optimization” (Liu et al. 2009), also used as a case study for PLT Redex

by Klein et al. (2012a).
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Table 6. TFCE and TESS for additional experiments

NAF NE NE−

LFEquiv lem3.2(1) [TFCE] 0.1, 7 t.o. same as NE

lem3.4(1) [TFCE] 0.1, 7 0.1, 7 same as NE

lem3.4(2) [TFCE] 0.1, 7 t.o. same as NE

lem3.5(2) [TFCE] 0.1, 7 t.o. same as NE

Zap fstep det [TFCE] 0.1, 3 0, 2 same as NE

2fault [TFCE] 0, 3 0, 3 same as NE

CCA exists norm [TESS] 0.3, 6 36,6 0.1, 6

red equiv [TESS] 0.5, 4 0.6, 4 same as NE

5 6 7 8 9 10 11

10−1

100

101

102

103

depth level

ti
m

e
(s

ec
)

NAF

NE

Fig. 17. Loglinear-plot comparing NAF with NE in TESS on non-interference.

Table 6 summarizes TFCE and TESS measurements for these examples on repre-

sentative tests using NAF , NE and NE−.

We have also performed some additional case studies, for which we do not

report experimental results — some results about the last case study can be found

in Cheney et al. (2016), together with some additional comparison to other tools

such as Isabelle’s Nitpick and QuickCheck.

• A (type-unsafe) mini-ML language with polymorphism and references.

• The exercises in the Types.v and StlcProp.v chapters of Software Foun-

dations (Pierce et al. 2016), which ask whether properties such as type

preservation hold under variations of the given calculi.

• A λ-calculus with lists, from the PLT-Redex benchmarks suite (Findler et al.

2015).

We did not find previously unknown errors in these systems, nor did we expect

to; however, αCheck gives us some confidence that there are no obvious typos or

transcription errors in our implementations of the systems. In some cases, we were

able to confirm known, desired properties of the systems via counterexample search.

For example, in λzap, the type soundness theorem applies as long as at most one
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fault occurs during execution; we confirmed that two faults can lead to unsoundness.

Similarly, it is well-known that the naive combination of ML-style references and

let-bound polymorphism is unsound; we are able to confirm this by guiding the

counterexample search, but the smallest counterexample (that we know of) cannot

be found automatically in interactive time. Further, while re-encoding some of the

benchmarks proposed in the relevant literature, we have been successful in catching

almost all the inserted mutations (Cheney et al. 2016).

Our subjective experiences with the implementations have been positive. Writing

specifications for programs requires little added effort and also seems helpful for

documentation purposes.

From these experiences, several observations can be made:

(1) Checking properties of published, well-understood systems does confirm that

αCheck avoids false positives, but does not necessarily show that it is helpful

during the development of a system. Our personal experience strongly points

in this direction, but further study would be needed to establish this, perhaps

via usability studies.

(2) It is not advisable to just check the main properties such as type soundness,

since the system may be flawed in such a way that soundness holds trivially,

but other properties such as inversion or substitution fail. In fact, just checking

tc sound on our buggy λ-calculus will miss 80% of the bugs. Moreover, of the

bugs found, not only they are found at deeper levels and hence more likely to be

timed out, but they are more difficult to interpret, as, e.g. an issue with reduction

must be located to a bug in the substitution function. Instead, it is generally

worthwhile to enumerate all of the desired properties of the system (including

auxiliary properties that might arise during a proof). This could be especially

helpful when one wishes to make a change to the system, since the checks can

serve as regression tests.

(3) The ordering of subgoals often has a significant effect on performance and

we have informally adopted the “most constrained goal first” heuristic. Many

alternative search strategies and optimizations (e.g. random search, coroutining,

tabling), could be considered to improve performance.

7 Related work

7.1 Nominal abstract syntax

Our work builds on the nominal approach to abstract syntax initiated by Gabbay

and Pitts (2002), which has led to a great deal of research on unification, rewriting,

algebraic, and logical foundations of languages with name binding. Since the

conference version of this paper was published, there has been considerable work

on nominal techniques, particularly regarding unification and rewriting of nominal

terms. We do not have space to provide a comprehensive survey of this work; in this

section, we place our work in context, and point to other work that complements or

could be combined with our approach.
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Nominal terms, rewriting, and unification. There has been great progress on algo-

rithms for nominal unification and other algorithms and theory for nominal terms.

For example, αProlog uses the naive, asymptotically exponential algorithm for

nominal unification presented by Urban et al. (2004), but subsequent work has led

to more efficient algorithms (Calvès and Fernández 2008; Levy and Villaret 2010).

Implementing such techniques in αProlog may lead to faster specification checking.

It has also been shown that nominal terms and unification are closely related to

higher order patterns and higher order pattern unification (Cheney 2005a; Levy and

Villaret 2012). This suggests that one could perform nominal term complementation

by mapping nominal terms to higher order patterns, and using existing techniques

for higher order pattern complement (Momigliano and Pfenning 2003); however,

there would be little benefit to doing so, because the latter problem requires further

extensions to the type system to deal with binding, whereas our approach avoids

these complications by complementing first-order terms only and using the predicates

neq and nfr to deal with names and binding.

In αProlog, functions such as substitution can be defined, but they are imple-

mented by translation to relations (flattening). In αML (Lakin and Pitts 2009),

functional and logic programming styles are combined, using a variant of nominal

abstract syntax and unification that avoids the use of constant names. Rewriting

techniques (Fernández and Gabbay 2005), particularly nominal narrowing (Ayala-

Rincón et al. 2016), could be incorporated into αProlog and might improve the

performance of specification checking in the presence of function definitions.

Nominal logic and logic programming. Nominal logic was initially defined as a

Hilbert-style first-order theory axiomatizing names and name binding by Pitts (2003).

As with “first-order” or “higher order” logic, however, we regard “nominal logic”

as a name for a family of systems, not just the influential initial proposal by Pitts.

As a foundation for logic programming, Pitts’ system had two drawbacks: it did

not allow for constant names, and its Hilbert-style presentation made it difficult to

develop proof-theoretic semantics following Miller et al. (1991). Name constants are

required to use the nominal unification algorithm, and Cheney (2006) showed how

to incorporate name constants into nominal logic and established completeness and

Herbrand theorems relevant to logic programming. To address the second problem,

Gabbay (2007) proposed natural deduction system Fresh Logic and Gabbay and

Cheney (2004) proposed a related sequent calculus FL⇒. The system used as a basis

for αProlog by Cheney and Urban (2008) is the NL⇒ system of Cheney (2016),

which avoids some of the technical complications of earlier systems and is proved

conservative with respect to Pitts’ original axiomatization.

Nominal automata and model checking. Intriguing connections between nominal tech-

niques and automata theory have also come to light (Bojańczyk et al. 2013; Pitts

2016). In particular, Gadducci et al. (2006) have established interesting connections

between nominal sets and history-dependent automata (Montanari and Pistore 2005),

which can be used to model-check processes in calculi such as CCS or the pi-

calculus. Although we are not aware of any work on automata that could be used

to model-check properties of relations over nominal terms, it may be fruitful to
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investigate the relationship between our work and other directions that draw upon

the classical automata-theoretic approaches to model checking.

7.2 Testing, model checking, and mechanized metatheory

As stated earlier, our approach draws inspiration from the success of finite state

model-checking systems. Particularly relevant is the idea of symbolic model checking,

in which data structures such as Boolean decision diagrams represent large numbers

of similar states; in our approach, answer substitutions and constraints with free

variables play a similar role.

Testing. Another major inspiration comes from property-based testing in functional

programming languages, as first realized by QuickCheck for Haskell (Claessen and

Hughes 2000). QuickCheck provides type class libraries for generator functions

to construct random test data for user-defined types, as well as to monitor and

customize data distribution, and a logical specification language, basically coinciding

with Horn clauses, to describe the properties the program should satisfy. The

QuickCheck approach has been widely successful — so much that there are now

versions for many other programming languages, including imperative ones. A major

feature/drawback of QuickCheck is that the user has to program possibly fairly

sophisticated test generators to obtain a suitable distribution of values. Further,

random testing is notoriously inefficient in checking conditional properties. Both

issues are tricky, linked as they are to the well-known problem of the quality

of test coverage. There are at least two versions of QuickCheck for Prolog,

see https://github.com/mndrix/quickcheck and Amaral et al. (2014). Both

essentially implement the NAF approach and struggle with types. On the other

hand, they are quite efficient being built on top, respectively, of SWI-Prolog and

Yap.

An alternative to QuickCheck is SmallCheck (Runciman et al. 2008), which,

although conceived independently from our approach, shares with us the idea of

exhaustive testing of properties for all finitely many values up to some depth. It

enriches QuickCheck’s specification language with existential quantification and,

in Lazy SmallCheck, with parallel conjunction, which abstracts over the order of

atoms in conditions. Lazy SmallCheck can also generate and evaluate partially

defined inputs, by using a form of needed narrowing. In conjunction with an

implementation of nominal abstract syntax (such as FreshLib (Cheney 2005b)

or Binders Unbound (Weirich et al. 2011)), Quick/SmallCheck could be used to

implement metatheory model checking, although this would build several levels of

indirectness that may make counterexample search rather problematic. Compared

to us, QuickCheck is a widely used library for general purpose programming, while

we have so far put little effort into making our counterexample search more efficient.

However, by the very fact that we use (nominal) logic programming, our specification

language tends to be more expressive. Further, the idea of NE goes well beyond

Lazy SmallCheck’s partially defined inputs, as it allows us to test open conditions

without further ado. Finally, so far, we have used as test generator the built-in gen[[τ]]

function without feeling the need to provide an API to write custom generators; this
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may also be due to the fact that we do not generate tests at function types, which

are not available in αProlog.

The success of QuickCheck has led many theorem proving systems to adopt

random testing, among them PVS (Owre 2006), Agda (Dybjer et al. 2004), and very

recently Coq with the QuickChick tool (Paraskevopoulou et al. 2015). The system

where proofs and disproofs are best integrated is arguably Isabelle/HOL (Blanchette

et al. 2011), which offers a combination of random, exhaustive, and symbolic

testing (Bulwahn 2012a). Random testing has been present in the system for a

decade; it is executed directly via Isabelle/HOL’s code generation and has been

recently enriched with a notion of smart test generators to improve its success

rate w.r.t. conditional properties. This is achieved by turning the functional code

into logic programs and inferring through mode analysis their data-flow behavior.

Interestingly, generators for inductive types are automatically inferred and user input

is required only for HOL-style type definitions. Exhaustive and symbolic testing

follow the SmallCheck approach, where narrowing is simulated with a refinement

algorithm that has several similarities with our extensional quantifier. We note that

exhaustive checking is the default setting for Isabelle/HOL. Notwithstanding all

these improvements, QuickCheck requires all code and specs to be executable in

the underlying functional language, while many of the specifications that we are

interested in are best seen as partial and not terminating. For the latter, a valuable

alternative is Nitpick in Blanchette and Nipkow (2010), a higher order model finder

in the Alloy lineage supporting (co)inductive definitions. It works translating a

significant fragment of HOL into first-order relational logic and then invoking

Alloy’s SAT-based model enumerator. The tool has been evaluated by means of

mutation testing of the metatheory of type-inference in MiniML, the POPLMark

challenge, and type safety proofs for multiple inheritance in C++. Nitpick in these

reported experiments finds out roughly a third of the mutants, but it also signals

a certain number of potential false positives without any easy way to tell which is

which. It would be natural to couple Isabelle/HOL’s QuickCheck and/or Nitpick’s

capabilities with Nominal Isabelle (Urban and Kaliszyk 2012), but this would require

strengthening the latter’s support for computation with names, permutations, and

abstract syntax modulo α-conversion.

Environments for programming language descriptions. The main players are PLT-

Redex (Felleisen et al. 2009) and the K framework (Roşu and Şerbănuţă 2010). In

both, several large-scale language descriptions have been specified. We concentrate

on the former as K, while providing many tools needed to execute and analyze

programs written in an object language, is not geared toward metatheory model

checking, nor does it support binding syntax. PLT-Redex is an executable DSL for

mechanizing semantic models built on top of DrRacket. It supports the formalization

of the syntax and the semantics of an object language, with special support for small-

step semantics with evaluation contexts. It provides visualization tools for animating

those models as well as automatic type-setting facilities. The most notable feature

for our purpose is Redex’s support for random testing á la QuickCheck, whose

usefulness has been demonstrated in several impressive case studies (Findler et al.
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2015; Klein et al. 2012a; Klein et al. 2012b), some of which we have started

replicating with our tool (Cheney et al. 2016). The main drawback is again the

lack of support for binders: variables are just another non-terminal and they

are handled in an ad hoc way. A generic substitution (meta)function is provided

but it has to be tweaked to respect binding occurrences. The tool provides naive

test generators stemming from grammar definitions, but they tend to offer very

little coverage, especially when dealing with typed languages and non-algorithmic

relations. However, in a very recent paper (Fetscher et al. 2015), the authors build

a form of constraint logic programming on top of PLT-Redex to obtain random

typing derivations; the motivation here is overcoming the problem that well-typed

terms are rather sparse in the space of pre-terms and as such random generation

of them tends to be wasteful. Hence, they construct partial type derivations by

flipping a coin when several typing rules can be selected. Clearly, our setup enjoys

an exhaustive version of this notion of generation for free and as we comment

further in the Conclusion, it would not be hard to incorporate the random

angle.

Ott (Sewell et al. 2010) is a highly engineered tool for “working semanticists”,

allowing them to write programming language definitions in a style very close

to paper-and-pen specifications; the system then performs some sanity checks on

those specs, compiles them into LATEX, and, more interestingly, into proof assistant

code, currently supporting Coq, Isabelle/HOL, and HOL. Ott’s metalanguage is

endowed with a rich theory of binders, but the current implementation favors

the “concrete” (non α-quotiented) representation, while providing support for the

nameless representation for a single binder. Since Ott tends to be used mostly as a

documentation system, it would make sense to pair it with a lightweight validation

tool such as ours, so as to catch (shallow) bugs early in the design phase of

some piece of PL theory. In fact, most mainstream systems for static and dynamic

semantics appear easy to translate into αProlog clauses, we claim more naturally

and of course more adequately w.r.t. any concrete syntax for binders. In this sense, a

plug-in for Ott to produce αProlog code as well would be a valuable future work to

pursue.

Other more specific approaches include Roberson et al. (2008), where the authors

extend their previous work on using a software model checker for data structure

properties to the realm of ASTs and type soundness. The idea is to exhaustively

generate all possible program states, that is, well-typed expressions in an object

PL, execute one step and check that types are preserved and execution does not

get stuck. The crucial contribution is in the taming of the search space, whereby

ASTs that roughly exercise the same SOS rules are pruned away. This yields a

dramatic reduction of the generated states. SOS and typing rules must be encoded

in Java; thus no support for binders etc. is provided. More importantly, the system

is wired to check only progress and preservation properties and a user would need to

re-program it to test any other property. The authors mention experimental results

about mutation testing of an extension of Featherweight Java with imperative

features and ownership types, but no additional description is available, preventing

us from trying to replicate the experience.
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Negation and logic programming There is an extremely large literature on NAF ,

constructive/intensional negation, and disunification; we restrict attention only to

closely related work.

NE (a.k.a. intensional negation) has a long history in logic programming dating

back the late 80’s (Barbuti et al. 1990) and later extended to constraint logic

programming languages (Bruscoli et al. 1994), although no concrete implementation

has been reported until Muñoz–Hernández’s thesis and subsequent papers (Moreno-

Navarro and Muñoz-Hernández 2000; Muñoz-Hernández et al. 2004). In all these

papers, negative predicates are schematically synthesized by applying several non-

deterministic (classical) manipulations to the completion, whose correctness is formu-

lated in terms of Kunen’s three-valued semantics. Our approach, instead, is based on

a judgmental and syntax-directed translation, which is straightforward and directly

implementable. Our presentation of NE can also be applied to ordinary typed first-

order logic programming; it is closely related to Momigliano (2000), where the target

language is a fragment of λProlog, namely (monomorphic) third-order hereditary

Harrop formulae, although the main focus (and challenge) there is complementing

hypothetical clauses, an issue that does not occur in αProlog.

A related approach is constructive negation, in particular as formulated by Stuckey

(1995), in which negated existential subgoals are handled via a combination of case

analysis and disunification.

Proof search in the presence of an extensional universal quantifier has been studied

in several settings; our approach is inspired by ω-rules such as the one in the proof-

theory of arithmetic. A principle of “proof by case analysis” was first proposed

in Barbuti et al. (1990) and then refined in Muñoz-Hernández et al. (2004). The

related proof-theory of success and failure of existential goals has been investigated

in Harland (1993) in the context of uniform proofs.

Model checking and logic programming The Logic-Programming-Based Model Check-

ing project at Stony Brook implements the model checker XMC for value-passing

CCS and a fragment of the mu-calculus on top of the XSB tabled logic programming

system (Ramakrishnan et al. 2000), which extends SLD resolution with tabled resolu-

tion. As the latter terminates on programs having finite models and avoids redundant

sub-computations, it can be used as a fixed-point engine for implementing local

model checkers. Similarly, in the paradigm of Answer Set Programming (Niemelä

2006), a program is devised such that the solutions of the problem can be retrieved

constructing a collection of models of the program. To achieve this, the language

is essentially function-free disjunctive logic programming, although its expressivity

has been consistently expanded in the ensuing years. These two paradigms do not

readily provide support for the binding syntax that is essential for formalizing and

checking meta-theoretic properties. On the other hand, optimizations such as tabling

could certainly be useful, for example to improve ∀∗ performance.

The Bedwyr system (Baelde et al. 2007) instead is based on proof-search in a

fragment of the G logic of Gacek et al. (2012), which allows a form of model

checking directly on syntactic expressions possibly containing binding. This is

supported by term-level λ-binders, a fresh name ∇-quantifier, higher order pattern
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unification and tabling. The relationship of (a fragment of) this framework with

nominal logic has been investigated elsewhere (Gabbay and Cheney 2004; Schöpp

2007; Gacek 2010). As a model checker, Bedwyr views the proof of a statement

∀x. p(x) → G(x) as the attempted verification that G(t) holds for all the t

s.t. p(t) (the “model” that is enumerated). Since Bedwyr uses depth-first search,

checking properties for infinite domains can be approximated by writing logic

programs encoding generators for a finite portion of that model. Recent work about

“augmented focusing systems” (Heath and Miller 2015) could make this automatic.

Loop checking implemented with a limited form of tabling is added to handle

(co)inductive specifications, whereby a loop over an inductive (resp. coinductive)

predicate is interpreted as failure (resp. success). However, this interpretation is not

yet supported by any metatheory. Bedwyr captures finite failure by seeing Γ � ¬A
as Γ, A � ⊥ and solved as above. However, this treatment seems to be sound

only w.r.t. the Horn+∇ fragment of the logic, hence checks involving hypothetical

judgments as typical of higher order abstract syntax need to be expressed moving to

an explicit “2-levels” approach (Gacek et al. 2012), and this may be too indirect to

be effective. Nevertheless, nothing prevents the user to write (binding) specifications

and checks in the Horn+∇ fragment, similarly to what we do in αProlog, although

no experiment in this sense has yet been carried out.

Analyses for checking modes, coverage, termination, and other (logic) program

properties can be used to verify program properties, playing an important role in the

Twelf system (Schürmann 2009). This approach is also possible (and seems likely to

be helpful) in αProlog, but such analyses have not yet been adapted to the setting

of nominal logic programming. Conversely, it may also be possible to implement

counterexample search in Twelf via NE along the lines of Momigliano (2000).

8 Conclusions and future work

A great deal of modern research in programming languages involves proving meta-

theoretic properties of formal systems, such as type soundness. Although the problem

of specifying such systems and verifying their properties has received a lot of

attention recently, verification tools still require substantial effort to learn and use

successfully. We have presented a complementary approach that we call metatheory

model checking and a tool, αCheck, which address the dual problem of identifying

flaws in specified systems (that is, counterexamples to desired properties). We

introduced several possible implementation strategies based on different approaches

to negation in nominal logic programming including NAF and NE. We have detailed

how to accommodate negation elimination in nominal logic programs and discussed

experimental results that show that both techniques have encouraging performance.

We plan to address several obvious performance issues in NE in future work. From

a pragmatical standpoint in fact, the implementation of universal quantification

currently involves analyzing type information in the run-time system. This appears

to be one source of inefficiency in predicates such as not_tc that involve local

variables. We are looking into ways to pre-compile this information, in order to

avoid this expensive run-time type analysis.
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In this article, we have restricted attention to a particularly well-behaved fragment

of nominal logic programs in which N-quantification and names may only be used

in goal formulas. This suffices for many examples, but some phenomena (such as

name-generation) cannot be modeled naturally in this sub-language. We would like

to investigate the general theory of elimination of negation in nominal logic, in

particular complementing clause heads containing free names. This may also be

useful for extending Twelf-like static analysis to αProlog; in fact coverage analysis

can be stated as a relative complement problem.

Property-based testing in systems such as PLT-Redex and Isabelle/HOL is, in

a sense, rediscovering logic programming (Bulwahn 2012b; Fetscher et al. 2015).

The notion of random typing derivation in the latter paper, in particular, seems just

a special case of having random rather than exhaustive backchaining in a logic

programming interpreter. Whether this is effective in catching deeper bugs is an

empirical issue, but we are certainly well placed to explore this idea.

One pressing question is the relationship between the different forms of negation:

NAF , NE and NE−. We have used NAF pragmatically without worrying too

much about its correctness, and the semantics of negation-as-failure have yet to be

formalized for αProlog; we have stronger evidence for the (partial) correctness of NE

but we do not know, for example, whether NE (or NE−) is complete relative to NAF

on ground goals or vice versa. Soundness and completeness have been investigated

in the context of pure Prolog (Barbuti et al. 1990), but in a way that is hard to

generalize to nominal logic programming. A better (proof-theoretic) way could be to

relate NE to the completion by viewing logic programs as fixed points (Schroeder-

Heister 1993). This view could also open the road to handle specifications that

are coinductive in nature, as in concurrent calculi (Tiu and Miller 2010) or studies

about program equivalence (Momigliano 2012). Our main contribution is showing

empirically that both NAF and NE/NE− can be useful as a basis for mechanized

model checking, and the lack of answers to these questions does not detract from

this contribution, but we think it would be worthwhile to study them in more

detail.

Another direction for future work is to investigate automatic support for identify-

ing the culprit when a check fails. One might naively expect this to be straightforward,

for example using a similar approach to declarative debugging (Naish 1997); however,

in the presence of negation (whether NAF or NE ), it is not at all clear how to

concisely explain the reason why a goal succeeds or fails. Indeed, the reason for the

failure could be the absence of a needed rule, or an error in a rule that means it can

never be used.

In conclusion, we have presented two approaches to mechanized metatheory

model checking in αProlog, one based on negation-as-failure and the other based

on negation elimination. They have complementary strengths: negation-as-failure

is conceptually simple and appears efficient in practice, but currently lacks a solid

theoretical foundation, while negation elimination has been proved correct but may

be slower on some examples. Our experiments also suggest that further optimizations

would be valuable, but these two techniques are already useful for debugging

language specifications formalized using αProlog.
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The sources for αProlog and αCheck, including all the examples mentioned here,

can be found at http://github.com/aprolog-lang.
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