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We investigate single-fluid magnetohydrodynamics (MHD) with anisotropic viscosity,
often referred to as Braginskii MHD, with a particular eye to solar coronal
applications. First, we examine the full Braginskii viscous tensor in the single-fluid
limit. We pay particular attention to how the Braginskii tensor behaves as the magnetic
field strength vanishes. The solar corona contains a magnetic field with a complex
and evolving topology, so the viscosity must revert to its isotropic form when the
field strength is zero, e.g. at null points. We highlight that the standard form in
which the Braginskii tensor is written is not suitable for inclusion in simulations as
singularities in the individual terms can develop. Instead, an altered form, where the
parallel and perpendicular tensors are combined, provides the required asymptotic
behaviour in the weak-field limit. We implement this combined form of the tensor
into the Lare3D code, which is widely used for coronal simulations. Since our main
focus is the viscous heating of the solar corona, we drop the drift terms of the
Braginskii tensor. In a stressed null point simulation, we discover that small-scale
structures, which develop very close to the null, lead to anisotropic viscous heating
at the null itself (that is, heating due to the anisotropic terms in the viscosity tensor).
The null point simulation we present has a much higher resolution than many other
simulations containing null points, so this excess heating is a practical concern in
coronal simulations. To remedy this unwanted heating at the null point, we develop
a model for the viscosity tensor that captures the most important physics of viscosity
in the corona: parallel viscosity for strong fields and isotropic viscosity at null points.
We derive a continuum model of viscosity where momentum transport, described
by this viscosity model, has the magnetic field as its preferred orientation. When
the field strength is zero, there is no preferred direction for momentum transport
and viscosity reverts to the standard isotropic form. The most general viscous stress
tensor of a (single-fluid) plasma satisfying these conditions is found. It is shown
that the Braginskii model, without the drift terms, is a specialization of the general
model. Performing the stressed null point simulation with this simplified model of
viscosity reveals very similar heating profiles to those of the full Braginskii model.
The new model, however, does not produce anisotropic heating at the null point, as
required. Since the vast majority of coronal simulations use only isotropic viscosity,
we perform the stressed null point simulation with isotropic viscosity and compare
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the heating profiles to those of the anisotropic models. It is shown that the fully
isotropic viscosity can overestimate the viscous heating by an order of magnitude.

Key words: MHD and electrohydrodynamics

1. Introduction
The large-scale dynamics of the solar corona is normally modelled by a single-fluid

continuum description of a plasma. Magnetohydrodynamics (MHD) represents a
union of fluid mechanics and electromagnetism and has been successfully applied to
describe a vast range of solar phenomena (e.g. Priest 2014). One aspect, however,
that has received little attention in coronal applications is the form of the viscosity
tensor. The vast majority of applications use the standard viscous stress tensor of
an isotropic Newtonian fluid. In a magnetized plasma, however, this viscosity is not
correct as it ignores the influence of the magnetic field. Instead, anisotropic viscosity
is required for plasmas such as the solar corona. Other astrophysical applications
have highlighted the importance of anisotropic viscosity. Studies of intracluster
(e.g. Schekochihin & Cowley 2006; Kunz et al. 2012; Santos-Lima et al. 2014,
2016; Berlock & Pessah 2015) and solar wind (e.g. Bale et al. 2009) plasmas have
demonstrated that instabilities due to anisotropic effects can have a large influence
on dynamics.

One important aspect of the coronal magnetic field is that it has a complex and
evolving topology. Magnetic topology depends on magnetic null points, i.e. points
where the magnetic field strength is zero. Null points appear and disappear as the
field evolves and are important locations for magnetic reconnection and dynamic
phenomena in the solar corona. Since the magnetic field reduces to zero at these
locations, anisotropic viscosity must ‘switch’ to the fully isotropic case at null points.

The seminal work of Braginskii (1965) introduced a model for how the viscous
stress tensor of a magnetized plasma can be expressed. When MHD is combined
with an anisotropic viscosity (normally Braginskii viscosity in the strong-field limit)
it is referred to as Braginskii MHD. In this paper, we examine the form of Braginskii
MHD suitable for coronal (and other solar) applications. We shall pay particular
attention to how the Braginskii model behaves as a null point is approached and how
the viscous stress is best expressed for implementation in simulations. We implement
the Braginskii tensor in a simulation and show that unwanted heating at the null point,
due to the anisotropic parts of the tensor, develops. As a remedy to this, we develop
a viscous stress tensor that captures the main physics of viscosity in the corona
and does not exhibit the numerical problem mentioned above. We derive the most
general stress tensor that satisfies the required physics. It is shown that the Braginskii
tensor, without the drift terms, is a special case of this general tensor. We simplify
the general tensor to one that captures the switch from parallel viscosity in strong
magnetic fields to isotropic viscosity at null points. This simple switching model does
not produce the unwanted anisotropic heating at the null point, as required.

After the theory of the viscous stress tensors is presented, we present the results
of the simulations of stressed null points. These results are presented in the same
section for ease of comparison. A study of the viscous heating reveals that assuming
the viscosity to be isotropic (as in most current coronal models) can produce heating
that is orders of magnitude different from anisotropic models. The paper concludes
with a discussion of the results and future applications.
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Braginskii MHD for arbitrary topologies 617

2. Braginskii viscous stress
As mentioned above, Braginskii (1965) describes the form of anisotropic viscosity

in a magnetized plasma. Starting from kinetic theory and building to a two-fluid
description of the plasma, viscosity expressions are given for the electron and ion
fluids. For each species, there are five viscosity coefficients corresponding to the five
components of the viscous stress tensor with respect to an orthogonal basis, say W ,
of the five-dimensional Euclidean space of symmetric traceless tensors (endowed with
the scalar product A : B = tr(ATB)) (e.g. Kotelnikov 2012). For the ion fluid, which
is used in the single-fluid description of the plasma, the Braginskii viscous stress can
be written as

σbrag = η0W (0)
+ η1W (1)

+ η2W (2)
− η3W (3)

− η4W (4), (2.1)

where η0–η4 are the viscosity coefficients that we shall discuss shortly. Following the
layout in Hogan (1984), the five basis vectors in W read

W (0)
=

3
2(Wb · b)

(
b⊗ b− 1

3 I
)
, (2.2)

W (1)
= (I − b⊗ b)W (I − b⊗ b)+ 1

2(Wb · b)(I − b⊗ b), (2.3)

W (2)
= (I − b⊗ b)W (b⊗ b)+ (b⊗ b)W (I − b⊗ b), (2.4)

W (3)
=

1
2 ZW (I − b⊗ b)− 1

2(I − b⊗ b)WZ , (2.5)

W (4)
= (ZWb)⊗ b+ b⊗ (ZWb). (2.6)

In (2.2)–(2.6), b=B/|B| is the unit vector in the direction of the magnetic field and
I is the identity tensor; W is the traceless tensor given by

W =∇u+ (∇u)T − 2
3(∇ · u)I = 2

[
D − 1

3 tr(D)I
]
, (2.7)

where D is the strain rate tensor; and Z is the tensor with components Zij = εikjbk,
where εikj are the components of the Ricci alternator.

Braginskii (1965) gives expressions for the (ion) transport coefficients in terms
of the dimensionless parameter xi = ωiτi, where ωi (= |eB|/mi, with e being the
elementary charge and mi the ion mass) is the ion cyclotron frequency and τi is
the ion–ion collision time in an unmagnetized plasma. For a fully ionized hydrogen
plasma, we could use the subscript p to refer to protons explicitly. In this paper,
however, we shall stick to the notation of Braginskii (1965). The viscosity coefficients
are approximate expressions found from a kinetic description of the plasma (see
Spitzer & Härm 1953; Epperlein & Haines 1986). If we fix η0, the approximate
viscosity expressions are

η2 =
η0

∆

(
6
5

x2
i + 2.23

)
, η1 = η2(2xi), (2.8a,b)

η4 =
η0

∆
xi(x2

i + 2.38), η3 = η4(2xi), (2.9a,b)

where
∆= 2.23+ 4.03x2

i + x4
i . (2.10)

Each of the above tensors has a physical interpretation: η0W (0) represents the
viscosity parallel to the magnetic field; η1W (1)

+ η2W (2) represents the perpendicular
contribution and −η3W (3)

− η4W (4) the drift contribution (Hogan 1984).
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618 D. MacTaggart, L. Vergori and J. Quinn

Before considering the behaviour of the Braginskii viscous stress in particular field
strength limits, notice that

W =W (0)
+W (1)

+W (2). (2.11)

Since W (3) and W (4) do not appear in (2.11), they are both orthogonal to W . Hence,
they are not true viscous stresses as they produce no viscous dissipation. Further, since
W (3) and W (4) contain odd multiples of b, making the switch b→−b changes the
sign of these tensors. In standard single-fluid MHD, the equations are invariant under
the transformation b → −b. Including the drift terms breaks this symmetry. Since
our primary focus is the large-scale solar corona, where the effects of magnetic field
polarization are not particularly important (e.g. Hollweg 1985; Bogaert & Goossens
1991), we shall ignore the drift terms in the main body of this paper. Later we shall
demonstrate that the remaining terms in the Braginskii viscous tensor have a clear
interpretation at the (single-fluid) continuum level in terms of the distribution of
momentum transport.

Strictly speaking, the perpendicular terms should also be dropped, along with the
drift terms, for coronal applications. However, as we shall demonstrate in some
analysis later, it will be necessary to write the perpendicular and parallel terms in a
combined form and so we must retain the perpendicular terms.

2.1. Limit of strong magnetic field
All of the applications of Braginskii MHD cited in the introduction are in the strong-
field regime (xi � 1). By considering (2.8)–(2.9), it is clear that in the strong-field
limit, the parallel viscosity dominates and the viscous stress tensor can be simplified
to

σ = η0W (0)
=

3
2η0(Wb · b)

(
b⊗ b− 1

3 I
)
. (2.12)

In the solar corona, it is also the case that xi� 1. For example, consider a relatively
weak coronal field of 10 G. Then it can be shown that xi∼105 (Hollweg 1986). Hence,
equation (2.12) would apply throughout most of the corona.

Hollweg (1985) gives a physical interpretation of (2.12) as being due to small
pressure anisotropies that develop as the flows evolve. He shows that (2.12) can be
derived from assuming a diagonal pressure tensor and equations analogous to the
double adiabatic equations (Chew, Goldberger & Low 1956). Hollweg (1986) extends
the analysis of (2.12) to include the effects of resistivity. In doing this, he notes
that the use of (2.12) would not be suitable for reconnection-type flows, like those
described in Sonnerup & Priest (1975). Such flows involve the compression of the
magnetic field to null points.

Compared to coronal models that use only isotropic viscosity, those with Braginskii
viscosity are in the minority. Many of the earlier studies of Braginskii MHD in
the corona are in the strong-field limit (e.g. van der Linden, Goossens & Hood
1988; Hood, van der Linden & Goossens 1989; Ofman, Davila & Steinolfson
1994; Ruderman et al. 1996). Several recent works study two-dimensional null
point reconnection in the incompressible regime (Craig 2010; Craig & Litvinenko
2010; Armstrong, Craig & Litvinenko 2011; Armstrong & Craig 2013, 2014). To
deal with the concerns mentioned above, they interpolate between (2.12) when the
field is strong and the standard expression for isotropic viscosity at null points. We
shall now consider Braginskii viscosity in the limit |B|→ 0.
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Braginskii MHD for arbitrary topologies 619

2.2. Limit of weak magnetic field
The Braginskii tensors, as written in (2.2)–(2.4), are not in a suitable form for
studying how the viscosity behaves in the limit |B| → 0. For example, let us
momentarily consider only the parallel viscosity given by (2.12). Since the unit
vector b is not defined when |B| = 0, we would require that η0/|B|4 → l ∈ R as
|B| → 0. However, since the parallel viscosity coefficient η0 is constant, η0/|B|4 is
singular at null points. This means that, as we shall demonstrate shortly, we require
combinations of {W (0), W (1), W (2)

} in order to correctly describe Braginskii’s model
in the limit |B|→ 0. Before doing this, and in order to make the analysis clearer, we
relabel the numerical values in the viscosity coefficients (2.8) and write

η2 =
η0(a1x2

i + a2)

x4
i + a3x2

i + a2
, η1 = η2(2xi). (2.13a,b)

We also write xi = α|B|, with α= |e|τi/mi. Therefore, the viscosity coefficients (2.13)
can be written as

η2(|B|)=
η0(a1α

2
|B|2 + a2)

α4|B|4 + a3α2|B|2 + a2
, η1(|B|)= η2(2|B|). (2.14a,b)

From expressions (2.14), we deduce that as |B|→ 0,

η1 ∼ η0

[
1+

4(a1 − a3)

a2
α2
|B|2 −

16(a1a3 − a2
3 + a2)

a2
2

α4
|B|4

]
+O(|B|6), (2.15)

η2 ∼ η0

[
1+

a1 − a3

a2
α2
|B|2 −

a1a3 − a2
3 + a2

a2
2

α4
|B|4

]
+O(|B|6). (2.16)

Simplifying and rearranging (2.1)–(2.4) gives

σbrag =
3η0 + η1 − 4η2

2|B|4
(WB ·B)(B⊗B)

+
η1 − η0

2|B|2
(WB ·B)I

+
η2 − η1

|B|2
[W (B⊗B)+ (B⊗B)W ]

+ η1W . (2.17)

For (2.17) to be well defined at null points, we require

3η0 + η1 − 4η2 ∼O(|B|4), (2.18)
η1 − η0 ∼ η2 − η1 ∼O(|B|2) (2.19)

as |B|→ 0. By virtue of expressions (2.15) and (2.16), it is clear that the asymptotic
requirements (2.18)–(2.19) are satisfied. Hence, the Braginskii tensor (2.17) is well
defined as |B|→ 0.

For the implementation of Braginskii viscosity in simulations, the form given in
(2.17) is recommended in order to make sure that there is no singular behaviour in
the limit |B| → 0. As highlighted above, considering the Braginskii tensor written in
the form of (2.1) could lead to singular behaviour in numerical implementations. A
similar analysis for the drift terms is given in Appendix A.
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620 D. MacTaggart, L. Vergori and J. Quinn

3. Continuum description
The previous section highlights that in order for the Braginskii tensor to be

implemented numerically in an application with a non-trivial magnetic topology, the
individual tensors W (i) have to be combined. Hence, the physical interpretation of
the individual W (i) can no longer be easily separated. For example, close to a null
point there would be a mixture of effects due to the parallel, perpendicular and
isotropic parts of the viscosity tensor (2.17). As we shall discover later, this will lead
to numerical difficulties in null point simulations. In the solar corona, the two main
contributions of viscosity are parallel viscosity (in the strongly magnetized plasma)
and isotropic viscosity (at null points). It is therefore useful to have a model that can
switch between these two limits in a consistent way. Such a model would be simpler
to interpret in a complicated three-dimensional coronal simulation and could prevent
unwanted anisotropic heating at under-resolved null points. Again, we shall return to
this issue later when considering an illustrative numerical example.

In this section we derive, at the continuum level, a general viscous tensor that is
based on the required physics, namely, that momentum transport is bound to follow
the direction of the magnetic field when the plasma is strongly magnetized and has
no preferred direction when the field goes to zero at null points. We show that the
Braginskii tensor (2.17) is a special case of this new tensor and also derive a simpler
model that captures the parallel–isotropic switch which describes the main viscous
contributions in the corona. We detail carefully how the orientation of momentum
transport changes from a preferred direction (that of the magnetic field) to no preferred
direction (the isotropic case).

3.1. General form
We start by considering the Cauchy stress tensor as the sum of three contributions:

σ = σH + σM + σV . (3.1)

The isotropic tensor
σH =−psI, (3.2)

with ps being the hydrostatic pressure, is the hydrostatic stress tensor. The second
contribution is due to the Lorentz force, which can be viewed as the elastic response
of the magnetic field on the plasma. This force can be expressed as the divergence of
the Maxwell stress tensor,

σM =µ
−1
0

[
B⊗B− 1

2(B ·B)I
]
. (3.3)

The combination of σH and σM represents the stress tensor for an inviscid plasma. To
model the viscous stress tensor σV , we assume that it depends on both the rate of
strain and the distribution of the orientations of momentum transport relative to the
magnetic field lines. We then assume that σV is given by a constitutive relation of the
form

σV = σ̂V(D, H, |B|), (3.4)

where, as before, D is the strain rate tensor and H is a structure tensor describing
the distribution of the orientations of momentum transport throughout the plasma. If
H =O, as would be required if B= 0, σ̂V(D,O, 0) gives the (isotropic) viscous stress
tensor for non-magnetic plasmas.
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Braginskii MHD for arbitrary topologies 621

3.2. Structure tensor
To derive a suitable form for the structure tensor H, we shall borrow ideas that are
more common in nonlinear elasticity and the theory of liquid crystals. We start by
assuming that the magnetic field B is non-zero throughout the plasma. Hence, the unit
vector field b=B/|B| gives the direction of the magnetic field at any point. Since, at
kinetic length scales, particles are constrained to follow magnetic field lines when the
field is strong, the direction of the magnetic field represents the preferred orientation
of momentum transport in the plasma.

Next, we introduce an orientation density function fx : S2
→ R+, S2 being the

unit sphere, such that fx(t) dω gives the probability that, at x ∈ R3, the direction
of momentum transport through x orients along t within the solid angle dω. The
orientation density function fx must then satisfy the normalization condition

1
4π

∫
S2

fx(t) dω= 1. (3.5)

We now assume that the viscosity of the plasma depends only on the orientation
of the magnetic field lines and not on the directions they point in. In other words,
we assume, based on considerations described earlier, that the viscosity is invariant
under inversion of the magnetic field direction b→−b. Consequently, as far as the
probability density function is concerned, t is ‘headless’ and fx(t) = fx(−t). Because
of this property, the first moment of the distribution fx is zero.

The second moment of the distribution is the variance tensor

M =
1

4π

∫
S2

fx(t)t⊗ t dω. (3.6)

Introducing an orthonormal basis B = {e1, e2, e3}, the variance tensor can be written
in the compact form

M =
3∑

i,j=1

αijei ⊗ ej, (3.7)

where
αij =

1
4π

∫
S2

fx(t)titj dω, (3.8)

(t1, t2, t3) being the components of t with respect to B.
To make progress with the form of the structure tensor, we choose, without loss of

generality, e3 = b, and characterize t in terms of the two Euler angles θ ∈ [0, π] and
φ ∈ [0, 2π):

t= sin θ cos φ e1 + sin θ sin φ e2 + cos θ e3. (3.9)

Because of the arbitrariness of the basis vectors e1 and e2, we assume that the
orientation density function is independent of φ, i.e.

fx[t(θ, φ)] = fx[t(θ)]. (3.10)

Consequently, the normalization condition (3.5) becomes

1
2

∫ π

0
fx(θ) sin θ dθ = 1, (3.11)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

46
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.463


622 D. MacTaggart, L. Vergori and J. Quinn

the off-diagonal terms of M vanish and the diagonal terms remaining are, on use of
the normalization condition, given by

α11 = α22 = κ, α33 = 1− 2κ, κ =
1
4

∫ π

0
fx(θ) sin3 θ dθ. (3.12a−c)

Thus, the variance tensor can be written in the compact form

M = κ(e1 ⊗ e1 + e2 ⊗ e2)+ (1− 2κ)b⊗ b= κ I + (1− 3κ)b⊗ b. (3.13)

The parameter κ , defined through equation (3.12c), is called the dispersion
parameter and represents the degree of anisotropy. Furthermore, since M is positive
semi-definite, the dispersion parameter must satisfy the inequalities

0 6 κ 6 1
2 . (3.14)

The perfect alignment of momentum transport through x along the magnetic field
is attained for κ = 0, whereas for κ = 1/3 there is no preferred alignment and all
orientations are equiprobable. For κ = 1/2, instead, the momentum transport through x
orients perpendicularly to the magnetic field and all the directions orthogonal to b are
equiprobable. However, since the magnetic field direction is the preferred direction, we
require that the probability that the momentum transport through x orients along b be
greater than or equal to the probability that it orients along a direction perpendicular
to the magnetic field. Therefore 1− 2κ > κ and, in the light of (3.14), we shall limit
our analysis to the interval

0 6 κ 6 1
3 . (3.15)

In order to discuss the dispersion parameter κ we consider a transversely isotropic
and π-periodic von Mises distribution. More precisely, we modify the standard π-
periodic von Mises distribution to satisfy the normalization condition (3.11), giving

fx(θ)= 2

√
2a
π

exp(2a cos2 θ)

erfi(
√

2a)
, (3.16)

where erfi(x)=−i erf(i x) is the imaginary error function and a is a positive quantity
called the concentration parameter. The orientation density function (3.16), used
also by Gasser, Ogden & Holzapfel (2006) to model collagen fibre distributions in
arteries, can be interpreted as the normal distribution projected onto the unit sphere.
The modified von Mises distribution (3.16) tends uniformly to the uniform distribution
fx ≡ 1 as a→ 0, while it tends to the Dirac delta δ0(θ) centred at θ = 0 as a→+∞
(figure 1). Therefore, this distribution gives the required directional behaviour for
momentum transport when |B| is weak or strong.

Inserting (3.16) into (3.12c) results, after integration, in an analytical expression for
the dispersion parameter,

κ =
1
2

(
1+

1
4a

)
−

exp(2a)

2
√

2πa erfi(
√

2a)
, (3.17)

from which we deduce that the dispersion parameter decreases as a increases, tends
to 0 as a → +∞, and tends to 1/3 as a → 0 (figure 2a). As a consequence,
the momentum transport through x can orient along any direction with the same
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FIGURE 1. Modified von Mises distribution for various values of the
concentration parameter.

0.05

 0.10

0.15

 0.20

0.25

0.30

0.35

0 5 10 15 20 25 30
a

0 5 10 15 20 25 30
a

s

 0.1
0.2

 0.3
0.4

 0.6

0.8

 0.5

0.7

 0.9
1.0(a) (b)

FIGURE 2. (a) Dispersion parameter and (b) order parameter versus concentration
parameter.

probability as a→ 0, whereas it tends to align perfectly along the magnetic field for
a very large concentration parameter.

Later it will be convenient to work with the traceless part of the variance tensor M ,

H =M − 1
3 I = s

(
b⊗ b− 1

3 I
)
, s= 1− 3κ. (3.18)

Readers familiar with liquid crystal theory will recognize H as similar to the order
tensor for nematics (e.g. Napoli & Vergori 2012). Here, instead, in line with the
nomenclature adopted in the theory of nonlinear anisotropic elasticity, we call H
the structure tensor. In view of (3.15), the order parameter s lies in the interval
[0, 1]. Thus, the orientation of momentum transport through x aligns perfectly along
the magnetic field direction for s = 1, while it has no preferred direction for s = 0.
Asymptotically, we have

s∼ 4
15 a+O(a2) as a→ 0 (3.19)

and s→ 1 as a→+∞ (figure 2b).
If the viscous stress tensor σV is to be applicable to magnetic fields of arbitrary

topology, the order parameter s must represent some measure of the magnetic field
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strength. If a magnetic field contains a null point, where B= 0, any anisotropic effect
must ‘switch off’, with viscosity reverting to an isotropic form. In order to determine
a constitutive function for s relating the order parameter to the magnetic field strength,
we assume that the (non-dimensional) concentration parameter a depends on |B|,

a= â(|B|). (3.20)

Since

(1) the probability that momentum transport orients along the magnetic field lines
increases as the magnetic field strength increases,

(2) the momentum transport tends to orient perfectly along the magnetic field lines
if the magnetic field is strong enough,

(3) the momentum transport tends to have no preferred direction for weak (or zero)
magnetic fields,

we require the constitutive function â to satisfy the following properties:

(i) â is a non-negative increasing function of |B|;
(ii) â(|B|)→+∞ as |B|→+∞;

(iii) limB→0 (â(|B|)/|B|2) ∈R.

Property (iii) requires that the constitutive function for the concentration parameter be
an infinitesimal in the magnetic field strength of order greater than or equal to 2. The
reason for this requirement will be clear in a few lines.

From (3.18) and the definition of b, the structure tensor H can be rewritten as

H =
ŝ(|B|)
|B|2

(
B⊗B−

|B|2

3
I

)
, (3.21)

where, in view of (3.17) and (3.20),

s= ŝ(|B|)=
3 exp[2â(|B|)]

2
√

2πâ(|B|) erfi[
√

2â(|B|)]
−

1
2

[
1+

3
4â(|B|)

]
. (3.22)

Finally, thanks to (3.19) and property (iii), we can define the structure tensor also
at points where the magnetic field vanishes, i.e. equation (3.21) applies to arbitrary
magnetic topologies. The simplest (non-trivial) form for the concentration parameter
that satisfies conditions (i)–(iii) is a= a0|B|2, for some constant a0 > 0.

3.3. Viscosity tensor
Now that a suitable form for the structure tensor H has been developed, we can focus
on what kind of expression the viscous stress tensor of (3.4) can take. The constitutive
equation for σV (3.4) must be objective (that is, invariant with respect to a change of
observer) and hence satisfy the identity

σ̂V(QDQT,QHQT, |QB|)=Qσ̂V(D, H, |B|)QT (3.23)

for all proper orthogonal tensors Q. Following Ericksen (1960), Spencer (1971) and
Dorfmann, Ogden & Wineman (2007), and noting that

Hn
=

ŝn−1(|B|)
3

H +
2ŝn(|B|)

3n
I, tr(Hn)=

2ŝn(|B|)
3n−1

(n= 2, 3), (3.24a,b)
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we can write down the most general constitutive relation for σV satisfying (3.23):

σV = α0I + α1D + α2D2
+ α3H + α4(DH + HD)+ α5(D

2H + HD2), (3.25)

which, as required by the balance of angular momentum, is symmetric. The six
viscosity coefficients αi (i = 0, . . . , 5) are functions of |B| and the integrity basis
of the two tensors D and H. In view of (3.24), the integrity basis for the current
problem consists of the following five invariants:

tr(D), tr(D2), tr(D3), tr(DH), tr(D2H). (3.26)

This is a minimal set of invariants since the trace of the product of two second-order
Cartesian tensors is equal to the trace of the tensor product with the factors written in
reverse (Spencer 1971). The first three invariants in (3.26) account for the dependence
on the strain rate tensor D; the remaining two invariants account for the interaction of
the deformation rate and the structure tensor and are sometimes referred to as pseudo-
invariants (Holzapfel 2000).

Taking into account (2.7), the viscous stress tensor σV can be written as

σV = −pdI +
◦

σ V =−pdI + β1W + β2[W
2
−

1
3 tr(W 2)I]

+β3H + β4[WH + HW − 2
3 tr(WH)I]

+β5[W
2H + HW 2

−
2
3 tr(W 2H)I], (3.27)

where

pd =−

[
α0 +

α1

3
tr(D)+

α2

3
tr(D2)+

2α4

3
tr(DH)+

2α5

3
tr(D2H)

]
(3.28)

is the hydrodynamic pressure and

β1 =
α1

2
+
α2

3
tr(D), β2 =

α2

4
, β3 = α3 +

2
3

tr(D)
[
α4 +

α5

3
tr(D)

]
,

β4 =
α4

2
+
α5

3
tr(D), β5 =

α5

4
.

 (3.29)

Obviously,
◦

σ V is traceless. Then, from (3.1) and (3.27), the full stress tensor becomes

σV =−pI + σM +
◦

σ V, (3.30)

where p= ps+ pd is the plasma pressure;
◦

σ V represents the most general form of the
viscous stress tensor in our model. There are many possible specializations and we
shall now consider two.

3.4. Model 1: single-fluid Braginskii
As mentioned previously, the single-fluid Braginskii tensor (2.17) is a special case of
◦

σ V . This is easily shown by setting

β1 =
2η2(|B|)+ η1(|B|)

3
, (3.31)
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β3 =
3η0 + η1(|B|)− 4η2(|B|)

ŝ2(|B|)
tr(DH), (3.32)

β4 =
η2(|B|)− η1(|B|)

ŝ(|B|)
, (3.33)

with η0 constant and with η1 and η2 as in (2.14), and the remaining values of β to
zero. A family of Braginskii-like viscosity coefficients can be found by first specifying
the correct asymptotic behaviour of β1, β3 and β4, i.e. the viscosity tensor produces
parallel viscosity in the strong-field limit and isotropic viscosity in the weak-field limit.
We shall not pursue this approach here but, instead, consider a simplified model that
could be useful in large-scale coronal simulations.

3.5. Model 2: parallel–isotropic switch
Most of the work concerning Braginskii MHD that we have cited in this paper
has focused on the strong-field limit. We have also highlighted that this regime
applies almost everywhere in the solar corona. For simulations of large-scale coronal
phenomena, where null points exist at isolated locations throughout the domain (and
are perhaps spread over only a few grid points), the effects of the full Braginskii
tensor may not be adequately resolved. Instead, a simpler model where the direct
switch between parallel and isotropic viscosity can be controlled may prove more
useful. At null points, the parallel viscosity cannot be separated from the perpendicular
viscosity in the limit as |B| → 0 in the Braginskii tensor (2.17). In (3.27), however,
we can choose the coefficients depending on our requirements. Setting

β1 = η0[1− ŝ2(|B|)],
β3 = 3η0tr(DH),

βi = 0 (i= 2, 4, 5),

 (3.34)

where η0 is the viscosity in an unmagnetized plasma, gives the parallel viscosity (2.12)
in the strong-field limit regime and isotropic viscosity when the field goes to zero. The
viscous stress tensor can be written as

◦

σ V = η0[1− ŝ2(|B|)]W +
3
2
η0

ŝ2(|B|)
|B|4

(WB ·B)
(

B⊗B−
|B|2

3
I

)
. (3.35)

Equation (3.35) represents an improvement on current coronal models that only
consider isotropic viscosity. It also represents a simple extension of the many
models that have only parallel viscosity. Later, we shall demonstrate that the
‘region of switching’ from parallel to isotropic viscosity can be controlled using
the concentration parameter â.

4. Illustrative application
In this section we apply the anisotropic models of the viscous tensor ((2.17) and

(3.35)) to the deformation of a magnetic null point. Our purpose here is not to study
a particular phenomenon but to highlight the practicalities of implementing the two
anisotropic models. We also demonstrate that, even with mild driving velocities, the
viscosity in a non-trivial topology can behave significantly differently if the tensor is
anisotropic rather than isotropic. We shall consider three cases: isotropic viscosity only,
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Braginskii viscosity and the parallel–isotropic model. For each case we will study
the role of viscous heating and how it is distributed throughout the domain. In these
simulations, we solve the compressible resistive MHD equations using a Lagrangian
remap scheme (Arber et al. 2001). In non-dimensional form, these equations are

Dρ
Dt
=−ρ∇ · u, (4.1)

Du
Dt
=−

1
ρ
∇p+

1
ρ
(∇×B)×B+

1
ρ
∇ · σV, (4.2)

DB
Dt
= (B · ∇)u− (∇ · u)B+ η̃∇2B, (4.3)

Dε
Dt
=−

p
ρ
∇ · u+

1
ρ

σV :∇u+
η̃

ρ
|∇×B|2, (4.4)

with specific energy density
ε=

p
(γ − 1)ρ

, (4.5)

where ρ is the plasma density and γ = 5/3 is the specific heat ratio. The material
derivative is

D(·)
Dt
=
∂(·)

∂t
+ u · ∇(·). (4.6)

Equations (4.1)–(4.5) are non-dimensionalized with respect to a reference magnetic
field strength |Br|, length Lr and density ρr. For our applications these are arbitrary; η̃
is the (dimensionless) resistivity and we choose its value to be 10−4. In the following
applications we shall select the (dimensionless) parallel viscosity coefficient η0= 10−4.
When numerically implementing ŝ2(|B|) from (3.22) with â(|B|) = a0|B|2, we use a
cubic spline approximation with natural boundary conditions. This is much simpler,
faster and more accurate than implementing series expansions for the imaginary error
function.

We consider a domain with dimensions of [−3, 3]3 and a mesh size of 5003. The
magnetic field has the form

B=
B0

l0
(x, y,−2z)T, (4.7)

where B0 = l0 = 1. The resolution we have chosen is far higher than in typical
simulations of null points. The boundaries are closed in all three directions, as in
other null point studies (e.g. Pontin, Bhattacharjee & Galsgaard 2007; Galsgaard &
Pontin 2011). On the upper and lower boundaries we impose twisting motions. On
the lower boundary we have

u=
v0

2l0

[
1+ tanh

(
2

t− t0

td

)]
uh, (4.8)

with uh = (u′x, u′y, 0)T and

u′x =

−πy
sin(πr)

r
if r2 < 1,

0 if r2 > 1,
u′y =

πx
sin(πr)

r
if r2 < 1,

0 if r2 > 1,
(4.9a,b)
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(a) (b)

FIGURE 3. (Colour online) Selected magnetic field lines.

where r2
= x2
+ y2. The velocity driver on the top boundary is the same as in (4.8) and

(4.9) except that it moves in the opposite direction. The sub-Alfvénic driving velocity
is v0 = 0.05 and l0 and td are parameters which are both set to 1. The time when
the boundary velocity has been smoothly ramped to approximately v0/2 is t0= 2. The
effect of these boundary motions is to twist the magnetic field and generate gradients
in both the magnetic field and the velocity of the plasma.

To illustrate the geometry of the magnetic field lines, figure 3 displays the field at
the initial condition t= 0 and after substantial deformation at t= 10.

Note that panels (a) and (b) in figure 3 do not necessarily display the same field
lines.

4.1. Concentration parameter
For the parallel–isotropic model, we are required to choose a form for the non-
dimensional concentration parameter â. As mentioned earlier we assume that
â = a0|B|2. In order to make a simple comparison between the different models,
we shall choose a0 = α

2 so that â = x2
i . For this particular numerical experiment,

we set α|Br| = 6. This choice allows for a simple comparison between the models
and for the different heating contributions to be easily visualized. In the discussion
at the end of the paper, we shall return to the consequences of choosing different
expressions for â and xi.

4.2. Heating profiles
We shall now examine how the different viscosity models heat the plasma. The
viscous heating in the fully isotropic model is

Qiso
= σ iso

V :∇u=
η0

2
tr(W 2). (4.10)

In the Braginskii model, the heating terms from the isotropic and anisotropic parts
are

Qiso
1 =

η1

2
tr(W 2), (4.11)

Qani
1 =

3η0 + η1 − 4η2

4|B|4
(WB ·B)2 +

η2 − η1

|B|2
|WB|2. (4.12)
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FIGURE 4. (Colour online) Qiso slices in the y= 0 plane.

In the parallel–isotropic model, the heating terms from the isotropic and anisotropic
parts are

Qiso
2 =

η0

2
[1− ŝ2(|B|)]tr(W 2), (4.13)

Qani
2 =

3η0ŝ2(|B|)
4|B|4

(WB ·B)2. (4.14)

From (2.14) and (4.11)–(4.14) we deduce that, at null points, the total viscous
heating in both models (i = 1, 2) equals the viscous heating in the fully isotropic
model, specifically

Qiso
i +Qani

i →Qiso as |B|→ 0 (i= 1, 2), (4.15)

while in the limit of a strong magnetic field we have

Qiso
i +Qani

i ≈
3
4η0(Wb · b)2 (i= 1, 2). (4.16)

That is, the parallel–isotropic model reproduces the asymptotic limits of the full
Braginskii model.

Figure 4 displays slices of Qiso in the y= 0 plane at two different times.
As the motions on the upper and lower boundaries continue to be driven, torsional

waves are transmitted towards the null point. Initially, the waves follow the path of
the spine, a vertical line through the null point. As the field lines then splay out
into the fan, a plane through the null orthogonal to the spine, the plasma follows
the magnetic field. In the fully isotropic model, viscous heating occurs on the fan
plane and in vertical locations near the spine. As time increases, more of the domain
becomes heated by viscosity. By comparison, the viscous heating due to the isotropic
parts (Qiso

1 and Qiso
2 ) of the other models exhibits different behaviour. Their profiles

are displayed in figure 5.
Note that the magnitude of heating shown on the colour bar in figure 5 is an order

of magnitude less than that of figure 4 in order to reveal structure. Considering the
Braginskii model first (figure 5a,b), viscous heating is almost entirely confined to the
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FIGURE 5. (Colour online) Qiso
1 and Qiso

2 slices in the y= 0 plane.

fan plane. This behaviour is to be expected as the imposed twisting motions generate a
shear layer in the fan plane. Unlike in the fully isotropic model, however, the heating
does not spread significantly beyond the fan plane. The viscous heating of the parallel–
isotropic model (figure 5c,d) is also concentrated on the fan plane but is truncated
compared to the Braginskii model.

Figure 6 displays slices of viscous heating due to the anisotropic parts (Qani
1 and

Qani
2 ) of the models at t= 5, 10.
Comparing figures 6(a) and 6(b) of the Braginskii model with figures 6(c) and 6(d)

of the parallel–isotropic model, the viscous heating profiles have many similarities.
The main differences occur close to the null point. At t = 5, the heating due to the
Braginskii model contains small-scale structures very close to the null point; see figure
6(a). The parallel–isotropic model does not include these small-scale structures; see
figure 6(c). Away from the null point, the two heating profiles are very similar. This
is to be expected from (4.16).

Later, at t = 10, the anisotropic heating from the Braginskii model has spread to
the null point itself; see figure 6(b). The parallel–isotropic model produces a very
similar heating profile but now there is no anisotropic heating at the null point; see
figure 6(d).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

46
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.463


Braginskii MHD for arbitrary topologies 631

–3

–2

–1

0

1

2

3

1–1–2 0 2 3

0

0.5

1.0
(a)

–3

–2

–1

0

1

2

3

1–1–2 0 2 3

0

0.5

1.0
(b)

–3

–2

–1

0

1

2

3

1–1–2 0 2 3

0

0.5

1.0
(c)

–3

–2

–1

0

1

2

3

1–1–2 0 2 3

0

0.5

1.0
(d)

x

z

z

x

FIGURE 6. (Colour online) Qani
1 and Qani

2 slices in the y= 0 plane.

Comparing the heating profiles of the anisotropic models, figures 5 and 6, with that
of the fully isotropic model, figure 4, reveals significant differences in the magnitude
of the heating and its spatial distribution. Throughout large parts of the magnetic
field, including both the spine and the fan, isotropic viscous heating is an order of
magnitude greater than the heating from both the anisotropic models.

5. Discussion
5.1. Summary

In this paper, we investigate single-fluid MHD with anisotropic viscosity, particularly
for applications to the solar corona. We begin with the classic Braginskii model
(Braginskii 1965) of anisotropic viscosity in a plasma. MHD with the Braginskii
viscous model is often referred to as Braginskii MHD. The majority of applications
of Braginskii MHD consider the strong-field limit, where viscosity parallel to the
magnetic field dominates. The majority of the solar coronal magnetic field is in this
strong-field limit. The exceptions occur when the field strength reduces to zero, e.g.
at null points. Such locations are linked to the complex magnetic topology of the
solar corona and play important roles in many eruptive phenomena, such as flares
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and coronal mass ejections (e.g. Priest 2014). In order to have a consistent viscosity
model, the viscous stress tensor has to switch from the parallel form to the standard
isotropic form when |B| = 0. The Braginskii viscous tensor achieves this, but some
care is required to show that the tensor possesses the correct asymptotic behaviour
as |B| → 0. By combining the five standard Braginskii viscous stress tensors, as
given in (2.2), together, it can be shown that the tensor has the correct asymptotic
behaviour in the weak-field limit. This ‘combined form’ is also the recommended way
of implementing the full Braginskii tensor in simulations in order to avoid numerical
errors due to terms that are no longer defined, e.g. η0W (0) when |B| = 0.

Above we mentioned that all five of the Braginskii tensors can be combined to
provide expressions that are suitable for arbitrary magnetic topologies. However, in
this paper, we have only considered the first three tensors. We have dropped η3W (3)

and η4W (4) as their effects are marginal in many coronal applications (e.g. Hollweg
1985; Bogaert & Goossens 1991). We do not also drop the perpendicular contribution
since, as mentioned above, these terms are required to be written in a combined
form with the parallel viscosity. For applications which require the drift terms, the
combination of the drift tensors required to satisfy the weak-field limit is presented
in Appendix A.

The remaining terms in the Braginskii model represent parallel, perpendicular and
isotropic viscosity. We show that these viscosities have a clear interpretation at the
single-fluid continuum level in terms of the distribution of momentum transport. As
the field becomes stronger, momentum transport aligns itself with the orientation of
the field. When the field is zero, there is no preferred direction. We find the most
general traceless viscous stress tensor that satisfies these conditions. The Braginskii
model is shown to be a specialization of this general model. Another model is also
considered which represents a direct switch from parallel to isotropic viscosity.

The Braginskii and parallel–isotropic models are implemented in simulations of
a deformed magnetic null point, alongside a purely isotropic viscous model. It is
demonstrated that the fully isotropic model, which is usually adopted in coronal
models, produces viscous heating that is an order of magnitude greater than in the
anisotropic models.

5.2. Practical aspects
Comparing figures 6(a) and 6(c), the heating patterns are very similar except near
the null point. For this simple illustrative example, we have taken α|Br| = 6. For
a typical coronal model, α|Br| ∼ 104 would not be unrealistic. Hence, the near-null
viscous heating in the Braginskii model may not be resolved, especially if a null
point only occupies a few grid points, leading to anisotropic heating at nulls. One
practical solution for this would be to implement the parallel–isotropic model and
use the concentration parameter â to control the size of the isotropic heating domain.
Depending on the application, the concentration parameter could be set to produce
more or less isotropic heating. For example, consider the simple model â = a0|B|2.
Figure 7 displays slices of ŝ for null point simulations with the parallel–isotropic
model and different values of a0. For large-scale models of the solar atmosphere, e.g.
flux emergence (MacTaggart & Haynes 2014; MacTaggart et al. 2015), null points
are important but are not likely to be adequately resolved to determine the fine-scale
structure of the Braginskii model, as discussed above. Here, the parallel–isotropic
model, with the flexibility in determining the size of the ‘isotropic region’, could
improve the current fully isotropic viscosity models.
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FIGURE 7. (Colour online) Slices of ŝ for different values of a0|Br|
2 at t= 5 in the

y= 0 plane.

5.3. Future work
As follow-up work to this paper, we aim to apply the discussed anisotropic viscosity
models to a variety of applications in the solar corona. Several phenomena, e.g.
the kink and tearing instabilities, are often considered to be mechanisms by which
many small-scale reconnection events can heat the coronal plasma (e.g. Bowness
et al. 2013; Bareford & Hood 2015; Tam et al. 2015; Hood et al. 2016). The work
of Hollweg, Craig, Litvinenko and Armstrong, cited earlier, has suggested that the
contribution of viscous heating can be as important as ohmic heating in the solar
corona. Our simple simulations of deformed null points highlight that there are large
differences in viscous heating between isotropic and anisotropic models. We plan to
investigate anisotropic effects in three-dimensional kink-unstable configurations and
tearing current sheets with applications to coronal heating.

Acknowledgements
We would like to thank the Carnegie Trust for a Research Incentive grant (ref:

70323). Computational resources were provided by the EPSRC funded ARCHIE-
WeSt High Performance Computer (www.archie-west.ac.uk), EPSRC grant no.
EP/K000586/1. J. Q. was supported by an EPSRC DTA studentship.

Appendix A. The numerical implementation of the drift terms
Since the focus of this paper has been on viscous heating in the solar corona,

we have ignored the drift terms η3W (3) and η4W (4) from the full Braginskii viscous
tensor. However, for applications where these terms may be important, we can use
the analysis from § 2.2 to write these tensors in a form suitable for simulations and
analyses of arbitrary magnetic topologies. If η3W (3)

+ η4W (4) is written in (2.1) using
the standard representations (2.5) and (2.6), it will contain terms that are undefined
at null points. We therefore need to rearrange the tensors in the form

η3W (3)
+ η4W (4)

=
η3

2
(ZW −WZ)+

(
η4 −

η3

2

)
[(ZWb)⊗ b+ b⊗ (ZWb)]. (A 1)
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Before demonstrating that the terms in (A 1) are defined at null points, as done for
η1 and η2, we relabel the viscosity coefficients (2.9) as

η4 =
η0α|B|(α2

|B|2 + a4)

α4|B|4 + a3α2|B|2 + a2
, η3 = η4(2|B|), (A 2a,b)

where xi = α|B|. As |B|→ 0,

η3 ∼ η0

[
2a4

a2
α|B| + 8

(
1
a2
−

a3a4

a2
2

)
α3
|B|3

]
+O(|B|5), (A 3)

η4 ∼ η0

[
a4

a2
α|B| +

(
1
a2
−

a3a4

a2
2

)
α3
|B|3

]
+O(|B|5). (A 4)

Hence, it follows that

η3 ∼O(|B|) and η4 −
η3

2
∼O(|B|3) (A 5a,b)

as |B|→ 0, which are required for the tensors to be well defined at null points.
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