
Math. Struct. in Comp. Science (1999), vol. 9, pp. 437–482. Printed in the United Kingdom

c© 1999 Cambridge University Press

A semantics for lambda calculi with resources

G É R A R D B O U D O L†, P I E R R E - L O U I S C U R I E N‡ and

C A R O L I N A L A V A T E L L I‡

† INRIA, BP93, F-06902 Sophia Antipolis Cedex

‡ ENS DMI, 45 Rue d’Ulm, F-75230 Paris, Cedex 05

Received 30 September 1998; revised 15 April 1999

We present the λ-calculus with resources λr , and two variants of it: a deterministic

restriction λm and an extension λcr with a convergence testing operator. These calculi provide

a control on the substitution process – deadlocks may arise if not enough resources are

available to carry out all the substitutions needed to pursue a computation. The design of

these calculi was motivated by Milner’s encoding of the λ-calculus in the π-calculus. As

Boudol and Laneve have shown elsewhere, the discriminating power of λm (given by the

contextual observational equivalence) over λ-terms coincides with that induced by Milner’s

π-encoding, and coincides also with that provided by the lazy algebraic semantics

(Lévy–Longo trees). The main contribution of this paper is model-theoretic. We define and

solve an appropriate domain equation, and show that the model thus obtained is fully

abstract with respect to λcr . The techniques used are in the line of those used by Abramsky

for the lazy λ-calculus, the main departure being that the resource-consciousness of our

calculi leads us to introduce a non-idempotent form of intersection types.

1. Introduction

In this paper, we address the problem of providing a denotational semantics for Boudol’s

resource-conscious λ-calculus (Boudol 1993), defined with the aim of reducing the gap

between the π-calculus (Milner et al. 1989) and the lazy λ-calculus (Abramsky 1989).

The study of the connection between lazy λ-calculus and π-calculus was started with

Milner’s encoding of λ into π (hereafter simply called the encoding), given in Milner (1990).

Milner’s encoding is adequate in the framework of a contextual operational semantics, but

not fully abstract. That is, π-contexts over encoded λ-terms are strictly more discriminating

than λ-contexts over the original terms. It has been observed that there are π-agents that

behave over the encoding as (parallel) convergence testing combinators, which are not

definable in pure lazy λ-calculus. On the other hand, as Boudol emphasized (Boudol

1993), the encoding does not verify the equality xx = x(λy.xy), though it is valid in

weakly extensional models† of (extensions of) the λ-calculus (with parallel functions,

non-deterministic choice, (parallel) convergence testing) (Abramsky 1989; Abramsky and

† By weakly extensional, we mean that the equation M = λy.(My) is valid for every term M that has a value

(with y not free in M).

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

G. Boudol, P.-L. Curien and C. Lavatelli 438

Ong 1993; Boudol 1990; Boudol 1991). This indicates that, even if such extended λ-calculi

enjoy adequate encodings into π (see for instance the encoding of lazy λ-calculus with

non-deterministic choice and convergence testing in Lavatelli (1996)), these encodings will

not be fully abstract†.
We argue that the failure of the aforementioned equality xx = x(λy.xy) is due to the fact

that the usual λ-calculi lack the possibility of raising deadlocks during evaluation. Indeed,

one can build a π-context with only one available resource for x, say, the identity, such

that the first occurrence of x can be substituted by the identity but the second one stands

for a deadlocked term. In this context, the evaluation of the encoding of xx stops in a

deadlocked term while that of x(λy.xy) ends in an abstraction (a value). This phenomenon

is at the origin of the definition of the λ-calculus with resources λr , a refinement of pure

lazy λ-calculus that allows us to control the availability of arguments. In this calculus,

arguments are multisets of terms, called resources, of infinite or finite cardinality. Infinite

homogeneous arguments correspond exactly to those of pure λ-calculus, and in this case,

β-reductions can involve an arbitrary number of substitutions. The possibility of raising

deadlocks is introduced through the finite arguments; indeed, a finite number of resources

implies a limited number of substitutions during β-reductions, and there may be more

relevant free occurrences of a variable than there are resources for them. The calculus

is non-deterministic because, by definition, the substitution mechanism does not follow

any strategy for fetching resources from arguments. An interesting sub-calculus of λr
is its deterministic version, called λ-calculus with multiplicities λm, where arguments are

multisets of a unique term. Indeed, most of the results for the encoding of lazy λ-calculus

into π were shown by Boudol and Laneve in the framework of multiplicities (Boudol and

Laneve 1994; Boudol and Laneve 1995a; Boudol and Laneve 1995b).

The resource calculi admit different ‘may testing’ observational semantics (Boudol 1993;

Boudol and Laneve 1994; Boudol and Laneve 1995a; Boudol and Laneve 1995b). Two

main scenarios have been considered: the standard one, which takes abstractions only

as observables and does not distinguish between deadlock and divergence, verifies η-

expansion, while the flat one, which allows us to observe both abstractions and deadlocks,

does not. The question raised by Milner (Milner 1990),

what is the semantics induced upon λ-terms by encoding them into the π calculus?,

has been answered as follows by Boudol and Laneve: it is the flat semantics induced

by contexts of the λ-calculus with multiplicities. Moreover, they show that this semantics

over pure λ-terms coincides with Lévy’s algebraic semantics (Lévy 1976), and that, in

fact, non-determinism does not add any extra discriminating power. As far as semantic

equality is concerned, these results also hold in the standard scenario. The flat and

the standard preorders correspond to two natural orderings on Lévy–Longo trees: the

standard inclusion, and the Plotkin–Scott–Engeler ordering, which is essentially an η-

extension of the first.

† Sangiorgi does achieve full abstraction for the encoding of an extension of the lazy λ-calculus with some form

of non-determinism, but his result refers to a more powerful observational semantics (extended applicative

bisimulation), which is intensional enough to distinguish λy.xy from x.

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

A semantics for lambda calculi with resources 439

These results allow us to compare the expressiveness of λm (hence of λr) with that of

classical extensions of lazy λ-calculus. Ong shows in Ong (1988) that the Plotkin–Scott–

Engeler preorder over pure λ-terms is strictly more discriminating than the semantics

induced by λ-contexts augmented with parallel convergence testing. Hence λm-contexts are

strictly more discriminating than contexts of the lazy λ-calculus augmented with parallel

convergence testing; in particular, neither a non-deterministic feature nor a convergence

testing facility are needed to recover the power of π-contexts over pure λ-terms. However,

if we consider more widely terms with resources instead of pure λ-terms, convergence

testing does separate some λr-terms that λr-contexts cannot distinguish.

The present work concerns the denotational semantics of resource calculi. We propose a

domain equation for these calculi whose canonical solution has a logical presentation based

on a refinement of the intersection type discipline (Sallé 1978; Coppo and Dezani 1980;

Coppo et al. 1980; Coppo et al. 1981). In systems with intersection, types are preserved by

expansion. The crucial point is to group type information through the use of a conjunction:

if M[N/x] has type φ and σ1, . . . , σn are the types given to N all along this derivation, then

M has type φ under the assumption that x has type σ1∧ · · · ∧σn. In agreement with the

permanent availability of resources in classical λ-calculus, conjunction is idempotent, that

is, φ∧φ means exactly the same as φ. This is no longer suitable in resource calculi; the

refinement, originally proposed in Boudol (1993), consists precisely in the elimination of

the rule for contracting hypotheses. This type system induces an adequate semantics for λr
with respect to the standard contextual or testing preorder. In Boudol and Lavatelli (1996),

a counter-example to full abstraction is constructed and full abstraction of the type

semantics is shown for λcr , which is λr augmented with convergence testing.

The domain equation introduced in this paper has the form D = (M(D) → D)⊥, where

M(D) stands for the ‘domain of multisets’ of terms. From the strict point of view of

semanticists, the equation is not completely satisfactory since the structure of M(D) does

not allow for a direct interpretation of arguments: in fact, we interpret the terms MP

rather than just the argument P , making use of all finite approximations of P . However,

the fact that the canonical model induced by the equation is the exact counterpart of a

simple and appropriate type system for our calculus justifies its study in our opinion. The

tight relation with this economical type system is the key to our proof of full abstraction,

as in the work of Abramsky and Ong (Abramsky and Ong 1993)

In Section 2, we deal with syntactic issues: we present the λ-calculi with resources, give

an operational semantics, and discuss expressiveness issues. We show, in particular, that λcr
allows for more discriminations than λr on terms with multiplicities. The domain equation

and the interpretation function are presented in Section 3. In Sections 4 and 5, we recall

Boudol’s type system and relate it to the domain introduced in Section 3: the meaning of a

term coincides with the collection of its possible types. Finally, in Section 6, we prove that

the model is fully abstract with respect to λcr , while it is only adequate with respect to λr .

2. λ-calculi with resources

In pure λ-calculus, arguments are managed as permanent resources: β-conversion of

(λx.M)N gives M[N/x], a term where the argument N replaces x as many times as

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

G. Boudol, P.-L. Curien and C. Lavatelli 440

x occurs free in M. In other words, β-conversion transforms the argument N in an

inexhaustible resource of the substitution process.

The λ-calculi with resources allow us to model non-permanent as well as permanent

resources. In these calculi, infinitely available arguments come with an explicit infinite

multiplicity: standard application reads MN∞. The limited availability of arguments,

hence the possibility of reaching a deadlock during evaluation, and non-determinism

follow from the introduction of finite bags or multi-sets of terms as arguments. Bags are

of the form (Nm1

1 | · · · | Nmk
k) with mi ∈ N ∪ {∞}, where each component Ni is used as

argument at most mi times in a substitution process. The effective substitution of x by a

multiset of cardinality q obeys two laws:

(1) there are at most q replacements, and

(2) these replacements are performed by necessity, that is, when x occurs in head position.

Explicit substitutions 〈P/x〉 in the style of Abadi et al. (1991) appear as a suitable

computational device to model this kind of partial substitution, while keeping the lazy

regime of evaluation. The following is an example of evaluation in resource calculi: assume

P1, . . . , Pn are bags of terms and let Q = (Nm1

1 | · · · | Nmk
k); then

xP1 · · ·Pi〈Q/x〉Pi+1 · · ·Pn →r NjP1 · · ·Pi〈Q′/x〉Pi+1 · · ·Pn
for any j ∈ {1, . . . , k} where Q′ = (Nm1

1 | · · · | Nmj−1
j | · · ·Nmk

k). It is worth noticing that

the evaluation is non-deterministic since, above, any component may be fetched from Q.

Notice also that the Pi’s are left untouched by the reduction: the rest Q′ of the bag is left

available for when some other free occurrences of x will eventually reach a head position.

Also, we assume as a side condition that x does not occur free in Nj , so that Q′ will not

concern Nj .

2.1. Syntax

In this section we define the three calculi used throughout the paper: λ-calculus with

multiplicities λm and λ-calculus with resources λr , both defined in Boudol (1993), and λ-

calculus with resources and convergence testing λcr (Lavatelli 1996; Boudol and Lavatelli

1996).

Terms of λcr are either variables taken from a countable set Var ranged over by u,

v, w, x, y, z, . . ., or abstractions λx.M, or applications MP where P is the argument (a

bag of terms), or expressions like M〈P/x〉 where 〈P/x〉 is a substitution entry for M, or

expressions cP for testing the convergence of bag P . The grammar is as follows:

Terms : (Λrc) M ::= x | λx.M | (MP) |M〈P/x〉 | cP
Bags : (Π) P ::= 1 |M | (P | P) |M∞ .

The terms of λr are just those of λcr not containing c. As a further restriction, the definition

of λm allows homogeneous bags only as arguments, with finite or infinite multiplicity. That

is, the grammar for λm-terms is as follows:

(Λm) M ::= x | λx.M | (MNk) |M〈Nk/x〉 where k ∈ N ∪ {∞} .

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

A semantics for lambda calculi with resources 441

y[z/x] =

{
z if y = x

y otherwise

(λy.M)[z/x] =

{
λy.M if y = x

λy′.M[y′/y][z/x] otherwise, y′ new

(MP)[z/x] = (M[z/x])(P [z/x])

(M〈P/y〉)[z/x] =

{
M〈P [z/x]/y〉 if y = x

(M[z/x])〈P [z/x]/y〉 otherwise

(cP)[z/x] = c(P [z/x])

1[z/x] = 1

(P | Q)[z/x] = (P [z/x] | Q[z/x])

(M∞)[z/x] = (M[z/x])∞

Fig. 1. Renaming

Here, the argument N0 stands for 1, and Nk with finite k > 0 stands for the bag

(N | · · · | N︸ ︷︷ ︸
k times

). We shall omit multiplicity 1 in arguments, that is, MN will be used for MN1.

We adopt the convention that L,M,N, . . . and P ,Q, . . . denote terms and bags, re-

spectively. Moreover, T stands indistinctly for bags or terms, and R, S . . . represent either

arguments or substitution entries. We use R̃ as a short form for the sequence R1 . . . Rn, when

n is not relevant or is known from the context. For sequences composed of substitution

entries only, we often write 〈P̃ /x̃〉 instead of 〈P1/x1〉 · · · 〈Pn/xn〉.
Free variables of terms are defined as usual, with the following additions:

fv (M〈P/x〉) = fv (M) \ {x} ∪ fv (P) fv (cP) = fv (P)

fv (1) =6 fv (P | Q) = fv (P) ∪ fv (Q) fv (M∞) = fv (M) .

Some special terms will be used throughout the paper. They are

I = λx.x Ω = (λx.xx∞)(λx.xx∞)∞ .

We consider λcr-terms up to α-conversion, whose definition involves the renaming operation

given in Figure 1. The α-conversion M=αN is the congruence generated by the following

laws, when z 6∈ var(M): λx.M = λz.M[z/x] and M〈P/x〉 = (M[z/x])〈P/z〉.
The congruence ≡, called structural equivalence, defined in Figure 2 allows us to

permute the resources of a bag and to develop infinite multiplicities.

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

G. Boudol, P.-L. Curien and C. Lavatelli 442

M∞ ≡ (M |M∞) (P | Q) ≡ (Q | P)

P ≡ (1 | P) (P | (Q | T)) ≡ ((P | Q) | T)

P ≡ Q ⇒
{

MP ≡MQ

M〈P/x〉 ≡M〈Q/x〉

Fig. 2. Structural equivalence

2.2. Evaluation

The evaluation of λcr-terms follows the lazy strategy adopted by Abramsky and Ong for

the λ-calculus: neither the body of abstractions nor the arguments in application terms

are evaluated. Moreover, the convergence testing combinator introduced by Abramsky

and Ong (Abramsky and Ong 1993) can be defined as λx.cx. The set of evaluation

rules consists of two parts and is given in Figures 4 and 3, respectively. The first part

formalizes weak β-reduction →rc using explicit substitutions: there are five axioms and

four structural rules. The second part establishes a mechanism for fetching resources,

allowing us to perform substitutions in a delayed manner through an auxiliary relation

�. As usual, →?
rc stands for zero or more evaluation steps, →+

rc stands for one or more

evaluation steps.

The axiom for fetch , combined with the fact that we have defined evaluation up to

the structural equivalence, allows us to encode non-deterministic choice at the level of

terms (Boudol 1993). Indeed, setting (M⊕N)
def
= x〈(M | N)/x〉 and using the fetch rule,

we have both

(M⊕N) →rc M〈N/x〉 and (M⊕N) →rc N〈M/x〉,
provided that x 6∈ fv (M)∪ fv (N). The resulting terms M〈N/x〉 and N〈M/x〉 are essentially

M and N, respectively (see Lemma 2.5).

x〈N/x〉�N

M〈N/x〉�M ′ ⇒

MP 〈N/x〉�M ′P
(cM)〈N/x〉�cM ′

M〈P/z〉〈N/x〉�M ′〈P/z〉 if x 6= z and z 6∈ fv (N)

Fig. 3. Fetching rules

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

A semantics for lambda calculi with resources 443

(β) (λx.M)P →rc M〈P/x〉

(v) (λx.M)〈P/z〉 →rc λx.(M〈P/z〉) if x 6∈ fv (z) ∪ fv (P)

(c1) c(λx.M) →rc I

(c2) cP →rc cM if P ≡ (M | Q)

(fetch) M〈N/x〉�M ′ ⇒ M〈(N | Q)/x〉 →rc M
′〈Q/x〉 if x 6∈ fv (N)

M →rc M
′ ⇒

MP →rc M

′P
M〈P/x〉 →rc M

′〈P/x〉
cM →rc cM ′

N →rc M
′ if M ≡ N

Fig. 4. Evaluation in λcr

The first rule for c establishes that the testing is successful when a value is encountered;

the whole term becomes the identity so that evaluation can be pursued. Here is an

illustration: (c(λx.M))(N | Q) →rc I(N | Q) →?
rc N〈Q/x〉 (with x 6∈ fv (Q)). The second

rule selects non-deterministically a component M from P and discards the rest of the bag.

The term M becomes the argument of c. The structural rule for c allows us to evaluate

its argument.

We next illustrate the fetch operation. If M = xR1 · · ·Rn〈N/x〉, then a derivation M�M ′
has the following shape:

x〈N/x〉�N
xR1〈N/x〉�NR1

...

xR1 · · ·Rn−1〈N/x〉�NR1 · · ·Rn−1

M = xR1 · · ·Rn〈N/x〉�M ′ = NR1 · · ·Rn .
The rule involving c allows us to look for a substitution entry for x if the term M being

tested has x as head variable.

The evaluation relations →r and →m for λr and λm, respectively, are defined by the

subset of rules defining →rc not dealing with c. Notice that for →m the fetch actually

means
M〈N/x〉�M ′ (x 6∈ fv (N))

M〈Nk+1/x〉 →m M ′〈Nk/x〉

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

G. Boudol, P.-L. Curien and C. Lavatelli 444

where we consider k = k + 1 if k = ∞, and hence it is deterministic. Also, Rule (c2) boils

down to cMk →rc cM (for k > 1). Thus, unlike λr and λcr , the calculus with multiplicities

λm is deterministic up to α-conversion.

2.3. Operational semantics

We observed in the introduction that a terminating evaluation of a λcr-term may end in

an abstraction or a deadlock. Indeed, terms like xP1 · · ·Pn〈1/x〉 are legal and may be

reached during evaluation. Nevertheless, the operational semantics adopted here for λcr
takes abstractions only as values and does not provide any mean to detect deadlocks.

Hereafter, V ,W range over values, that is, over abstractions. The convergence predicate

⇓lrc is defined on closed terms by

M ⇓lrc V def⇐⇒ (M →?
rc V in l steps and V is an abstraction) . (1)

That is, a term M converges whenever at least one evaluation issued from it ends in a

value. We use the notations M ⇓lrc and M⇓rc as short forms of (∃V M ⇓lrc V). We say that

M diverges whenever it does not converge, written M⇑rc. The convergence and divergence

predicates for λr and λm are defined similarly; we denote them by ⇓r , ⇑r and ⇓m, ⇑m,

respectively.

We adopt as observational semantics the extensional preorder of Morris, also called

testing preorder, where a term is approximated by another if it passes at least as many tests

as the first one. The tests for terms are made up of the constructors of the language plus

a constant [] (pronounced ‘hole’). Tests are usually called contexts and are ranged over

by capital letters A,B, C, D. We let C[M] denote the term of Λrc obtained by replacing in

C all occurrences of [] by M. As a result of these replacements, free variables of M may

become bound in C[M]. We say that C closes M if all free variables of M are bound in

C[M]. A term M passes a test C whenever C[M] converges.

Definition 2.1. (Observational semantics) The testing preorder vrc is defined as follows:

(M vrc N)
def⇐⇒ (C[M]⇓rc ⇒ C[N]⇓rc for all contexts C closing M,N) .

The testing preorders for λr and λm, vr and vm , respectively, have similar definitions.

The testing preorder is also called the observational preorder.

The fact that contexts used for testing terms are of arbitrary kind makes the definition

of the preorder vrc unworkable, although it is a precongruence, that is, if M vrc N then

C[M] vrc C[N] for any context C . But it is possible to give an alternative presentation

of vrc in terms of a restricted set of applicative contexts. Applicative contexts contain at

most one hole, placed in head position; their syntax is given by the following grammar:

A ::= [] | AP | A〈P/x〉 | cA .

Definition 2.2. The applicative preorder vA , with associated equivalence 'A , is defined

by

(M vA N)
def⇐⇒ (A[M]⇓rc ⇒ A[N]⇓rc for all applicative contexts A closing M,N) .

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

A semantics for lambda calculi with resources 445

Lemma 2.3. (Context lemma) For all M,N ∈ Λrc,

(M vrc N) ⇐⇒ (M vA N) .

Proof. A detailed proof can be found in Lavatelli (1996), a short one in Boudol and

Lavatelli (1996).

The evaluation relation is decreasing with respect to the applicative preorder.

Lemma 2.4. (M →rc N) ⇒ (N vA M) .

Proof. Assume M →rc N and A[N]⇓rcV for some abstraction V . Since the term M

appears at the head position in A[M], we have A[M] →rc A[N], and hence A[M]⇓rcV .

Clearly, some permutations of substitution entries or garbage collection may be done

in a term without affecting its computational content. To state this formally, let � be the

least relation containing ≡ ∪=α and satisfying

M〈R/x〉 � M x 6∈ fv (M)

(MP)〈R/x〉 � (M〈R/x〉)P x 6∈ fv (P)

M〈P/z〉〈R/x〉 � M〈R/x〉〈P/z〉 z 6= x, x 6∈ fv (P), z 6∈ fv (R)

(cM)〈R/x〉 � c(M〈R/x〉)

M �M ′ ⇒ (MP) � (M ′P)

M �M ′ ⇒ (M〈P/x〉) � (M ′〈P/x〉)
M �M ′ ⇒ (cM) � (cM ′) .

Notice that the last three implications are equivalent to stating that if M � M ′, then

A[M] � A[N] for any applicative context A.

Lemma 2.5. (M � N) ⇒ (M 'A N) .

Proof. The lemma is a consequence of the following easy property (Lavatelli 1996):

(∗) (M � N and M →rc M
′) ⇒ ∃N ′ (N →rc N

′ and M ′ � N ′) .
Let M � N and A be an applicative context, so that A[M] � A[N]. Suppose A[M]⇓rcV .

Then by (∗), there is some N ′ such that A[N] →?
rc N

′ � V . Given that V is an abstraction,

the only possible case of the definition of � that can apply is the first one. Thus

N ′ = V 〈R/x〉 with x 6∈ fv (V). But then, setting V = λy.N1, we have N ′ →rc λy.N1〈R/x〉,
and hence A[N]⇓rc.

From now on, substitution entries on variables that do not occur free will often be

discarded for the sake of clarity (notably in the examples of Section 2.4).

The following two technical lemmas will be used in the proofs of Lemmas 6.14 and 6.8,

respectively.

Lemma 2.6. (MP 'A My∞〈P/y〉), for y 6∈ fv (M) ∪ fv (P).

Proof. If M is an abstraction, the proof relies on the following auxiliary equivalence

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

G. Boudol, P.-L. Curien and C. Lavatelli 446

(with y 6∈ fv (M)):

(∗) M〈P/x〉 'A M〈y∞/x〉〈P/y〉 .
This property is proved by tedious case inspection and induction on the length of the

evaluation. The entry 〈y∞/x〉 behaves as a buffer: each use of a resource of P on the

right-hand side is simulated by a use of y (which is always available due to the infinite

multiplicity) immediately followed by a use of the same resource of P on the left-hand

side, and conversely. The detailed proof can be found in Lavatelli (1996).

Lemma 2.7. Let 〈P0/x〉, 〈P1/x〉, . . . , 〈Pn/x〉 be closed substitution entries on the same

variable, and assume P ≡ (N1 | · · · | Nn | Q). Then

(M〈P0/x〉)(N1〈P1/x〉 | · · · | Nn〈Pn/x〉 | Q) vA (MP)〈(P0 | P1 | · · · | Pn)/x〉 .
Proof. The statement is shown together with the following two properties:

M〈P1/x〉S̃0〈P2/x〉S̃1 vA MS̃0〈(P1 | P2)/x〉S̃1

M〈(N1〈P1/x〉 | · · · | Nn〈Pn/x〉 | Q)/z〉〈P0/x〉 vA M〈P/z〉〈(P0 | P1 | · · · | Pn)/x〉 .

2.4. Expressiveness

Boudol and Laneve established the following result (Boudol and Laneve 1994): λm-

contexts over pure λ-terms are strictly more discriminating than λ-contexts augmented

with the parallel convergence testing combinator p (Abramsky 1989; Abramsky and Ong

1993), whose behaviour is specified as follows:{
pMN → I if either M or N converges

pMN diverges otherwise.

(Notice that the convergence testing operator is recovered from the parallel convergence

testing by setting c = λx.pxx.) This is a fairly powerful result since c is not definable

within λr (and hence neither is p); this follows from Example 2.12, where we exhibit two

terms with multiplicities that are not separable by λr-contexts, but can be separated using

a λcr-context.

Examples 2.10 and 2.11 illustrate how multiplicities allow us to separate λ-terms that

are naturally discriminated using convergence testing (also called sequential convergence

testing) and parallel convergence testing, respectively, while Example 2.8 shows that the

increase of expressivity is in fact strict.

Example 2.8. Let M = xx∞, N = x(λy.xy∞)∞. These (pure) λ-terms are equal in the

theory induced by the applicative bisimulation (Abramsky 1989), even extended with

parallel convergence testing combinators, but separable by means of resource contexts.

Assume C = []〈I/x〉 (giving multiplicity 1 to I). Then

C[N] →m I(λy.xy∞)∞〈1/x〉 →r z〈(λy.xy∞)∞/z〉〈1/x〉 →?
r λy.(xy

∞〈1/x〉) ⇓m
C[M] →m Ix∞〈1/x〉 →r z〈x∞/z〉〈1/x〉 →r x〈x∞/z〉〈1/x〉 � x〈1/x〉 ⇑m

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

A semantics for lambda calculi with resources 447

where the last evaluation diverges since x〈1/x〉 is a deadlocked term. Notice that here the

ability to stop evaluation does not depend on the non-deterministic features of some of

the resource calculi.

Remark 2.9. There are other ways to distinguish terms like xx and x(λy.xy), for example:

— A discipline for controlling the arity of functions rather than the uses of their arguments

has been investigated independently in Piperno (1995) and in Curien (1998) and Curien

and Herbelin (1998)†. This control ensures that a substitution, say, by a function of

one argument can only be carried out on those occurrences that have explicitly

one argument. Under this discipline we have (xx)[I/x] → (Ix)[I/x] → x[I/x]

where the last term is deadlocked. On the other hand, (x(λy.xy))[I/x] converges:

(x(λy.xy))[I/x] →? (λy.xy)[I/x] → λy.y . As far as we know, the semantic aspects of

arity control have not been investigated.

— The equality of Böhm trees has been characterized in Dezani et al. (1998) observa-

tionally in an extension of the (non-lazy) λ-calculus with a non-deterministic choice

operator and constants for numerals.

Example 2.10. Define B = x(λy.Ω)Ω and let

M = λx.xB(λy.Ω) and N = λx.x(λz.Bz)(λy.Ω).

Abramsky and Ong (Abramsky and Ong 1993) used these terms to show that the

convergence testing combinator adds some separation power to ordinary λ-contexts.

Indeed, the context A = []c is such that A[N] converges and A[M] diverges:

A[N] → c(λz.c(λy.Ω)Ωz)(λy.Ω) → I(λy.Ω) → λy.Ω

A[M] → c(c(λy.Ω)Ω)(λy.Ω) → c(IΩ)(λy.Ω) → cΩ(λy.Ω) .

In λm, M and N are separated by the context C = []U1, where U = λvw.v:

C[N] →m x(λz.Bz)(λy.Ω)〈U/x〉
→m (λvw.v)(λz.Bz)(λy.Ω)〈1/x〉
→?

m v〈λz.Bz/v〉〈λy.Ω/w〉〈1/x〉
→?

m λz.(Bz〈1/v〉〈λy.Ω/w〉〈1/x〉) ⇓m

C[M] →?
m v〈B/v〉〈λy.Ω/w〉〈1/x〉

→m x(λy.Ω)Ω〈1/v〉〈λy.Ω/w〉〈1/x〉 ⇑m .

Notice that the term C[M] diverges just because the argument U can be used just once,

that is, no resource is available for the second occurrence of x.

Example 2.11. Define B = xΩΩ and let

M = λx.xB(xBΩ) and N = λx.xB(x(λy.By)Ω).

† Piperno defines a restriction of the β-reduction, while Curien and Herbelin consider a stack-free abstract

machine that gives rise to a natural game-theoretic interpretation. In both frameworks a type-free strong

normalization result holds.

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

G. Boudol, P.-L. Curien and C. Lavatelli 448

These terms, taken from Boudol and Laneve (1994), illustrate the separation power of

parallel convergence testing over pure λ-terms: M and N are not separable by contexts

with sequential convergence testing, but can be separated if parallel convergence testing

is allowed. We first explain informally why M and N are not separable in the lazy

λ-calculus augmented with c. Below, the divergence ⇑c, the convergence ⇓c, and the

observational equivalence 'c are relative to this language. Assume A = []LL1 · · ·Ln, then

the observational equivalence of M and N follows from the following two facts:

1 (LΩΩ) ⇑c ⇒ A[M] ⇑c and A[N] ⇑c. We examine the different reasons for the

divergence of LΩΩ:

— L diverges, and then A[M] and A[N] diverge too; or

— L takes one argument that is put into head position so that the statement holds,

since both A[M] and A[N] begin with L(LΩΩ); or

— L takes two arguments and puts one of them in head position: if it is the first

one, then both A[M] and A[N] diverge since (LΩΩ) ⇑c; if it is the second one, the

statement holds, since then (L(LΩΩ)Ω) ⇑c and (L(λy.(LΩΩ)y)Ω) ⇑c.

2 (LΩΩ) ⇓c ⇒ A[M] ⇓c and A[N] ⇓c. This holds, since for any closed H we have

(H ⇓c) ⇒ (H 'c λy.Hy). Therefore ML 'c NL holds, and this implies A[M] 'c
A[N].

Fact (2) still holds for a λp-context. But (1) does not. Let A = []p, then we have

A[N] → p(pΩΩ) (p(λx.(pΩΩ)x)Ω)︸ ︷︷ ︸
converges

⇓p A[M] → p(pΩΩ) (p(pΩΩ)Ω)︸ ︷︷ ︸
diverges

⇑p .

Notice that the convergence of A[N] could be achieved thanks to the ability of p to

choose its second argument in p(pΩΩ)(p(λx.(pΩΩ)x)Ω), and then its first argument in

p(λx.(pΩΩ)x)Ω. In the framework of multiplicities, Boudol and Laneve show how Böhm’s

technique (Barendregt 1984; Krivine 1991) can be used to separate these two terms.

Let C = []P 2FK , where P = λx1x2x3.x3x1x2 , K = λx1x2.x1 and F = λx1x2.x2. The

evaluation of C[N] converges with two uses of P , while C[M] would need three. During

the evaluation of C[N] and C[M], the first use of P consumes F , bringing the subterms

x(λz.Bz)Ω and xBΩ, respectively, into head position. Then P is used once again and

consumes K , bringing λz.Bz and B = xΩΩ, respectively, into head position. That is, the

evaluation of C[N] ends in an abstraction, while that of C[M] ends in a deadlocked term:

C[N] →?
m x3x1x2〈B/x1〉〈x(λy.By)Ω/x2〉〈P/x〉〈F/x3〉K

→m Fx1x2〈B/x1〉〈x(λy.By)Ω/x2〉〈P/x〉K
→?

m x2〈x(λy.By)Ω/x2〉〈P/x〉K
→m x(λy.By)Ω〈P/x〉K
→m P (λy.By)Ω〈1/x〉K
→?

m Kx1x2〈λy.By/x1〉〈Ω/x2〉〈1/x〉
→?

m (λy.By)〈1/x〉
→m λy.(By〈1/x〉) ⇓m

C[M] →?
m B〈1/x〉 = xΩΩ〈1/x〉 ⇑m .

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

A semantics for lambda calculi with resources 449

Example 2.12. Define L = (λy.Ω) and B = λzx.xz∞, and let

M = BLm and N = BLn with n > m > 1.

The terms M and N are not separable within λr: at most one resource L from the argument

can be used during an evaluation (a proof of this can be found in Lavatelli (1996)). In

fact, both M and N behave as BL1 in any context. Let us illustrate this by an example:

let C = [](I|Q1)Q2 · · ·Qp with p > 1 and T = BLk , with k > 1; then

C[T] →r (λx.xz∞)〈Lk/z〉(I | Q1)Q2 · · ·Qp
→r xz∞〈Lk/z〉〈(I|Q1)/x〉Q2 · · ·Qp
→r Iz∞〈Lk/z〉〈Q1/x〉Q2 · · ·Qp
→r w〈z∞/w〉〈Lk/z〉〈Q1/x〉Q2 · · ·Qp
→?

r (λy.Ω)〈z∞/w〉〈Lk−1/z〉〈Q1/x〉Q2 · · ·Qp .
If p = 1, there are no more arguments to consume, and hence C[T]⇓r , while if p > 2, then

C[T] →?
r Ω〈z∞/w〉〈Lk−1/z〉〈Q1/x〉〈Q2/y〉Q3 · · ·Qp ⇑r .

It should be clear that these evaluations are independent of k, provided k is at least 1.

Therefore, no difference between M and N can be observed in λr . Instead, the λcr-context

A = [](λw.cn(w)), where ci(w) = (cw) · · · (cw)︸ ︷︷ ︸
i times

is a kind of convergence testing operator of

arity i, separates M and N:

A[N] →?
rc (xz∞)〈Ln/z〉〈λw.cn(w))/x〉

→rc (λw.cn(w))z∞〈Ln/z〉〈1/x〉
→rc cn(w)〈z∞/w〉〈Ln/z〉〈1/x〉
→?

rc (cL)cn−1(w)〈z∞/w〉〈Ln−1/z〉〈1/x〉
→rc Icn−1(w)〈z∞/w〉〈Ln−1/z〉〈1/x〉

...

→rc I〈z∞/w〉〈1/z〉〈1/x〉 ⇓rc .
But, since n− m > 1, the evaluation of A[M] is deadlocked:

A[M] →?
rc cn(w)〈z∞/w〉〈Lm/z〉〈1/x〉

→?
rc cn−m(w)〈z∞/w〉〈1/z〉〈1/x〉 ⇑rc .

3. Denotational semantics

In this section, we address the following two questions: what kind of domain equation

can we associate with λ-calculi with resources, and what are the solutions like? Following

Scott’s approach, we are led to consider domains isomorphic to (a variant of) their

continuous function space (Scott 1982; Plotkin 1981). We first observe that the equation

D = (D → D)⊥ for lazy λ-calculus is not suitable for resource calculi. Indeed, even if the

canonical solution of this equation over complete lattices allows for an interpretation of

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

G. Boudol, P.-L. Curien and C. Lavatelli 450

non-determinism through the binary lub, or ‘join’ operation (Boudol 1990)†, this operator

is idempotent and hence does not allow us to distinguish infinitely available resources from

finite ones. In conclusion, the standard equation is not expressive enough for enabling the

interpretation of the arguments in resource calculi.

In Section 3.2 we propose the equation D = (M(D) → D)⊥ for resource calculi, where

D is a complete prime algebraic lattice and M(D) is a domain of multisets. The choice

of the category (complete lattices) does not only come from the need to interpret non-

determinism, but also from that of modelling the substitution process, as we will see in

Section 3.3.

3.1. Background

We recall some standard definitions of domain theory (Amadio and Curien 1998). A

partial order is a pair (D,v) where v is a binary relation on D that is reflexive, transitive

and antisymmetric. A subset X of a partial order (D,v) is directed iff X 6= 6 and if

d, e ∈ X, then there is an x ∈ X such that d v x and e v x. A cpo is a partial order

with least element ⊥ such that every directed subset X has a least upper bound (l.u.b.),

written
⊔
X. A continuous function between two cpo’s is a function preserving directed

l.u.b.’s. An element d of a cpo D is compact iff for every directed subset X of D, d v ⊔X
implies d v x for some member x of X. For instance, ⊥ is compact. We will use K(D)

to denote the set of compact elements of D. A cpo D is algebraic iff for every element x,

the set {d ∈ D | d ∈ K(D) and d v x} is directed and has l.u.b. x. It is ω-algebraic if it is

algebraic and has denumerably many compact elements.

A complete lattice is a partial order (D,v) such that each subset X of D has a least

upper bound
⊔
X. The binary l.u.b.’s are written xt y. A complete lattice has a least and

a greatest element, namely ⊥ =
⊔
6 and > =

⊔
D. In this framework, an element c is

compact iff for any X ⊆ D we have c v ⊔X ⇒ c v ⊔Y for some finite subset Y of

X. An element p of a lattice is prime iff for any finite subset Y of D such that p v ⊔Y
there exists x ∈ Y such that p v x. Notice that ⊥ is not prime. We will denote byKP(D)

the set of compact prime elements of D. We write KP⊥(D) = KP(D) ∪ {⊥}. A prime

algebraic lattice (p.a.l.) (Nielsen et al. 1981) is a complete lattice D such that any element

x of D is the join of the compact primes it dominates:

x =
⊔{c | c ∈ KP(D) and c v x}.

Note that the definition of p.a.l. could have been given by replacingKP(D) withKP⊥(D).

A downset over a partial order (D,v) is a subset X such that

x ∈ X and y v x ⇒ y ∈ X.
The downset completion of a partial order (D,v) is the set of downsets of D ordered by

inclusion, which is a prime algebraic lattice. The set of non-empty downsets is called the

† The solution over the complete lattices is an adequate model of lazy λ-calculus and a fully abstract model of

the lazy calculus augmented with c and ⊕.

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

A semantics for lambda calculi with resources 451

non-empty downset completion. A non-empty set X ⊆ D is an upperset over (D,v) if and

only if

x ∈ X and x v y ⇒ y ∈ X.
We denote by ↑ X the least upperset of D containing X; for singletons {x} the notation

becomes ↑ x.

Proposition 3.1. Any prime algebraic lattice (D,v) is isomorphic to the downset comple-

tion of its set of compact prime elements (KP(D),v). Alternatively, any prime algebraic

lattice (D,v) is isomorphic to the non-empty downset completion of (KP⊥(D),v).

Proof. Let c and p be the transformations defined by

x ∈ D ⇒ c(x) = {y | y ∈ KP(D) and y v x}.

d downset on KP(D) ⇒ p(d) =
⊔
d.

It is clear that c(x) is a downset and that p(d) is in D since every subset has a l.u.b.

Moreover, x =
⊔{e | e ∈ KP(D) and e v x} implies p(c(x)) = x. It remains to prove

that c(p(d)) = d. Observe that

c(p(d)) = {y | y ∈ KP(D) and y v ⊔ d }
= {y | y ∈ KP(D) and y v x and x ∈ d}
= {y | y ∈ KP(D) and y ∈ d} (d downset)

= d (d ⊆KP(D)) .

An ideal is a directed downset. The ideal completion Ideal(D,v) of a partial order (D,v)

is the set of ideals of D ordered by inclusion, which is algebraic. Moreover, any algebraic

cpo D is order-isomorphic to Ideal(K(D),v). A filter is a co-directed upperset, that is, a

non-empty set X ⊆ D is a filter over (D,v) iff it is an upperset over this poset and

∀x, y ∈ X ∃z ∈ X (z v x and z v y).

Given a ∈ D, the least filter containing a is ↑ a = {x | a v x}.
We will also be concerned with the function space construction and with lifted domains.

Given cpos D and E, their function space D → E is the cpo of all continuous functions

from D to E with the pointwise ordering

f 6 g
def⇐⇒ ∀x ∈ D f(x) vE g(x) .

We use a λ-like syntax to describe functions in (D → E): where λv ∈ D.e stands

for the function f such that for any d ∈ D, we have that f(d) is the element of E

obtained by replacing v by d in e. The strict function space, D →⊥ E, is the set

{f : D → E | f(⊥) = ⊥}, whose elements are called strict continuous functions, with the

pointwise ordering inherited from D → E. The lifting D⊥ of a partial order D is the set

{〈0, d〉 | d ∈ D} ∪ {⊥} with the ordering

x 6 y iff (x = ⊥) or (∃d, d′ ∈ D d v d′ and x = 〈0, d〉 and y = 〈0, d′〉).

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

G. Boudol, P.-L. Curien and C. Lavatelli 452

We often simply write d for 〈0, d〉. Two continuous functions, up and down, are associated

with the lifting construction. Their type and definition are as follows:

up : D → D⊥ down : D⊥ →⊥ D

up(d) = 〈0, d〉 down(〈0, d〉) = d , down(⊥) = ⊥D .
The lifted application (()) : (D → E)⊥ × D → E is the uncurried form of down:

f((d)) = down(f)(d) with f ∈ (D → E)⊥ and d ∈ D.
(()) : (D → E)⊥ × D → E is the uncurried form of down :

f((d)) = down(f)(d) with f ∈ (D → E)⊥ and d ∈ D.

3.2. A domain equation for resource calculi

The aim of this section is to give a precise definition of the aforementioned domain

equation D = (M(D) → D)⊥. We base our construction ofM(D) on the observation that

it should represent multisets in the same way as powerdomains allow us to represent sets.

Given a set E, let Mf(E) denote the set of finite multisets of elements of E. The

multiset union of u and v is denoted u � v and we identify an element e ∈ E with the

singleton multiset {e}. Then any multiset is a product u = e1 � · · · � en with n > 0 and

possibly with repetitions. The empty product is the empty multiset 6, and the product

operation � is commutative and associative. We may also write multisets as monomials

u = em1

1 � · · · � emkk , where the mi’s are positive integers. Let (P ,v) be a poset; we define the

poset of finite multisets (Mf(P), l) with least element 6 as follows. The preorder l
is the least precongruence containing v and the inclusion of multisets. That is, the least

preorder on Mf(P) satisfying

p l q if p v q
u l u � v

u � v l u′ � v′ if u l u′ and v l v′ .

We assume that q1 � · · · � qn denotes the empty multiset when n = 0. This convention is

similar to that already adopted for bags. It is easy to check that p1 � · · · � pk l u if and

only if

∃q1, . . . , qk ∀i (pi v qi and (u = q1 � · · · � qk or ∃v u = q1 � · · · � qk � v)) .
Lemma 3.2. Let (P ,v) be a poset. The relation l is a partial order over Mf(P).

Proof. Let |u | be the cardinality of multiset u. Then u l v implies |u | 6 |v |. We

show (u l v l u ⇒ u = v) by induction on |u |. If |u | = 1, we have |v | = 1, so

(u v v v u ⇒ u = v). If |u | > 1, let p be a maximal element of u with respect to v and

u = p �u′. There exist q and v′ such that v = q � v′, where p v q and u′ l v′. There also exist

p′, u′′ such that u = p′ � u′′ with q v p′ and v′ l u′′. From p v q v p′, we get p = p′ = q

because p is maximal. Hence u′ = u′′, and then u′ = v′, by the induction hypothesis.

It should be clear that M(D) will somehow involve the operation Mf(). Instead of

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

A semantics for lambda calculi with resources 453

taking (K(D)−⊥,v) as is classical in the construction of powerdomains, we assume that

D is a prime algebraic lattice, and then we define

M(D) = Ideal(Bag(D), l) where Bag(D) =Mf(KP(D)).

In this construction, (Bag(D), l) is the analog of the finite powerset ordered by the lower

order used to build up lower powerdomains.

An alternative presentation of (Bag(D), l) in terms of non-empty multisets comes up

naturally by associating the empty multiset to the bottom ⊥ of D. Given a poset (P ,v)

with bottom element ⊥, let M∗f(P) be the set of finite non-empty multisets of P and let

l⊥ be the preorder defined as l , plus ⊥ as neutral element, that is, ⊥ � u l⊥ u. Notice

that in this setting, ⊥ is the least non-empty multiset: ⊥ l⊥ u for any non-empty multiset

u just because ⊥ v p for any p in P .

Proposition 3.3. The posets (Mf(P), l) and (M∗f(P⊥), l⊥) are isomorphic.

Proof. It is easy to see that the two injections b, b′ defined by

(Mf(P), l)
b→ (M∗f(P⊥), l⊥) (M∗f(P⊥), l⊥)

b′→ (Mf(P), l)

b(6) = ⊥ b′(⊥) =6 b′(⊥ � u) = b′(u)

b(p) = p b(p � u) = p � b(u) b′(p) = p b′(p � u) =

{
p � b′(u) if b′(u) 6=6
p otherwise

where p ∈ P and u ∈ Mf(P) or u ∈ M∗f(P), verify the following two statements:

u, v ∈ Mf(P) and u l v ⇒ b(u) l⊥ b(v) and

u, v ∈ M∗f(P⊥) and u l⊥ v ⇒ b′(u) l b′(v) .

In view of this isomorphism, the domain equation D = (M(D) → D)⊥ becomes

D = (Ideal(M∗f(KP⊥(D)), l⊥) → D)⊥ .

Our choice of compact primes instead of compact elements to carry out the construction

M(D) allows us to define a mapping j transforming an ideal ofM(D) into an element of D

for the interpretation of variables (see Section 3.3). Recall that any p.a.l. D is isomorphic

to the non-empty down-set completion of KP⊥(D). Given an ideal of multisets, j forms

the union of their underlying sets. Formally, if a ∈ M(D):

j(a) =
⋃{ x ∈ KP⊥(D) | ∃u ∈ a x l u } .

The mapping j on K(M(D)) has the following shape: let a be the principal ideal

↓(d1 � · · · � dn) with di ∈ KP⊥(D), then

j(a) = d1 t · · · t dn .

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

G. Boudol, P.-L. Curien and C. Lavatelli 454

3.3. Interpretation

We explain in which sense the solutions of the domain equation defined in the previous

section constitute models of λ-calculi with resources.

The interpretation function V[[M]]ρ for λcr takes as arguments a term M and an

environment ρ closing M, and gives back an element of D. Environments are mappings

in Env = [Var → M(D)] with a finite domain. We call CEnv the collection of compact

environments, that is, those environments defined on [Var → K(M(D))].

SinceM(D) does not have arbitrary l.u.b.’s, it does not allow for a direct interpretation

of arguments. The meaning of a term relies on the meaning of the finite terms related to

it. By finite terms we mean terms whose bags have a finite number of components. We

define a binary relation P ∝ Q that captures the idea that every multiplicity in bag P

becomes finite in bag Q – all infinite multiplicities of P are replaced in Q by finite ones,

and finite multiplicities in P may decrease their values in Q:

Mn ∝

1

Mm for all m ∈ N if n = ∞
Mm for all m 6 n if n ∈ N

P ∝ P ′ and Q ∝ Q′ ⇒ (P | Q) ∝ (P ′ | Q′) .
Some additional notation is needed to define the interpretation function. For any finite

collection V of variables, the environment ρ/V is such that

ρ/V (y) =

{
ρ(y) if y 6∈ V
undefined otherwise.

In order to simplify the notation, let us define the product of compact environments,

ρm � · · · � ρn, with m 6 n, by

(∀i ρi ∈ CEnv ⇒ (∀x ρi(x) = ↓ui ⇒ (ρm � · · · � ρn)(x) = ↓(um � · · · � un))) .
The definition of the interpretation of terms with resources is given in Figure 5.

The usual interpretation V[[x]]ρ = ρ(x) does not work, because values for variables are

taken from M(D) and not from D. Whence the use of the mapping j : M(D) → D in

the equation V[[x]]ρ = j(ρ(x)). The interpretation of the abstraction is as usual in a lazy

framework. The remaining constructs are application and explicit substitution, for which

the environment (that is, the bags of terms associated to the free variables) should not be

duplicated. Instead, environments are split and distributed to free occurrences of variables

in all possible ways. Moreover, it should be obvious that any convergent evaluation of

a term uses the arguments occurring in it only a finite number of times each; hence it

seems natural to compute its denotation in terms of its associated finite terms. All these

contributions are collected together by means of a l.u.b. which due to the non-determinacy

of evaluation is not directed. This is why we require that D is a complete lattice. Notice

that the environments ρ0, . . . , ρn used to give the semantics of application and explicit

substitution are compact ones (see the definition of the product ρm � · · · �ρn). Certainly, we

could have used arbitrary environments, but our choice eases technical proofs.

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

A semantics for lambda calculi with resources 455

4. The model of uppersets in logical form

The aim of this section is to construct a concrete logical model of resource calculi in the

style of logical filter models for pure (lazy) λ-calculus (see Barendregt et al. (1983), Coppo

et al. (1984) and Ronchi della Rocca (1993), and also Boudol (1990), Boudol (1991),

Dezani et al. (1994), Dezani et al. (1999a) and Dezani et al. (1999b)), which turns out to

be a presentation of the canonical, or minimal, or initial, solution of the domain equation

defined in Section 3.2 (Pitts 1996; Amadio and Curien 1998). We shall not prove, nor

even define more precisely, canonicity here; the details would closely follow the treatment

given in, say, Abramsky and Ong (1993). The underlying logic consists of a language of

types together with an entailment relation between types. The meaning of a term is a set

of formulas of the logic.

4.1. Type theory

The syntax for types (formulas) is determined by the following grammar:

(ft) φ ::= ω | π → φ

(fb) π ::= φ | (π × π) .

Unless stated otherwise, φ, σ, δ will range over ft, and π, ψ, θ will range over fb.

The type ω stands for the truth in the logic; it is the least piece of information we can

V[[x]]ρ = j(ρ(x))

V[[λx.M]]ρ = up(λu ∈ M(D).V[[M]]ρ[x:=u])

V[[MP]]ρ =
⊔V[[M]]ρ0

((↓d1 � · · · � dn))

where

ρ ⊇ ρ0 � ρ1 � · · · � ρn,
P ∝ (M1 | · · · |Mn) and

di 6V[[Mi]]ρi ∩KP⊥(D)

V[[M〈P/x〉]]ρ =
⊔V[[M]]

ρ0[x:=↓d1�···�dn]

where

ρ ⊇ ρ0/x � ρ1 � · · · � ρn,
P ∝ (M1 | · · · |Mn) and

di 6V[[Mi]]ρi ∩KP⊥(D)

V[[cP]]ρ =

{
V[[I]]ρ if P ≡ (M | Q) and V[[M]]ρ 6= ⊥
⊥ otherwise

Fig. 5. Interpretation function

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

G. Boudol, P.-L. Curien and C. Lavatelli 456

have about a term. Arrow types are in a sense implicative formulas used to give meaning

to functions. The language for argument types involves a novel constructor ×, which is

the logical counterpart of parallel composition. This ‘product’ of types acts as a kind of

conjunction, allowing us to group type information about the arguments of a function.

For instance ((π → φ) × π) → φ will be among the types of λx.(xx). However, unlike

conjunction, product is not idempotent, that is, φ × φ is not equivalent to φ in general

(this is the case for φ = ω only). If both φ0 and φ1 are information about a term M,

we cannot say that φ0 × φ1 is; what we can say is that this product type is part of the

meaning of the finite bag (M |M).

The entailment relation φ 6 σ, which can be read as ‘φ implies σ’, is the least reflexive

and transitive relation on fb verifying the usual laws for arrows in the weak theory of

λ-calculus (1 to 3), together with additional laws for product (4 to 8):

1. φ 6 ω

2. π → ω 6 ω → ω

3. π1 6 π0 and φ0 6 φ1 ⇒ (π0 → φ0) 6 (π1 → φ1)

4. ω × π 6 π

5. π 6 ω × π
6. π0 × π1 6 π1 × π0

7. π0 × (π1 × π2) 6 (π0 × π1)× π2

8. π0 6 π′0 and π1 6 π′1 ⇒ π0 × π1 6 π′0 × π′1 .
Note that × does not verify idempotency, that is, we do not assume

π 6 π0 and π 6 π1 ⇒ π 6 (π0 × π1).

However, × verifies the other usual properties of conjunction:

π0 × π1 6 π0 and π0 × π1 6 π1.

We write φ ∼ σ whenever φ 6 σ and σ 6 φ are provable. For instance

π → ω ∼ ω → ω , ω × π ∼ π , π0 × π1 ∼ π1 × π0 , and (π0 × π1)× π2 ∼ π0 × (π1 × π2).

The associativity of × allows us to discard parentheses from product types, whose general

shape is σ1 × · · · × σn with n > 1 and σi ∈ ft. Finally, observe that for any σ ∈ ft we have

(ω 6 σ ⇒ σ = ω) and (σ 6= ω ⇒ σ 6 ω → ω) .

The type theory verifies what we call the product and the arrow properties, which

characterize formulas related by 6 .

Definition 4.1. We define the relation π .φ1, . . . , φm, which expresses the fact that φ1, . . . , φm
are the meaningful factors (that is, different from ω) of π, as follows:

− ω . ε (the empty sequence)

− ψ → δ .ψ → δ

− π .φ1, . . . , φm and π′ .φ′1, . . . , φ′k ⇒ π × π′ .φ1, . . . , φm, φ
′
1, . . . , φ

′
k .

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

A semantics for lambda calculi with resources 457

Proposition 4.2. (Product property) Let π .φ1, . . . , φn and ψ .σ1, . . . , σm. The following

equivalence holds:

π 6 ψ ⇐⇒ ∃i : [1, m] → [1, n] (i injective and (∀j ∈ [1, m] φi(j) 6 σj)) .

Moreover, the size of the proof of φi(j) 6 σj is at most equal to that of π 6 ψ.

Proof. (⇐) If m = 0, then ψ = ω × · · · × ω, hence π 6 ψ holds for any π by Clauses

1, 4 and 8 of the definition of 6 . Otherwise,

φi(1) × · · · × φi(m) 6 σ1 × · · · × σm ∼ ψ by 8.

Moreover, π 6 φi(1)× · · ·×φi(m) by commutativity, 4 and 8. Hence π 6 ψ by transitivity.

(⇒) We proceed by structural induction on the size l of the derivation of π 6 ψ:

l = 1: If π 6 ψ is an instance of reflexivity or Axioms 1 or 2, or 4 to 7, then n = m and

the sequences φ1, . . . , φm and σ1, . . . , σm are equal up to permutations. That is there exists

a bijection i : [1, m] → [1, m] such that φi(j) = σj for all j = 1, . . . , m.

l > 1: Three cases arise depending on whether the last rule used in the derivation of

π 6 ψ is 3, in which case there is nothing to prove, or 8 or transitivity. In the second case,

π = π0× π1 and ψ = ψ0×ψ1 with πi 6 ψi in li steps, for i = 0, 1. We have l = l0 + l1. Let

π0 .φ1, . . . , φa π1 .φa+1, . . . , φn
ψ0 . σ1, . . . , σb ψ1 . σb+1, . . . , σm .

By the induction hypothesis, there exist injections k0 : [1, b] → [1, a] and k1 : [b+1, m] →
[a+ 1, n] such that φkh(j) 6 σj in at most lh steps for any j, with h = 0 or h = 1. Define

i : [1, m] → [1, n] by

i(j) =

{
k0(j) if 1 6 j 6 b
k1(j) if b+ 1 6 j 6 m.

Then φi(j) 6 σj in less than l steps. Finally, if π 6 ψ is proved by transitivity,

π 6 θ in l1 steps and θ 6 ψ in l2 steps,

with l1 + l2 + 1 = l. Let θ . δ1, . . . , δp. By induction, there exist two injections k1 : [1, p] →
[1, n] and k2 : [1, m] → [1, p] such that φk1(j) 6 δj for all j = 1, . . . , p and δk2(j) 6 σj for

all j = 1, . . . , m. Define i = k1 ◦ k2 : [1, m] → [1, n]. From the induction hypotheses,

φk1(k2(j)) 6 δk2(j) in at most l1 steps and

δk2(j) 6 σj in at most l2 steps.

By transitivity, φk1(k2(j)) 6 σj in at most l steps.

Proposition 4.3. (Arrow property) For all π, ψ, φ, σ,

(π → φ 6 ψ → σ) ⇐⇒ (σ 6= ω ⇒ ψ 6 π and φ 6 σ) .

Proof. (⇐) By cases on σ. If σ = ω, we have

π → φ 6 π → ω 6 ω → ω 6 ψ → ω

for any π, φ, ψ. If σ 6= ω, the statement follows immediately by Clause 3.

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

G. Boudol, P.-L. Curien and C. Lavatelli 458

(⇒) Assume σ 6= ω, and proceed by induction on the size l of the derivation of

π → φ 6 ψ → σ. If l = 1, then π → φ 6 ψ → σ is established by reflexivity, hence

π = ψ and φ = σ. Otherwise (that is, l > 1), the derivation is either by application of

Clause 3 or by transitivity. The first case supposes ψ 6 π and φ 6 σ directly. In the

second case, there exists θ such that

π → φ 6 θ and θ 6 ψ → σ,

with sizes l1 and l2, respectively. The product property implies θ . π′ → φ′ (θ has only

one factor different from ω). That is, θ ∼ π′ → φ′. Thus we have π → φ 6 π′ → φ′ 6
ψ → σ. By induction, ψ 6 π′ and φ′ 6 σ hold. Moreover, φ′ 6= ω, since ω 6 σ would

imply σ = ω, contradicting the hypothesis. Then by induction again, we have φ 6 φ′ and

π′ 6 π. Therefore, ψ 6 π and φ 6 σ.

4.2. Domain of uppersets

In order to solve the domain equation for the λ-calculi with resources, the model is

required to be a p.a.l., that is the non-empty downset completion of some poset with

bottom (cf. Proposition 3.1). To this end, we will use the poset (ft, 6), which is in reverse

order with respect to the standard convention: φ 6 τ means that τ is less precise than

φ. Therefore, we use the notion dual to that of non-empty downset: that of non-empty

upperset, called simply upperset in the rest of the paper.

Definition 4.4. (Domain U) U is the collection of uppersets over (ft, 6), ordered by set

inclusion.

Introducing the ingredient of non-emptiness in the definition of upperset is in agreement

with the intended meaning for the bottom element of the domain U, whose canonical

representative must be ω. By construction, 〈U,⊆〉 is a prime algebraic lattice. Its least

element ⊥ is ↑ ω, which is actually {ω}, its top element > is ft, and xty = x∪y and

xuy = x ∩ y. Given A ⊆ ft, we have ↑ A =
⊔{ ↑ a | a ∈ A} =

⋃{ ↑ a | a ∈ A}. The

compact prime elements of U are its principal uppersets ↑ φ and its compact elements

are finite unions of compact primes.

Remark 4.5. For any φ, σ ∈ ft, we have φ 6 σ iff ↑ σ ⊆ ↑ φ.

As a corollary, ∀π ↑ (ω → ω) = ↑ (π → ω): the left-to-right inclusion holds by

definition (Rule 2); the right-to-left one holds because π 6 ω for any π. Furthermore, if

φ 6∼ ω, then ↑ φ contains all functions types of the shape π → ω, since φ 6 ω → ω.

We argue that the domain U is a suitable candidate to solve, up to isomorphism, the

semantic equation for λcr , and that, in fact, it provides an adequate model for the resource

calculi. The last point will be studied in the next sections. Here we treat the first point,

that is, we show the following isomorphism:

U ∼ (M(U) → U)⊥.

The proof is based on the observation that the domain M(U) has a concrete (logical)

presentation over the poset (fb, 6).

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

A semantics for lambda calculi with resources 459

Definition 4.6. (Domain UB) UB is the collection of filters over (fb, 6), ordered by set

inclusion.

Remark 4.7. For any π, ψ ∈ fb, we have π 6 ψ iff ↑ ψ ⊆ ↑ π.

The poset (UB,⊆) is an ω-algebraic cpo where the l.u.b.’s. of directed subsets of UB are

their union, and whose compact filters are the principal filters ↑ π. The next proposition

states that this poset gives a concrete presentation of the domain M(U).

Proposition 4.8. UB and M(U) are order-isomorphic.

Proof. Recall that M(U) = Ideal(M∗f(KP⊥(U)), l⊥). It is enough to show that the

sets of compact elements of UB and M(U) are order-isomorphic. These sets are the

following:

K(UB) = { ↑ π | π ∈ fb}

K(M(U)) = {↓(d1 � · · · � dn) | n > 1 and di ∈ KP⊥(U)},
where KP⊥(U) = { ↑ φ | φ ∈ ft}. Define κ : fb → M∗f(KP⊥(U)) as follows:

κ(φ) = ↑ φ if φ ∈ ft

κ(π × ψ) = κ(π) � κ(ψ) .

It is easy to check that ↑ π ∈ K(UB) ⇐⇒ ↓κ(π) ∈ K(M(U)). It remains to show that,

for any π, ψ ∈ fb, we have

π 6 ψ ⇐⇒ κ(ψ) l⊥ κ(π) .

(⇒) If ψ ∼ ω, then κ(ψ) = (↑ ω)ml⊥ ↑ ω l⊥ κ(π) for any π. Otherwise, assume

π .φ1, . . . , φn and ψ .σ1, . . . , σm. By the product property, there is an injection i : [1, m] →
[1, n] such that φi(j) 6 σj . That is, ↑ σj l⊥ ↑ φi(j). Hence

κ(ψ)l ↑ σ1 � · · · � ↑ σml⊥ ↑ φi(1) � · · · � ↑ φi(m) l⊥ κ(π) .

(⇐) We use structural induction on the derivation of κ(ψ) l⊥ κ(π). Observe that whenever

κ(θ) = u � v, there exist θ0, θ1 such that θ = θ0 × θ1, κ(θ0) = u and κ(θ1) = v.

— If κ(ψ) l⊥ κ(π) is proved by reflexivity, then ψ and π are equal up to commutativity,

and hence π 6 ψ.

— If both π and ψ are in ft, then κ(ψ) l⊥ κ(π) boils down to ↑ ψ ⊆ ↑ π, and we have

π 6 ψ.

— If κ(ψ) = κ(π) �⊥ l⊥ κ(π), then ψ = π × ω. So π 6 ψ holds.

— If κ(ψ) l⊥ κ(ψ) � κ(π′) = κ(π), then π = ψ × π′ 6 ψ × ω 6 ψ holds.

— If κ(ψ) = κ(ψ0) � κ(ψ1) l⊥ κ(π0) � κ(π1) = κ(π) comes from κ(ψ0) l⊥ κ(π0) and

κ(ψ1) l⊥ κ(π1), then we have π0 6 ψ0 and π1 6 ψ1 by induction. So π = π0 × π1 6
ψ0 × ψ1 = ψ holds.

— If κ(ψ) l⊥ κ(θ) l⊥ κ(π), the induction hypothesis gives θ 6 ψ and π 6 θ. Hence

π 6 ψ by transitivity of 6 .

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

G. Boudol, P.-L. Curien and C. Lavatelli 460

In order to prove that U and (UB → U)⊥ are isomorphic, we need to represent the

continuous functions from UB to U by elements of U. To this end, we successively define

step functions (used to determine the compact elements of the domain UB → U), the

application operator of the model, and functions F and G that realize the isomorphism.

Definition 4.9. Step functions fπφ from UB to U are given by

fπφ(c) =

{ ↑ φ if ↑ π ⊆ c
↑ ω otherwise.

Proposition 4.10. The compact elements of (UB → U) are exactly given by finite least

upper bounds of the shape
⊔
I

fπiφi .

Proof. Let f ∈ (UB → U). We show the following two properties:

1 fπφ ⊆ f ⇐⇒ ↑ φ ⊆ f(↑ π), and

2 f =
⋃{fπφ | fπφ ⊆ f}.

The (⇒) direction of (1) is easy: fπφ ⊆ f ⇒ fπφ(↑ π) ⊆ f(↑ π) ⇐⇒ ↑ φ ⊆ f(↑ π). As

for (⇐), let ↑ φ ⊆ f(↑ π). It is enough to consider the case of ↑ π ⊆ c, since ↑ ω is always

included in f(c). By the monotonicity of f, we have fπφ(c) =↑ φ ⊆ f(↑ π) ⊆ f(c).

Note that the domain (UB → U) is a p.a.l. where the l.u.b’s are defined pointwise,

that is (
⋃
g)(x) =

⋃
g(x). Then, using (1), proving (2) is the same as proving the following

equation for any x ∈ UB:

f(x) =
⋃{fπφ(x) | ↑ φ ⊆ f(↑ π)}.

The right-hand side of the equation can be read as

A =
⋃{ ↑ φ | ∃π ↑ φ ⊆ f(↑ π) and ↑ π ⊆ x}.

Exploiting the fact that f is continuous and that any x is equal to the l.u.b. of the directed

set { ↑ π | ↑ π ⊆ x}, we can check that A =
⋃{ ↑ φ | ↑ φ ⊆ f(x)}, which is f(x) since U

is a p.a.l.

Clearly, finite l.u.b.’s of step functions are compact, and it follows immediately from (2)

that all compact functions have this form.

Definition 4.11. (Application in the model) The application · : U × UB → U is the

continuous function defined by

x·y =

{ {σ ∈ ft | ∃π ∈ y . (π → σ) ∈ x} if x 6= ↑ ω
{ω} otherwise.

Corollary 4.12. If x 6= ↑ ω, then φ ∈ x· ↑ π ⇐⇒ π → φ ∈ x.

Proof. (⇒) By definition of application, there is ψ ∈ ↑ π such that ψ → φ ∈ x, and

hence π 6 ψ implies ψ → φ 6 π → φ ∈ x, since x is upward closed. The (⇐) direction

is even simpler.

Definition 4.13. Let F and G be the functions defined by

U F→ (UB → U)⊥
G→ U

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

A semantics for lambda calculi with resources 461

F(x) =

{
up(λy ∈ UB.x·y) if x 6= ↑ ω
⊥ otherwise

G(f) =

{ ↑ {π → φ | φ ∈ f((↑ π))} if f 6= ⊥
↑ ω otherwise.

As an immediate consequence of the definition, we have

F(x)((d)) =

{
x·d if x 6= ↑ ω
↑ ω otherwise

}
= x·d .

We also note that application is continuous as a function of its second argument and

preserves arbitrary l.u.b.’s as a function of its first argument, and that G preserves arbirtrary

l.u.b.’s too.

Lemma 4.14. (Representation lemma) For any h ∈ (UB → U)⊥ and any d ∈ UB, we have

h((d)) = G(h)·d.
Proof. Let h ∈ (UB → U)⊥ and d ∈ UB. If h = ⊥, then

G(h)·d = ↑ ω·d = ↑ ω = ⊥((d)) .

If h = up(g), we have

h((d)) = g(
⊔
π∈d
↑ π) =

⋃
fψφ6g

⋃
π∈d
fψφ(↑ π) and

G(h)·d =
⋃
fψφ6g

G(up(fψφ))·⊔
π∈d
↑ π =

⋃
fψφ6g

⋃
π∈d
G(up(fψφ))· ↑ π.

Therefore, it is enough to prove that, for any φ , ψ and π,

(∗) G(up(fψφ)) · ↑ π = fψφ(↑ π).

It is easily seen that G(up(fψφ)) = ↑ (ψ → φ). Then we can establish (*) as follows:

↑ (ψ → φ)· ↑ π
= {σ | ψ → φ 6 π → σ} (by Corollary 4.12)

= {σ | σ = ω or (σ 6= ω and π 6 ψ and φ 6 σ)} (by the arrow property)

= fψφ(↑ π).

Theorem 4.15. (Solution of the domain equation) Let F and G be as in Definition 4.13.

1 G ◦ F = IU.

2 F ◦ G = I
(UB→U)⊥ .

Proof.

1. Let x ∈ U. If x = ↑ ω, then G(F(↑ ω)) = G(⊥) = ↑ ω. Otherwise,

G(F(x)) = ↑ {π → φ | φ ∈ x· ↑ π} = ↑ {π → φ | π → φ ∈ x} = x.

2. Let f ∈ (UB → U)⊥; for any d ∈ UB we have

F(G(f))((d)) = G(f)·d = f((d))

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

G. Boudol, P.-L. Curien and C. Lavatelli 462

by the representation Lemma 4.14. Hence down(F(G(f)) = down(f), and F ◦ G =

I
(UB→U)⊥ then follows easily from the observation that ω → ω 6∈ ↑ ω, and hence

that G(g) 6= ⊥ if g 6= ⊥.

Definition 4.16. (Denotational semantics) The denotational preorder vU , with associated

equivalence 'U , is given by

M vU N
def⇐⇒ ∀ρ ∈ CEnv V[[M]]ρ ⊆ V[[N]]ρ.

5. Type assignment system

We show that the interpretation of a term in model U coincides with the set of types

that can be assigned to it in the system P described below. On the way, we prove some

syntactic properties of the type system such as subject expansion (Theorem 5.10) and a

property of extensionality (Lemma 5.11).

5.1. Definition and properties

The functionality theory associated with the λ-calculus of resources with convergence

testing is a sequent calculus extending the one for λr given in Boudol (1993), which

incorporates the entailment relation φ 6 σ between types†. The provable judgments

are of the form Γ ` T : τ, where Γ, called a typing context, is a finite sequence of

hypotheses x1 : π1, . . . , xn : πn, T is a term (respectively, bag of terms) and τ is a type in

ft (respectively, fb). We will often write x ∈ Γ for ∃π x : π ∈ Γ. The usual structural rules

are unified in a single rule allowing us to do a finite number of exchanges, weakenings

and products of hypotheses.

Definition 5.1. (Type system P) Let� be the least reflexive, transitive relation containing

the pairs

(exchange) Γ, x : π, y : ψ,∆ � Γ, y : ψ, x : π,∆

(weakening) Γ � x : π,Γ

(product) Γ, x : π, x : ψ,∆ � Γ, x : π × ψ,∆ .

The rules of system P are shown in Figure 6. They are essentially those of classical

intersection type systems (Sallé 1978; Coppo and Dezani 1980). The difference is that the

manipulation of the hypotheses in P has a ‘multiplicative character’: contractions are not

authorized. This allows us to treat independently each occurrence of a variable and to

associate one resource to each one. Notice that (L1) combined with (L8) gives the more

usual typing rule Γ ` x : φ if x : φ is in Γ.

† The functionality theory studied in Boudol (1993) only involves a notion of equivalence between types;

entailment is not needed when discussing adequacy. Its role in the proof of full abstraction can be seen in

the proof of the convergence Lemma 6.13.

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

A semantics for lambda calculi with resources 463

Remark 5.2. Since terms are also bags, there are provable judgments Γ ` M : π, with

π ∈ fb, but it is straightforward to see that we must then have π ∼ φ for some φ ∈ ft,

and Γ ` M : φ (with a shorter proof). This is because the only freedom we have to apply

rule (L5) is via structural equivalences of the sort P ≡ (1 | P) (cf. Figure 2), and because

the only possible types for 1 are the types equivalent to ω (through Rule (L7)).

(L1) x : φ ` x : φ (L6)
Γ ` (M|M∞) : π

Γ ` M∞ : π

(L2)
x : π,Γ ` N : φ

Γ ` λx.N : π → φ

(x 6∈ Γ) (L7) Γ ` T : ω

(L3)
Γ ` M : π → φ ∆ ` P : π

Γ,∆ ` (MP) : φ

(L8)
∆ ` T : τ

Γ ` T : τ

(∆� Γ)

(L4)
Γ ` P : π x : π,∆ ` M : φ

Γ,∆ ` M〈P/x〉 : φ

(x 6∈ ∆) (L9)
Γ ` T : τ

Γ ` T : σ

(τ 6 σ)

(L5)
Γ ` P : π ∆ ` Q : ψ

Γ,∆ ` (P |Q) : π × ψ
(L10)

Γ ` P : ω → ω

Γ ` cP : φ → φ

Fig. 6. Type assignment system P

Definition 5.3. (Type semantics) The type preorder vP, with associated equivalence 'P,

is given by

(M vP N)
def⇐⇒ ∀Γ ∀φ (Γ ` M : φ ⇒ Γ ` N : φ) .

Lemma 5.4. The following rule is admissible in system P:

x : π,Γ ` T : τ

x : ψ,Γ ` T : τ

(ψ 6 π)

that is, if the assumption is provable by the rules of P, then so is the conclusion.

Proof. The proof is by structural induction on the proof of x : π,Γ ` T : τ. The

interesting case is that of Axiom (L1). We show the implication ψ 6 φ ⇒ x : ψ ` x : φ

as follows. Let ψ = σ1 × · · · × σn 6 φ. Then by the product property, there exists i such

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

G. Boudol, P.-L. Curien and C. Lavatelli 464

that σi 6 φ. Then

x : σi ` x : σi

x : σi ` x : φ
(L9)

x : σ1, . . . , x : σn ` x : φ
(L8)

x : ψ ` x : φ
(L8) .

Lemma 5.4 allows us to perform additional weakenings during proofs. From now on,

we consider relation � enriched with the weakening axiom

ψ 6 π ⇒ (x : π,Γ � x : ψ,Γ).

That is, we incorporate Lemma 5.4 into the rule (L8).

Definition 5.5.

— We shall freely manipulate contexts as multisets, that is, up to uses of exchange.

— Let T be a term or a bag of terms and y a variable. We then define ΓT and Γ/y by

induction on Γ as follows:

Γ empty ⇒
[

ΓT empty

Γ/y empty

Γ = x : π,∆ ⇒

ΓT =

{
x : π,∆T if x ∈ fv (T)

∆T otherwise

Γ/y =

{
x : π,∆/y if x 6= y

∆/y otherwise.

— If Γx = x : π (there is only one occurrence of x in Γ), then we set Γ(x) = π.

— We use Γ× to denote the context such that if Γx = x : π1, . . . , x : πn, then Γ×(x) =

π1 × · · · × πn (for any x).

— We use Γ̃ to denote the smallest typing context (defined up to exchange) such that for

any x : π ∈ Γ, if π = φ1 × · · · × φn with φi ∈ ft, then x : φ1, . . . , x : φn ∈ Γ̃.

Next we state some simple properties of system P in the following proposition.

Proposition 5.6.

1 Γ ` T : τ ⇒ Γ̃ ` T : τ.

2 Γ× ` T : τ ⇒ Γ ` T : τ.

3 Γ ` T : τ and y 6∈ fv (T) ⇒ Γ/y ` T : τ. So ΓT ` T : τ holds too.

4 Γ� ∆ ⇒ ∆×x (x) 6 Γ×x (x) (for all x).

5 ∆� Γ and x : ψ ∈ ∆ ⇒ x : π ∈ Γ and π 6 ψ (for some π).

Proof. 1. We use structural induction on the derivation Γ ` T : τ. Besides the induction

hypotheses, we use the following properties: ˜x : π, Γ̃ ` M : σ implies x : π, Γ̃ ` M : σ by

(L8); Γ = Γ1,Γ2 implies Γ̃ = Γ̃1, Γ̃2; ∆� Γ implies ∆̃� Γ̃.

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

A semantics for lambda calculi with resources 465

2. Assume Γ× ` M : φ. Then, from Part (1) of this proposition, Γ̃× ` M : φ holds.

Furthermore, Γ̃× � Γ̃� Γ. By (L8), we get Γ ` M : φ.

3. The proof is a straightforward induction on the derivation of Γ ` T : τ.

4. We use induction on the size of the proof of Γ � ∆. We examine weakening only.

Let Γ � y : θ,Γ = ∆. If y 6= x, then Γx = ∆x. If y = x, then ∆×x (x) = θ × Γ×x (x) 6
ω × Γ×x (x) 6 Γ×x (x).

5. The proof is similar to that for Part (4).

The following proposition states that type assignment within P is syntax-directed up

to uses of rules (L8) and (L9).

Proposition 5.7.

1 If Γ ` P : π and π .φ1, . . . , φn with n > 1, then there exist terms M1, . . . ,Mn, Q

and contexts Γ1, . . .Γn such that P ≡ (M1 | · · · | Mn | Q), Γ1, . . . ,Γn � Γ and

∀i ∈ {1, . . . , n} Γi ` Mi : φi (with shorter proofs).

2 If Γ ` M〈P/x〉 : φ and φ 6= ω, there exist ψ,Γ1,Γ2 such that

Γ1 ` P : ψ and x : ψ,Γ2 ` M : φ where x 6∈ Γ2 and Γ1,Γ2 � Γ.

3 If Γ ` MP : φ and φ 6= ω, there exist π,Γ1,Γ2 such that

Γ1 ` M : π → φ and Γ2 ` P : π where Γ1,Γ2 � Γ.

4 If Γ ` λx.M : φ and φ 6= ω, then there exist π, σ,∆ such that

x : π,∆ ` M : σ where φ = π → σ , x 6∈ ∆ and ∆� Γ.

Proof. All proofs are by structural induction. We examine one case of Part 1 and one

case of Part 3 of the statement:

1. Suppose that Γ ` P : π is derived by (L9). Then Γ ` P : ψ with ψ 6 π. By

induction, ψ . δ1, . . . , δr , P ≡ (N1 | · · · | Nr | Q′), Γi ` Ni : δi and Γ1, . . . ,Γr � Γ. By the

product property, there exists an injection b : [1, n] → [1, r] such that δb(j) 6 φj for any

j = 1, . . . , n. This implies n 6 r and Γb(j) ` Nb(j) : φj for any j = 1, . . . , n. Then, writing

(N1 | · · · | Nr) ≡ (Nb(1) | · · · | Nb(n) | Q′′) and Q = (Q′′ | Q′),
we have P ≡ (Nb(1) | · · · | Nb(n) | Q). Thus the conclusion holds with Mj = Nb(j).

3. If the derivation of Γ ` MP : φ ends with (L9), then Γ ` MP : σ and σ 6 φ. By

induction, Γ1 ` M : π → σ and Γ2 ` P : π where Γ1,Γ2 � Γ. Since σ 6 φ implies

π → σ 6 π → φ, we have Γ1 ` M : π → φ by Rule (L9).

Proposition 5.8.

1 Γ ` x : φ ⇒ (φ 6= ω ⇒ ∃x : π ∈ Γ π 6 φ).

2 Γ ` I : π → φ ⇒ π 6 φ.

3 Γ ` cx : ψ → σ ⇒ ∃x : π ∈ Γ π 6 ω → ω and ψ 6 σ.

4 Γ ` x∞ : π ⇒ (π � ω ⇒ ∃x : ψ1, . . . , x : ψn ∈ Γ ψ1 × · · · × ψn 6 π).

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

G. Boudol, P.-L. Curien and C. Lavatelli 466

Proof. Part (4) is an easy consequence of proposition 5.7 (1) and of Part (1) of this

statement. Parts (1), (2) and (3) are proved by structural induction. We examine a few

cases.

1. If the derivation ends with (L8), we have ∆ ` x : φ for some ∆ such that ∆ � Γ. By

induction, some x : ψ exists in ∆ with ψ 6 φ. By Proposition 5.6 (5), x : π ∈ Γ for some

π such that π 6 ψ. Hence, π 6 φ holds by transitivity.

2. We can assume φ 6= ω, since otherwise π 6 ω for any π. Assume the last rule used in

the derivation is (L2). Then x : π,Γ ` x : φ with x 6∈ Γ. By Part (1) of this proposition,

we have π 6 φ. If the last rule is (L9), then Γ ` I : δ for some δ 6 π → φ. Since δ ∈ ft,

we must have δ = π′ → φ′ for some formulas π′ and φ′. As φ 6= ω, the arrow property

guarantees φ′ 6= ω, π 6 π′ and φ′ 6 φ. Moreover, π′ 6 φ′ holds by induction, hence

π 6 φ by transitivity.

3. Assume rule (L10) is used last. Then ψ = σ and Γ ` x : ω → ω. By Part (1) of this

proposition, there exists x : π in Γ such that π 6 ω → ω.

Proposition 5.9.

1 M=αM
′ and Γ ` M : φ ⇒ Γ ` M ′ : φ.

2 P ≡ P ′ and Γ ` P : π ⇒ Γ ` P ′ : π.

3 P ∝ Q and Γ ` Q : π ⇒ Γ ` P : π. In particular, x : π ` x∞ : π since x∞ ∝ x and

x : π ` x : π.

Proof. Part (1) is a consequence of the following property, which is established by a

straightforward induction: if variables are consistently renamed in the context and in the

term, then the resulting judgment is still provable. Part (2) follows from the observation

that Rule (L6) is in fact reversible (applying Rule (L5) and assigning type ω to M). Also,

the only types for 1 are those equivalent to ω. As for Part (3), P ∝ Q implies P ≡ (Q | P ′),
hence the statement holds by Part (2) (assigning type ω to P ′).

The evaluation relation →rc and the typing system P verify the important property of

subject expansion: the types of the terms obtained during an evaluation of M are types of

M too.

Theorem 5.10. (Subject expansion) If T →rc T
′ and Γ ` T ′ : τ, then Γ ` T : τ.

Proof. We shall use the following property, which is easily checked:

(∗) (M〈N/x〉�M ′ and Γ ` M ′ : φ) ⇒ Γ ` M〈N/x〉 : φ,

The proof of the lemma is by induction on the derivation of T →rc T
′. We examine a

few cases:

— If T = (λx.M)P →rc M〈P/x〉 = T ′, then Γ1 ` P : ψ and x : ψ,Γ2 ` M : τ with

Γ1,Γ2 � Γ and x 6∈ Γ2 by Proposition 5.7 (2). Then Γ ` (λx.M)P : τ by (L2) and

(L3).

— If T = cV →rc I = T ′, then φ = π → σ and π 6 σ hold by Proposition 5.8 (2). On

the other side, Γ ` cV : σ → σ holds for any value V , by (L10). So Γ ` T : φ

follows by (L9), since σ → σ 6 φ.

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

A semantics for lambda calculi with resources 467

— If T = M〈P/x〉 →rc M
′〈Q/x〉 = T ′, where P ≡ (N | Q), M〈N/x〉�M ′ and x 6∈ fv (N),

then

Γ1 ` Q : ψ and x : ψ,Γ2 ` M ′ : φ

with x 6∈ Γ2 and Γ1,Γ2 � Γ by Proposition 5.7 (2). Then, x : ψ,Γ2 ` M〈N/x〉 : φ by

the property (∗). Since x is bound in M〈N/x〉, we have, in fact, Γ2 ` M〈N/x〉 : φ, by

proposition 5.6 (3). By Proposition 5.7 (2) again, there exist π,Σ′,Σ′′ such that

Σ′ ` N : π and x : π,Σ′′ ` M : φ,

with x 6∈ Σ′′ and Σ′,Σ′′ � Γ2. Since x : π,Σ′′ � x : π, x : ψ,Σ′′ � x : π × ψ,Σ′′, we

get x : π × ψ,Σ′′ ` M : φ by (L8). Then Σ′,Γ1,Σ
′′ ` M〈P/x〉 : φ by (L4), since

Σ′,Γ1 ` (N | Q) : π × ψ by (L5). This implies Γ ` T : φ by (L8).

We next prove an extensionality lemma for our typing system. In the usual intersection

type systems, this property is expressed as follows (cf. Hindley (1982), Hindley (1983) and

Dezani and Margaria (1986)):

(Γ ` M : φ∧(ω → ω) and x 6∈ fv (M)) ⇒ Γ ` λx.Mx : φ .

Lemma 5.11. (Extensionality lemma) Let x 6∈ fv (M), x 6∈ Γ. The following statement

holds:

(Γ ` M : π → σ) ⇐⇒ (Γ ` M : ω → ω and x : π,Γ ` Mx∞ : σ) .

Proof. (⇒) If Γ ` M : π → σ, we have Γ ` M : ω → ω by (L9). By Proposition 5.9 (3),

for any π we have x : π ` x∞ : π, then x : π,Γ ` Mx∞ : σ by (L3).

(⇐) Assume Γ ` M : ω → ω and x : π,Γ ` Mx∞ : σ with x 6∈ Γ. If σ = ω, we know

ω → ω 6 π → ω 6 π → σ, so Γ ` M : π → σ by (L9). Let σ 6= ω. We prove

Γ ` M : π → σ by structural induction on the derivation of x : π,Γ ` Mx∞ : σ, up to

uses of (L8). One distinguishes cases according to which is the last rule applied. We will

examine the case (L3) only. Let Σ ` M : ψ → σ and ∆ ` x∞ : ψ, where Σ,∆ = x : π,Γ.

If ψ 6∼ ω, then ∆x = x : π and π 6 ψ by Proposition 5.8 (4). If ψ ∼ ω, we obviously also

have π 6 ψ. On the other hand, since Σ � x : π,Γ, we have x : π,Γ ` M : ψ → σ by

(L8), and Γ ` M : ψ → σ since x 6∈ fv (M). The conclusion then follows by (L9).

5.2. Equivalence between the model and the type system

In this section, we show that the meaning of a term in the model U corresponds exactly

to the set of types that can be given to this term in system P. We specialize the semantic

function to the logical model U. Notice that ξ is a compact environment if and only

if for any variable x in its domain, ξ(x) = ↑ π for some π ∈ fb. A consequence of

the isomorphism between UB and M(U) is that the product of compact environments

becomes

(∀i ∀x ρi(x) = ↑ πi) ⇒ (ρm � · · · � ρn)(x) = ↑ (π1 × · · · × πn) .
Because U solves the domain equation up to isomorphism, the equations defining the

meaning of terms now involve functions F and G in the standard way. The interpretation

function V : Λrc × Env → U is defined in Figure 7.

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

G. Boudol, P.-L. Curien and C. Lavatelli 468

V[[x]]ρ = {φ ∈ ft | φ ∈ ρ(x)}

V[[λx.M]]ρ = ↑ {π → φ | φ ∈ V[[M]]ρ[x:=↑π]}

V[[MP]]ρ = {σ | π ∈↑ φ1 × · · · × φn and (π → σ) ∈ V[[M]]ρ0
} ∪ {ω}

where

ρ ⊇ ρ0 � ρ1 � · · · � ρn
P ∝ (M1 | · · · |Mn)

φi ∈ V[[Mi]]ρi

V[[M〈P/x〉]]ρ =
⋃ V[[M]]ρ0[x:=↑φ1×···×φn]

where

ρ ⊇ ρ0/x � ρ1 � · · · � ρn
P ∝ (M1 | · · · |Mn)

φi ∈ V[[Mi]]ρi

V[[cP]]ρ =

{
V[[I]] if P ≡ (M | Q) and ω → ω ∈ V[[M]]ρ
⊥ otherwise

Fig. 7. Interpretation function over U

Lemma 5.12. Let M ∈ Λrc and ρ, ρ′ ∈ Env. The following properties hold:

— Monotonicity: ρ ⊆ ρ′ ⇒ V[[M]]ρ v V[[M]]ρ′ .

— Continuity: τ ∈ V[[M]]ρ ⇐⇒ ∃ξ ∈ CEnv (ξ ⊆ ρ and τ ∈ V[[M]]ξ) .

Proof. The proof is a straightforward induction on the definition of the interpretation

function.

Lemma 5.13. The preorder vP (cf. Definition 5.3) is a precongruence and is closed with

respect to =α and ≡:

— M vP N ⇒ ∀C C[M] vP C[N].

— (M=αN or M ≡ N) ⇒ (M 'P N).

Proof. Part (1) is shown by induction on the context C , using Proposition 5.7. Part (2)

holds by Proposition 5.9.

Definition 5.14.

— Given Γ, the compact environment ρΓ is defined by

ρΓ(x) = ↑ Γ×(x) for all variables x in Γ .

— Given ξ ∈ CEnv, the context Γξ is defined by

Γξ = {x : π | ξ(x) = ↑ π} .
Lemma 5.15. For any ∆,Γ and compact environment ξ, the following properties hold:

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

A semantics for lambda calculi with resources 469

1 ∆� Γ ⇐⇒ ρ∆(x) ⊆ ρΓ(x) for any x in the domain of ∆.

2 ρ∆,Γ = ρ∆ � ρΓ.

3 ρΓξ
= ξ.

Proof. 1. This follows from Proposition 5.6.

2. By definition, ρ∆,Γ(x) = ↑ (∆,Γ)×(x) = ↑ (∆×(x)× Γ×(x)) = ρ∆ � ρΓ .

3. We have

ρΓξ
(x) = ↑ Γ×ξ (x) for any x ∈ Γξ

= ↑ Γξ(x) since ξ contains only one assumption on x

= ↑ π with ξ(x) = ↑ π .

Lemma 5.16. For all Γ, N, τ: (Γ ` N : τ) ⇒ τ ∈ V[[N]]ρΓ
.

Proof. For τ = ω, the statement holds immediately. Assume τ 6= ω. We proceed by

structural induction on the derivation of Γ ` N : τ.

(L1) Here Γ = x : τ and N = x. Since V[[x]]ρΓ
= ↑ τ, we have that τ ∈ V[[x]]ρΓ

holds.

(L2) Here N = λx.M and τ = π → φ. Let ∆ = x : π,Γ. By induction, we have

φ ∈ V[[M]]ρ∆
. Moreover, ρ∆ = ρΓ[x :=↑ π], so π → φ ∈ V[[N]]ρΓ

by definition of the

semantic function.

(L3) Here N = (MP). Assume ∆ ` P : π and Σ ` M : π → φ, with Γ = Σ,∆. By

induction, π → φ ∈ V[[M]]ρΣ
. Consider the case π 6∼ ω. Let π .φ1, . . . , φn. Then there

exist M1, . . . ,Mn, R and ∆1, . . . ,∆n such that P ≡ (M1 | · · · | Mn | R) and ∆i ` Mi : φi
with ∆1, . . . ,∆n � ∆. By the induction hypothesis, we have φi ∈ V[[Mi]]ρ∆i

for any

i. Since Σ,∆1, . . . ,∆n � Γ implies ρΓ ⊇ ρΣ � ρ∆1
� · · · � ρ∆n

by Lemma 5.15, and since

P ∝ (M1 | · · · |Mn), we have φ ∈ V[[MP]]ρΓ
.

(L4) Here N = M〈P/x〉. Assume x : π,Σ ` M : τ and ∆ ` P : π, with Σ,∆� Γ and x 6∈ Σ.

We have τ ∈ V[[M]]ρΣ[x:=↑π]
by induction. Let π .φ1, . . . , φn. There exist some M1, . . . ,Mn

and ∆1, . . . ,∆n such that P ∝ (M1 | · · · |Mn) and ∆i ` Mi : φi with ∆1, . . . ,∆n � ∆. Then

φi ∈ V[[Mi]]ρ∆i
holds by induction. Since ξΓ ⊇ ρΣ � ρ∆1

� · · · � ρ∆n
and π ∈ ↑ π, we have

τ ∈ V[[M〈P/x〉]]ρΓ
.

(L8) This follows from Lemma 5.15 (1) and by monotonicity (Lemma 5.12).

(L10) Here N = cP , τ = φ → φ and Γ ` P : ω → ω. By Proposition 5.7, there exist

M,Q,Γ′ such that P ≡ (M | Q) and Γ′ ` M : ω → ω, where Γ′ � Γ. By induction,

ω → ω ∈ V[[M]]ρΓ′ . By Lemma 5.15 and by monotonicity, we have ω → ω ∈ V[[M]]ρΓ
.

Then φ → φ ∈ V[[I]] =V[[cP]]ρΓ
.

Lemma 5.17. Let ξ be a compact environment; the meaning of a term N in this environ-

ment is obtained from the typing system as follows:

V[[N]]ξ = {τ | Γξ ` N : τ} .

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

G. Boudol, P.-L. Curien and C. Lavatelli 470

Proof. Let Γξ ` N : τ. Then τ ∈ V[[N]]ρΓξ
= V[[N]]ξ by Lemmas 5.16 and 5.15. We

prove the other inclusion by structural induction on N. For τ = ω, the lemma holds

immediately by Rules (L7) and (L9). Assume τ 6= ω and τ ∈ V[[N]]ξ .

N = x: Let ξ(x) = ↑ π; since τ ∈ ξ(x), we have π 6 τ. Moreover, x : τ ` x : τ and

x : τ� x : π � Γξ , hence we obtain Γξ ` x : τ by (L8).

N = λx.M: Let τ = π → φ ∈ V[[λx.M]]ξ . Hence there exists ψ → σ such that

σ ∈ V[[M]]ξ[x:=↑ψ] and ψ → σ 6 π → φ .

By the arrow property, we have either φ = ω, in which case φ ∈ V[[M]]ξ[x:=↑ψ] since

denotations are non-empty, or σ 6= ω, φ 6= ω, π 6 ψ and σ 6 φ, and hence φ ∈
V[[M]]ξ[x:=↑ψ]. Since ↑ ψ ⊆ ↑ π, we have φ ∈ V[[M]]ξ[x:=↑π] by monotonicity. Then

Γξ[x:=↑π] ` M : φ holds by induction. Finally, Γξ[x:=↑π] = Γξ/x, x : π and Γξ/x � Γξ imply

Γξ ` λx.M : π → φ by (L2) and (L8).

N = (MP): τ ∈ V[[MP]]ξ means that there exist π, φ1, . . . , φn, M1, . . . ,Mn and compact

ξ0, ξ1, . . . , ξn such that P ∝ (M1 | · · · | Mn), ξ ⊇ ξ0 � · · · � ξn, (∀i φi ∈ V[[Mi]]ξi), π ∈ ↑
φ1 × · · · × φn, and π → τ ∈ V[[M]]ξ0

. We have Γξi ` Mi : φi and Γξ0
` M : π → τ by

induction. By (L5) and (L9), we get

Γξ1
, . . . ,Γξn ` (M1 | · · · |Mn) : π,

from which Γξ1
, . . . ,Γξn ` P : π follows by (L7) since P ≡ (M1 | · · · |Mn | Q) for some Q.

By (L3), Γξ0
,Γξ1

, . . . ,Γξn ` MP : τ. Finally, ξ ⊇ ξ0 � · · · � ξn implies Γξ0
,Γξ1

, . . . ,Γξn � Γξ .

Then Γξ ` MP : τ follows by (L8).

N = M〈P/x〉: With the same assumptions as for application, except that ξ ⊇ ξ′0 � · · · �ξn
with ξ′0 = ξ0/x, we have τ ∈ V[[M]]ξ0[x:=↑φ1×···×φn]. We set π = φ1× · · · ×φn. By induction

we have Γξ0[x:=↑π] ` M : τ and Γξi ` Mi : φi. A derivation of Γξ1
, . . . ,Γξn ` P : π is

obtained as above. Since Γξ0[x:=↑π] = Γξ′0 , x : π and Γξ′0 ,Γξ1
, . . . ,Γξk � Γξ , we conclude

that Γξ ` N : τ by (L4) and (L8).

N = cP : By definition, τ ∈ V[[I]] and ω → ω ∈ V[[M]]ξ , where P ≡ (M | Q). Since

τ = π → σ and σ ∈ V[[x]][x:=↑π], we have π 6 σ. On the other hand, Γξ ` M : ω → ω

holds by induction, from which Γξ ` P : ω → ω follows, giving type ω to Q. Using

(L10), we have Γξ ` cP : σ → σ, and hence Γξ ` cP : π → σ holds by (L9).

Theorem 5.18. For all M ∈ Λrc and ξ ∈ CEnv,

V[[M]]ξ = {σ | ∃Γ Γ ` M : σ and ρΓ ⊆ ξ} .
Proof. Assume Γ ` M : σ and ρΓ ⊆ ξ. Then σ ∈ V[[M]]ρΓ

by Lemma 5.16. By

monotonicity of the interpretation, we have σ ∈ V[[M]]ξ . The other inclusion is immediate

by Lemma 5.17.

Theorem 5.19. (U and P are equivalent) For all M,N ∈ Λrc,

(M vU N) ⇐⇒ (M vP N) .

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

A semantics for lambda calculi with resources 471

Proof. Let M,N ∈ Λrc be such that M vU N and assume Γ ` M : φ. We have

φ ∈ V[[M]]ρΓ
(by Lemma 5.16)

φ ∈ V[[N]]ρΓ
(since M vU N)

ΓρΓ
` N : φ (by Lemma 5.17)

Γ̃ρΓ
` N : φ (by Proposition 5.6 (1))

Γ ` N : φ (since Γ̃ρΓ
= Γ̃� Γ) .

The proof of the other implication is similar.

6. Full abstraction

The abstract semantics of λcr in terms of typability within the system P is adequate with

respect to the observational semantics we adopted for the calculus. This property extends

the adequacy result proved for λr by Boudol (Boudol 1993). The proof technique consists

in showing the soundness of typing with respect to a realizability predicate Γ � T : τ.

Moreover, we can establish that the abstract semantics is actually fully abstract as a

consequence of the completeness result

if Γ � M : φ, then Γ ` M : φ.

The proof of completeness relies on the existence of characteristic terms Mσ for each type,

with the property that, for any τ, Mσ has type τ if and only if σ 6 τ.

6.1. Realizability of types

The realizability predicate � used here, and defined below, is the same as that given in

Boudol (1993).

Definition 6.1. For closed terms and bags of λcr , predicate � is defined by

� M : ω
def⇐⇒ true

� M : π → φ
def⇐⇒ M⇓rc and ∀P (� P : π ⇒ � MP : φ)

� P : π
def⇐⇒ π .φ1, . . . , φn and n > 0 and

∃R,M1, . . . ,Mn (P ≡ (M1 | · · · |Mn | R) and � Mi : φi) .

We now extend the predicate to the open terms of λcr . Let Γ = x1 : π1, . . . , xn : πn be

a typing context without repeated variables such that fv (M) ⊆ {x1, . . . , xn}. We define

Γ � M : φ as follows:

Γ � M : φ
def⇐⇒ ∀P1, . . . , Pn (∀i � Pi : πi) ⇒ (� M〈P1/x1〉 · · · 〈Pn/xn〉 : φ) .

Definition 6.2. The preorder on Λrc, with associated equivalence 'R , is defined by

(M vR N)
def⇐⇒ ∀Γ , φ (Γ � M : φ) ⇒ (Γ � N : φ) .

We show that this preorder contains the applicative preorder (cf. Definition 2.2).

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

G. Boudol, P.-L. Curien and C. Lavatelli 472

Lemma 6.3. (M vA N) ⇒ (M vR N) .

Proof. Assume Γ = x1 : π1, . . . , xn : πn and Γ � M : φ. We show Γ � N : φ by

structural induction on φ. If φ = ω, the statement holds by definition of � . Assume

φ = π → σ and let � Pi : πi for i = 1, . . . , n and � Q : π. By assumption we have

1 M〈P̃ /x̃〉⇓rc, and

2 � M〈P̃ /x̃〉Q : σ.

On the one hand, from (1) we have N〈P̃ /x̃〉⇓rc, as M vA N and []〈P̃ /x̃〉 is an applicative

context. On the other hand, M〈P̃ /x̃〉Q vA N〈P̃ /x̃〉Q since vA is a precongruence, hence

� N〈P̃ /x̃〉Q : σ by the induction hypotheses and (2).

6.2. Main results

Theorem 6.4. (Full abstraction of the type semantics) For all M,N ∈ Λrc

(M vP N) ⇐⇒ (M vrc N) .

Proof. To show the ⇒ part, called adequacy, let M,N ∈ Λrc and C be a λcr-context:

M vP N and C[M]⇓rc

?

Lemma 5.13

?

Convergence Lemma 6.9

C[M] vP C[N] and ` C[M] : ω → ω

@
@
@
@R

�
�

�
�	

` C[N] : ω → ω

?Convergence Lemma 6.9

C[N]⇓rc

As for the ⇐ part, called completeness, let M,N ∈ Λrc, Γ be a set of hypotheses and

φ ∈ ft. Then:

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

A semantics for lambda calculi with resources 473

M vrc N and Γ ` M : φ

?

Lemma 6.3

?

Soundness Lemma 6.8

M vR N and Γ× � M : φ

@
@
@
@R

�
�

�
�	

Γ× � N : φ

?Completeness Lemma 6.14

Γ× ` N : φ

?
Proposition 5.6

Γ ` N : φ

Theorem 6.5. (Full abstraction of model U) For all M,N ∈ Λrc

(M vU N) ⇐⇒ (M vP N) ⇐⇒ (M vrc N) .

Proof. The equivalences hold by Theorems 5.19 and 6.4.

Remark 6.6. Without convergence testing, the model is only adequate. More precisely, if

M,N range over Λr and contexts over λr-contexts, then a fortiori (M vU N) ⇒ (M vr N),

but Example 2.12 and Theorem 6.5 show that the converse does not hold.

In the next three sections, we show the intermediate results (soundness, convergence,

completeness). In order to establish completeness, we introduce characteristic bags and

terms and justify their name in Lemma 6.12.

6.3. Soundness

In order to prove the soundness of � with respect to ` , we need the following technical

proposition.

Proposition 6.7.

1 (Γ � M : φ and φ 6 σ) ⇒ Γ � M : σ .

2 (Γ � M : φ and Γ� Σ) ⇒ Σ× � M : φ .

Proof. 1. We prove the statement for closed terms, by induction on σ. For σ = ω, it

holds by definition of � . If σ = ψ → σ′, the type φ must be π → φ′ for some π, φ′. By

assumption, M⇓rc, which proves the statement for σ′ = ω. Otherwise, given � P : ψ, we

show � MP : σ′. Assuming ψ .φ1, . . . , φn, the following is verified by definition of � :

P ≡ (M1 | · · · |Mn | R) and � Mi : φi for all i .

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

G. Boudol, P.-L. Curien and C. Lavatelli 474

On the other hand, by the arrow property, we have ψ 6 π and φ′ 6 σ′. Let π . δ1, . . . , δm.

By the product property, there is an injection i : [1, m] → [1, n] such that φi(j) 6 δj for

all j. By induction, � Mi(j) : δj . Then

� (Mi(1) | · · · |Mi(m)) : δ1 × · · · × δm
implies � P : π, as the types composing π different from the δi’s are necessarily ω. By

hypothesis, � MP : φ′. By induction, � MP : σ′.
For open terms, just observe that, if Γ = x1 : π1, . . . , x : πn, the assumption writes

� M〈P̃ /x̃〉 : φ for any P̃ such that � Pi : πi. Then � M〈P̃ /x̃〉 : σ. So Γ � M : σ by

definition.

2. Let Σ×(xi) = πi. If Γ(xi) = ψi, then πi 6 ψi by Proposition 5.6 (4). Let � Pi : πi. We

have � M〈P̃ /x̃〉 : φ since Part (1) implies � Pi : ψi.

Lemma 6.8. (Soundness) For all M,Γ, and φ,

(Γ ` M : φ) ⇒ (Γ× � M : φ) .

Proof. We use structural induction on the derivation of Γ ` M : φ. We assume that

Γ× = x1 : π1, . . . , xk : πk for some k > 0. The cases (L8) and (L9) have been already

covered in proposition 6.7. We examine some other cases.

(L1) Assume x : φ ` x : φ. We must prove � x〈P/x〉 : φ for any P such that P ≡ (N | Q)

and � N : φ. We have x〈P/x〉 →rc N〈Q/x〉 � N. Hence N vA x〈P/x〉 by Lemmas 2.4

and 2.5, and � x〈P/x〉 : φ holds by Lemma 6.3.

(L2) The induction hypothesis says that x : π,Γ× � N : σ (with φ = π → σ and

M = λx.N), with x 6∈ Γ×. Let closed P1, . . . , Pk, P be such that � P : π and � Pi : πi for

all i. By definition, we have

� N〈P/x〉〈P1/x1〉 · · · 〈Pk/xk〉 : σ .

Furthermore, since P̃ and P are closed and x 6= xi for any i, we have

(λx.N)〈P̃ /x̃〉P →?
rc (λx.(N〈P̃ /x̃〉))P →rc N〈P̃ /x̃〉〈P/x〉 � N〈P/x〉〈P̃ /x̃〉 .

This implies, � (λx.N)〈P̃ /x̃〉P : σ, by Lemmas 2.4, 2.5, and 6.3. Hence Γ � (λx.N) : π → σ

by definition of � .

(L3) Assume Σ ` N : π → φ and ∆ ` P : π (with M = (NP) and Γ = Σ,∆) and let

π .φ1, . . . , φn. By Proposition 5.7 (1), there exist some M1, . . . ,Mn, Q and ∆1, . . . ,∆n such

that P ≡ (M1 | · · · | Mn | Q), ∆1, . . . ,∆n � ∆, and ∆i ` Mi : φi, with shorter proofs

than that of ∆ ` P : π. By induction, we have ∆×i � Mi : φi for i = 1, . . . , n and

Σ× � N : π → φ. Let P1, . . . , Pk be closed bags such that � Pi : πi. Since there exists δi
such that

πi ∼ Σ×(xi)× ∆×(xi) ∼ Σ×(xi)× ∆×1 (xi)× · · · × ∆×n (xi)× δi,
we can find Qi, R

i
j and Si such that Pi ≡ (Qi | Ri1 | · · · | Rin | Si), with � Qi : Σ×(xi) and

� Rij : ∆×j (xi). Therefore, by definition of � , the following holds:

� N〈Q̃/x̃〉 : π → φ and � Nj : φj with Nj = Mj〈R̃j/x̃〉.

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

A semantics for lambda calculi with resources 475

By definition again, we have � (N1 | · · · | Nn | Q) : π, and then

� (N〈Q̃/x̃〉)(N1 | · · · | Nn | Q) : σ .

By Lemma 2.7, (N〈Q̃/x̃〉)(N1 | · · · | Nn | Q) vA N(M1 | · · · | Mn | Q)〈P̃ /x̃〉. Then

Γ× � (NP) : φ using Lemma 6.3.

(L10) Assume M = cP , φ = σ → σ, and Γ ` P : ω → ω. By Proposition 5.7, there

exist N,Q,∆ such that P ≡ (N | Q), ∆ � Γ and ∆ ` N : ω → ω, with a shorter proof

than that of Γ ` P : ω → ω. By induction, ∆× � N : ω → ω. Since ∆× � Γ×, using

Proposition 6.7 (2), we have Γ× � N : ω → ω. Assume � Qi : πi and � R : σ. We must

show

(cP)〈Q̃/x̃〉⇓rc and � (cP)〈Q̃/x̃〉R : σ .

Since ∆× � N : ω → ω, we have � N〈Q̃/x̃〉 : ω → ω, that is, N〈Q̃/x̃〉⇓rc. Hence

c(N〈Q̃/x̃〉) →?
rc I. Since

(cP)〈Q̃/x̃〉 →rc (cN)〈Q̃/x̃〉 � c(N〈Q̃/x̃〉),

we have (cP)〈Q̃/x̃〉 →?
rc I (cf. Lemma 2.5). Then R vA (cP)〈Q̃/x̃〉R, which implies

� (cP)〈Q̃/x̃〉R : σ by Lemma 6.3.

The following lemma characterizes convergence by means of the notion of typability.

Lemma 6.9. (Convergence lemma) For all closed terms M,

M⇓rc ⇐⇒ ` (M : ω → ω) .

Proof. Let M →?
rc V , with V a value. It is easy to check that ` V : ω → ω.

Theorem 5.10 gives ` M : ω → ω. To show the converse implication, assume ` M :

ω → ω. Then � M : ω → ω by Lemma 6.8. That is, M⇓rc by definition.

An immediate consequence of Lemma 6.9 is that ω is the only type for a diverging

term like Ω.

6.4. Characteristic bags and terms

Characteristic bags Pτ such that ` Pτ : τ are defined by induction on the type τ they

intend to characterize. If τ ∈ ft, Mτ stands for Pτ. At the same time as Pτ, we construct a

function Tτ, which is meant to test if its argument has type τ.

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

G. Boudol, P.-L. Curien and C. Lavatelli 476

Definition 6.10. (Characteristic bags and terms) We define Pτ and Tτ, by mutual induction

on τ, as follows:

Mω = Ω

Tω = λx.I

Mπ→ σ =

{
λx.Ω if σ = ω

λx.(Tπx
∞)Mσ otherwise

Tπ→ σ =

{
λx.(cx) if σ = ω

λx.Tσ(xPπ) otherwise

Pπ×ψ = (Pπ | Pψ)

Tπ = λx.(Tφ1
x∞) · · · (Tφnx∞) if π .φ1, . . . , φn .

We will comment briefly on the previous definition. For τ = ω, the choice is clear.

The characteristic term of arrow type π → σ is the function (abstraction) that takes

an argument of type π and gives back the characteristic term of type σ. In a typed

calculus, Mπ→ σ would be λx : π.Mσ . Instead, we use Tπ to ensure that the argument of

the abstraction is of type π. Observe that in the definition of Mπ→ω there is no control

on the argument since π → ω ∼ ω → ω.

The definition of Tπ→ σ rests on Tσ and Pπ . First suppose σ 6= ω. By Proposition 5.7 (3),

M has type π → σ if and only if MPπ has type σ. If σ = ω, then π → σ ∼ ω → ω, and

what we have to test then is that M converges (cf. Lemma 6.9). Note that, in the setting

of the lazy λ-calculus, a synthetic definition for the two cases just considered can be given

by setting Tπ→ σ = λx.(cx)(Tσ(xPπ)) (cf. Abramsky and Ong (1993) and Boudol (1990)).

But that would not suit our paradigm with resources, because x occurs twice in this

expression.

Characteristic bags for product types are built using parallel composition. Intuitively,

the test for π × ψ must verify, successively, that the argument has the two types π and

ψ, that is, Tπ×ψ = λx.(Tπx
∞)(Tψx

∞). But this term is not suitable for π = ω, because it

diverges when applied to a term of type ψ ∼ ω × ψ. The exact definition avoids any test

on type ω.

We have used infinite multiplicities in the definition of characteristic bags and terms.

In fact, finite multiplicities would have been enough. The test for types in ft uses its

argument once: Tπ→ σ is linear in the abstracted variable. Moreover, the test for product

types is made up of a finite number of ‘simple’ tests (for arrow types). Thus, infinite

multiplicities can be replaced by multiplicity 1 in Tπ , while the characteristic term Mπ→ σ

must allow for as many fetches of its arguments as types different from ω in π. Precisely,

if π .φ1, . . . , φn, we can define Mπ→ σ = λx.(Tπx
n)Mσ .

Proposition 6.11.

1 ` Pτ : τ.

2 ` Tτ : τ → (σ → σ).

Proof. The proof is straightforward.

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

A semantics for lambda calculi with resources 477

Lemma 6.12. (Characterization lemma)

1 Γ ` Pτ : τ′ ⇐⇒ τ 6 τ′.
2 Γ ` Tτ : τ′ → (ξ → σ) ⇐⇒ τ′ 6 τ and ξ 6 σ.

Proof. In the proof, the notation (mτ) stands for property (m) at type τ. The ⇐ parts

of (1) and (2) are consequence of Proposition 6.11 and Rule (L9). The proofs of the ⇒
parts are by induction on the type τ and then on the sizes of type derivations. Full details

are given below for the most interesting cases.

Type inferences for Mπ→ σ and Tπ×ψ involve the typings of their subterms Tπx
∞ and

Tψx
∞. In our induction, we shall make use of the fact that (2) implies the following

property (3).

(3) Γ ` Tτx
∞ : ξ → σ ⇒

ξ 6 σ and (τ � ω ⇒ ∃x : ψ1, . . . , x : ψn ∈ Γ ψ1 × · · · × ψn 6 τ) .

We show indeed that (2τ) implies (3τ) for all τ. If the type for Tτx
∞ is inferred by

(L3), then we have Γ1 ` Tτ : ψ → (ξ → σ) and Γ2 ` x∞ : ψ with Γ = Γ1,Γ2.

By (2τ), ψ 6 τ and ξ 6 σ hold. There are two cases to examine: if ψ ∼ ω, we have

τ ∼ ω immediately. Otherwise, by Proposition 5.8 (4), there exist x : ψ1, . . . , x : ψn ∈
Γ2 such that ψ1 × · · · × ψn 6 ψ. Hence ψ1 × · · · × ψn 6 τ holds by transitivity. If the

proof of Γ ` Tτx
∞ : ξ → σ ends with (L8), that is ∆ ` Tτx

∞ : ξ → σ holds for some

∆� Γ, the induction hypothesis gives ξ 6 σ and

τ � ω ⇒ ∃x : ψ′1, . . . , x : ψ′m ∈ ∆ ψ′1 × · · · × ψ′m 6 τ .

Let Γ×(x) = ψ1 × · · · × ψn. By Proposition 5.6 (4), ψ1 × · · · × ψn 6 ψ′1 × · · · × ψ′m, hence

ψ1 × · · · × ψn 6 τ by transitivity. If the derivation ends with (L9), that is, Γ ` Tτx
∞ : τ′

where τ′ 6 ξ → σ, then τ′ ∼ ξ′ → σ′ for some ξ′ and σ′ (cf. Remark 5.2). By induction,

ξ′ 6 σ′ and

τ � ω ⇒ ∃x : ψ1, . . . , x : ψn ∈ Γ ψ1 × · · · × ψn 6 τ .

If σ = ω, then ξ 6 σ holds immediately. Otherwise ξ 6 ξ′ and σ′ 6 σ hold by the

arrow property, hence ξ 6 σ follows by transitivity. This ends the proof of (3τ). Let us

prove (1) and (2):

τ = ω :

1 The only type for Ω is ω, so τ 6 τ′ = ω holds by reflexivity.

2 If the derivation of Γ ` λx.I : τ′ → (ξ → σ) ends with (L2), that is, x : τ′,Γ ` I :

ξ → σ, then ξ 6 σ by Proposition 5.8 (2).

τ = π → ω :

1 If the derivation ends with (L2), that is, τ′ = ψ → σ and x : ψ,Γ ` Ω : σ, we have

π → ω 6 ω → ω 6 ψ → ω, since ω is the only type for Ω.

2 When the last rule applied in the proof of Γ ` λx.(cx) : τ′ → (ξ → σ) is (L2), we

derive τ′ 6 ω → ω ∼ τ and ξ 6 σ by Proposition 5.8 (3).

τ = π → φ and φ 6= ω:

1 We only consider the case where the derivation of Γ ` λx.(Tπx
∞)Mφ : τ′ ends with

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

G. Boudol, P.-L. Curien and C. Lavatelli 478

(L3) followed by (L2), that is, τ′ = π′ → φ′ and x : π′,Γ ` (Tπx
∞)Mφ : φ′ with x 6∈ Γ.

x : π′,Γ1 ` Tπx∞ : ξ′ → φ′ and Γ2 ` Mφ : ξ′, where Γ = Γ1,Γ2. Since (2π) holds by

induction, (3π) gives ξ′ 6 φ′ and π′ 6 π. Moreover, φ 6 ξ′ by induction, so φ 6 φ′
by transitivity, and hence π → φ 6 π′ → φ′.

2 We will only consider the case of a derivation of Γ ` λx.Tφ(xPπ) : τ′ → (ξ → σ), of

the form

(L2)

(L3)

...
Γ1 ` Tφ : ψ → (ξ → σ)

(L3)

...
x : τ′ ` x : θ → ψ

...
Γ2 ` Pπ : θ

x : τ′,Γ2 ` xPπ : ψ

x : τ′,Γ1,Γ2 ` Tφ(xPπ) : ξ → σ

Γ = Γ1,Γ2 ` λx.Tφ(xPπ) : τ′ → (ξ → σ)

We have to show ξ 6 σ and τ′ 6 τ. We have:

— ψ 6 φ and ξ 6 σ by the induction hypothesis on φ;

— τ′ 6 θ → ψ by Proposition 5.8 (1); hence

— τ′ ∼ π′ → φ′ for some π′, φ′ by the product property;

— θ 6 π′ and φ′ 6 ψ by the arrow property (since φ 6= ω implies ψ 6= ω);

— π 6 θ, by the induction hypothesis on π.

Putting these results together, we get π 6 π′ and φ′ 6 φ, which implies τ′ ∼ π′ →
φ′ 6 π → φ = τ.

τ = π × ψ :

1 The statement follows easily by Proposition 5.7 (1) and by induction applied to π and

ψ.

2 As for the arrow case, we omit the details and only analyze the case of a derivation

for τ = φ0 × φ1 with φi 6= ω, τ′ = ψ1 × ψ2, and σ 6= ω:

(L2)

(L3)

...
x : ψ1,Γ1 ` Tφ0

x∞ : θ → (ξ → σ)

...
x : ψ2,Γ2 ` Tφ1

x∞ : θ

x : τ′,Γ1,Γ2 ` (Tφ0
x∞)(Tφ1

x∞) : (ξ → σ)

Γ = Γ1,Γ2 ` λx.(Tφ0
x∞)(Tφ1

x∞) : τ′ → (ξ → σ)

Some consequences of this derivation are

— ψ1 6 φ0 and θ 6 ξ → σ by (3φ0), and hence θ ∼ ξ′ → σ′ for some ξ′, σ′, and

ξ 6 ξ′ and σ′ 6 σ;

— ψ2 6 φ1 and ξ′ 6 σ′ by (3φ1).

Therefore, τ′ = ψ1 × ψ2 6 φ0 × φ1 ∼ τ and ξ 6 ξ′ 6 σ′ 6 σ.

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

A semantics for lambda calculi with resources 479

6.5. Completeness

The following lemma singles out an important instance of the completeness result shown

below (Lemma 6.14).

Lemma 6.13. (Γ � M : ω → ω) ⇒ (Γ ` M : ω → ω) .

Proof. Let Γ � M : ω → ω with fv (M) ⊆ {x1, . . . , xn} and Γ(xi) = πi for all

1 6 i 6 n. By Lemma 6.11 and soundness, � Pπi : πi is verified. Then, by Lemma 6.9,

M〈Pπ1
/x1〉 · · · 〈Pπn/xn〉⇓rc implies ` M〈Pπ1

/x1〉 · · · 〈Pπn/xn〉 : ω → ω. By Proposi-

tion 5.7 (2), there exist ψ1, . . . , ψn such that ` Pπi : ψi for all i and x1 : ψ1, . . . , xn :

ψn ` M : ω → ω. Characterization Lemma 6.12 gives πi 6 ψi. The conclusion

Γ ` M : ω → ω is obtained by (L8), since x1 : ψ1, . . . , xn : ψn � x1 : π1, . . . , xn : πn � Γ.

Lemma 6.14. (Completeness lemma) For all M,Γ, φ,

(Γ � M : φ) ⇒ (Γ ` M : φ) .

Proof. The proof is by structural induction on φ. If φ = ω, then Γ ` M : ω by (L7).

If φ = π → ω, then Γ � M : ω → ω and the statement holds by Lemma 6.13. Assume

φ = π → σ with σ 6= ω and Γ = x1 : π1, . . . , xn : πn. For any P1, . . . , Pn, Q such that

� Pi : πi and � Q : π, we have

(∗) M〈P̃ /x̃〉⇓rc and

(∗∗) � M〈P̃ /x̃〉Q : σ .

We claim that (∗) implies Γ ` M : ω → ω, and (∗∗) implies y : π,Γ ` My∞ : σ, where

y 6∈ Γ and y 6∈ fv (M). The conclusion then follows from these claims by the extensionality

Lemma 5.11.

We have, by the convergence Lemma 6.9 and by the soundness Lemma 6.8,

M〈P̃ /x̃〉⇓rc ⇒ (` M〈P̃ /x̃〉 : ω → ω) ⇒ (� M〈P̃ /x̃〉 : ω → ω) .

Since this holds for all P̃ , we thus have Γ � M : ω → ω by definition of � , and

Γ ` M : ω → ω follows by Lemma 6.13.

By Lemmas 2.5, 2.6 and 6.3, we have M〈P̃ /x̃〉Q 'R (My∞)〈Q/y〉〈P̃ /x̃〉. This equivalence

together with (∗∗) implies � (My∞)〈Q/y〉〈P̃ /x̃〉 : σ. Hence y : π,Γ � My∞ : σ, and

the induction hypothesis gives y : π,Γ ` My∞ : σ. This completes the proof of the two

claims.

7. Conclusion

We have built up a denotational semantics for a non-confluent functional language

incorporating the expression of deadlocks. A new domain equation has been proposed of

the form D = (M(D) → D)⊥, whose canonical solution constitutes an adequate model

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

G. Boudol, P.-L. Curien and C. Lavatelli 480

of the language. Moreover, completeness can be achieved by adding convergence testing

facilities. Another equation of this kind, which differs in the definition ofM(D), has been

studied by the authors and presented in Lavatelli (1996). Unlike the equation presented

in this paper, it allows us to interpret the whole set of arguments and not just finite ones.

The corresponding canonical solution is a filter model rather than an upperset model, and

turns out to be adequate. Nevertheless, the fact that the type system used to characterize

this model involves a standard conjunction operator besides the product complicates

the task of showing a completeness result analogous to the one presented here for the

language augmented with convergence testing. The definability technique is no longer

suitable for showing this: indeed, the definition of characteristic bags for conjunctive

types would imply the duplication of arguments, which goes against the philosophy of

the language. However, we conjecture that completeness holds for the second model as

well, and we have some confidence in the technique of logical relations for proving that

the canonical solutions of these two domain equations in fact induce the same preorder

on terms, and hence that the second model is fully abstract too. We leave this subject for

further work.

References

Abadi, M., Cardelli, L., Curien, P.-L. and Levy, J.-J. (1991) Explicit Substitutions. Journal of

Functional Programming 1.

Abramsky, S. (1989) The Lazy Lambda Calculus. In: Turner, D. (ed.) Research Topics in Functional

Programming, Addison Wesley.

Abramsky, S. and Ong, L. (1993) Full Abstraction in the Lazy Lambda Calculus. Information and

Computation 105 (2).

Amadio, R. and Curien, P.-L. (1998) Domains and Lambda-Calculi, Cambridge University Press.

Barendregt, H. P. (1984) The Lambda Calculus, North-Holland.

Barendregt, H. P., Coppo, M. and Dezani-Ciancaglini, M. (1983) A Filter Lambda Model and the

Completeness of Type Assignment. Journal of Symbolic Logic 48.

Boudol, G. (1990) A Lambda-Calculus for Parallel Functions. Rapport de Recherche 1231, INRIA

Sophia-Antipolis.

Boudol, G. (1991) Lambda-Calculi for (Strict) Parallel Functions. Information and Computation 108

(1).

Boudol, G. (1993) The Lambda Calculus with Multiplicities. Rapport de Recherche 2025, INRIA

Sophia-Antipolis.

Boudol, G. and Laneve, C. (1994) The Discriminating Power of Multiplicities in the λ-Calculus.

Information and Computation 126 (1).

Boudol, G. and Laneve, C. (1995a) Termination, Deadlock and Divergence in the λ-Calculus with

Multiplicities. Proc. 11th Mathematical Foundations of Programming Semantics Conference.

Electronic Notes in Computer Science.

Boudol, G. and Laneve, C. (1995b) λ-Calculus, Multiplicities and the π-Calculus. Rapport de

Recherche 2581, INRIA Sophia-Antipolis.

Boudol, G. and Lavatelli, C. (1996) Full Abstraction for Lambda-Calculus with Resources and

Convergence Testing. CAAP’96. Springer-Verlag Lecture Notes in Computer Science 1059.

Coppo, M. and Dezani-Ciancaglini, M. (1980) An Extension of the Basic Functionality Theory for

the λ-Calculus. Notre Dame Journal of Formal Logic 21.

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

A semantics for lambda calculi with resources 481

Coppo, M., Dezani-Ciancaglini, M., Honsell, F. and Longo, G. (1984) Extended Type Structures

and Filter Lambda Models. In: Lolli, G., Longo, G. and Marcja, A. (eds.) Logic Colloquium 82,

Elsevier Science Publishers B.V. (North-Holland).

Coppo, M., Dezani-Ciancaglini, M. and Venneri, B. (1980)

Principal Type Schemes and λ-Calculus Semantics. In: Hindley, J. R. and Seldin, J. P. (eds.) To

H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, Academic Press.

Coppo, M., Dezani-Ciancaglini, M. and Venneri, B. (1981) Functional Characters of Solvable Terms.

Zeit. Math. Logik Grund 27.

Curien, P.-L. (1998) Abstract Böhm trees. Mathematical Structures in Computer Science 9.

Curien, P.-L. and Herbelin, H. (1998) Computing with abstract Böhm trees. Proceedings of the Third

Fuji International Symposium on Functional and Logic Programmming, Kyoto.

Dezani-Ciancaglini, M., Intriglia, B. and VenturniZilli, M. (1998) Böhm’s theorem for Böhm trees.

Proceedings of the Sixth Italian Conference on Theoretical Computer Science, World Scientific.

Dezani-Ciancaglini, M., de Liguoro, U. and Piperno, A. (1994) Fully Abstract Semantics for

Concurrent λ-Calculus. TACS’94. Springer-Verlag Lecture Notes in Computer Science 789.

Dezani-Ciancaglini, M., de Liguoro, U. and Piperno, A. (1999a) A Filter Model for Concurrent

λ-Calculus. Siam Journal on Computing 27 (5) 1376–1419.

Dezani-Ciancaglini, M., de Liguoro, U. and Piperno, A. (1999b) Filter Models for Conjunctive-

Disjunctive λ-Calculi. Theoretical Computer Science 170 (1-2) 83–128.

Dezani-Ciancaglini, M. and Margaria, I. (1986) A Characterization of F-complete Type Assignments.

Theoretical Computer Science 45.

Hindley, J. R. (1982) The Simple Semantics for Coppo-Dezani-Sallé Types. International Symposium

on Programming. Springer-Verlag Lecture Notes in Computer Science 137.

Hindley, J. R. (1983) The Completeness Theorem for Typing λ-Terms. Theoretical Computer Science

22.

Krivine, J.-L. (1991) Lambda-calcul, Types et Modèles, Masson.

Lavatelli, C. (1996) Sémantique du Lambda Calcul avec Ressources, Thèse de Doctorat. Université

Paris VII. France.

Lévy, J.-J. (1976) An Algebraic Interpretation of the λβK-Calculus; and an Application of a

Labelled λ-Calculus. Theoretical Computer Science 2 (1).

Milner, R., Parrow, J. and Walker, D. (1989) A Calculus of Mobile Processes, Parts I and II.

Information and Computation 100 (1).

Milner, R. (1990) Functions as Processes. Mathematical Structures in Computer Science 2.

Morris, J. H. (1968) Lambda Calculus Models of Programming Languages, Ph. D. Thesis M.I.T.

Nielsen, M., Plotkin, G. and Winskel, G. (1981) Petri Nets, Event Structures and Domains. Theo-

retical Computer Science 13.

Ong, C.-H. L. (1988) The Lazy Lambda Calculus/ An Investigation into the Foundations of Functional

Programming, Ph. D. Thesis, Imperial College.

Piperno, A. (1995) Normalization and extensionality. Proceeding of Logic in Computer Science (LICS

95), IEEE Computer Society Press.

Pitts, A. (1996) Relational Properties of Domains. Information and Computation 127.

Plotkin, G. (1981) Post-Graduate Lecture Notes on Advanced Domain Theory, Department of

Computer Science, University of Edinburgh.

Ronchi della Rocca, S. (1993) Basic Lambda-calculus, International Summer School in Logic for

Computer Science, Université de Savoie.

Sallé, P. (1978) Une Extension de la Théorie des Types en λ-Calcul. Springer-Verlag Lecture Notes

in Computer Science 62.

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

G. Boudol, P.-L. Curien and C. Lavatelli 482

Sangiorgi, D. (1993) Expressing Mobility in Process Algebras: First Order and Higher Order

Paradigms, Ph. D. Thesis, Department of Computer Science, Edinburgh University.

Sangiorgi, D. (1994) The Lazy Lambda Calculus in a Concurrency Scenario. Information and

Computation 120 (1).

Scott, D. (1982) Domains for Denotational Semantics. Springer-Verlag Lecture Notes in Computer

Science 140.

https://doi.org/10.1017/S0960129599002893 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002893

